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Abstract: The training of artificial neural networks (ANNs) with rectified linear unit (ReLU) activa-
tion via gradient descent (GD) type optimization schemes is nowadays a common industrially relevant
procedure. GD type optimization schemes can be regarded as temporal discretization methods for the
gradient flow (GF) differential equations associated to the considered optimization problem and, in
view of this, it seems to be a natural direction of research to first aim to develop a mathematical con-
vergence theory for time-continuous GF differential equations and, thereafter, to aim to extend such a
time-continuous convergence theory to implementable time-discrete GD type optimization methods. In
this article we establish two basic results for GF differential equations in the training of fully-connected
feedforward ANNs with one hidden layer and ReLU activation. In the first main result of this article
we establish in the training of such ANNs under the assumption that the probability distribution of
the input data of the considered supervised learning problem is absolutely continuous with a bounded
density function that every GF differential equation admits for every initial value a solution which is
also unique among a suitable class of solutions. In the second main result of this article we prove in
the training of such ANNs under the assumption that the target function and the density function of
the probability distribution of the input data are piecewise polynomial that every non-divergent GF
trajectory converges with an appropriate rate of convergence to a critical point and that the risk of
the non-divergent GF trajectory converges with rate 1 to the risk of the critical point. We establish
this result by proving that the considered risk function is semialgebraic and, consequently, satisfies
the Kurdyka-Łojasiewicz inequality, which allows us to show convergence of every non-divergent GF
trajectory.
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1. Introduction

The training of artificial neural networks (ANNs) with rectified linear unit (ReLU) activation via
gradient descent (GD) type optimization schemes is nowadays a common industrially relevant proce-
dure which appears, for instance, in the context of natural language processing, face recognition, fraud
detection, and game intelligence. Although there exist a large number of numerical simulations in
which GD type optimization schemes are effectively used to train ANNs with ReLU activation, till this
day in the scientific literature there is in general no mathematical convergence analysis which explains
the success of GD type optimization schemes in the training of such ANNs.

GD type optimization schemes can be regarded as temporal discretization methods for the gradient
flow (GF) differential equations associated to the considered optimization problem and, in view of this,
it seems to be a natural direction of research to first aim to develop a mathematical convergence theory
for time-continuous GF differential equations and, thereafter, to aim to extend such a time-continuous
convergence theory to implementable time-discrete GD type optimization methods.

Although there is in general no theoretical analysis which explains the success of GD type op-
timization schemes in the training of ANNs in the literature, there are several auspicious analysis
approaches as well as several promising partial error analyses regarding the training of ANNs via GD
type optimization schemes and GFs, respectively, in the literature. For convex objective functions, the
convergence of GF and GD processes to the global minimum in different settings has been proved, e.g.,
in [1–5]. For general non-convex objective functions, even under smoothness assumptions GF and GD
processes can show wild oscillations and admit infinitely many limit points, cf., e.g., [6]. A standard
condition which excludes this undesirable behavior is the Kurdyka-Łojasiewicz inequality and we point
to [7–16] for convergence results for GF and GD processes under Łojasiewicz type assumptions. It is
in fact one of the main contributions of this work to demonstrate that the objective functions occurring
in the training of ANNs with ReLU activation satisfy an appropriate Kurdyka-Łojasiewicz inequality,
provided that both the target function and the density of the probability distribution of the input data
are piecewise polynomial. For further abstract convergence results for GF and GD processes in the
non-convex setting we refer, e.g., to [17–21] and the references mentioned therein.

In the overparametrized regime, where the number of training parameters is much larger than the
number of training data points, GF and GD processes can be shown to converge to global minima in
the training of ANNs with high probability, cf., e.g., [22–28]. As the number of neurons increases
to infinity, the corresponding GF processes converge (with appropriate rescaling) to a measure-valued
process which is known in the scientific literature as Wasserstein GF. For results on the convergence
behavior of Wasserstein GFs in the training of ANNs we point, e.g., to [29–31], [32, Section 5.1], and
the references mentioned therein.

A different approach is to consider only very special target functions and we refer, in particular,
to [33,34] for a convergence analysis for GF and GD processes in the case of constant target functions
and to [35] for a convergence analysis for GF and GD processes in the training of ANNs with piecewise
linear target functions. In the case of linear target functions, a complete characterization of the non-
global local minima and the saddle points of the risk function has been obtained in [36].

In this article we establish two basic results for GF differential equations in the training of fully-
connected feedforward ANNs with one hidden layer and ReLU activation. Specifically, in the first
main result of this article, see Theorem 1.1 below, we establish in the training of such ANNs under
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the assumption that the probability distribution of the input data of the considered supervised learning
problem is absolutely continuous with a bounded density function that every GF differential equation
possesses for every initial value a solution which is also unique among a suitable class of solutions
(see (1.6) in Theorem 1.1 for details). In the second main result of this article, see Theorem 1.2 below,
we prove in the training of such ANNs under the assumption that the target function and the density
function are piecewise polynomial (see (1.8) below for details) that every non-divergent GF trajectory
converges with an appropriate speed of convergence (see (1.11) below) to a critical point.

In Theorems 1.1 and 1.2 we consider ANNs with d ∈ N = {1, 2, 3, . . . } neurons on the input layer (d-
dimensional input), H ∈ N neurons on the hidden layer (H-dimensional hidden layer), and 1 neuron on
the output layer (1-dimensional output). There are thus Hd scalar real weight parameters and H scalar
real bias parameters to describe the affine linear transformation between d-dimensional input layer and
the H-dimensional hidden layer and there are thus H scalar real weight parameters and 1 scalar real
bias parameter to describe the affine linear transformation between the H-dimensional hidden layer
and the 1-dimensional output layer. Altogether there are thus

d = Hd + H + H + 1 = Hd + 2H + 1 (1.1)

real numbers to describe the ANNs in Theorems 1.1 and 1.2. We also refer to Figure 1 for a graphical
illustration of the architecture of an example ANN with d = 4 neurons on the input layer and H = 5
neurons on the hidden layer.

The real numbers 𝒶 ∈ R, 𝒷 ∈ (𝒶,∞) in Theorems 1.1 and 1.2 are used to specify the set [𝒶,𝒷]d

in which the input data of the considered supervised learning problem takes values in and the function
f : [𝒶,𝒷]d → R in Theorem 1.1 specifies the target function of the considered supervised learning
problem.

In Theorem 1.1 we assume that the target function is an element of the set C([𝒶,𝒷]d,R) of con-
tinuous functions from [𝒶,𝒷]d to R but beside this continuity hypothesis we do not impose further
regularity assumptions on the target function.

The function p : [𝒶,𝒷]d → [0,∞) in Theorems 1.1 and 1.2 is an unnormalized density function
of the probability distribution of the input data of the considered supervised learning problem and in
Theorem 1.1 we impose that this unnormalized density function is bounded and measurable.

In Theorems 1.1 and 1.2 we consider ANNs with the ReLU activation function

R ∋ x 7→ max{x, 0} ∈ R. (1.2)

The ReLU activation function fails to be differentiable and this lack of regularity also transfers to
the risk function of the considered supervised learning problem; cf. (1.5) below. We thus need to
employ appropriately generalized gradients of the risk function to specify the dynamics of the GFs. As
in [34, Setting 2.1 and Proposition 2.3] (cf. also [33, 37]), we accomplish this, first, by approximating
the ReLU activation function through continuously differentiable functions which converge pointwise
to the ReLU activation function and whose derivatives converge pointwise to the left derivative of the
ReLU activation function and, thereafter, by specifying the generalized gradient function as the limit of
the gradients of the approximated risk functions; see (1.3) and (1.5) in Theorem 1.1 and (1.9) and (1.10)
in Theorem 1.2 for details.

We now present the precise statement of Theorem 1.1 and, thereafter, provide further comments
regarding Theorem 1.2.
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Figure 1. Graphical illustration of the architecture of an example fully-connected feedfor-
ward ANN with one hidden layer with 4 neurons on the input layer, 5 neurons on the hidden
layer, and 1 neuron on the output layer corresponding to d = 4 and H = 5 in Theorems
1.1 and 1.2. In this example there are Hd = 20 arrows from the input layer to the hidden
layer corresponding to Hd = 20 weight parameters to describe the affine linear transforma-
tion from the input layer to the hidden layer, there are H = 5 bias parameters to describe
the affine linear transformation from the input layer to the hidden layer, there are H = 5
arrows from the hidden layer to the output layer corresponding to H = 5 weight parame-
ters to describe the affine linear transformation from the hidden layer to the output layer,
and there is 1 bias parameter to describe the affine linear transformation from the hidden
layer to the output layer. The overall number d ∈ N of ANN parameters thus satisfies
d = Hd + H + H + 1 = Hd + 2H + 1 = 20 + 10 + 1 = 31 (cf. (1.1), Theorems 1.1 and
1.2.

Theorem 1.1 (Existence and uniqueness of solutions of GFs in the training of ANNs). Let d,H, d ∈ N,
𝒶 ∈ R, 𝒷 ∈ (𝒶,∞), f ∈ C([𝒶,𝒷]d,R) satisfy d = dH + 2H + 1, let p : [𝒶,𝒷]d → [0,∞) be bounded
and measurable, let Rr ∈ C(R,R), r ∈ N ∪ {∞}, satisfy for all x ∈ R that (∪r∈N{Rr}) ⊆ C1(R,R),
R∞(x) = max{x, 0}, supr∈N supy∈[−|x|,|x|]|(Rr)′(y)| < ∞, and

lim supr→∞
(
|Rr(x) − R∞(x)| + |(Rr)′(x) − 1(0,∞)(x)|

)
= 0, (1.3)
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for every θ = (θ1, . . . , θd) ∈ Rd let Dθ ⊆ N satisfy

Dθ =
{
i ∈ {1, 2, . . . ,H} : |θHd+i| +

∑d
j=1|θ(i−1)d+ j| = 0

}
, (1.4)

for every r ∈ N ∪ {∞} let Lr : Rd → R satisfy for all θ = (θ1, . . . , θd) ∈ Rd that

Lr(θ) =
∫

[𝒶,𝒷]d

(
f (x1, . . . , xd)

− θd −
∑H

i=1 θH(d+1)+i
[
Rr(θHd+i +

∑d
j=1 θ(i−1)d+ jx j)

])2
p(x) d(x1, . . . , xd), (1.5)

let θ ∈ Rd, and let G : Rd → Rd satisfy for all ϑ ∈ {v ∈ Rd : ((∇Lr)(v))r∈N is convergent} that G(ϑ) =
limr→∞(∇Lr)(ϑ). Then

(i) it holds that G is locally bounded and measurable and

(ii) there exists a unique Θ ∈ C([0,∞),Rd) which satisfies for all t ∈ [0,∞), s ∈ [t,∞) that DΘt ⊆ DΘs

and

Θt = θ −

∫ t

0
G(Θu) du. (1.6)

Theorem 1.1 is a direct consequence of Theorem 3.3 below. In Theorem 1.2 we also assume that the
target function f : [𝒶,𝒷]d → R is continuous but additionally assume that, roughly speaking, both the
target function f : [𝒶,𝒷]d → R and the unnormalized density function p : [𝒶,𝒷]d → [0,∞) coincide
with polynomial functions on suitable subsets of their domain of definition [𝒶,𝒷]d. In Theorem 1.2
the (n × d)-matrices αk

i ∈ R
n×d, i ∈ {1, 2, . . . , n}, k ∈ {0, 1}, and the n-dimensional vectors βk

i ∈ R
n,

i ∈ {1, 2, . . . , n}, k ∈ {0, 1}, are used to describe these subsets and the functions Pk
i : Rd → R, i ∈

{1, 2, . . . , n}, k ∈ {0, 1}, constitute the polynomials with which the target function and the unnormalized
density function should partially coincide. More formally, in (1.8) in Theorem 1.2 we assume that for
every x ∈ [𝒶,𝒷]d we have that

p(x) =
∑

i∈{1,2,...,n}, α0
i x+β0

i ∈[0,∞)n P0
i (x) and f (x) =

∑
i∈{1,2,...,n}, α1

i x+β1
i ∈[0,∞)n P1

i (x). (1.7)

In (1.11) in Theorem 1.2 we prove that there exists a strictly positive real number β ∈ (0,∞) such
that for every GF trajectory Θ : [0,∞) → Rd which does not diverge to infinity in the sense* that
lim inft→∞∥Θt∥ < ∞ we have that Θt ∈ R

d, t ∈ [0,∞), converges with order β to a critical point
ϑ ∈ G−1({0}) = {θ ∈ Rd : G(θ) = 0} and we have that the risk L(Θt) ∈ R, t ∈ [0,∞), converges with
order 1 to the risk L(ϑ) of the critical point ϑ. We now present the precise statement of Theorem 1.2.

Theorem 1.2 (Convergence rates for GFs trajectories in the training of ANNs). Let d,H, d, n ∈ N,
𝒶 ∈ R, 𝒷 ∈ (𝒶,∞), f ∈ C([𝒶,𝒷]d,R) satisfy d = dH + 2H + 1, for every i ∈ {1, 2, . . . , n}, k ∈ {0, 1}
let αk

i ∈ R
n×d, let βk

i ∈ R
n, and let Pk

i : Rd → R be a polynomial, let p : [𝒶,𝒷]d → [0,∞) satisfy for all
k ∈ {0, 1}, x ∈ [𝒶,𝒷]d that

k f (x) + (1 − k)p(x) =
∑n

i=1

[
Pk

i (x)1[0,∞)n(αk
i x + βk

i )
]
, (1.8)

*Note that the functions ∥·∥ : (∪n∈NR
n)→ R and ⟨·, ·⟩ : (∪n∈N(Rn×Rn))→ R satisfy for all n ∈ N, x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn

that ∥x∥ = [
∑n

i=1|xi|
2]1/2 and ⟨x, y⟩ =

∑d
i=1 xiyi.
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let Rr ∈ C(R,R), r ∈ N ∪ {∞}, satisfy for all x ∈ R that (∪r∈N{Rr}) ⊆ C1(R,R), R∞(x) = max{x, 0},
supr∈N supy∈[−|x|,|x|]|(Rr)′(y)| < ∞, and

lim supr→∞
(
|Rr(x) − R∞(x)| + |(Rr)′(x) − 1(0,∞)(x)|

)
= 0, (1.9)

for every r ∈ N ∪ {∞} let Lr : Rd → R satisfy for all θ = (θ1, . . . , θd) ∈ Rd that

Lr(θ) =
∫

[𝒶,𝒷]d

(
f (x1, . . . , xd)

− θd −
∑H

i=1 θH(d+1)+i
[
Rr(θHd+i +

∑d
j=1 θ(i−1)d+ jx j)

])2
p(x) d(x1, . . . , xd), (1.10)

let G : Rd → Rd satisfy for all θ ∈ {ϑ ∈ Rd : ((∇Lr)(ϑ))r∈N is convergent} that G(θ) = limr→∞(∇Lr)(θ),
and let Θ ∈ C([0,∞),Rd) satisfy lim inft→∞∥Θt∥ < ∞ and ∀ t ∈ [0,∞) : Θt = Θ0 −

∫ t

0
G(Θs) ds. Then

there exist ϑ ∈ G−1({0}), C, β ∈ (0,∞) which satisfy for all t ∈ [0,∞) that

∥Θt − ϑ∥ ≤ C(1 + t)−β and |L∞(Θt) − L∞(ϑ)| ≤ C(1 + t)−1. (1.11)

Theorem 1.2 above is an immediate consequence of Theorem 5.4 in Subsection 5.3 below. Theo-
rem 1.2 is related to Theorem 1.1 in our previous article [37]. In particular, [37, Theorem 1.1] uses
weaker assumptions than Theorem 1.2 above but Theorem 1.2 above establishes a stronger statement
when compared to [37, Theorem 1.1]. Specifically, on the one hand in [37, Theorem 1.1] the target
function is only assumed to be a continuous function and the unnormalized density is only assumed
to be measurable and integrable while in Theorem 1.2 it is additionally assumed that both the target
function and the unnormalized density are piecewise polynomial in the sense of (1.8) above. On the
other hand [37, Theorem 1.1] only asserts that the risk of every bounded GF trajectory converges to the
risk of critical point while Theorem 1.2 assures that every non-divergent GF trajectory converges with
a strictly positive rate of convergence to a critical point (the rate of convergence is given through the
strictly positive real number β ∈ (0,∞) appearing in the exponent on the left inequality in (Eq 1.11) in
Theorem 1.2) and also assures that the risk of the non-divergent GF trajectory converges with rate 1 to
the risk of the critical point (the convergence rate 1 is ensured through the 1 appearing in the exponent
on the right inequality in (Eq 1.11) in Theorem 1.2).

We also point out that Theorem 1.2 assumes that the GF trajectory is non-divergent in the sense that
lim inft→∞∥Θt∥ < ∞. In general, it remains an open problem to establish sufficient conditions which
ensure that the GF trajectory has this non-divergence property. In this aspect we also refer to Gallon
et al. [38] for counterexamples for which it has been proved that every GF trajectory with sufficiently
small initial risk does in the training of ANNs diverge to∞ in the sense that lim inft→∞∥Θt∥ = ∞.

The remainder of this article is organized in the following way. In Section 2 we establish several
regularity properties for the risk function of the considered supervised learning problem and its gen-
eralized gradient function. In Section 3 we employ the findings from Section 2 to establish existence
and uniqueness properties for solutions of GF differential equations. In particular, in Section 3 we
present the proof of Theorem 1.1 above. In Section 4 we establish under the assumption that both
the target function f : [𝒶,𝒷]d → R and the unnormalized density function p : [𝒶,𝒷]d → [0,∞) are
piecewise polynomial that the risk function is semialgebraic in the sense of Definition 4.3 in Section 4
(see Corollary 4.10 in Section 4 for details). In Section 5 we engage the results from Sections 2 and 4
to establish several convergence rate results for solutions of GF differential equations and, thereby, we
also prove Theorem 1.2 above.
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2. Properties of the risk function and its generalized gradient function

In this section we establish several regularity properties for the risk function L : Rd → R and
its generalized gradient function G : Rd → Rd. In particular, in Proposition 2.12 in Subsection 2.5
below we prove for every parameter vector θ ∈ Rd in the ANN parameter space Rd = RdH+2H+1 that
the generalized gradient G(θ) is a limiting subdifferential of the risk function L : Rd → R at θ. In
Definition 2.8 in Subsection 2.5 we recall the notion of subdifferentials (which are sometimes also
referred to as Fréchet subdifferentials in the scientific literature) and in Definition 2.9 in Subsection 2.5
we recall the notion of limiting subdifferentials. In the scientific literature Definitions 2.8 and 2.9 can
in a slightly different presentational form, e.g., be found in Rockafellar & Wets [39, Definition 8.3] and
Bolte et al. [9, Definition 2.10], respectively.

Our proof of Proposition 2.12 uses the continuously differentiability result for the risk function in
Proposition 2.3 in Subsection 2.2 and the local Lipschitz continuity result for the generalized gradient
function in Corollary 2.7 in Subsection 2.4. Corollary 2.7 will also be employed in Section 3 below to
establish existence and uniqueness results for solutions of GF differential equations. Proposition 2.3
follows directly from [37, Proposition 2.10, Lemmas 2.11 and 2.12]. Our proof of Corollary 2.7, in
turn, employs the known representation result for the generalized gradient function in Proposition 2.2
in Subsection 2.2 below and the local Lipschitz continuity result for certain parameter integrals in
Corollary 2.6 in Subsection 2.4. Statements related to Proposition 2.2 can, e.g., be found in [37,
Proposition 2.2], [33, Proposition 2.3], and [34, Proposition 2.3].

Our proof of Corollary 2.6 uses the elementary abstract local Lipschitz continuity result for certain
parameter integrals in Lemma 2.5 in Subsection 2.4 and the local Lipschitz continuity result for active
neuron regions in Lemma 2.4 in Subsection 2.3 below. Lemma 2.4 is a generalization of [35, Lemma
7], Lemma 2.5 is a slight generalization of [35, Lemma 6], and Corollary 2.6 is a generalization of [37,
Lemma 2.12] and [35, Corollary 9]. The proof of Lemma 2.5 is therefore omitted.

In Setting 2.1 in Subsection 2.1 below we present the mathematical setup to describe ANNs with
ReLU activation, the risk function L : Rd → R, and its generalized gradient function G : Rd → Rd.
Moreover, in (2.6) in Setting 2.1 we define for a given parameter vector θ ∈ Rd the set of hidden
neurons which have all input parameters equal to zero. Such neurons are sometimes called degenerate
(cf. Cheridito et al. [36]) and can cause problems with the differentiability of the risk function, which
is why we exclude degenerate neurons in Proposition 2.3 and Corollary 2.7 below.

2.1. Mathematical description of artificial neural networks (ANNs)

In this subsection we present in Setting 2.1 below the mathematical setup that we employ to state
most of the mathematical results of this work. We also refer to Figure 2 below for a table in which we
briefly list the mathematical objects introduced in Setting 2.1.

Setting 2.1. Let d,H, d ∈ N, 𝒶 ∈ R, 𝒷 ∈ (𝒶,∞), f ∈ C([𝒶,𝒷]d,R) satisfy d = dH + 2H + 1, let w =
((wθi, j)(i, j)∈{1,...,H}×{1,...,d})θ∈Rd : Rd → RH×d, b = ((bθ1, . . . , b

θ
H))θ∈Rd : Rd → RH, v = ((vθ1, . . . , v

θ
H))θ∈Rd : Rd →

RH, and c = (cθ)θ∈Rd : Rd → R satisfy for all θ = (θ1, . . . , θd) ∈ Rd, i ∈ {1, 2, . . . ,H}, j ∈ {1, 2, . . . , d} that

w
θ
i, j = θ(i−1)d+ j, b

θ
i = θHd+i, v

θ
i = θH(d+1)+i, and c

θ = θd, (2.1)

let Rr ∈ C1(R,R), r ∈ N, satisfy for all x ∈ R that

lim supr→∞
(
|Rr(x) −max{x, 0}| + |(Rr)′(x) − 1(0,∞)(x)|

)
= 0 (2.2)
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and supr∈N supy∈[−|x|,|x|]|(Rr)′(y)| < ∞, let λ : B(Rd)→ [0,∞] be the Lebesgue–Borel measure on Rd, let
p : [𝒶,𝒷]d → [0,∞) be bounded and measurable, let 𝒩 = (𝒩 θ)θ∈Rd : Rd → C(Rd,R) and L : Rd → R
satisfy for all θ ∈ Rd, x = (x1, . . . , xd) ∈ Rd that

𝒩 θ(x) = cθ +
∑H

i=1 v
θ
i max

{
bθi +

∑d
j=1w

θ
i, jx j, 0

}
(2.3)

and L(θ) =
∫

[𝒶,𝒷]d ( f (y) −𝒩 θ(y))2p(y) λ(dy), for every r ∈ N let Lr : Rd → R satisfy for all θ ∈ Rd that

Lr(θ) =
∫

[𝒶,𝒷]d

(
f (y) − cθ −

∑H
i=1 v

θ
i
[
Rr

(
bθi +

∑d
j=1w

θ
i, jy j

)])2
p(y) λ(dy), (2.4)

for every ε ∈ (0,∞), θ ∈ Rd let Bε(θ) ⊆ Rd satisfy Bε(θ) = {ϑ ∈ Rd : ∥θ − ϑ∥ < ε}, for every θ ∈ Rd,
i ∈ {1, 2, . . . ,H} let Iθi ⊆ R

d satisfy

Iθi =
{
x = (x1, . . . , xd) ∈ [𝒶,𝒷]d : bθi +

∑d
j=1w

θ
i, jxd > 0

}
, (2.5)

for every θ ∈ Rd let Dθ ⊆ N satisfy

Dθ =
{
i ∈ {1, 2, . . . ,H} : |bθi | +

∑d
j=1|w

θ
i, j| = 0

}
, (2.6)

and let G = (G1, . . . ,Gd) : Rd → Rd satisfy for all θ ∈ {ϑ ∈ Rd : ((∇Lr)(ϑ))r∈N is convergent} that
G(θ) = limr→∞(∇Lr)(θ).

Next we add some explanations regarding the mathematical framework presented in Setting 2.1
above. In Setting 2.1

• the natural number d ∈ N represents the number of neurons on the input layer of the considered
ANNs,

• the natural number H ∈ N represents the number of neurons on the hidden layer of the considered
ANNs, and

• the natural number d ∈ N measures the overall number of parameters of the considered ANNs

(cf. (1.1) and Figure 1 above). The real numbers 𝒶 ∈ R, 𝒷 ∈ (𝒶,∞) in Setting 2.1 are employed to
specify the d-dimensional set [𝒶,𝒷]d ⊆ Rd in which the input data of the supervised learning problem
considered in Setting 2.1 takes values in and which, thereby, also serves as the domain of definition of
the target function of the considered supervised learning problem.

In Setting 2.1 the function f : [𝒶,𝒷]d → R represents the target function of the considered super-
vised learning problem. In Setting 2.1 the target function f is assumed to be an element of the set
C([𝒶,𝒷]d,R) of continuous functions from the d-dimensional set [𝒶,𝒷]d to the reals R (first line in
Setting 2.1).

The matrix valued function w = ((wθi, j)(i, j)∈{1,...,H}×{1,...,d})θ∈Rd : Rd → RH×d in Setting 2.1 is used
to represent the inner weight parameters of the ANNs considered in Setting 2.1. In particular, in
Setting 2.1 we have for every θ ∈ Rd that the H×d-matrix wθ = (wθi, j)(i, j)∈{1,...,H}×{1,...,d} ∈ R

H×d represents
the weight parameter matrix for the affine linear transformation from the d-dimensional input layer to
the H-dimensional hidden layer of the ANN associated to the ANN parameter vector θ ∈ Rd (cf. (2.1),
(2.3), and Figure 1).
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Mathematical object Rough description of the introduced mathematical object

d
Dimension of the input layer of the considered ANNs (number
of neurons on the input layer of the considered ANNs)

H
Dimension of the hidden layer of the considered ANNs (num-
ber of neurons on the hidden layer of the considered ANNs)

d Overall number of parameters of the considered ANNs

[𝒶,𝒷]d Subset of Rd specifying the domain in which the input data of
the considered learning problem takes values in

f : [𝒶,𝒷]d → R Target function of the considered supervised learning problem

wθ = (wθi, j)(i, j)∈{1,...,H}×{1,...,d}

Real H×d-matrix consisting of the inner weight parameters of
the ANN associated to the parameter vector θ ∈ Rd (cf. (2.1),
(2.3), and Figure 1)

bθ = (bθ1, . . . , b
θ
H)

Real H-dimensional vector consisting of the inner bias param-
eters of the ANN associated to the parameter vector θ ∈ Rd (cf.
(2.1), (2.3), and Figure 1)

vθ = (vθ1, . . . , v
θ
H)

Real H-dimensional vector consisting of the outer weight pa-
rameters of the ANN associated to the parameter vector θ ∈ Rd

(cf. (2.1), (2.3), and Figure 1)

cθ
Real number representing the outer bias parameter of the
ANN associated to the parameter vector θ ∈ Rd (cf. (2.1), (2.3),
and Figure 1)

Rr : R→ R for r ∈ N
Continuously differentiable approximations of the ReLU acti-
vation function R ∋ x 7→ max{x, 0} ∈ R (cf. (2.2))

λ : B(Rd)→ [0,∞] Lebesgue–Borel measure on Rd

p : [𝒶,𝒷]d → R
Unnormalized density function of the considered supervised
learning problem (cf. (2.3) and (2.4))

𝒩 θ : Rd → R
Realization function of the ANN associated to the parameter
vector θ ∈ Rd (cf. (2.3))

L : Rd → R
Risk function of the considered supervised learning problem
(cf. (2.3))

Lr : Rd → R for r ∈ N
Approximated risk function specified through the continuously
differentiable approximations (Rr)r∈N (cf. (2.4))

Bε(θ) Open ball in Rd with radius ε ∈ (0,∞) and center θ ∈ Rd

Iθi
Subset of the set [𝒶,𝒷]d on which the i-th neuron on the hidden
layer is active (cf. (2.5) and Figure 1)

Dθ Subset of the set {1, 2, . . . ,H} representing the set of degener-
ate neurons on the hidden layer (cf. (2.6) and Figure 1)

G = (G1, . . . ,Gd) : Rd → Rd Generalized gradient function of the risk function L : Rd → R

Figure 2. List of the mathematical objects introduced in Setting 2.1.
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The vector valued function b = ((bθ1, . . . , b
θ
H))θ∈Rd : Rd → RH in Setting 2.1 is used to represent the

inner bias parameters of the ANNs considered in Setting 2.1. In particular, in Setting 2.1 we have for
every θ ∈ Rd that the d-dimensional vector bθ = (bθ1, . . . , b

θ
H) ∈ RH represents the bias parameter vector

for the affine linear transformation from the d-dimensional input layer to the H-dimensional hidden
layer of the ANN associated to the ANN parameter vector θ ∈ Rd (cf. (2.1), (2.3), and Figure 1).

The vector valued function v = ((vθ1, . . . , v
θ
H))θ∈Rd : Rd → RH in Setting 2.1 is used to describe the

outer weight parameters of the ANNs considered in Setting 2.1. In particular, in Setting 2.1 we have
for every θ ∈ Rd that the transpose of the H-dimensional vector vθ = (vθ1, . . . , v

θ
H) ∈ RH represents the

weight parameter matrix for the affine linear transformation from the H-dimensional hidden layer to
the 1-dimensional output layer of the ANN associated to the ANN parameter vector θ ∈ Rd (cf. (2.1),
(2.3), and Figure 1).

The real valued function c = (cθ)θ∈Rd : Rd → R in Setting 2.1 is used to represent the outer bias
parameters of the ANNs considered in Setting 2.1. In particular, in Setting 2.1 we have for every
θ ∈ Rd that the real number cθ ∈ R describes the bias parameter for the affine linear transformation
from the H-dimensional hidden layer to the 1-dimensional output layer of the ANN associated to the
ANN parameter vector θ ∈ Rd (cf. (2.1), (2.3), and Figure 1).

In Setting 2.1 we consider ANNs with the ReLU activation function R ∋ x 7→ max{x, 0} ∈ R
(cf. (1.2)). The ReLU activation function fails to be differentiable and this lack of differentiability
typically transfers from the activation function to the realization functions 𝒩 θ : Rd → R, θ ∈ Rd, of
the considered ANNs and the risk function L : Rd → R of the considered supervised learning problem,
both, introduced in (2.3) in Setting 2.1. In general, there thus do not exist standard derivatives and
standard gradients of the risk function and, in view of this, we need to introduce suitably generalized
gradients of the risk function to specify the GF dynamics. As in [34, Setting 2.1 and Proposition 2.3]
(cf. also [33, 37]), we accomplish this,

• first, by approximating the ReLU activation function through appropriate continuously differen-
tiable functions which converge pointwise to the ReLU activation function and whose derivatives
converge pointwise to the left derivative of the ReLU activation function,

• then, by using these continuously differentiable approximations of the ReLU activation function
to specify approximated risk functions, and,

• finally, by specifying the generalized gradient function as the pointwise limit of the standard
gradients of the approximated risk functions.

In Setting 2.1 the functions Rr : R → R, r ∈ N, serves as such appropriate continuously differen-
tiable approximations of the ReLU activation function and the hypothesis in (2.2) ensures that these
functions converge pointwise to the ReLU activation function and that the derivatives of these functions
converge pointwise to the left derivative of the ReLU activation function (cf. also (1.3) in Theorem 1.1
and (1.9) in Theorem 1.2). These continuously differentiable approximations of the ReLU activation
function are then used in (2.4) in Setting 2.1 (cf. also (1.5) in Theorem 1.1 and (1.10) in Theorem 1.2) to
introduce continuously differentiable approximated risk functions Lr : Rd → R, r ∈ N, which converge
pointwise to the risk function L : Rd → R (cf., e.g., [37, Proposition 2.2]). Finally, the standard gradi-
ents of the approximated risk functions Lr : Rd → R, r ∈ N, are then used to introduce the generalized
gradient function G = (G1, . . . ,Gd) : Rd → Rd in Setting 2.1. In this regard we also note that Proposi-
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tion 2.2 in Subsection 2.2 below, in particular, ensures that the function G = (G1, . . . ,Gd) : Rd → Rd in
Setting 2.1 is indeed uniquely defined.

2.2. Differentiability properties of the risk function

Proposition 2.2. Assume Setting 2.1. Then it holds for all θ ∈ Rd, i ∈ {1, 2, . . . ,H}, j ∈ {1, 2, . . . , d}
that

G(i−1)d+ j(θ) = 2vθi

∫
Iθi

x j(𝒩 θ(x) − f (x))p(x) λ(dx),

GHd+i(θ) = 2vθi

∫
Iθi

(𝒩 θ(x) − f (x))p(x) λ(dx),

GH(d+1)+i(θ) = 2
∫

[𝒶,𝒷]d

[
max

{
b
θ
i +

∑d
j=1w

θ
i, jx j, 0

}]
(𝒩 θ(x) − f (x))p(x) λ(dx),

and Gd(θ) = 2
∫

[𝒶,𝒷]d
(𝒩 θ(x) − f (x))p(x) λ(dx).

(2.7)

Proof of Proposition 2.2. Observe that, e.g., [37, Proposition 2.2] establishes (2.7). The proof of
Proposition 2.2 is thus complete.

Proposition 2.3. Assume Setting 2.1 and let U ⊆ Rd satisfy U =
{
θ ∈ Rd : Dθ = ∅

}
. Then

(i) it holds that U ⊆ Rd is open,

(ii) it holds that L|U ∈ C1(U,R), and

(iii) it holds that ∇(L|U) = G|U .

Proof of Proposition 2.3. Note that [37, Proposition 2.10, Lemmas 2.11 and 2.12] establish items (i),
(ii), and (iii). The proof of Proposition 2.3 is thus complete.

2.3. Local Lipschitz continuity of active neuron regions

Lemma 2.4. Let d ∈ N, 𝒶 ∈ R, 𝒷 ∈ (𝒶,∞), for every v = (v1, . . . , vd+1) ∈ Rd+1 let Iv ⊆ [𝒶,𝒷]d satisfy
Iv = {x ∈ [𝒶,𝒷]d : vd+1 +

∑d
i=1 vixi > 0}, for every n ∈ N let λn : B(Rn)→ [0,∞] be the Lebesgue–Borel

measure on Rn, let p : [𝒶,𝒷]d → [0,∞) be bounded and measurable, and let u ∈ Rd+1\{0}. Then there
exist ε,C ∈ (0,∞) such that for all v,w ∈ Rd+1 with max{∥u − v∥, ∥u − w∥} ≤ ε it holds that∫

Iv∆Iw p(x) λd(dx) ≤ C∥v − w∥. (2.8)

Proof of Lemma 2.4. Observe that for all v,w ∈ Rd+1 we have that∫
Iv∆Iw p(x) λd(dx) ≤

(
supx∈[𝒶,𝒷]d p(x)

)
λd(Iv∆Iw). (2.9)

Moreover, note that the fact that for all y ∈ R it holds that y ≥ −|y| ensures that for all v = (v1, . . . , vd+1) ∈
Rd+1, i ∈ {1, 2, . . . , d + 1} with ∥u − v∥ < |ui| it holds that

uivi = (ui)2 + (vi − ui)ui ≥ |ui|
2 − |ui − vi||ui| ≥ |ui|

2 − ∥u − v∥|ui| > 0. (2.10)
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Next observe that for all v1, v2,w1,w2 ∈ R with min{|v1|, |w1|} > 0 it holds that∣∣∣∣ v2
v1
−

w2
w1

∣∣∣∣ = |v2w1−w2v1 |

|v1w1 |
=
|v2(w1−v1)+v1(v2−w2)|

|v1w1 |
≤

[
|v2 |+|v1 |

|v1w1 |

][
|v1 − w1| + |v2 − w2|

]
. (2.11)

Combining this and (2.10) demonstrates for all v = (v1, . . . , vd+1), w = (w1, . . . ,wd+1) ∈ Rd+1, i ∈
{1, 2, . . . , d} with max{∥v − u∥, ∥w − u∥} < |u1| that v1w1 > 0 and∣∣∣∣ vi

v1
−

wi
w1

∣∣∣∣ ≤ [
2∥v∥
|v1w1 |

]
[2∥v − w∥] ≤

[
4∥v−u∥+4∥u∥
|v1w1 |

]
∥v − w∥. (2.12)

Hence, we obtain for all v = (v1, . . . , vd+1), w = (w1, . . . ,wd+1) ∈ Rd+1, i ∈ {1, 2, . . . , d} with max{∥v −
u∥, ∥w − u∥} ≤ |u1 |

2 and |u1| > 0 that v1w1 > 0 and∣∣∣∣ vi
v1
−

wi
w1

∣∣∣∣ ≤ (2|u1 |+4∥u∥)∥v−w∥
|u1+(v1−u1)||u1+(w1−u1)| ≤

6∥u∥∥v−w∥
(|u1 |−∥v−u∥)(|u1 |−∥w−u∥) ≤

[
24∥u∥
|u1 |2

]
∥v − w∥. (2.13)

In the following we distinguish between the case maxi∈{1,2,...,d}|ui| = 0, the case (maxi∈{1,2,...,d}|ui|, d) ∈
(0,∞) × [2,∞), and the case (maxi∈{1,2,...,d}|ui|, d) ∈ (0,∞) × {1}. We first prove (2.8) in the case

maxi∈{1,2,...,d}|ui| = 0. (2.14)

Note that (2.14) and the assumption that u ∈ Rd+1\{0} imply that |ud+1| > 0. Moreover, observe that
(2.14) shows that for all v = (v1, . . . , vd+1) ∈ Rd+1, x = (x1, . . . , xd) ∈ Iu∆Iv we have that∣∣∣([∑d

i=1 vixi
]
+ vd+1

)
−

([∑d
i=1 uixi

]
+ ud+1

)∣∣∣
=

∣∣∣[∑d
i=1 vixi

]
+ vd+1

∣∣∣ + ∣∣∣[∑d
i=1 uixi

]
+ ud+1

∣∣∣ ≥ ∣∣∣[∑d
i=1 uixi

]
+ ud+1

∣∣∣ = |ud+1|.
(2.15)

In addition, note that for all v = (v1, . . . , vd+1) ∈ Rd+1, x = (x1, . . . , xd) ∈ [𝒶,𝒷]d it holds that∣∣∣([∑d
i=1 vixi

]
+ vd+1

)
−

([∑d
i=1 uixi

]
+ ud+1

)∣∣∣ ≤ [∑d
i=1|vi − ui||xi|

]
+ |vd+1 − ud+1|

≤ max{|𝒶|, |𝒷|}
[∑d

i=1|vi − ui|
]
+ |vd+1 − ud+1| ≤ (1 + d max{|𝒶,𝒷|})∥v − u∥.

(2.16)

This and (2.15) prove that for all v ∈ Rd+1 with ∥u − v∥ ≤ |ud+1 |

2+d max{|𝒶,𝒷|} we have that Iu∆Iv = ∅, i.e.,
Iu = Iv. Therefore, we get for all v,w ∈ Rd+1 with max{∥u− v∥, ∥u−w∥} ≤ |ud+1 |

2+d max{|𝒶,𝒷|} that Iv = Iw = Iu.
Hence, we obtain for all v,w ∈ Rd+1 with max{∥u − v∥, ∥u − w∥} ≤ |ud+1 |

2+d max{|𝒶,𝒷|} that λd(Iv∆Iw) = 0. This
establishes (2.8) in the case maxi∈{1,2,...,d}|ui| = 0. In the next step we prove (2.8) in the case

(maxi∈{1,2,...,d}|ui|, d) ∈ (0,∞) × [2,∞). (2.17)

For this we assume without loss of generality that |u1| > 0. In the following let Jv,w
x ⊆ R,

x ∈ [𝒶,𝒷]d−1, v,w ∈ Rd+1, satisfy for all x = (x2, . . . , xd) ∈ [𝒶,𝒷]d−1, v,w ∈ Rd+1 that Jv,w
x = {y ∈

[𝒶,𝒷] : (y, x2, . . . , xd) ∈ Iv\Iw}. Next observe that Fubini’s theorem and the fact that for all v ∈ Rd+1 it
holds that Iv is measurable show that for all v,w ∈ Rd+1 we have that

λd(Iv∆Iw) =
∫

[𝒶,𝒷]d
1Iv∆Iw(x) λd(dx) =

∫
[𝒶,𝒷]d

(
1Iv\Iw(x) + 1Iw\Iv(x)

)
λd(dx)

=

∫
[𝒶,𝒷]d−1

∫
[𝒶,𝒷]

(
1Iv\Iw(y, x2, . . . , xd) + 1Iw\Iv(y, x2, . . . , xd)

)
λ1(dy) λd−1(d(x2, . . . , xd))

=

∫
[𝒶,𝒷]d−1

∫
[𝒶,𝒷]

(
1Jv,w

x (y) + 1Jw,v
x (y)

)
λ1(dy) λd−1(dx)

=

∫
[𝒶,𝒷]d−1

(λ1(Jv,w
x ) + λ1(Jw,v

x )) λd−1(dx).

(2.18)
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Furthermore, note that for all x = (x2, . . . , xd) ∈ [𝒶,𝒷]d−1, v = (v1, . . . , vd+1), w = (w1, . . . ,wd+1) ∈
Rd+1, s ∈ {−1, 1} with min{sv1, sw1} > 0 it holds that

Jv,w
x = {y ∈ [𝒶,𝒷] : (y, x2, . . . , xd) ∈ Iv\Iw}

=
{
y ∈ [𝒶,𝒷] : v1y +

[∑d
i=2 vixi

]
+ vd+1 > 0 ≥ w1y +

[∑d
i=2 wixi

]
+ wd+1

}
=

{
y ∈ [𝒶,𝒷] : − s

v1

([∑d
i=2 vixi

]
+ vd+1

)
< sy ≤ − sw1

([∑d
i=2 wixi

]
+ wd+1

)}
.

(2.19)

Hence, we obtain for all x = (x2, . . . , xd) ∈ [𝒶,𝒷]d−1, v = (v1, . . . , vd+1), w = (w1, . . . ,wd+1) ∈ Rd+1,
s ∈ {−1, 1} with min{sv1, sw1} > 0 that

λ1(Jv,w
x ) ≤

∣∣∣∣ sv1

([∑d
i=2 vixi

]
+ vd+1

)
− s

w1

([∑d
i=2 wixi

]
+ wd+1

)∣∣∣∣
≤

[∑d
i=2

∣∣∣ vi
v1
−

wi
w1

∣∣∣|xi|
]
+

∣∣∣∣ vd+1
v1
−

wd+1
w1

∣∣∣∣
≤ max{|𝒶|, |𝒷|}

[∑d
i=2

∣∣∣ vi
v1
−

wi
w1

∣∣∣] + ∣∣∣∣ vd+1
v1
−

wd+1
w1

∣∣∣∣.
(2.20)

Furthermore, observe that (2.10) demonstrates for all v = (v1, . . . , vd+1) ∈ Rd+1 with ∥u − v∥ < |u1| that
u1v1 > 0. This implies that for all v = (v1, . . . , vd+1), w = (w1, . . . ,wd+1) ∈ Rd+1 with max{∥u − v∥, ∥u −
w∥} < |u1| there exists s ∈ {−1, 1} such that min{sv1, sw1} > 0. Combining this and (2.13) with (2.20)
proves that there exists C ∈ R such that for all x ∈ [𝒶,𝒷]d−1, v,w ∈ Rd+1 with max{∥u − v∥, ∥u − w∥} ≤
|u1 |

2 we have that λ1(Jv,w
x ) + λ1(Jw,v

x ) ≤ C∥v − w∥. This, (2.18), and (2.9) establish (2.8) in the case
(maxi∈{1,2,...,d}|ui|, d) ∈ (0,∞) × [2,∞). Finally, we prove (2.8) in the case

(maxi∈{1,2,...,d}|ui|, d) ∈ (0,∞) × {1}. (2.21)

Note that (2.21) demonstrates that |u1| > 0. In addition, observe that for all v = (v1, v2), w = (w1,w2) ∈
R2, s ∈ {−1, 1} with min{sv1, sw1} > 0 it holds that

Iv\Iw = {y ∈ [𝒶,𝒷] : v1y + v2 > 0 ≥ w1y + w2} =
{
y ∈ [𝒶,𝒷] : − sv2

v1
< sy ≤ − sw2

w1

}
⊆

{
y ∈ R : − sv2

v1
< sy ≤ − sw2

w1

}
.

(2.22)

Therefore, we get for all v = (v1, v2), w = (w1,w2) ∈ R2, s ∈ {−1, 1} with min{sv1, sw1} > 0 that

λ1(Iv\Iw) ≤
∣∣∣∣(− sv2

v1

)
−

(
−
sw2
w1

)∣∣∣∣ = ∣∣∣∣ v2
v1
−

w2
w1

∣∣∣∣. (2.23)

Furthermore, note that (2.10) ensures for all v = (v1, v2) ∈ R2 with ∥u − v∥ < |u1| that u1v1 > 0.
This proves that for all v = (v1, v2), w = (w1,w2) ∈ R2 with max{∥u − v∥, ∥u − w∥} < |u1| there exists
s ∈ {−1, 1} such that min{sv1, sw1} > 0. Combining this with (2.23) demonstrates for all v = (v1, v2),
w = (w1,w2) ∈ R2 with max{∥u − v∥, ∥u − w∥} < |u1| that min{|v1|, |w1|} > 0 and

λ1(Iv∆Iw) = λ1(Iv\Iw) + λ1(Iw\Iv) ≤ 2
∣∣∣∣ v2
v1
−

w2
w1

∣∣∣∣. (2.24)

This, (2.13), and (2.9) establish (2.8) in the case (maxi∈{1,2,...,d}|ui|, d) ∈ (0,∞) × {1}. The proof of
Lemma 2.4 is thus complete.
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2.4. Local Lipschitz continuity properties for the generalized gradient function

Lemma 2.5. Let d, n ∈ N, 𝒶 ∈ R, 𝒷 ∈ (𝒶,∞), x ∈ Rn, C, ε ∈ (0,∞), let ϕ : Rn× [𝒶,𝒷]d → R be locally
bounded and measurable, assume for all r ∈ (0,∞) that

supy,z∈Rn, ∥y∥+∥z∥≤r, y,z sups∈[𝒶,𝒷]d
|ϕ(y,s)−ϕ(z,s)|
∥y−z∥ < ∞, (2.25)

let µ : B([𝒶,𝒷]d) → [0,∞) be a finite measure, let Iy ∈ B([𝒶,𝒷]d), y ∈ Rn, satisfy for all y, z ∈ {v ∈
Rn : ∥x − v∥ ≤ ε} that µ(Iy∆Iz) ≤ C∥y − z∥, and let Φ : Rn → R satisfy for all y ∈ Rn that

Φ(y) =
∫

Iy
ϕ(y, s) µ(ds). (2.26)

Then there exists 𝒞 ∈ R such that for all y, z ∈ {v ∈ Rn : ∥x−v∥ ≤ ε} it holds that |Φ(y)−Φ(z)| ≤ 𝒞 ∥y−z∥.

Proof of Lemma 2.5. The proof is analogous to the proof of [35, Lemma 6].

Corollary 2.6. Assume Setting 2.1, let ϕ : Rd × [𝒶,𝒷]d → R be locally bounded and measurable, and
assume for all r ∈ (0,∞) that

supθ,ϑ∈Rd, ∥θ∥+∥ϑ∥≤r, θ,ϑ supx∈[𝒶,𝒷]d
|ϕ(θ,x)−ϕ(ϑ,x)|
∥θ−ϑ∥

< ∞. (2.27)

Then

(i) it holds that

Rd ∋ θ 7→

∫
[𝒶,𝒷]d

ϕ(θ, x)p(x) λ(dx) ∈ R (2.28)

is locally Lipschitz continuous and

(ii) it holds for all i ∈ {1, 2, . . . ,H} that{
ϑ ∈ Rd : i < Dϑ} ∋ θ 7→ ∫

Iθi

ϕ(θ, x)p(x) λ(dx) ∈ R (2.29)

is locally Lipschitz continuous.

Proof of Corollary 2.6. First observe that Lemma 2.5 (applied for every θ ∈ Rd with n ↶ d, x ↶
θ, µ ↶ (B([𝒶,𝒷]d) ∋ A 7→

∫
A
p(x) λ( dx) ∈ [0,∞)), (Iy)y∈Rn ↶ ([𝒶,𝒷]d)y∈Rd in the notation of

Lemma 2.5) establishes item (i). In the following let i ∈ {1, 2, . . . ,H}, θ ∈ {ϑ ∈ Rd : i < Dϑ}. Note that
Lemma 2.4 shows that there exist ε,C ∈ (0,∞) which satisfy for all ϑ1, ϑ2 ∈ R

d with max{∥θ−ϑ1∥, ∥θ−

ϑ2∥} ≤ ε that ∫
Iϑ1
i ∆Iϑ2

i
p(x) λ(dx) ≤ C∥ϑ1 − ϑ2∥. (2.30)

Combining this with Lemma 2.5 (applied for every θ ∈ Rd with n ↶ d, x ↶ θ, µ ↶ (B([𝒶,𝒷]d) ∋
A 7→

∫
A
p(x) λ( dx) ∈ [0,∞)), (Iy)y∈Rn ↶ (Iy

i )y∈Rd in the notation of Lemma 2.5) demonstrates that there
exists 𝒞 ∈ R such that for all ϑ1, ϑ2 ∈ R

d with max{∥θ − ϑ1∥, ∥θ − ϑ2∥} ≤ ε it holds that∣∣∣∣∣∣
∫

Iϑ1
i

ϕ(ϑ1, x)p(x) λ(dx) −
∫

Iϑ2
i

ϕ(ϑ2, x)p(x) λ(dx)

∣∣∣∣∣∣ ≤ 𝒞 ∥ϑ1 − ϑ2∥. (2.31)

This establishes item (ii). The proof of Corollary 2.6 is thus complete.
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Corollary 2.7. Assume Setting 2.1. Then

(i) it holds for all k ∈ N ∩ (Hd + H, d] that

Rd ∋ θ 7→ Gk(θ) ∈ R (2.32)

is locally Lipschitz continuous,

(ii) it holds for all i ∈ {1, 2, . . . ,H}, j ∈ {1, 2, . . . , d} that{
ϑ ∈ Rd : i < Dϑ} ∋ θ 7→ G(i−1)d+ j(θ) ∈ R (2.33)

is locally Lipschitz continuous, and

(iii) it holds for all i ∈ {1, 2, . . . ,H} that{
ϑ ∈ Rd : i < Dϑ} ∋ θ 7→ GHd+i(θ) ∈ R (2.34)

is locally Lipschitz continuous.

Proof of Corollary 2.7. Observe that (2.7) and Corollary 2.6 establish items (i), (ii), and (iii). The
proof of Corollary 2.7 is thus complete.

2.5. Subdifferentials

Definition 2.8 (Subdifferential). Let n ∈ N, f ∈ C(Rn,R), x ∈ Rn. Then we denote by ∂̂ f (x) ⊆ Rn the
set given by

∂̂ f (x) =
{

y ∈ Rn : lim inf
Rn\{0}∋h→0

(
f (x + h) − f (x) − ⟨y, h⟩

∥h∥

)
≥ 0

}
. (2.35)

Definition 2.9 (Limiting subdifferential). Let n ∈ N, f ∈ C(Rn,R), x ∈ Rn. Then we denote by
∂ f (x) ⊆ Rn the set given by

∂ f (x) =
⋂

ε∈(0,∞)

[⋃
y∈{z∈Rn : ∥x−z∥<ε} ∂̂ f (y)

]
(2.36)

(cf. Definition 2.8).

Lemma 2.10. Let n ∈ N, f ∈ C(Rn,R), x ∈ Rn. Then

∂ f (x) =
{
y ∈ Rn : ∃ z = (z1, z2) : N→ Rn × Rn :

([
∀ k ∈ N : z2(k) ∈ ∂̂ f (z1(k))

]
,[

lim supk→∞(∥z1(k) − x∥ + ∥z2(k) − y∥) = 0
])}

(2.37)

(cf. Definitions 2.8 and 2.9).

Proof of Lemma 2.10. Note that (2.36) establishes (2.37). The proof of Lemma 2.10 is thus complete.

Lemma 2.11. Let n ∈ N, f ∈ C(Rn,R), let U ⊆ Rn be open, assume f |U ∈ C1(U,R), and let x ∈ U.
Then ∂̂ f (x) = ∂ f (x) = {(∇ f )(x)} (cf. Definitions 2.8 and 2.9).
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Proof of Lemma 2.11. This is a direct consequence of, e.g., Rockafellar & Wets [39, Exercise 8.8].
The proof of Lemma 2.11 is thus complete.

Proposition 2.12. Assume Setting 2.1 and let θ ∈ Rd. Then G(θ) ∈ ∂L(θ) (cf. Definition 2.9).

Proof of Proposition 2.12. Throughout this proof let ϑ = (ϑn)n∈N : N → Rd satisfy for all n ∈ N,
i ∈ {1, 2, . . . ,H}, j ∈ {1, 2, . . . , d} that wϑn

i, j = w
θ
i, j, b

ϑn
i = b

θ
i −

1
n1Dθ(i), vϑn

i = v
θ
i , and cϑn = cθ. We prove

Proposition 2.12 through an application of Lemma 2.10. Observe that for all n ∈ N, i ∈ {1, 2, . . . ,H}\Dθ

it holds that bϑn
i = b

θ
i . This implies for all n ∈ N, i ∈ {1, 2, . . . ,H}\Dθ that

i < Dϑn . (2.38)

In addition, note that for all n ∈ N, i ∈ Dθ it holds that bϑn
i = −

1
n < 0. This shows for all n ∈ N, i ∈ Dθ

that
i < Dϑn . (2.39)

Hence, we obtain for all n ∈ N that Dϑn = ∅. Combining this with Proposition 2.3 and Lemma 2.11
demonstrates that for all n ∈ N it holds that ∂̂L(ϑn) = {(∇L)(ϑn)} = {G(ϑn)} (cf. Definition 2.8).
Moreover, observe that limn→∞ ϑn = θ. It thus remains to show that G(ϑn), n ∈ N, converges to G(θ).
Note that Corollary 2.7 ensures that for all k ∈ N ∩ (Hd + H, d] it holds that

limn→∞Gk(ϑn) = Gk(θ). (2.40)

Furthermore, observe that Corollary 2.7, (2.38) and (2.39) assure that for all i ∈ {1, 2, . . . ,H}\Dθ,
j ∈ {1, 2, . . . , d} it holds that

limn→∞G(i−1)d+ j(ϑn) = G(i−1)d+ j(θ) and limn→∞GHd+i(ϑn) = GHd+i(θ). (2.41)

In addition, note that for all n ∈ N, i ∈ Dθ we have that Iϑn
i = Iθi = ∅. Hence, we obtain for all i ∈ Dθ,

j ∈ {1, 2, . . . , d} that

limn→∞G(i−1)d+ j(ϑn) = 0 = G(i−1)d+ j(θ) and limn→∞GHd+i(ϑn) = 0 = GHd+i(θ). (2.42)

Combining this, (2.40) and (2.41) demonstrates that limn→∞G(ϑn) = G(θ). This and Lemma 2.10
assure that G(θ) ∈ ∂L(θ). The proof of Proposition 2.12 is thus complete.

3. Existence and uniqueness properties for solutions of gradient flows (GFs)

In this section we employ the local Lipschitz continuity result for the generalized gradient function
in Corollary 2.7 from Section 2 to establish existence and uniqueness results for solutions of GF dif-
ferential equations. Specifically, in Proposition 3.1 in Subsection 3.1 below we prove the existence of
solutions GF differential equations, in Lemma 3.2 in Subsection 3.2 below we establish the uniqueness
of solutions of GF differential equations among a suitable class of GF solutions, and in Theorem 3.3
in Subsection 3.3 below we combine Proposition 3.1 and Lemma 3.2 to establish the unique existence
of solutions of GF differential equations among a suitable class of GF solutions. Theorem 1.1 in the
introduction is an immediate consequence of Theorem 3.3.
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Roughly speaking, we show in Theorem 3.3 the unique existence of solutions of GF differential
equations among the class of GF solutions which satisfy that the set of all degenerate neurons of the
GF solution at time t ∈ [0,∞) is non-decreasing in the time variable t ∈ [0,∞). In other words, in
Theorem 3.3 we prove the unique existence of GF solutions with the property that once a neuron has
become degenerate it will remain degenerate for subsequent times.

Our strategy of the proof of Theorem 3.3 and Proposition 3.1, respectively, can, loosely speaking,
be described as follows. Corollary 2.7 above implies that the components of the generalized gradient
functionG : Rd → Rd corresponding to non-degenerate neurons are locally Lipschitz continuous so that
the classical Picard-Lindelöf local existence and uniqueness theorem for ordinary differential equations
can be brought into play for those components. On the other hand, if at some time t ∈ [0,∞) the i-
th neuron is degenerate, then Proposition 2.2 above shows that the corresponding components of the
generalized gradient function G : Rd → Rd vanish. The GF differential equation is thus satisfied if
the neuron remains degenerate at all subsequent times s ∈ [t,∞). Using these arguments we prove in
Proposition 3.1 the existence of GF solutions by induction on the number of non-degenerate neurons
of the initial value.

3.1. Existence properties for solutions of GF differential equations

Proposition 3.1. Assume Setting 2.1 and let θ ∈ Rd. Then there exists Θ ∈ C([0,∞),Rd) which satisfies
for all t ∈ [0,∞), s ∈ [t,∞) that

Θt = θ −

∫ t

0
G(Θu) du and DΘt ⊆ DΘs . (3.1)

Proof of Proposition 3.1. We prove the statement by induction on the quantity H − #(Dθ) ∈ N∩ [0,H].
Assume first that H − #(Dθ) = 0, i.e., Dθ = {1, 2, . . . ,H}. Observe that this implies that wθ = 0 and
bθ = 0. In the following let κ ∈ R satisfy

κ =

∫
[𝒶,𝒷]d

f (x)p(x) λ(dx). (3.2)

Note that the Picard–Lindelöf Theorem shows that there exists a unique c ∈ C([0,∞),R) which satisfies
for all t ∈ [0,∞) that

c(0) = cθ and c(t) = c(0) + 2κt − 2
(∫

[𝒶,𝒷]d
p(x) λ(dx)

)(∫ t

0
c(s) ds

)
. (3.3)

Next let Θ ∈ C([0,∞),Rd) satisfy for all t ∈ [0,∞), i ∈ {1, 2, . . . ,H}, j ∈ {1, 2, . . . , d} that

w
Θt
i, j = w

θ
i, j = b

Θt
i = b

θ
i = 0, v

Θt
i = v

θ
i , and c

Θt = c(t). (3.4)
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Observe that (2.7), (3.3), and (3.4) ensure for all t ∈ [0,∞) that

c
Θt = cθ + 2κt − 2

(∫
[𝒶,𝒷]d

p(x) λ(dx)
)(∫ t

0
c
Θs ds

)
= cθ − 2

∫ t

0

(
−κ +

∫
[𝒶,𝒷]d

c
Θsp(x) λ(dx)

)
ds

= cθ − 2
∫ t

0

∫
[𝒶,𝒷]d

(
c
Θs +

∑H
i=1

[
v
Θs
i max

{
b
Θs
i +

∑d
j=1w

Θs
i, j x j, 0

}]
− f (x)

)
p(x) λ(dx) ds

= cθ − 2
∫ t

0

∫
[𝒶,𝒷]d

(𝒩 Θs(x) − f (x))p(x) λ(dx) ds = cθ −
∫ t

0
Gd(Θs) ds.

(3.5)

Next note that (3.4) and (2.7) show for all t ∈ [0,∞), i ∈ N ∩ [1, d) that DΘt = {1, 2, . . . ,H} and
Gi(Θt) = 0. Combining this with (3.4) and (3.5) proves that Θ satisfies (3.1). This establishes the claim
in the case #(Dθ) = H.

For the induction step assume that #(Dθ) < H and assume that for all ϑ ∈ Rd with #(Dϑ) > #(Dθ)
there exists Θ ∈ C([0,∞),Rd) which satisfies for all t ∈ [0,∞), s ∈ [t,∞) that Θt = ϑ−

∫ t

0
G(Θu) du and

DΘt ⊆ DΘs . In the following let U ⊆ Rd satisfy

U =
{
ϑ ∈ Rd : Dϑ ⊆ Dθ} (3.6)

and let G : U → Rd satisfy for all ϑ ∈ U, i ∈ {1, 2, . . . , d} that

Gi(ϑ) =

0 : i ∈ {(ℓ − 1)d + j : ℓ ∈ Dθ, j ∈ N ∩ [1, d]} ∪ {Hd + ℓ : ℓ ∈ Dθ}

Gi(ϑ) : else.
(3.7)

Observe that (3.6) assures that U ⊆ Rd is open. In addition, note that Corollary 2.7 implies that G
is locally Lipschitz continuous. Combining this with the Picard–Lindelöf Theorem demonstrates that
there exist a unique maximal τ ∈ (0,∞] and Ψ ∈ C([0, τ),U) which satisfy for all t ∈ [0, τ) that

Ψt = θ −

∫ t

0
G(Ψu) du. (3.8)

Next observe that (3.7) ensures that for all t ∈ [0, τ), i ∈ Dθ, j ∈ {1, 2, . . . , d} we have that

w
Ψt
i, j = w

θ
i, j = b

Ψt
i = b

θ
i = 0 and v

Ψt
i = v

θ
i . (3.9)

This, (3.7), and (2.7) demonstrate for all t ∈ [0, τ) that G(Ψt) = G(Ψt). In addition, note that (3.6) and
(3.9) imply for all t ∈ [0, τ) that DΨt = Dθ. Hence, if τ = ∞ then Ψ satisfies (3.1). Next assume that
τ < ∞. Observe that the Cauchy-Schwarz inequality and [37, Lemma 3.1] prove for all s, t ∈ [0, τ)
with s ≤ t that

∥Ψt − Ψs∥ ≤

∫ t

s
∥G(Ψu)∥ du ≤ (t − s)1/2

[∫ t

s
∥G(Ψu)∥2 du

]1/2

≤ (t − s)1/2
[∫ t

0
∥G(Ψu)∥2 du

]1/2

= (t − s)1/2(L(Ψ0) − L(Ψt)
)1/2

≤ (t − s)1/2(L(Ψ0)
)1/2

.

(3.10)
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Hence, we obtain for all (tn)n∈N ⊆ [0, τ) with lim infn→∞ tn = τ that (Ψtn) is a Cauchy sequence. This
implies that ϑ := limt↑τΨt ∈ R

d exists. Furthermore, note that the fact that τ is maximal proves that
ϑ < U. Therefore, we have that Dϑ\Dθ , ∅. Moreover, observe that (3.9) shows that for all i ∈ Dθ,
j ∈ {1, 2, . . . , d} it holds thatwϑi, j = b

ϑ
i = 0 and, therefore, i ∈ Dϑ. This demonstrates that #(Dϑ) > #(Dθ).

Combining this with the induction hypothesis ensures that there existsΦ ∈ C([0,∞),Rd) which satisfies
for all t ∈ [0,∞), s ∈ [t,∞) that

Φt = ϑ −

∫ t

0
G(Φu) du and DΦt ⊆ DΦs . (3.11)

In the following let Θ : [0,∞)→ Rd satisfy for all t ∈ [0,∞) that

Θt =

Ψt : t ∈ [0, τ)
Φt−τ : t ∈ [τ,∞).

(3.12)

Note that the fact that ϑ = limt↑τΨt and the fact that Φ0 = ϑ imply that Θ is continuous. Furthermore,
observe that the fact that G is locally bounded and (3.8) ensure that

Θτ = ϑ = lim
t↑τ
Ψt = lim

t↑τ

[
θ −

∫ t

0
G(Ψs) ds

]
= θ −

∫ τ

0
G(Ψs) ds = θ −

∫ τ

0
G(Θs) ds. (3.13)

Hence, we obtain for all t ∈ [τ,∞) that

Θt = (Θt − Θτ) + Θτ = (Φt−τ − Φ0) + Θτ = −
∫ t−τ

0
G(Φs) ds + θ −

∫ τ

0
G(Θs) ds

= −

∫ τ

t
G(Θs) + θ −

∫ τ

0
G(Θs) ds = θ −

∫ t

0
G(Θs) ds.

(3.14)

This shows that Θ satisfies (3.1). The proof of Proposition 3.1 is thus complete.

3.2. Uniqueness properties for solutions of GF differential equations

Lemma 3.2. Assume Setting 2.1 and let θ ∈ Rd, Θ1,Θ2 ∈ C([0,∞),Rd) satisfy for all t ∈ [0,∞),
s ∈ [t,∞), k ∈ {1, 2} that

Θk
t = θ −

∫ t

0
G(Θk

u) du and DΘ
k
t ⊆ DΘ

k
s . (3.15)

Then it holds for all t ∈ [0,∞) that Θ1
t = Θ

2
t .

Proof of Lemma 3.2. Assume for the sake of contradiction that there exists t ∈ [0,∞) such that
Θ1

t , Θ
2
t . By translating the variable t if necessary, we may assume without loss of generality that

inf
{
t ∈ [0,∞) : Θ1

t , Θ
2
t

}
= 0. Next note that the fact that Θ1 and Θ2 are continuous implies that there

exists δ ∈ (0,∞) which satisfies for all t ∈ [0, δ], k ∈ {1, 2} that DΘk
t ⊆ Dθ. Furthermore, observe that

(3.15) ensures for all t ∈ [0,∞), i ∈ Dθ, k ∈ {1, 2} that i ∈ DΘk
t . Hence, we obtain for all t ∈ [0,∞),

i ∈ Dθ, j ∈ {1, 2, . . . , d}, k ∈ {1, 2} that

G(i−1)d+ j(Θk
t ) = GHd+i(Θk

t ) = GH(d+1)+i(Θk
t ) = 0. (3.16)
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In addition, note that the fact that Θ1 and Θ2 are continuous implies that there exists a compact
K ⊆ {ϑ ∈ Rd : Dϑ ⊆ Dθ} which satisfies for all t ∈ [0, δ], k ∈ {1, 2} that Θk

t ∈ K. Moreover,
observe that Corollary 2.7 proves that for all i ∈ {1, 2, . . . ,H}\Dθ, j ∈ {1, 2, . . . , d} it holds that
G(i−1)d+ j,GHd+i,GH(d+1)+i,Gd : K → R are Lipschitz continuous. This and (3.16) show that there ex-
ists L ∈ (0,∞) such that for all t ∈ [0, δ] we have that

∥G(Θ1
t ) − G(Θ2

t )∥ ≤ L∥Θ1
t − Θ

2
t ∥. (3.17)

In the following let M : [0,∞) → [0,∞) satisfy for all t ∈ [0,∞) that Mt = sups∈(0,t]∥Θ
1
s − Θ

2
s∥. Note

that the fact that inf
{
t ∈ [0,∞) : Θ1

t , Θ
2
t

}
= 0 proves for all t ∈ (0,∞) that Mt > 0. Moreover, observe

that (3.17) ensures for all t ∈ (0, δ) that

∥Θ1
t − Θ

2
t ∥ =

∥∥∥∥∥∥
∫ t

0
G(Θ1

u) du −
∫ t

0
G(Θ2

u) du

∥∥∥∥∥∥ ≤
∫ t

0
∥G(Θ1

u) − G(Θ2
u)∥ du

≤ L
∫ t

0
∥Θ1

u − Θ
2
u∥ du ≤ LtMt.

(3.18)

Combining this with the fact that M is non-decreasing shows for all t ∈ (0, δ), s ∈ (0, t] that

∥Θ1
s − Θ

2
s∥ ≤ LsMs ≤ LtMt. (3.19)

This demonstrates for all t ∈ (0,min{L−1, δ}) that

0 < Mt ≤ LtMt < Mt, (3.20)

which is a contradiction. The proof of Lemma 3.2 is thus complete.

3.3. Existence and uniqueness properties for solutions of GF differential equations

Theorem 3.3. Assume Setting 2.1 and let θ ∈ Rd. Then there exists a unique Θ ∈ C([0,∞),Rd) which
satisfies for all t ∈ [0,∞), s ∈ [t,∞) that

Θt = θ −

∫ t

0
G(Θu) du and DΘt ⊆ DΘs . (3.21)

Proof of Theorem 3.3. Proposition 3.1 establishes the existence and Lemma 3.2 establishes the unique-
ness. The proof of Theorem 3.3 is thus complete.

4. Semialgebraic sets and functions

In this section we establish in Corollary 4.10 in Subsection 4.3 below that under the assumption
that both the target function f : [𝒶,𝒷]d → R and the unnormalized density function p : [𝒶,𝒷]d →

[0,∞) are piecewise polynomial in the sense of Definition 4.9 in Subsection 4.3 we have that the risk
function L : Rd → R is a semialgebraic function in the sense of Definition 4.3 in Subsection 4.1. In
Definition 4.9 we specify precisely what we mean by a piecewise polynomial function, in Definition 4.2
in Subsection 4.1 we recall the notion of a semialgebraic set, and in Definition 4.3 we recall the notion
of a semialgebraic function. In the scientific literature Definitions 4.2 and 4.3 can in a slightly different
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presentational form, e.g., be found in Bierstone & Milman [40, Definitions 1.1 and 1.2] and Attouch et
al. [8, Definition 2.1].

Note that the risk function L : Rd → R is given through a parametric integral in the sense that for
all θ ∈ Rd we have that

L(θ) =
∫

[𝒶,𝒷]d ( f (y) −𝒩 θ(y))2 p(y) λ(dy). (4.1)

In general, parametric integrals of semialgebraic functions are no longer semialgebraic functions and
the characterization of functions that can occur as such integrals is quite involved (cf. Kaiser [41]).
This is the reason why we introduce in Definition 4.6 in Subsection 4.2 below a suitable subclass of
the class of semialgebraic functions which is rich enough to contain the realization functions of ANNs
with ReLU activation (cf. (4.30) in Subsection 4.2 below) and which can be shown to be closed under
integration (cf. Proposition 4.8 in Subsection 4.2 below for the precise statement).

4.1. Semialgebraic sets and functions

Definition 4.1 (Set of polynomials). Let n ∈ N0. Then we denote by 𝒫n ⊆ C(Rn,R) the set† of all
polynomials from Rn to R.

Definition 4.2 (Semialgebraic sets). Let n ∈ N and let A ⊆ Rn be a set. Then we say that A is a
semialgebraic set if and only if there exist k ∈ N and (Pi, j,ℓ)(i, j,ℓ)∈{1,2,...,k}2×{0,1} ⊆ 𝒫n such that

A =
k⋃

i=1

k⋂
j=1

{
x ∈ Rn : Pi, j,0(x) = 0 < Pi, j,1(x)

}
(4.2)

(cf. Definition 4.1).

Definition 4.3 (Semialgebraic functions). Let m, n ∈ N and let f : Rn → Rm be a function. Then
we say that f is a semialgebraic function if and only if it holds that {(x, f (x)) : x ∈ Rn} ⊆ Rm+n is a
semialgebraic set (cf. Definition 4.2).

Lemma 4.4. Let n ∈ N and let f , g : Rn → R be semialgebraic functions (cf. Definition 4.3). Then

(i) it holds that Rn ∋ x 7→ f (x) + g(x) ∈ R is semialgebraic and

(ii) it holds that Rn ∋ x 7→ f (x)g(x) ∈ R is semialgebraic.

Proof of Lemma 4.4. Note that, e.g., Coste [42, Corollary 2.9] (see, e.g., also Bierstone & Milman [40,
Section 1]) establishes items (i) and (ii). The proof of Lemma 4.4 is thus complete.

4.2. On the semialgebraic property of certain parametric integrals

Definition 4.5 (Set of rational functions). Let n ∈ N. Then we denote by ℛn the set given by

ℛn =

R : Rn → R :

∃ P,Q ∈ 𝒫n : ∀ x ∈ Rn : R(x) =

 P(x)
Q(x) : Q(x) , 0

0 : Q(x) = 0


 (4.3)

(cf. Definition 4.1).
†Note that R0 = {0}, C(R0,R) = C({0},R), and #(C(R0,R)) = #(C({0},R)) = ∞. In particular, this shows for all n ∈ N0 that

dim(Rn) = n and #(C(Rn,R)) = ∞.
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Definition 4.6. Let m ∈ N, n ∈ N0. Then we denote by 𝒜m,n the R-vector space given by

𝒜m,n = span
({

f : Rm × Rn → R :
[
∃ r ∈ N, A1, A2, . . . , Ar ∈ {{0}, [0,∞), (0,∞)},

R ∈ℛm, Q ∈ 𝒫n, P = (Pi, j)(i, j)∈{1,2,...,r}×{0,1,...,n} ⊆ 𝒫m : ∀ θ ∈ Rm, x = (x1, . . . , xn) ∈ Rn :

f (θ, x) = R(θ)Q(x)
[∏r

i=1 1Ai

(
Pi,0(θ) +

∑n
j=1 Pi, j(θ)x j

)]]})
(4.4)

(cf. Definitions 4.1 and 4.5).

Lemma 4.7. Let m ∈ N, f ∈ 𝒜m,0 (cf. Definition 4.6). Then f is semialgebraic (cf. Definition 4.3).

Proof of Lemma 4.7. Throughout this proof let r ∈ N, A1, A2, . . . , Ar ∈ {{0}, [0,∞), (0,∞)}, R ∈ ℛm,
P = (Pi)i∈{1,2,...,r} ⊆ 𝒫m, and let g : Rm → R satisfy for all θ ∈ Rm that

g(θ) = R(θ)
∏r

i=1 1Ai(Pi(θ)) (4.5)

(cf. Definitions 4.1 and 4.5). Due to the fact that sums of semialgebraic functions are again semial-
gebraic (cf. Lemma 4.4), it suffices to show that g is semialgebraic. Furthermore, observe that for all
y ∈ R it holds that 1(0,∞)(y) = 1 − 1[0,∞)(−y) and 1{0}(y) = 1[0,∞)(y)1[0,∞)(−y). Hence, by linearity we
may assume for all i ∈ {1, 2, . . . , r} that Ai = [0,∞). Next let Q1,Q2 ∈ 𝒫m satisfy for all x ∈ Rm that

R(x) =

Q1(x)
Q2(x) : Q2(x) , 0

0 : Q2(x) = 0.
(4.6)

Note that the graph of Rm ∋ θ 7→ R(θ) ∈ R is given by

{(θ, y) ∈ Rm × R : Q2(θ) = 0, y = 0} ∪ {(θ, y) ∈ Rm × R : Q2(θ) , 0, Q2(θ)y − Q1(θ) = 0}. (4.7)

Since both of these sets are described by polynomial equations and inequalities, it follows that Rm ∋

θ 7→ R(θ) ∈ R is semialgebraic. In addition, observe that for all i ∈ {1, 2, . . . , r} the graph of Rm ∋ θ 7→

1[0,∞)(Pi(θ)) ∈ R is given by

{(θ, y) ∈ Rm × R : Pi(θ) < 0, y = 0} ∪ {(θ, y) ∈ Rm × R : Pi(θ) ≥ 0, y = 1}. (4.8)

This demonstrates for all i ∈ {1, 2, . . . , r} that Rm ∋ θ 7→ 1[0,∞)(Pi(θ)) ∈ R is semialgebraic. Combining
this and (4.5) with Lemma 4.4 demonstrates that g is semialgebraic. The proof of Lemma 4.7 is thus
complete.

Proposition 4.8. Let m, n ∈ N, 𝒶 ∈ R, 𝒷 ∈ (𝒶,∞), f ∈ 𝒜m,n (cf. Definition 4.6). Then[
Rm × Rn−1 ∋ (θ, x1, . . . , xn−1) 7→

∫ 𝒷

𝒶
f (θ, x1, . . . , xn) dxn ∈ R

]
∈ 𝒜m,n−1. (4.9)

Proof of Proposition 4.8. By linearity of the integral it suffices to consider a function f of the form

f (θ, x) = R(θ)Q(x)
r∏

i=1

1Ai

(
Pi,0(θ) +

∑n
j=1 Pi, j(θ)x j

)
(4.10)
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where r ∈ N, (Pi, j)(i, j)∈{1,2,...,r}×{0,1,...,n} ⊆ 𝒫m, A1, A2, . . . , Ar ∈ {{0}, (0,∞), [0,∞)}, Q ∈ 𝒫n, and R ∈ ℛm

(cf. Definitions 4.1 and 4.5). Moreover, note that for all y ∈ R it holds that 1(0,∞)(y) = 1−1[0,∞)(−y) and
1{0}(y) = 1[0,∞)(y)1[0,∞)(−y). Hence, by linearity we may assume that Ai = [0,∞) for all i ∈ {1, 2, . . . , r}.
Furthermore, by linearity we may assume that Q is of the form

Q(x1, . . . , xn) =
∏n

ℓ=1(xℓ)iℓ (4.11)

with i1, i2, . . . , in ∈ N0. In the following let s : R → R satisfy for all x ∈ R that s(x) = 1(0,∞)(x) −
1(0,∞)(−x), for every θ ∈ Rm, k ∈ {−1, 0, 1} let Sθk ⊆ {1, 2, . . . , r} satisfy Sθk = {i ∈ {1, 2, . . . , r} :
s(Pi,n(θ)) = k}, and for every i ∈ {1, 2, . . . , r} let Zi : Rm × Rn → R satisfy for all (θ, x) ∈ Rm × Rn that

Zi(θ, x) = −Pi,0(θ) −
∑n−1

j=1 Pi, j(θ)x j. (4.12)

Observe that (4.10), (4.11), and (4.12) imply for all θ ∈ Rm, x = (x1, . . . , xn) ∈ Rn that

f (θ, x) = R(θ)
(∏n

ℓ=1(xℓ)iℓ
)(∏r

i=1 1[0,∞)
(
Pi,n(θ)xn − Zi(θ, x)

))
. (4.13)

This shows that f (θ, x) can only be nonzero if

∀ i ∈ Sθ1 : xn ≥
Zi(θ, x)
Pi,n(θ)

,

∀ i ∈ Sθ−1 : xn ≤
Zi(θ, x)
Pi,n(θ)

,

∀ i ∈ Sθ0 : − Zi(θ, x) ≥ 0.

(4.14)

Hence, if for given θ ∈ Rm, (x1, . . . , xn−1) ∈ Rn−1 there exists xn ∈ [𝒶,𝒷] which satisfies these conditions
then (4.13) and the fact that

∫
yin dy = 1

in+1yin+1 imply that∫ 𝒷

𝒶
f (θ, x1, . . . , xn) dxn

=
R(θ)

in + 1

(∏n−1
ℓ=1 xiℓ

ℓ

)(min
{
𝒷, min

j∈Sθ
−1

Z j(θ, x)
P j,n(θ)

})in+1

−

max
𝒶,max

j∈Sθ1

Z j(θ, x)
P j,n(θ)

in+1. (4.15)

Otherwise, we have that
∫ 𝒷

𝒶
f (θ, x1, . . . , xn) dxn = 0. It remains to write these expressions in the differ-

ent cases as a sum of functions of the required form in Definition 4.6 by introducing suitable indicator
functions. Note that there are four possible cases where the integral is nonzero:

• It holds that 𝒶 < max j∈Sθ1

Z j(θ,x)
P j,n(θ) < min j∈Sθ

−1

Z j(θ,x)
P j,n(θ) < 𝒷. In this case, we have∫ 𝒷

𝒶
f (θ, x1, . . . , xn) dxn

=
R(θ)

in + 1

(∏n−1
ℓ=1 xiℓ

ℓ

)(min
j∈Sθ
−1

Z j(θ, x)
P j,n(θ)

)in+1

−

max
j∈Sθ1

Z j(θ, x)
P j,n(θ)

in+1. (4.16)

• It holds that 𝒶 < max j∈Sθ1

Z j(θ,x)
P j,n(θ) < 𝒷 ≤ min j∈Sθ

−1

Z j(θ,x)
P j,n(θ) . In this case, we have∫ 𝒷

𝒶
f (θ, x1, . . . , xn) dxn =

R(θ)
in + 1

(∏n−1
ℓ=1 xiℓ

ℓ

)𝒷in+1 −

max
j∈Sθ1

Z j(θ, x)
P j,n(θ)

in+1. (4.17)
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• It holds that max j∈Sθ1

Z j(θ,x)
P j,n(θ) ≤ 𝒶 < min j∈Sθ

−1

Z j(θ,x)
P j,n(θ) < 𝒷. In this case, we have

∫ 𝒷

𝒶
f (θ, x1, . . . , xn) dxn =

R(θ)
in + 1

(∏n−1
ℓ=1 xiℓ

ℓ

)(min
j∈Sθ
−1

Z j(θ, x)
P j,n(θ)

)in+1

−𝒶in+1

. (4.18)

• It holds that max j∈Sθ1

Z j(θ,x)
P j,n(θ) ≤ 𝒶 < 𝒷 ≤ min j∈Sθ

−1

Z j(θ,x)
P j,n(θ) . In this case, we have

∫ 𝒷

𝒶
f (θ, x1, . . . , xn) dxn =

R(θ)
in + 1

(∏n−1
ℓ=1 xiℓ

ℓ

)[
𝒷in+1 −𝒶in+1

]
. (4.19)

Since these four cases are disjoint, by summing over all possible choices A, B,C ⊆ {1, 2, . . . , r} of
the sets Sθk, k ∈ {−1, 0, 1}, and all choices of (non-empty) subsets I,J of Sθ1, Sθ

−1 where the maxi-
mal/minimal values are achieved, we can write∫ 𝒷

𝒶
f (θ, x1, . . . , xn) dxn =

R(θ)
in + 1

(∏n−1
ℓ=1 xiℓ

ℓ

)
[(I) + (II) + (III) + (IV)], (4.20)

where (I), (II), (III), (IV) denote the functions of θ ∈ Rm and (x1, . . . , xn−1) ∈ Rn−1 given by

(I) =
∑

A∪̇B∪̇C={1,...,r}

[∏
j∈A

1(0,∞)(P j,n(θ))
∏
j∈B

1(0,∞)(−P j,n(θ))
∏
j∈C

(
1{0}(P j,n(θ))1[0,∞)(−Z j(θ, x)

)]
∑
∅,I⊆A

∑
∅,J⊆B

[[∏
i∈I

(
1(𝒶,𝒷)

(
Zi(θ, x)
Pi,n(θ)

)
1{0}

(
Zi(θ, x)
Pi,n(θ)

−
ZminI(θ, x)
PminI,n(θ)

))
×

∏
j∈A\I

1(0,∞)

(
ZminI(θ, x)
PminI,n(θ)

−
Z j(θ, x)
P j,n(θ)

)∏
i∈J

(
1(𝒶,𝒷)

(
Zi(θ, x)
Pi,n(θ)

)
1{0}

(
Zi(θ, x)
Pi,n(θ)

−
ZminJ (θ, x)
PminJ ,n(θ)

))

×
∏

j∈B\J

1(0,∞)

(
Z j(θ, x)
P j,n(θ)

−
ZminJ (θ, x)
PminJ ,n(θ)

)
1(0,∞)

(
ZminJ (θ, x)
PminJ ,n(θ)

−
ZminI(θ, x)
PminI,n(θ)

)]

×

(ZminJ (θ, x)
PminJ ,n(θ)

)in+1

−

(
ZminI(θ, x)
PminI,n(θ)

)in+1],

(4.21)

(II) =
∑

A∪̇B∪̇C={1,...,r}

[∏
j∈A

1(0,∞)(P j,n(θ))
∏
j∈B

1(0,∞)(−P j,n(θ))
∏
j∈C

(
1{0}(P j,n(θ))1[0,∞)(−Z j(θ, x)

)]
∑
∅,I⊆A

[[∏
i∈I

(
1(𝒶,𝒷)

(
Zi(θ, x)
Pi,n(θ)

)
1{0}

(
Zi(θ, x)
Pi,n(θ)

−
ZminI(θ, x)
PminI,n(θ)

))
×

∏
j∈A\I

1(0,∞)

(
ZminI(θ, x)
PminI,n(θ)

−
Z j(θ, x)
P j,n(θ)

)∏
i∈B

(
1[𝒷,∞)

(
Zi(θ, x)
Pi,n(θ)

))

×

𝒷in+1 −

(
ZminI(θ, x)
PminI,n(θ)

)in+1],

(4.22)
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(III) =
∑

A∪̇B∪̇C={1,...,r}

[∏
j∈A

1(0,∞)(P j,n(θ))
∏
j∈B

1(0,∞)(−P j,n(θ))
∏
j∈C

(
1{0}(P j,n(θ))1[0,∞)(−Z j(θ, x)

)]
∑
∅,J⊆B

[[∏
i∈A

(
1(−∞,𝒶]

(
Zi(θ, x)
Pi,n(θ)

))∏
i∈J

(
1(𝒶,𝒷)

(
Zi(θ, x)
Pi,n(θ)

)
1{0}

(
Zi(θ, x)
Pi,n(θ)

−
ZminJ (θ, x)
PminJ ,n(θ)

))

×
∏

j∈B\J

1(0,∞)

(
Z j(θ, x)
P j,n(θ)

−
ZminJ (θ, x)
PminJ ,n(θ)

)]
×

(ZminJ (θ, x)
PminJ ,n(θ)

)in+1

−𝒶in+1

],
(4.23)

and

(IV) =
∑

A∪̇B∪̇C={1,...,r}

[∏
j∈A

1(0,∞)(P j,n(θ))
∏
j∈B

1(0,∞)(−P j,n(θ))
∏
j∈C

(
1{0}(P j,n(θ))1[0,∞)(−Z j(θ, x)

)]

×

∏
i∈A

1(−∞,𝒶]

(
Zi(θ, x)
Pi,n(θ)

)∏
i∈B

1[𝒷,∞)

(
Zi(θ, x)
Pi,n(θ)

)[𝒷in+1 −𝒶in+1
]
.

(4.24)

Note that the first products over all elements of A, B,C precisely describe the conditions that Sθ1 = A,
Sθ
−1 = B, Sθ0 = C, and ∀ j ∈ Sθ0 : − Z j(θ, x) ≥ 0. Furthermore, observe that, e.g., in (I) we we must

have for all i ∈ I, j ∈ A\I that Z j(θ,x)
P j,n(θ) <

ZminI(θ,x)
PminI,n(θ) =

Zi(θ,x)
Pi,n(θ) ∈ (𝒶,𝒷) in order to obtain a non-zero value. In

other words, the maximal value of Zi(θ,x)
Pi,n(θ) , i ∈ A, is achieved exactly for i ∈ I, and similarly the minimal

value of Z j(θ,x)
P j,n(θ) , j ∈ B, is achieved exactly for j ∈ J (and analogously in (II), (III)). Moreover, note

that we have for all i ∈ I ⊆ A that

1(𝒶,𝒷)

(
Zi(θ, x)
Pi,n(θ)

)
= 1(𝒶,∞)

(
Zi(θ, x)
Pi,n(θ)

)
1(−∞,𝒷)

(
Zi(θ, x)
Pi,n(θ)

)
= 1(0,∞)

(
Zi(θ, x) −𝒶Pi,n(θ)

)
1(0,∞)

(
𝒷Pi,n(θ) − Zi(θ, x)

)
.

(4.25)

Here Zi(θ, x) is polynomial in θ and linear in x1, . . . , xn−1, and thus of the form required by Defini-
tion 4.6. Similarly, the other indicator functions can be brought into the correct form, taking into
account the different signs of P j,n(θ) for j ∈ A and j ∈ B. Moreover, observe that the remaining terms
can be written as linear combinations of rational functions in θ and polynomials in x. Hence, we obtain
that the functions defined by (I), (II), (III), (IV) are elements of 𝒜m,n−1. The proof of Proposition 4.8
is thus complete.

4.3. On the semialgebraic property of the risk function

Definition 4.9. Let d ∈ N, let A ⊆ Rd be a set, and let f : A → R be a function. Then we say that
f is piecewise polynomial if and only if there exist n ∈ N, α1, α2, . . . , αn ∈ R

n×d, β1, β2, . . . , βn ∈ R
n,

P1, P2, . . . , Pn ∈ 𝒫d such that for all x ∈ A it holds that

f (x) =
∑n

i=1
[
Pi(x)1[0,∞)n(αix + βi)

]
(4.26)

(cf. Definition 4.1).

Corollary 4.10. Assume Setting 2.1 and assume that f and p are piecewise polynomial (cf. Defini-
tion 4.9). Then L is semialgebraic (cf. Definition 4.3).
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Proof of Corollary 4.10. Throughout this proof let F : Rd → R and P : Rd → R satisfy for all x ∈ Rd

that

F(x) =

 f (x) : x ∈ [𝒶,𝒷]d

0 : x < [𝒶,𝒷]d
and P(x) =

p(x) : x ∈ [𝒶,𝒷]d

0 : x < [𝒶,𝒷]d.
(4.27)

Note that (4.27) and the assumption that f and p are piecewise polynomial assure that[
Rd × Rd ∋ (θ, x) 7→ F(x) ∈ R

]
∈ 𝒜d,d and

[
Rd × Rd ∋ (θ, x) 7→ P(x) ∈ R

]
∈ 𝒜d,d (4.28)

(cf. Definition 4.6). In addition, observe that the fact that for all θ ∈ Rd, x ∈ Rd we have that

𝒩 θ(x) = cθ +
H∑

i=1

v
θ
i max

{∑d
ℓ=1w

θ
i,ℓxℓ + b

θ
i , 0

}
= cθ +

H∑
i=1

v
θ
i

(∑d
ℓ=1w

θ
i,ℓxℓ + b

θ
i

)
1[0,∞)

(∑d
ℓ=1w

θ
i,ℓxℓ + b

θ
i

) (4.29)

demonstrates that [
Rd × Rd ∋ (θ, x) 7→ 𝒩 θ(x) ∈ R

]
∈ 𝒜d,d. (4.30)

Combining this with (4.28) and the fact that 𝒜d,d is an algebra proves that[
Rd × Rd ∋ (θ, x) 7→ (𝒩 θ(x) − F(x))2

P(x) ∈ R
]
∈ 𝒜d,d. (4.31)

This, Proposition 4.8, and induction demonstrate that[
Rd ∋ θ 7→

∫ 𝒷

𝒶

∫ 𝒷

𝒶
· · ·

∫ 𝒷

𝒶
(𝒩 θ(x) − F(x))2

P(x) dxd · · · dx2 dx1 ∈ R

]
∈ 𝒜d,0. (4.32)

Fubini’s theorem hence implies that L ∈ 𝒜d,0. Combining this and Lemma 4.7 shows that L is semial-
gebraic. The proof of Corollary 4.10 is thus complete.

5. Convergence rates for solutions of GF differential equations

In this section we employ the findings from Sections 2 and 4 to establish in Proposition 5.2 in
Subsection 5.2 below, in Proposition 5.3 in Subsection 5.2, and in Theorem 5.4 in Subsection 5.3
below several convergence rate results for solutions of GF differential equations. Theorem 1.2 in
the introduction is a direct consequence of Theorem 5.4. Our proof of Theorem 5.4 is based on an
application of Proposition 5.3 and our proof of Proposition 5.3 uses Proposition 5.2. Our proof of
Proposition 5.2, in turn, employs Proposition 5.1 in Subsection 5.1 below. In Proposition 5.1 we
establish that under the assumption that the target function f : [𝒶,𝒷]d → R and the unnormalized
density function p : [𝒶,𝒷]d → [0,∞) are piecewise polynomial (see Definition 4.9 in Subsection 4.3)
we have that the risk function L : Rd → R satisfies an appropriately generalized Kurdyka-Łojasiewicz
inequality.

In the proof of Proposition 5.1 the classical Łojasiewicz inequality for semialgebraic or subanalytic
functions (cf., e.g., Bierstone & Milman [40]) is not directly applicable since the generalized gradient
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function G : Rd → Rd is not continuous. We will employ the more general results from Bolte et al. [9]
which also apply to not necessarily continuously differentiable functions.

The arguments used in the proof of Proposition 5.2 are slight adaptions of well-known arguments
in the literature; see, e.g., Kurdyka et al. [12, Section 1], Bolte et al. [9, Theorem 4.5], or Absil et
al. [6, Theorem 2.2]. On the one hand, in Kurdyka et al. [12, Section 1] and Absil et al. [6, Theorem
2.2] it is assumed that the object function of the considered optimization problem is analytic and in
Bolte et al. [9, Theorem 4.5] it is assumed that the objective function of the considered optimization
problem is convex or lower C2 and Proposition 5.2 does not require these assumptions. On the other
hand, Bolte et al. [9, Theorem 4.5] consider more general differential dynamics and the considered
gradients are allowed to be more general than the specific generalized gradient function G : Rd → Rd

which is considered in Proposition 5.2.

5.1. Generalized Kurdyka-Łojasiewicz inequality for the risk function

Proposition 5.1 (Generalized Kurdyka-Łojasiewicz inequality). Assume Setting 2.1, assume that p
and f are piecewise polynomial, and let ϑ ∈ Rd (cf. Definition 4.9). Then there exist ε,D ∈ (0,∞),
α ∈ (0, 1) such that for all θ ∈ Bε(ϑ) it holds that

|L(θ) − L(ϑ)|α ≤ D∥G(θ)∥. (5.1)

Proof of Proposition 5.1. Throughout this proof let M : Rd → [0,∞] satisfy for all θ ∈ Rd that

M(θ) = inf({∥h∥ : h ∈ ∂L(θ)} ∪ {∞}). (5.2)

Note that Proposition 2.12 implies for all θ ∈ Rd that

M(θ) ≤ ∥G(θ)∥. (5.3)

Furthermore, observe that Corollary 4.10, the fact that semialgebraic functions are subanalytic, and
Bolte et al. [9, Theorem 3.1 and Remark 3.2] ensure that there exist ε,D ∈ (0,∞), a ∈ [0, 1) which
satisfy for all θ ∈ Bε(ϑ) that

|L(θ) − L(ϑ)|a ≤ DM(θ). (5.4)

Combining this and (5.3) with the fact that supθ∈Bε(ϑ)|L(θ) − L(ϑ)| < ∞ demonstrates that for all
θ ∈ Bε(ϑ), α ∈ (a, 1) we have that

|L(θ) − L(ϑ)|α ≤ |L(θ) − L(ϑ)|a
(
supψ∈Bε(ϑ)|L(ψ) − L(ϑ)|α−a

)
≤

(
D supψ∈Bε(ϑ)|L(ψ) − L(ϑ)|α−a

)
∥G(θ)∥.

(5.5)

This completes the proof of Proposition 5.1.

5.2. Local convergence for solutions of GF differential equations

Proposition 5.2. Assume Setting 2.1 and let ϑ ∈ Rd, ε,D ∈ (0,∞), α ∈ (0, 1) satisfy for all θ ∈ Bε(ϑ)
that

|L(θ) − L(ϑ)|α ≤ D∥G(θ)∥. (5.6)
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Then there exists δ ∈ (0, ε) such that for all Θ ∈ C([0,∞),Rd) with Θ0 ∈ Bδ(ϑ), ∀ t ∈ [0,∞) : Θt =

Θ0 −
∫ t

0
G(Θs) ds, and inft∈{s∈[0,∞) : Θs∈Bε(ϑ)}L(Θt) ≥ L(ϑ) there exists ψ ∈ L−1({L(ϑ)}) such that for all

t ∈ [0,∞) it holds that

Θt ∈ Bε(ϑ),
∫ ∞

0
∥G(Θs)∥ ds ≤ ε, |L(Θt) − L(ψ)| ≤ (1 +D−2t)−1, (5.7)

and ∥Θt − ψ∥ ≤
[
1 +

(
D
−1/α(1 − α)

) α
1−α t

]−min{1, 1−α
α }
. (5.8)

Proof of Proposition 5.2. Note that the fact that L is continuous implies that there exists δ ∈ (0, ε/3)
which satisfies for all θ ∈ Bδ(ϑ) that

|L(θ) − L(ϑ)|1−α ≤ min
{
ε(1 − α)

3D
,

1 − α
D

, 1
}
. (5.9)

In the following let Θ ∈ C([0,∞),Rd) satisfy ∀ t ∈ [0,∞) : Θt = Θ0 −
∫ t

0
G(Θs) ds, Θ0 ∈ Bδ(ϑ), and

inft∈{s∈[0,∞) : Θs∈Bε(ϑ)}L(Θt) ≥ L(ϑ). (5.10)

In the first step we show that for all t ∈ [0,∞) it holds that

Θt ∈ Bε(ϑ). (5.11)

Observe that, e.g., [37, Lemma 3.1] ensures for all t ∈ [0,∞) that

L(Θt) = L(Θ0) −
∫ t

0
∥G(Θs)∥2 ds. (5.12)

This implies that [0,∞) ∋ t 7→ L(Θt) ∈ [0,∞) is non-increasing. Next let L : [0,∞)→ R satisfy for all
t ∈ [0,∞) that

L(t) = L(Θt) − L(ϑ) (5.13)

and let T ∈ [0,∞] satisfy

T = inf({t ∈ [0,∞) : ∥Θt − ϑ∥ ≥ ε} ∪ {∞}). (5.14)

We intend to show that T = ∞. Note that (5.10) assures for all t ∈ [0,T ) that L(t) ≥ 0. Moreover,
observe that (5.12) and (5.13) ensure that for almost all t ∈ [0,T ) it holds that L is differentiable at t
and satisfies L′(t) = d

dt (L(Θt)) = −∥G(Θt)∥2. In the following let τ ∈ [0,T ] satisfy

τ = inf({t ∈ [0,T ) : L(t) = 0} ∪ {T }). (5.15)

Note that the fact that L is non-increasing implies that for all s ∈ [τ,T ) it holds that L(s) = 0. Combin-
ing this with (5.12) demonstrates for almost all s ∈ (τ,T ) that G(Θs) = 0. This proves for all s ∈ [τ,T )
that Θs = Θτ. Next observe that (5.6) ensures that for all t ∈ [0, τ) it holds that

0 < [L(t)]α = |L(Θt) − L(ϑ)|α ≤ D∥G(Θt)∥. (5.16)
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Combining this with the chain rule proves for almost all t ∈ [0, τ) that

d
dt

([L(t)]1−α) = (1 − α)[L(t)]−α
(
−∥G(Θt)∥2

)
≤ −(1 − α)D−1∥G(Θt)∥−1∥G(Θt)∥2 = −D−1(1 − α)∥G(Θt)∥.

(5.17)

In addition, note that the fact that [0,∞) ∋ t 7→ L(t) ∈ R is absolutely continuous and the fact that for all
r ∈ (0,∞) it holds that (r,∞) ∋ y 7→ y1−α ∈ R is Lipschitz continuous demonstrate for all t ∈ [0, τ) that
[0, t] ∋ s 7→ [L(s)]1−α ∈ R is absolutely continuous. Integrating (5.17) hence shows for all s, t ∈ [0, τ)
with t ≤ s that∫ s

t
∥G(Θu)∥ du ≤ −D(1 − α)−1([L(s)]1−α − [L(t)]1−α) ≤ D(1 − α)−1[L(t)]1−α. (5.18)

This and the fact that for almost all s ∈ (τ,T ) it holds that G(Θs) = 0 ensure that for all s, t ∈ [0,T )
with t ≤ s we have that ∫ s

t
∥G(Θu)∥ du ≤ D(1 − α)−1[L(t)]1−α. (5.19)

Combining this with (5.9) demonstrates for all t ∈ [0,T ) that

∥Θt − Θ0∥ =

∥∥∥∥∥∥
∫ t

0
G(Θs) ds

∥∥∥∥∥∥ ≤
∫ t

0
∥G(Θs)∥ ds ≤

D|L(Θ0) − L(ϑ)|1−α

1 − α
≤ min

{
ε

3
, 1

}
. (5.20)

This, the fact that δ < ε/3, and the triangle inequality assure for all t ∈ [0,T ) that

∥Θt − ϑ∥ ≤ ∥Θt − Θ0∥ + ∥Θ0 − ϑ∥ ≤
ε

3
+ δ ≤

ε

3
+
ε

3
=

2ε
3
. (5.21)

Combining this with (5.14) proves that T = ∞. This establishes (5.11).
Next observe that the fact that T = ∞ and (5.20) prove that∫ ∞

0
∥G(Θs)∥ ds ≤ min

{
ε

3
, 1

}
≤ ε < ∞. (5.22)

In the following let σ : [0,∞)→ [0,∞) satisfy for all t ∈ [0,∞) that

σ(t) =
∫ ∞

t
∥G(Θs)∥ ds. (5.23)

Note that (5.22) proves that lim supt→∞ σ(t) = 0. In addition, observe that (5.22) assures that there
exists ψ ∈ Rd such that

lim supt→∞∥Θt − ψ∥ = 0. (5.24)

In the next step we combine the weak chain rule for the risk function in (5.12) with (5.11) and (5.6) to
obtain that for almost all t ∈ [0,∞) we have that

L′(t) = −∥G(Θt)∥2 ≤ −D−2[L(t)]2α. (5.25)

In addition, note that the fact that L is non-increasing and (5.9) ensure that for all t ∈ [0,∞) it holds
that L(t) ≤ L(0) ≤ 1. Therefore, we get for almost all t ∈ [0,∞) that

L′(t) ≤ −D−2[L(t)]2. (5.26)
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Combining this with the fact that for all t ∈ [0, τ) it holds that L(t) > 0 establishes for almost all
t ∈ [0, τ) that

d
dt

(
D2

L(t)

)
= −
D2L′(t)
[L(t)]2 ≥ 1. (5.27)

The fact that for all t ∈ [0, τ) it holds that [0, t] ∋ s 7→ L(s) ∈ (0,∞) is absolutely continuous hence
demonstrates for all t ∈ [0, τ) that

D2

L(t)
≥
D2

L(0)
+ t ≥ D2 + t. (5.28)

Therefore, we infer for all t ∈ [0, τ) that

L(t) ≤ D2
(
D

2 + t
)−1
=

(
1 +D−2t

)−1
. (5.29)

This and the fact that for all t ∈ [τ,∞) it holds that L(t) = 0 prove that for all t ∈ [0,∞) we have that

|L(Θt) − L(ϑ)| = L(t) ≤
(
1 +D−2t

)−1
. (5.30)

Furthermore, observe that (5.24) and the fact thatL is continuous imply that lim supt→∞|L(Θt)−L(ψ)| =
0. Hence, we obtain that L(ψ) = L(ϑ). This shows for all t ∈ [0,∞) that

|L(Θt) − L(ψ)| ≤
(
1 +D−2t

)−1
. (5.31)

In the next step we establish a convergence rate for the quantity ∥Θt − ψ∥, t ∈ [0,∞). We accomplish
this by employing an upper bound for the tail length of the curve Θt ∈ R

d, t ∈ [0,∞). More formally,
note that (5.19), (5.11), and (5.6) demonstrate for all t ∈ [0,∞) that

σ(t) =
∫ ∞

t
∥G(Θu)∥ du = lim

s→∞

[∫ s

t
∥G(Θu)∥ du

]
≤ D(1 − α)−1[L(t)]1−α ≤ D(1 − α)−1(D∥G(Θt)∥)

1−α
α .

(5.32)

Next observe that the fact that for all t ∈ [0,∞) it holds that σ(t) =
∫ ∞

0
∥G(Θs)∥ ds −

∫ t

0
∥G(Θs)∥ ds

shows that for almost all t ∈ [0,∞) we have that σ′(t) = −∥G(Θt)∥. This and (5.32) yield for almost all
t ∈ [0,∞) that σ(t) ≤ D1/α(1 − α)−1[−σ′(t)]

1−α
α . Therefore, we obtain for almost all t ∈ [0,∞) that

σ′(t) ≤ −
[
(1 − α)D−1/ασ(t)

] α
1−α . (5.33)

Combining this with the fact that σ is absolutely continuous implies for all t ∈ [0,∞) that

σ(t) − σ(0) ≤ −
[
(1 − α)D−1/α] α

1−α

∫ t

0
[σ(s)]

α
1−α ds. (5.34)

In the following let β,C ∈ (0,∞) satisfy β = max{1, α
1−α } and C =

(
(1 − α)D−1/α

) α
1−α . Note that (5.34)

and the fact that for all t ∈ [0,∞) it holds that σ(t) ≤ σ(0) ≤ 1 ensure that for all t ∈ [0,∞) it holds that

σ(t) ≤ σ(0) − C
∫ t

0
[σ(s)]β ds. (5.35)
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This, the fact that σ is non-increasing, and the fact that for all t ∈ [0,∞) it holds that 0 ≤ σ(t) ≤ 1
prove that for all t ∈ [0,∞) we have that

[σ(t)]β ≤ σ(t) ≤ σ(0) − C[σ(t)]βt ≤ 1 − Ct[σ(t)]β. (5.36)

Hence, we obtain for all t ∈ [0,∞) that σ(t) ≤ (1 + Ct)−
1
β . Combining this with the fact that for all

t ∈ [0,∞) it holds that

∥Θt − ψ∥ ≤ lim sup
s→∞

∥Θt − Θs∥ = lim sup
s→∞

∥∥∥∥∥∫ s

t
G(Θu) du

∥∥∥∥∥ ≤ lim sup
s→∞

[∫ s

t
∥G(Θu)∥ du

]
=

∫ ∞

t
∥G(Θu)∥ du = σ(t)

(5.37)

shows that for all t ∈ [0,∞) we have that ∥Θt − ψ∥ ≤ (1 + Ct)−1/β. This, (5.11), (5.22), and (5.31)
establish (5.8). The proof of Proposition 5.2 is thus complete.

5.3. Global convergence for solutions of GF differential equations

Proposition 5.3. Assume Setting 2.1, assume that p and f are piecewise polynomial, and let Θ ∈
C([0,∞),Rd) satisfy

lim inft→∞∥Θt∥ < ∞ and ∀ t ∈ [0,∞) : Θt = Θ0 −
∫ t

0
G(Θs) ds (5.38)

(cf. Definition 4.9). Then there exist ϑ ∈ G−1({0}), C, τ, β ∈ (0,∞) which satisfy for all t ∈ [τ,∞) that

∥Θt − ϑ∥ ≤
(
1 + C(t − τ)

)−β and |L(Θt) − L(ϑ)| ≤
(
1 + C(t − τ)

)−1
. (5.39)

Proof of Proposition 5.3. First observe that [37, Lemma 3.1] ensures that for all t ∈ [0,∞) it holds that

L(Θt) = L(Θ0) −
∫ t

0
∥G(Θs)∥2 ds. (5.40)

This implies that [0,∞) ∋ t 7→ L(Θt) ∈ [0,∞) is non-increasing. Hence, we obtain that there exists
m ∈ [0,∞) which satisfies that

m = lim supt→∞L(Θt) = lim inft→∞L(Θt) = inft∈[0,∞)L(Θt). (5.41)

Moreover, note that the assumption that lim inft→∞∥Θt∥ < ∞ ensures that there exist ϑ ∈ Rd and
τ = (τn)n∈N : N→ [0,∞) which satisfy lim infn→∞ τn = ∞ and

lim supn→∞∥Θτn − ϑ∥ = 0. (5.42)

Combining this with (5.41) and the fact that L is continuous shows that

L(ϑ) = m and ∀ t ∈ [0,∞) : L(Θt) ≥ L(ϑ). (5.43)

Next observe that Proposition 5.1 demonstrates that there exist ε,D ∈ (0,∞), α ∈ (0, 1) such that for
all θ ∈ Bε(ϑ) we have that

|L(θ) − L(ϑ)|α ≤ D∥G(θ)∥. (5.44)
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Combining this and (5.42) with Proposition 5.2 demonstrates that there exists δ ∈ (0, ε) which
satisfies for all Φ ∈ C([0,∞),Rd) with Φ0 ∈ Bδ(ϑ), ∀ t ∈ [0,∞) : Φt = Φ0 −

∫ t

0
G(Φs) ds, and

inft∈{s∈[0,∞) : Φs∈Bε(ϑ)}L(Φt) ≥ L(ϑ) that it holds for all t ∈ [0,∞) that

Φt ∈ Bε(ϑ), |L(Φt) − L(ϑ)| ≤ (1 +D−2t)−1, (5.45)

and ∥Φt − ϑ∥ ≤
[
1 +

(
D
−1/α(1 − α)

) α
1−α t

]−min{1, 1−α
α }
. (5.46)

Moreover, note that (5.42) ensures that there exists n ∈ N which satisfies Θτn ∈ Bδ(ϑ). Next let
Φ ∈ C([0,∞),Rd) satisfy for all t ∈ [0,∞) that

Φt = Θt+τn . (5.47)

Observe that (5.43) and (5.47) assure that

Φ0 ∈ Bδ(ϑ), inft∈[0,∞)L(Φt) ≥ L(ϑ), and ∀ t ∈ [0,∞) : Φt = Φ0 −

∫ t

0
G(Φs) ds. (5.48)

Combining this with (5.46) proves for all t ∈ [τn,∞) that

|L(Θt) − L(ϑ)| ≤
(
1 +D−2(t − τn)

)−1
(5.49)

and
∥Θt − ϑ∥ ≤

[
1 +

(
D
−1/α(1 − α)

) α
1−α (t − τn)

]−min{1, 1−α
α }
. (5.50)

Next note that [37, Corollary 2.15] shows that Rd ∋ θ 7→ ∥G(θ)∥ ∈ [0,∞) is lower semicontinuous.
The fact that lim inf s→∞∥G(Θs)∥ = 0 and the fact that lim supt→∞∥Θt − ϑ∥ = 0 hence imply that G(ϑ) =
0. Combining this with (5.49) and (5.50) establishes (5.39). The proof of Proposition 5.3 is thus
complete.

By choosing a sufficiently large 𝒞 ∈ (0,∞) we can conclude a simplified version of Proposition 5.3.
This is precisely the subject of the next result, Theorem 5.4 below. Theorem 1.2 in the introduction is
a direct consequence of Theorem 5.4.

Theorem 5.4. Assume Setting 2.1, assume that p and f are piecewise polynomial, and let Θ ∈
C([0,∞),Rd) satisfy lim inft→∞∥Θt∥ < ∞ and ∀ t ∈ [0,∞) : Θt = Θ0 −

∫ t

0
G(Θs) ds (cf. Definition 4.9).

Then there exist ϑ ∈ G−1({0}), 𝒞 , β ∈ (0,∞) which satisfy for all t ∈ [0,∞) that

∥Θt − ϑ∥ ≤ 𝒞 (1 + t)−β and |L(Θt) − L(ϑ)| ≤ 𝒞 (1 + t)−1. (5.51)

Proof of Theorem 5.4. Observe that Proposition 5.3 assures that there exist ϑ ∈ G−1({0}), C, τ, β ∈
(0,∞) which satisfy for all t ∈ [τ,∞) that

∥Θt − ϑ∥ ≤
(
1 + C(t − τ)

)−β (5.52)

and
|L(Θt) − L(ϑ)| ≤

(
1 + C(t − τ)

)−1
. (5.53)
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In the following let 𝒞 ∈ (0,∞) satisfy

𝒞 = max
{
C
−1, 1 + τ,C−β, (1 + τ)β, (1 + τ)β

[
sups∈[0,τ]∥Θs − ϑ∥

]
, (1 + τ)L(Θ0)

}
. (5.54)

Note that (5.53), (5.54), and the fact that [0,∞) ∋ t 7→ L(Θt) ∈ [0,∞) is non-increasing show for all
t ∈ [0, τ] that

∥Θt − ϑ∥ ≤ sups∈[0,τ]∥Θs − ϑ∥ ≤ 𝒞 (1 + τ)−β ≤ 𝒞 (1 + t)−β (5.55)

and
|L(Θt) − L(ϑ)| = L(Θt) − L(ϑ) ≤ L(Θt) ≤ L(Θ0) ≤ 𝒞 (1 + τ)−1 ≤ 𝒞 (1 + t)−1. (5.56)

Moreover, observe that (5.52) and (5.54) imply for all t ∈ [τ,∞) that

∥Θt − ϑ∥ ≤ 𝒞
(
𝒞 1/β + C𝒞 1/β(t − τ)

)−β
≤ 𝒞

(
𝒞 1/β − τ + t

)−β
≤ 𝒞 (1 + t)−β. (5.57)

In addition, note that (5.53) and (5.54) demonstrate for all t ∈ [τ,∞) that

|L(Θt) − L(ϑ)| ≤ 𝒞
(
𝒞 + C𝒞 (t − τ)

)−1
≤ 𝒞

(
𝒞 − τ + t

)−1
≤ 𝒞 (1 + t)−1. (5.58)

This completes the proof of Theorem 5.4.
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