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Abstract: Class imbalance learning (CIL), which aims to addressing the performance degradation 
problem of traditional supervised learning algorithms in the scenarios of skewed data distribution, 
has become one of research hotspots in fields of machine learning, data mining, and artificial 
intelligence. As a postprocessing CIL technique, the decision threshold moving (DTM) has been 
verified to be an effective strategy to address class imbalance problem. However, no matter adopting 
random or optimal threshold designation ways, the classification hyperplane could be only moved 
parallelly, but fails to vary its orientation, thus its performance is restricted, especially on some 
complex and density variable data. To further improve the performance of the existing DTM 
strategies, we propose an improved algorithm called CDTM by dividing majority training instances 
into multiple different density regions, and further conducting DTM procedure on each region 
independently. Specifically, we adopt the well-known DBSCAN clustering algorithm to split training 
set as it could adapt density variation well. In context of support vector machine (SVM) and extreme 
learning machine (ELM), we respectively verified the effectiveness and superiority of the proposed 
CDTM algorithm. The experimental results on 40 benchmark class imbalance datasets indicate that 
the proposed CDTM algorithm is superior to several other state-of-the-art DTM algorithms in term 
of G-mean performance metric. 
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1. Introduction  

In recent years, learning from imbalanced data distributions has gradually developed to be a 
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hotspot issue in machine learning field due to this issue is emerging in more and more practical 
applications, including medical diagnosis [1], industrial fault diagnosis [2,3], network intrusion 
detection [4], financial fraud detection [5,6], text classification [7,8], bioinformatics [9], soil 
classification [10], air performance prediction [11], and criminal linkage detection [12]. 

In nature, class imbalance problem happens as the number of instances belonging to a specific 
class is overwhelming to that belonging to the other classes, further causing some traditional 
supervised learning algorithms exceedingly focus on the majority class, but depress the performance 
of minority classes. In recent two decades, a number of learning algorithms for addressing 
imbalanced classification problem have been proposed, and they could be roughly divided into four 
following categories: sampling [13–15], cost-sensitive learning [16–18], decision threshold moving 
(DTM) [19–22], and ensemble learning [23–26]. Sampling can be regarded as a pre-processing 
technique for dealing with class imbalance learning problem as it balances the data distribution of 
different classes by either adding the instances belonging to the minority class or decreasing the 
instances belonging to the majority class. Cost-sensitive learning inserts the concept of cost or 
weight into traditional supervised learning algorithms, and it generally provides higher cost or weight 
for the instances belonging to the minority class to make the learning model focus more on such 
class. As the cost-sensitive learning technique is directly merged into traditional supervised learning 
algorithms, thus it can be seen as a in the processing technique for addressing imbalanced 
classification problem. As for DTM strategy, it first trains a biased model by a traditional 
classification algorithm, and then moves the trained classification hyperplane towards the majority 
class empirically or optimally. Therefore, the DTM strategy can be seen as a postprocessing class 
imbalance learning technique. Ensemble learning combines Bagging, Boosting or random space 
paradigm with one of single class imbalance learning strategies which are mentioned above to further 
improve the robustness of learning model. Specifically, among the existing class imbalance learning 
techniques, we can’t say which one is always better than others as each one of them has its own pros 
and cons. 

In this study, we focus on DTM class imbalance learning strategy because that its 
postprocessing mechanism makes it not only avoid to destroying the potential data distribution, but 
also be independent of classification algorithm. Its disadvantage lies in that it is not easy to find the 
appropriate threshold to maximize the classification performance. Then we have to face a problem, 
that is, how to determine the decision threshold? The existing DTM algorithms generally solve this 
problem based on one of two following strategies: empirical [19,20] and optimal [21,22]. The 
empirical strategies calculate the decision threshold according to class imbalance ratio, which tend to 
ignore the real data distribution. While the optimal strategies could adaptively provide an appropriate 
decision threshold based on the performance feedback from imbalanced training data, which do not 
need to directly explore the data distribution. Although the optimal DTM strategies have been 
verified to be effective, their performances are still limited by some potential factors about data 
distribution, for example, when there exists density variation in data distribution, the performance of 
the adjusted classifier cannot be guaranteed as the classification boundary can be only parallel 
translated, but cannot be changed direction. To address the problem referred above, we propose a 
modified DTM algorithm called clustering-based decision threshold moving (CDTM) in this paper. 

Specifically, the proposed CDTM algorithm combines a popular density-based clustering 
algorithm named Density-Based Spatial Clustering of Applications with Node (DBSCAN) [27–29] 
and one of the traditional optimal DTM algorithms [21,22]. DBSCAN takes charge of dividing all 
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majority instances into multiple different groups according to their density distribution information. 
Then, for each majority instance group, it is integrated with all minority instances to constitute a 
training subset. Next, on each training subset, an optimal DTM algorithm is conducted to search the 
best decision threshold. When a unseen instance is received, it is first decided which group it falls in 
by the Gaussian naïve bayes (GNB) rule [30,31], and then the corresponding DTM algorithm is 
called to classify for it. The proposed CTDM algorithm uses the idea of divide-and-conquer method, 
thus it can adapt the complex density variation existing in feature space well. In this paper, we adopt 
the optimal decision output compensation (ODOC) [22] as the basic strategy, and in context of 
support vector machine (SVM) [32,33] and extreme learning machine (ELM) [34,35] respectively, to 
verify the effectiveness and feasibility of CTDM. The experimental results on 40 benchmark class 
imbalance datasets indicate that the proposed CDTM algorithm is superior to several other 
state-of-the-art DTM algorithms in term of G-mean performance metric. The novelty of this work 
reflects at two following aspects: 1) to our best knowledge, it is the first DTM technique which can 
change the direction of original classification boundary, and 2) it can better adapt complex data 
distribution than the emerging DTM techniques as the idea of divide-and-conquer has been 
embedded inside it. 

The rest of this paper is organized as follows: Section 2 reviews the previous work related to 
DTM, as well indicates why all existing DTM algorithms could not adapt data distribution well. In 
Section 3, the proposed CTDM algorithm is described in detail. Section 4 provides some compared 
experimental results and gives the corresponding discussions. Finally, Section 5 concludes the 
findings of this paper, and indicates future work. 

2. Related work 

As mentioned in Section 1, there are two different kinds of strategies to decide the threshold in 
DTM methods. One is empirical, and the other is optimal. In fact, the primitive DTM approaches 
tend to designate an empirical value for the threshold, e.g., SVM-THR algorithm which is proposed 
by Lin and Chen [20]. In SVM-THR, the threshold θ is calculated by the following equation: 

� = �����

�������
                                 (1) 

where �� and �� denote the number of majority and minority instances in the training set, 
respectively. It is clear that the class imbalance ratio, i.e., ��/��, is higher, then the threshold θ is 
larger. It seems to conform to the actual situation as in general, on a highly skewed data distribution, 
the minority class is inclined to be severer destroyed. However, the rule is not absolute as the impact 
of class imbalance distribution is not only related with the class imbalance ratio, but also associates 
several other factors [36]. Therefore, adopting the empirical threshold in DTM may under-compensate 
or over-compensate the classification boundary, further causing poor classification performance. 

In comparison with the empirical DTM strategies, the optimal strategies can effectively adapt 
the data distribution. In [21], an optimal DTM strategy called OTHR is presented. The OTHR firstly 
trains a biased classification model which is required to provide soft output for each training instance, 
and then it collects all minority instances which have been misclassified by the trained model. Next, 
we determine all candidate thresholds according to the following equation, 
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where ��  denotes the ith candidate threshold, while ℎ(��
�) and ℎ(��

�) represent the decision 
outputs of the ith misclassified minority instance and its nearest majority neighbor emerging in the 
direction of majority class. Finally, on the original training set, we compare the harmonic 
performance of F-measure and G-mean of adopting each candidate threshold, further determine the 
optimal threshold. The other optimal DTM strategy is ODOC [22] which regards the threshold 
designation as an optimization problem in continuous space. Therefore, the ODOC adopts mature 
optimization algorithms to search the best threshold for DTM. Specifically, for binary-class 
imbalance problem, the ODOC uses the golden section algorithm [37], while for multi-class 
imbalance problem, it uses the particle swarm optimization (PSO) algorithm. G-mean performance 
metric is used as the fitness function to evaluate the quality of threshold. We note that both OTHR 
and ODOC strategies do not explore data distribution directly, by adapt it in an indirect fashion. 

However, we note that no matter empirical or optimal DTM strategies cannot adapt data 
distribution well. Figure 1 explains the corresponding reason. In Figure 1, it is not difficult to 
observe that the traditional DTM strategies can only parallelly move the initially trained 
classification boundary, but cannot change its direction, further providing a sub-optimal solution. 
Therefore, it is necessary to amend this bias by providing individual threshold for the instances lying 
in different regions in feature space. 

 

Figure 1. Why traditional DTM strategies cannot adapt data distribution well, where the 
black line denotes the classification boundary trained directly on original data, the red 
line denotes the amended boundary by traditional DTM strategies, and the blue line 
denotes the ideal amended classification boundary. 

3. Methods 

3.1. Clustering majority instances by DBSCAN technique 

To realize the individual DTM, we firstly adopt a well-known density-based clustering 
algorithm called DBSCAN [27–29] to divide majority instances into multiple disconnected groups. 
We select to use DBSCAN because density variation existing in data distribution often asks for more 



2505 

Electronic Research Archive  Volume 31, Issue 5, 2501-2518. 

discrepant thresholds. 
Specifically, the DBSCAN is a traditional density clustering method that portrays the closeness 

of data distribution based on a pair of parameters (E, M), where E denotes the local neighborhood 
radius and M describes the threshold of the number of instances in a local neighborhood. DBSCAN 
searches for clusters by examining the E local neighborhood of each instance in the data set, and if 
the E neighborhood of an instance � contains more than M instances, a cluster with � as the core 
object would be created, and then the set of instances which are density reachable from these core 
objects is iteratively aggregated. This process is roughly described in Figure 2(a), where the red 
points represent the core instances and the circles denote their E local neighborhoods. The core 
objects connected by arrows mean that they are density reachable, and all instances in the E 
neighborhoods of these core objects are clustered into a single group. Then, we can divide instances 
into multiple disconnected regions, and each of them can be seen as an independent cluster (see 
Figure 2(b)). Specifically, the DBSCAN algorithm has been shown to discover the clusters with 
arbitrary shapes in data with noise. 

 

Figure 2. Graphical representation of the DBSCAN operating mechanism. 

In DBSCAN, there are two important issues requiring to be focused on: one is how to designate 
the pair of parameters (E, M), and the other is how to determine which cluster a new unseen instance 
belongs to. For the first issue, we know both parameters are very important for the final clustering 
results. In this paper, we empirically designated the pair of parameters as (0.15, 5) according to the 
feedback from lots of experiments. As for the second issue, we suppose that all instances in each 
cluster satisfy a multivariate Gaussian distribution, and hence adopt GNB rule [30,31] to judge which 
cluster an instance belongs to. Suppose �(��) and �(�|��) denote the prior probability of the 
cluster ��, and the conditional probability of an instance � relative to the cluster ��, respectively. 
Then, the probability of the instance � belonging to the cluster �� could be calculated as follows, 

�(��|�) = �(��)�������
�(�)                              (3) 

Obviously, it is more reasonable for adopting GNB to determine the cluster the instance falls in 
than comparing the distance between each cluster centroid and the instance as the GNB rule can 
adapt the potential density variation existing among different clusters well. 
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3.2. Description about CDTM algorithm 

In our proposed CDTM algorithm, the DTM strategy is conducted on each training subset that 
contains all majority instances from a specific cluster divided by DBSCAN and all minority training 
instances. Specifically, considering that the ODOC strategy has presented more robust performance 
than OTHR [22], we adopt the ODOC as the basic DTM strategy in our CDTM algorithm. That is to 
say, on each sub-optimization problem, the golden section optimization algorithm is used to search 
the best threshold. The procedure of the proposed CDTM algorithm is simply described as follows.  

Algorithm: CDTM 
Input: An imbalanced training set Φ = {(��, ��), (��, ��), … … , (��, ��), where � denotes the number of training 
instances, and �� ∈ {−1,1}; a test set Ψ = {��

� , ��
� , … , ��

� }; the pair of parameters (E, M) in DBSCAN. 
Output: An optimal threshold set � = {��, ��, … , ��}, where M denotes the number of clusters generated by 
DBSCAN; the predict results for test set � = {��

� , ��
� , … , ��

� } 
Training Procedure: 
1. The training set is first divided into a majority set Φ� and a minority set Φ�; 
2. The DBSCAN algorithm is used to divide the majority set Φ� into � disconnected clusters; 
3. for �=1: � 
4.   The �-th majority cluster �� is combined with the minority set Φ� to constitute Φ�, and we then use it to 

train a soft output classifier �����������; 
5.   Implementing the ODOC DTM strategy on Φ� to amend the ����������� and obtaining the corresponding 

best threshold ��; 
6. end for 
7. Output the optimal threshold set �. 
Testing Procedure: 
8. for � = 1: � 
9.   Using the reserved distribution information to determine the cluster �� the instance ��

� belongs to; 
10.   Calling ����������� to classify the instance ��

� and acquiring its soft output ℎ(��
�); 

11.   Calculating the amended output ℎ′(��
�) for ��

� by calling ��; 
12.   Calculating the predict label ��

� for ��
�; 

13. end for 
14. Output the predict results � for test set. 

In addition, we also provide a flowchart to describe how to train a CDTM model (see Figure 3). 
Specifically, in CDTM training procedure, the classifier is required to provide soft outputs. 
Specifically, in this paper, we used two different soft-output classifiers, namely SVM [32,33] and 
ELM [34,35], respectively. While in the testing procedure, each test instance ��

� first requires 
determining which cluster it belongs to, and then its amended output could be calculated by, 

ℎ′(��
�) = ℎ(��

�) + ��                             (4) 

where ℎ(��
�) and ℎ′(��

�) respectively denote the original and amended decision output for the 
testing instance ��

�, and ��  denotes the threshold of the cluster the instance belongs to. 
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Figure 3. The flowchart of the CDTM training procedure. 

   
                        (a1)                              (a2) 

  
     (b1)                              (b2) 

Figure 4. A comparison between traditional DTM strategy (see (a1) and (b1)) and the 
proposed CDTM strategy (see (a2) and (b2)), where the solid and dashed lines in each 
sub-figure denote the initially trained and amended classification boundaries, 
respectively. 
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In Figure 4, we use two artificial imbalanced data sets to show the difference between the 
traditional DTM strategies and the proposed CDTM strategy, further illustrate the necessarily of 
developing CDTM algorithm. It is clear that in contrast to DTM, the proposed CDTM tend to capture 
detailed information referring to data distribution, thus it can better adapt the data distribution and 
provide more appropriate amended boundary. 

3.3. Time complex analysis 

Except classification performance, the time complex is also an important metric to evaluate the 
quality of a learning algorithm. 

Suppose there are N training instances, then for CDTM algorithm, the DBSCAN clustering 
procedure requires �(��) training time, and the SVM training procedure also needs to consume 
�(��) time, but in worst case, it can cost �(��) time. In contrast to SVM, training ELM is more 
time-saving as it only consumes �(���) time, where L denotes the number of layer-nodes. Finally, 
the golden section search procedure requires costing only �(�����) time. Therefore, we can say 
that although the CDTM algorithm is always more time-consuming than several traditional DTM 
algorithms, its time-complex is still acceptable. 

4. Experiments 

4.1. Datasets 

In our experiments, we used 40 binary-class imbalanced datasets acquired from Keel data 
repository [38] to verify the effectiveness and superiority of the proposed CDTM algorithm. 
Specifically, these datasets have a wide variation at aspect of number of instances, features and class 
imbalance ratios. The details about these used datasets could be found in Table 1. 

Table 1. Details about the used datasets. 

Dataset Number of instances Number of features Class imbalance ratio 
pima 768 8 1.87 
saheart 462 8 1.89 
tae-3_vs_1-2 151 5 1.9 
led7digit-0-1-2_vs_3-4-5-6-7 398 7 1.99 
glass0 214 9 2.06 
tae-1_vs_2-3 151 5 2.08 
phoneme 5404 5 2.41 
haberman 306 3 2.78 
winequality-red-7_vs_6 837 11 3.21 
ecoli1 336 7 3.36 
winequality-white-4_7_vs_5-6 4698 11 3.5 
led7digit-0-1_vs_2-3-4-5-6-7 398 7 3.85 
appendicitis 106 7 4.05 
newthyroid2 215 5 5.14 

Continued on next page 
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winequality-white-4_vs_7 1043 11 5.4 
glass-3-5_vs_1-2-6-7 214 9 6.13 
glass-7_vs_1-2-3-5-6 214 9 6.38 
winequality-red-7_vs_5-6 1518 11 6.63 
pageblocks2345 5473 10 8.77 
page-blocks0 5472 10 8.79 
winequality-white-4_vs_5 1620 11 8.94 
yeast-0-3-5-9_vs_7-8 506 8 9.12 
yeast-0-2-5-6_vs_3-7-8-9 1004 8 9.14 
yeast-0-2-5-7-9_vs_3-6-8 1004 8 9.14 
ecoli-0-4-6_vs_5 203 6 9.15 
ecoli-0-1_vs_2-3-5 244 7 9.17 
ecoli-0-2-6-7_vs_3-5 224 7 9.18 
ecoli-0-6-7_vs_5 220 6 10 
ecoli-0-1-4-7_vs_2-3-5-6 336 7 10.59 
winequality-white-4_vs_6 2361 11 13.48 
ecoli4 336 7 15.8 
abalone9-18 731 7 16.4 
page-blocks-1-3_vs_4 472 10 15.86 
zoo-3_vs_1-2-4-5-6-7 101 16 19.2 
yeast-1-4-5-8_vs_7 693 8 22.1 
winequality-white-4_vs_5-6 3818 11 22.42 
yeast-2_vs_8 482 8 23.1 
yeast4 1484 8 28.1 
yeast-1-2-8-9_vs_7 947 8 30.57 
yeast6 1484 8 41.4 

4.2. Experimental settings 

All experiments were run on a 2.40 GHz Intel(R) Core (TM) i5 10200H 8-core CPU with 16 
GB RAM, and the Python 3.8 environment. 

In context of SVM [32,33] and ELM [34,35], we respectively compared the proposed CDTM 
algorithm with four other algorithms. One is baseline without any process for class imbalance, and 
three others are THR [20], OTHR [21] and ODOC [22] strategies, respectively. 

To guarantee the impartiality of compared experiments, for each classifier, we used the same 
parameter settings. Specifically, the SVM uses RBF kernel with default parameters, that is, the kernel 
width σ = 0.01 and the penalty factor C = 1, while the ELM uses sigmoid activation function with 20 
hidden nodes. As for our proposed CDTM algorithm, it used the empirical DBSCAN parameter 
pair (0.15, 5) which has been indicated in Section 3. 

Specifically, all experiments were conducted on standardized datasets. That means for each 
dataset, its each feature should be first proportionally scaled into [0, 1] by, 

���
� = ���������

�����������
                               (5) 
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where ��� and ���
�  respectively denote the original and standardized values for the ith instance on 

the jth feature, while ����� and ����� represent the maximal and minimal values in the original jth 
feature space throughout all training instances. 

In addition, we adopted a most popular performance metric, i.e., G-mean [39], to evaluate and 
compare the quality of various compared algorithms. G-mean metric can be calculated as follows: 

G − mean = ����� × ����                          (6) 

where ���� and ���� represent the predicted accuracy of positive (minority) class and negative 
(majority) class, respectively. Therefore, we can say that the G-mean metric reflects the tradeoff 
between the classification performance of the minority class and that of the majority class. 

Finally, to exclude some random factors for experimental results, we also conducted 10 times’ 
external five-folds cross validation, and further provided experimental results in the form of mean ± 
standard deviation. 

4.3. Comparison between the proposed CDTM and several other DTM algorithms 

Tables 2 and 3 present the G-mean results of various DTM strategies in context of SVM and 
ELM, respectively. 

Table 2. G-mean results of five compared algorithms in context of SVM, where the best 
result on each dataset have been highlighted in bold. 

Dataset SVM SVM-THR SVM-OTHR ODOC-SVM SVM-CDTM 
pima 0.6574 ± 0.0403 0.6733 ± 0.0401 0.6773 ± 0.0369 0.6820 ± 0.0406 0.6667 ± 0.0350 
saheart 0.5512 ± 0.0459 0.5704 ± 0.0499 0.5732 ± 0.0488 0.5680 ± 0.0426 0.5745 ± 0.0464 
tae-3_vs_1-2 0.7036± 0.0910 0.6891 ± 0.0857 0.6911 ± 0.0855 0.7313 ± 0.0827 0.7187 ± 0.1150 
led7digit-0-1-2_vs_3-4-5-6-7 0.8563 ± 0.0329 0.8610 ± 0.0343 0.8668 ± 0.0329 0.8732 ± 0.0335 0.8668 ± 0.0349 
glass0 0.7939 ± 0.0607 0.7129 ± 0.0687 0.7956 ± 0.0638 0.7945 ± 0.0645 0.7545 ± 0.0754 
tae-1_vs_2-3 0.6435 ± 0.1007 0.6636 ± 0.0950 0.6941 ± 0.0885 0.6942 ± 0.0797 0.6705 ± 0.0865 
phoneme 0.8450 ± 0.0132 0.8645 ± 0.0087 0.8651 ± 0.0087 0.8645 ± 0.0084 0.8641 ± 0.0097 
haberman 0.4159 ± 0.0980 0.4393 ± 0.1334 0.4479 ± 0.0826 0.4430 ± 0.1835 0.4974 ± 0.1622 
winequality-red-7_vs_6 0.7235 ± 0.0376 0.7081 ± 0.0367 0.7380 ± 0.0450 0.7506 ± 0.0324 0.7255 ± 0.0390 
ecoli1 0.8436 ± 0.0637 0.8461 ± 0.0428 0.8480 ± 0.0545 0.8569 ± 0.0458 0.8448 ± 0.0506 
winequality-white-4_7_vs_5-6 0.6325 ± 0.0253 0.7115 ± 0.0193 0.7057 ± 0.0247 0.7191 ± 0.0149 0.7201 ± 0.0155 
led7digit-0-1_vs_2-3-4-5-6-7 0.8581 ± 0.0594 0.8583 ± 0.0534 0.8371 ± 0.0535 0.8673 ± 0.0433 0.8600 ± 0.0487 
appendicitis 0.6282 ± 0.2206 0.6299 ± 0.1263 0.6066 ± 0.2130 0.6374 ± 0.1733 0.6318 ± 0.1772 
newthyroid2 0.9425 ± 0.0539 0.9775 ± 0.0236 0.9312 ± 0.0620 0.9811 ± 0.0228 0.9811 ± 0.0228 
winequality-white-4_vs_7 0.8432 ± 0.0429 0.8523 ± 0.0228 0.7878 ± 0.0467 0.8809 ± 0.0251 0.8681 ± 0.0257 
glass-3-5_vs_1-2-6-7 0.5692 ± 0.2067 0.6980 ± 0.1294 0.4889 ± 0.2721 0.6220 ± 0.2125 0.6225 ± 0.1919 
glass-7_vs_1-2-3-5-6 0.8992 ± 0.0792 0.9146 ± 0.0613 0.9027 ± 0.0812 0.9122 ± 0.0549 0.9022 ± 0.0543 
winequality-red-7_vs_5-6 0.7524 ± 0.0482 0.7544 ± 0.0306 0.7793 ± 0.0455 0.7862 ± 0.0444 0.7795 ± 0.0403 
pageblocks2345 0.8744 ± 0.0215 0.9391 ± 0.0178 0.9402 ± 0.0172 0.9407 ± 0.0158 0.9405 ± 0.0143 
page-blocks0 0.8707 ± 0.0245 0.9340 ± 0.0192 0.9369 ± 0.0176 0.9352 ± 0.0185 0.9355 ± 0.0168 
winequality-white-4_vs_5 0.5561 ± 0.0734 0.6258 ± 0.0423 0.5358 ± 0.2030 0.6319 ± 0.0685 0.6544 ± 0.0694 
yeast-0-3-5-9_vs_7-8 0.4679 ± 0.1714 0.5722 ± 0.0585 0.5991 ± 0.1187 0.5988 ± 0.1220 0.6691 ± 0.0877 
yeast-0-2-5-6_vs_3-7-8-9 0.6869 ± 0.0725 0.7284 ± 0.0557 0.7385 ± 0.0653 0.7379 ± 0.0646 0.7418 ± 0.0601 
yeast-0-2-5-7-9_vs_3-6-8 0.8648 ± 0.0535 0.8773 ± 0.0481 0.8779 ± 0.0483 0.8656 ± 0.0485 0.8706 ± 0.0498 
ecoli-0-4-6_vs_5 0.8441 ± 0.2046 0.8858 ± 0.1102 0.8384 ± 0.2073 0.8795 ± 0.1099 0.8649 ± 0.1106 

Continued on next page 
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ecoli-0-1_vs_2-3-5 0.7792 ± 0.1926 0.8243 ± 0.0892 0.7787 ± 0.2005 0.8584 ± 0.0997 0.8742 ± 0.0840 
ecoli-0-2-6-7_vs_3-5 0.7894 ± 0.1147 0.8318 ± 0.0930 0.7013 ± 0.1119 0.8323 ± 0.1174 0.8358 ± 0.1202 
ecoli-0-6-7_vs_5 0.8051 ± 0.1973 0.8415 ± 0.0885 0.7391 ± 0.1947 0.8579 ± 0.0957 0.8618 ± 0.0943 
ecoli-0-1-4-7_vs_2-3-5-6 0.8076 ± 0.1057 0.7781 ± 0.0875 0.8066 ± 0.1226 0.8101 ± 0.1026 0.8238 ± 0.0842 
winequality-white-4_vs_6 0.6315 ± 0.0664 0.7072 ± 0.0386 0.7204 ± 0.0570 0.7235 ± 0.0584 0.7238 ± 0.0525 
ecoli4 0.8705 ± 0.1242 0.8390 ± 0.0920 0.8688 ± 0.1220 0.8590 ± 0.1204 0.8773 ± 0.0898 
abalone9-18 0.6693 ± 0.1104 0.7891 ± 0.0714 0.7550 ± 0.1210 0.7420 ± 0.1270 0.7464 ± 0.1274 
page-blocks-1-3_vs_4 0.9592 ± 0.0499 0.9661 ± 0.0311 0.9110 ± 0.0967 0.9658 ± 0.0361 0.9665 ± 0.0306 
zoo-3_vs_1-2-4-5-6-7 0.5607 ± 0.3872 0.6324 ± 0.3615 0.5129 ± 0.3872 0.6867 ± 0.3165 0.7253 ± 0.2484 
yeast-1-4-5-8_vs_7 0.1236 ± 0.1713 0.5127 ± 0.0643 0.5283 ± 0.1590 0.5399 ± 0.1703 0.5543 ± 0.1648 
winequality-white-4_vs_5-6 0.4763 ± 0.0603 0.6422 ± 0.0264 0.6039 ± 0.0541 0.6131 ± 0.0505 0.6188 ± 0.0535 
yeast-2_vs_8 0.5441 ± 0.2573 0.5827 ± 0.1528 0.5822 ± 0.2710 0.6105 ± 0.2492 0.6107 ± 0.2490 
yeast4 0.5343 ± 0.1451 0.7171 ± 0.0524 0.7332 ± 0.0885 0.7151 ± 0.0858 0.7215 ± 0.0829 
yeast-1-2-8-9_vs_7 0.5189 ± 0.1871 0.6249 ± 0.0551 0.6612 ± 0.1213 0.6594 ± 0.1346 0.6784 ± 0.1148 
yeast6 0.7307 ± 0.1307 0.7530 ± 0.0558 0.8351 ± 0.0641 0.8269 ± 0.0714 0.8319 ± 0.0771 

Table 3. G-mean results of five compared algorithms in context of ELM, where the best 
result on each dataset have been highlighted in bold. 

Dataset ELM ELM-THR ELM-OTHR ODOC-ELM ELM-CDTM 
pima 0.6809 ± 0.0404 0.7155 ± 0.0393 0.7166 ± 0.0323 0.7201 ± 0.0344 0.6993 ± 0.0341 
saheart 0.5787 ± 0.0564 0.6019 ± 0.0556 0.6027 ± 0.0563 0.6016 ± 0.0556 0.6096 ± 0.0482 
tae-3_vs_1-2 0.6577 ± 0.0699 0.6628 ± 0.0678 0.6566 ± 0.0727 0.6671 ± 0.0669 0.6936 ± 0.0939 
led7digit-0-1-2_vs_3-4-5-6-7 0.8457 ± 0.0348 0.8509 ± 0.0270 0.8437 ± 0.0336 0.8548 ± 0.0282 0.8219 ± 0.0526 
glass0 0.6956 ± 0.0607 0.6962 ± 0.0555 0.6995 ± 0.0557 0.6994 ± 0.0609 0.6806 ± 0.0734 
tae-1_vs_2-3 0.6630 ± 0.0870 0.6773 ± 0.0848 0.6620 ± 0.0917 0.6774 ± 0.0835 0.6763 ± 0.0992 
phoneme 0.7983 ± 0.0136 0.8264 ± 0.0086 0.8321 ± 0.0092 0.8331 ± 0.0091 0.8341 ± 0.0091 
haberman 0.4952 ± 0.0853 0.5794 ± 0.0768 0.5741 ± 0.0753 0.5743 ± 0.0682 0.5879 ± 0.0781 
winequality-red-7_vs_6 0.6027 ± 0.0826 0.6916 ± 0.0270 0.6972 ± 0.0484 0.6935 ± 0.0470 0.6930 ± 0.0438 
ecoli1 0.8000 ± 0.0656 0.8209 ± 0.0376 0.8235 ± 0.0552s 0.8280 ± 0.0506 0.7456 ± 0.0851 
winequality-white-4_7_vs_5-6 0.4694 ± 0.0291 0.6998 ± 0.0178 0.7000 ± 0.0173 0.7009 ± 0.0165 0.7014 ± 0.0140 
led7digit-0-1_vs_2-3-4-5-6-7 0.8552 ± 0.0508 0.8788 ± 0.0366 0.8826 ± 0.0362 0.8782 ± 0.0349 0.8664 ± 0.0550 
appendicitis 0.4332 ± 0.2162 0.4264 ± 0.2152 0.4332 ± 0.2162 0.4552 ± 0.1741 0.4777 ± 0.1317 
newthyroid2 0.7731 ± 0.1528 0.7535 ± 0.1514 0.7731 ± 0.1528 0.7569 ± 0.1507 0.7799 ± 0.1339 
winequality-white-4_vs_7 0.7964 ± 0.0546 0.8428 ± 0.0265 0.8671 ± 0.0426 0.8676 ± 0.0426 0.8368 ± 0.0420 
glass-3-5_vs_1-2-6-7 0.5295 ± 0.1836 0.6622 ± 0.1077 0.5855 ± 0.1544 0.5996 ± 0.1623 0.6383 ± 0.1321 
glass-7_vs_1-2-3-5-6 0.8558 ± 0.1122 0.8496 ± 0.0803 0.8558 ± 0.1122 0.8394 ± 0.0850 0.8307 ± 0.0889 
winequality-red-7_vs_5-6 0.5402 ± 0.0551 0.7657 ± 0.0258 0.7690 ± 0.0288 0.7696 ± 0.0241 0.7669 ± 0.0386 
pageblocks2345 0.8305 ± 0.0293 0.9236 ± 0.0126 0.9307 ± 0.0152 0.9306 ± 0.0160 0.9308 ± 0.0133 
page-blocks0 0.8287 ± 0.0294 0.9236 ± 0.0112 0.9318 ± 0.0157 0.9316 ± 0.0157 0.9319 ± 0.0128 
winequality-white-4_vs_5 0.3368 ± 0.0752 0.6895 ± 0.0461 0.6905 ± 0.0486 0.6885 ± 0.0469 0.6538 ± 0.0639 
yeast-0-3-5-9_vs_7-8 0.3810 ± 0.1429 0.6129 ± 0.0607 0.5923 ± 0.0978 0.5966 ± 0.0785 0.6234 ± 0.0967 
yeast-0-2-5-6_vs_3-7-8-9 0.5991 ± 0.0740 0.7336 ± 0.0637 0.7358 ± 0.0561 0.7338 ± 0.0607 0.7424 ± 0.0618 
yeast-0-2-5-7-9_vs_3-6-8 0.8278 ± 0.0489 0.8362 ± 0.0392 0.8666 ± 0.0456 0.8631 ± 0.0464 0.8789 ± 0.0484 
ecoli-0-4-6_vs_5 0.6908 ± 0.2786 0.7365 ± 0.1782 0.6908 ± 0.2786 0.7432 ± 0.1900 0.7005 ± 0.1728 
ecoli-0-1_vs_2-3-5 0.6580 ± 0.2459 0.7003 ± 0.2355 0.6921 ± 0.2490 0.7102 ± 0.2494 0.7359 ± 0.1337 
ecoli-0-2-6-7_vs_3-5 0.6841 ± 0.1976 0.7273 ± 0.0949 0.6887 ± 0.1968 0.7498 ± 0.1131 0.7726 ± 0.1147 
ecoli-0-6-7_vs_5 0.6693 ± 0.2696 0.7126 ± 0.1803 0.6678 ± 0.2695 0.6977 ± 0.2427 0.7562 ± 0.1319 
ecoli-0-1-4-7_vs_2-3-5-6 0.7413 ± 0.1139 0.7707 ± 0.1005 0.7884 ± 0.1098 0.7890 ± 0.1076 0.7028 ± 0.1017 
winequality-white-4_vs_6 0.4762 ± 0.0818 0.7603 ± 0.0275 0.7815 ± 0.0420 0.7773 ± 0.0447 0.7963 ± 0.0450 
ecoli4 0.8379 ± 0.1076 0.8777 ± 0.0447 0.8817 ± 0.0938 0.8811 ± 0.0804 0.7501 ± 0.0916 
abalone9-18 0.5512 ± 0.1183 0.7811 ± 0.0646 0.7698 ± 0.0852 0.7692 ± 0.0772 0.7841 ± 0.1116 
page-blocks-1-3_vs_4 0.7506 ± 0.2621 0.7390 ± 0.2419 0.7506 ± 0.2621 0.7646 ± 0.2505 0.8075 ± 0.1168 
zoo-3_vs_1-2-4-5-6-7 0.7259 ± 0.3311 0.7218 ± 0.2847 0.7259 ± 0.3311 0.7146 ± 0.2323 0.7508 ± 0.1933 
yeast-1-4-5-8_vs_7 0.0957 ± 0.1603 0.6089 ± 0.0842 0.5596 ± 0.2037 0.5518 ± 0.1970 0.5819 ± 0.1604 

Continued on next page 
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winequality-white-4_vs_5-6 0.2301 ± 0.1015 0.7246 ± 0.0244 0.7330 ± 0.0387 0.7348 ± 0.0428 0.7352 ± 0.0457 
yeast-2_vs_8 0.4807 ± 0.2869 0.5632 ± 0.1940 0.5644 ± 0.2363 0.5743 ± 0.2381 0.6024 ± 0.2179 
yeast4 0.3795 ± 0.1829 0.7645 ± 0.0724 0.7897 ± 0.0867 0.7882 ± 0.0840 0.7947 ± 0.0796 
yeast-1-2-8-9_vs_7 0.4389 ± 0.2275 0.6792 ± 0.0911 0.6979 ± 0.0829 0.6266 ± 0.1789 0.5749 ± 0.1740 
yeast6 0.5464 ± 0.1641 0.8103 ± 0.0580 0.8662 ± 0.0644 0.8583 ± 0.0910 0.8650 ± 0.0693 

The results in Tables 2 and 3 not only show some known conclusions, but also reveal some new 
interesting phenomenon. First, we all know that the imbalanced data distribution is generally harmful 
for traditional classification models, especially when class imbalance ratio is high, this phenomenon 
tends to be severer. This conclusion is verified by the results in these two tables, again. It is clear that 
any one DTM strategy performs better and the baseline algorithm, namely SVM or ELM. In addition, 
we know that in general, the optimal DTM strategies outperform to the empirical ones. This 
conclusion has also been verified by the results in Tables 2 and 3. Obviously, both OTHR and ODOC 
strategies have produced significantly better results than the THR strategy as they could adapt data 
distribution well. Next, we know that the ODOC is more robust than OTHR [22], which has also 
been confirmed in our experimental results. Specifically, in context of SVM, the ODOC yields 13 
best results while the OTHR only performs best on 6 datasets, and in context of ELM, the gap 
between their performances seems to be less, although the ODOC still performs a little better than 
the OTHR. 

In these two tables, we also observe some new and interesting phenomenon. First of all, the 
proposed CDTM algorithm improves classification performance in comparison to several other DTM 
algorithms. This conclusion conforms to our anticipation that compared to several other DTM 
algorithms, the CDTM explores more details about data distribution, and hence it could better adapt 
the data distribution. Specifically, in contexts of SVM and ELM, the proposed CDTM algorithm 
performs best on 18 and 22 datasets, respectively. Furthermore, we note that on datasets with low 
class imbalance ratio, the CDTM has not shown the significant superiority in comparison with the 
ODOC, but on those highly imbalanced datasets, it performs significantly better. We believe that it 
attributes to the complexity of data distribution. In general, the datasets with low class imbalance 
ratios mean simple data distributions, while on this kind of dataset, the learning model generated by 
the complex CDTM algorithm tends to be overfitting. However, the datasets with high class 
imbalance ratios often have complex data distributions, which are appropriate for calling CDTM 
algorithm. According to the experimental results observed in Tables 2 and 3, we can safely draw a 
conclusion, that is, the proposed CDTM algorithm is robust, as well it is more appropriate used in the 
scenario with highly skewed data distributions. 

4.4. Significance analysis in statistics 

To present a thorough comparison of the various algorithms, we also provide their statistical 
results. We employed the Friedman test and Holm post-hoc test [40] to differentiate the performance 
of the comparative algorithms throughout 40 datasets. The Friedman test, or the Friedman 
bidirectional Rank variance analysis, is a statistical test of homogeneity of multiple (related) samples. 
The Friedman test is defined as： 
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where P is the number of datasets, J is the number of algorithms, and ri is the average ranking of the 
ith algorithm. In such context, the statistical analysis results obtained at the confidence level of α = 0.05 
are presented in Tables 4 and 5. 

Table 4. Statistical analysis results of comparative algorithms at the confidence level of a 
= 0.05 in context of SVM. 

Algorithms Average 
Ranking 

p Holm Hypothesis 

SVM-CDTM 1.96 - - - 
ODOC-SVM 2.21 0.4795 0.05 Not Rejected 
SVM-OTHR 3.15 0.000783 0.025 Rejected 
SVM-THR 3.23 0.000356 0.016667 Rejected 
SVM 4.45 0 0.0125 Rejected 

Table 5. Statistical analysis results of comparative algorithms at the confidence level of a 
= 0.05 in context of ELM. 

Algorithms Average  
Ranking 

p Holm Hypothesis 

ELM-CDTM 2.25 - - - 
ODOC-ELM 2.48 0.524518 0.05 Not Rejected 
ELM-OTHR 2.65 0.257899 0.025 Not Rejected 
ELM-THR 3.15 0.010909 0.016667 Rejected 
ELM 4.48 0 0.0125 Rejected 

The statistical results in Tables 4 and 5 show that in both contexts of SVM and ELM, the 
proposed CDTM algorithm has acquired the lowest Friedman’s average rankings. Specifically, in 
context of SVM, the CDTM significantly outperforms to the baseline SVM, THR and OTHR, but we 
cannot say that it is significantly better than ODOC though it has a lower average ranking than 
ODOC. As for ELM, the CDTM performs significantly better than the baseline ELM and THR, and 
meanwhile, it isn’t significantly better than two other DTM strategies in statistics. 

4.5. Comparison about running time 

Finally, we compared the running time of various algorithms in contexts of SVM and ELM, 
respectively. The results are presented in Tables 6 and 7. 

Table 6. Running time (seconds) comparison of various compared algorithms in context of SVM. 

Dataset SVM SVM-THR SVM-OTHR ODOC-SVM SVM-CDTM 
pima 0.4344 0.4347 0.4526 0.4824 0.8390 
saheart 0.1766 0.1772 0.1795 0.2047 0.4086 
tae-3_vs_1-2 0.0164 0.0165 0.0178 0.0256 0.0592 
led7digit-0-1-2_vs_3-4-5-6-7 0.0096 0.0109 0.0121 0.0339 0.1492 
glass0 0.0157 0.0165 0.0170 0.0290 0.0689 
tae-1_vs_2-3 0.0191 0.0195 0.0207 0.0291 0.0682 
phoneme 8.5301 8.5322 9.6428 8.8926 17.7087 
haberman 0.1514 0.1515 0.1618 0.1720 0.3512 
winequality-red-7_vs_6 0.2951 0.2955 0.2989 0.3521 0.7689 

Continued on next page 
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ecoli1 0.0218 0.0222 0.0238 0.0441 0.0884 
winequality-white-4_7_vs_5-6 17.7151 17.7174 18.8811 18.0274 36.5093 
led7digit-0-1_vs_2-3-4-5-6-7 0.0096 0.0101 0.0139 0.0353 0.1434 
appendicitis 0.0059 0.0061 0.0061 0.0125 0.0277 
newthyroid2 0.0034 0.0039 0.0036 0.0176 0.0287 
winequality-white-4_vs_7 0.0672 0.0674 0.0676 0.1336 0.6626 
glass-3-5_vs_1-2-6-7 0.0091 0.0095 0.0094 0.0233 0.0533 
glass-7_vs_1-2-3-5-6 0.0039 0.0044 0.0042 0.0180 0.0352 
winequality-red-7_vs_5-6 0.4551 0.4558 0.4661 0.5613 1.4914 
pageblocks2345 0.9641 0.9659 1.4178 1.3315 2.7590 
page-blocks0 1.0244 1.0268 1.5007 1.4053 2.9358 
winequality-white-4_vs_5 0.4025 0.4031 0.4068 0.5141 1.4740 
yeast-0-3-5-9_vs_7-8 0.0774 0.0778 0.0851 0.1119 0.2139 
yeast-0-2-5-6_vs_3-7-8-9 0.2691 0.2697 0.2944 0.3374 0.6518 
yeast-0-2-5-7-9_vs_3-6-8 0.0919 0.0923 0.1027 0.1611 0.2961 
ecoli-0-4-6_vs_5 0.0039 0.0039 0.0038 0.0178 0.0434 
ecoli-0-1_vs_2-3-5 0.0053 0.0056 0.0057 0.0215 0.0536 
ecoli-0-2-6-7_vs_3-5 0.0042 0.0045 0.0045 0.0193 0.0458 
ecoli-0-6-7_vs_5 0.0088 0.0091 0.0095 0.0317 0.0903 
ecoli-0-1-4-7_vs_2-3-5-6 0.6113 0.6124 0.6318 0.7805 2.3962 
winequality-white-4_vs_6 0.0052 0.0056 0.0056 0.0278 0.0585 
ecoli4 0.0429 0.0435 0.0482 0.0938 0.1604 
abalone9-18 0.0078 0.0083 0.0081 0.0396 0.0807 
page-blocks-1-3_vs_4 0.0028 0.0032 0.0031 0.0096 0.0274 
zoo-3_vs_1-2-4-5-6-7 0.0874 0.0878 0.0996 0.1369 0.2665 
yeast-1-4-5-8_vs_7 1.3300 1.3315 1.3977 1.6052 4.2289 
winequality-white-4_vs_5-6 0.0188 0.0191 0.0212 0.0531 0.0966 
yeast-2_vs_8 0.1317 0.1325 0.1619 0.2350 0.4480 
yeast4 0.1070 0.1074 0.1204 0.1760 0.3351 
yeast-1-2-8-9_vs_7 0.0837 0.0846 0.0990 0.1874 0.3522 
yeast6 0.4344 0.4347 0.4526 0.4824 0.8390 

Table 7. Running time (seconds) comparison of various compared algorithms in context of ELM. 

Dataset ELM ELM-THR ELM-OTHR ODOC-ELM ELM-CDTM 
pima 0.0296 0.0311 0.1305 0.3595 0.7476 
saheart 0.0151 0.0153 0.1398 0.2111 0.3221 
tae-3_vs_1-2 0.0062 0.0068 0.0068 0.0798 0.1641 
led7digit-0-1-2_vs_3-4-5-6-7 0.0131 0.0136 0.0408 0.1968 0.8808 
glass0 0.0075 0.0079 0.0100 0.1166 0.2208 
tae-1_vs_2-3 3.2730 3.2793 14.0879 5.5173 11.0635 
phoneme 0.0119 0.0115 0.0634 0.1460 0.1937 
haberman 0.0361 0.0386 0.1607 0.4074 1.1732 
winequality-red-7_vs_6 0.0104 0.0112 0.0154 0.1715 0.2862 
ecoli1 2.7256 2.7371 8.3337 4.8558 18.0189 
winequality-white-4_7_vs_5-6 0.0103 0.0112 0.0157 0.1729 0.6201 
led7digit-0-1_vs_2-3-4-5-6-7 0.0046 0.0043 0.0047 0.0571 0.0754 
appendicitis 0.0086 0.0097 0.0093 0.1203 0.1532 
newthyroid2 0.0389 0.0412 0.1076 0.4769 2.3145 
winequality-white-4_vs_7 0.0076 0.0080 0.0094 0.1120 0.1757 
glass-3-5_vs_1-2-6-7 0.0080 0.0079 0.0094 0.1149 0.1508 
glass-7_vs_1-2-3-5-6 0.0795 0.0827 0.3604 0.7545 2.6373 
winequality-red-7_vs_5-6 3.6900 3.6981 7.6258 6.1049 10.6912 
pageblocks2345 3.7078 3.7164 7.6976 6.1335 10.7285 
page-blocks0 0.0929 0.0965 0.4214 0.8233 3.0324 

Continued on next page 
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winequality-white-4_vs_5 0.0171 0.0175 0.1150 0.2442 0.4211 
yeast-0-3-5-9_vs_7-8 0.0414 0.0426 0.2926 0.4917 0.6392 
yeast-0-2-5-6_vs_3-7-8-9 0.0414 0.0425 0.1502 0.4855 0.6331 
yeast-0-2-5-7-9_vs_3-6-8 0.0079 0.0087 0.0086 0.1153 0.1652 
ecoli-0-4-6_vs_5 0.0094 0.0096 0.0107 0.1315 0.1951 
ecoli-0-1_vs_2-3-5 0.0083 0.0079 0.0098 0.1196 0.1703 
ecoli-0-2-6-7_vs_3-5 0.0087 0.0084 0.0104 0.1203 0.1675 
ecoli-0-6-7_vs_5 0.0096 0.0101 0.0170 0.1656 0.2852 
ecoli-0-1-4-7_vs_2-3-5-6 0.4672 0.4701 1.8028 1.4985 4.6396 
winequality-white-4_vs_6 0.0118 0.0116 0.0161 0.1804 0.2483 
ecoli4 0.0244 0.0260 0.0441 0.3440 0.4347 
abalone9-18 0.0164 0.0166 0.0197 0.2449 0.3425 
page-blocks-1-3_vs_4 0.0047 0.0043 0.0052 0.0549 0.0883 
zoo-3_vs_1-2-4-5-6-7 0.0246 0.0251 0.1233 0.3292 0.4372 
yeast-1-4-5-8_vs_7 1.6210 1.6265 4.3666 3.2834 7.9625 
winequality-white-4_vs_5-6 0.0169 0.0180 0.0231 0.2357 0.3083 
yeast-2_vs_8 0.0718 0.0731 0.3700 0.6931 0.8994 
yeast4 0.0417 0.0437 0.0780 0.4757 0.6139 
yeast-1-2-8-9_vs_7 0.0751 0.0786 0.1363 0.7290 0.9489 
yeast6 0.0296 0.0311 0.1305 0.3595 0.7476 

From the results in Tables 6 and 7, it is not difficult to observe that in both contexts of SVM and 
ELM, the baseline algorithm is most time-saving, and then the empirical DTM strategy THR is more 
time-saving than two other optimal DTM strategies, that is, OTHR and ODOC, while the proposed 
CDTM algorithm is most time-consuming among all strategies. The results conform to the results of 
time complexity analysis in Section 3 as the CDTM introduces an extra DBSCAN clustering 
procedure, and meanwhile, it trains more sub-classifiers than several other algorithms. Fortunately, the 
proposed CDTM algorithm only slightly increases running time compared with two other optimization 
idea-based DTM algorithms, and thus it can satisfy the requirements of practical applications. 

5. Conclusions 

In this paper, a modified decision threshold moving algorithm called CDTM was proposed for 
classifying imbalanced data. Specifically, the CDTM algorithm introduces DBSCAN clustering 
technique to deeply capture detailed information about data distribution, and further provides 
individual and adaptive threshold in different feature regions. It can be seen as a combination of 
DTM technique and divide-and-conquer method. The proposed algorithm amends the drawbacks of 
traditional DTM algorithms to some extent. Experimental results on 40 benchmark class imbalance 
datasets show that the proposed CDTM algorithm is helpful for improving classification performance 
than several other state-of-the-art DTM algorithms, especially on data with highly class imbalance 
ratios, the superiority of CDTM is more significant. Additionally, the proposed CDTM algorithm is 
relatively time-saving, which meets the demands of practical applications in the real-world. 

In future work, we wish to develop better individual DTM algorithms with stronger data 
distribution exploration ability. In addition, how to make individual DTM algorithms adapt 
multi-class imbalance data will be investigated, too. 
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