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Abstract: This paper consider that the following semilinear elliptic equation

—Au = ui7' in By,
u>0, in By, 0.1)
u = O, in GBI,

where B; is the unit ball in R¥(N > 3), g(x) = g(|x]) is a continuous radial function satifying 2 < g(x) <
2" = % and ¢g(0) > 2. Using variational methods and a priori estimate, the existence of a positive
radial solution for (0.1) is obtained.

Keywords: semilinear elliptic problem; variable exponent; mountain pass lamma; a priori estimate;
positive radial solution

1. Introduction and main result

In recent years, the following nonlinear elliptic equation

—A,u = f(x,u), inQ,
{ u=0, on 0Q2 1.1y

was studied due to the fact that it can be applied to fluid mechanics and the field of image processing

(see [1,2]), where Q ¢ RY(N > 3) is a bounded smooth domain, p € C(ﬁ, R), 1 < p~ = min p(x) <
xeQ

p(x) < max p(x) = p* < N, Ayou := div([VulP®2Vu) and f : Q xR — R.
xeQ
In 2003, Fan and Zhang in [3] gave several sufficient conditions for the solvability of nontrivial

solutions for problem (1.1). These conditions include either the sublinear growth condition

f. Dl < C(1+tf7), forxeQandreR
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or Ambrosetti-Rabinowitz type growth condition ((AR)-condition, for short): there is 6 > p* such that
f(x, 0t = 0F(x,t) >0, forall x € Q and |f| large enough,

where C > 0, F(x,1) = foz f(x,s)ds, and | f(x, )t] < C(1 +[t]P" @) with p*(x) = A/,V_”—;g). Subsequently,
Chabrowski and Fu in [4] discussed problem (1.1) in a more general setting than that in [3].

As i1s well known, the (AR)-condition ensure the boundedness of Palais-Smale sequence of the
corresponding function. However, there are some papers considering the nonlinearity without
(AR)-condition. [5] proveed the existence of strong solutions of problem (1.1) without the growth
condition of the well-known AmbrosettiCRabinowitz type. Subsequently, [6] extended the results
of [5]. Under no AmbrosettiCRabinowitzs superquadraticity conditions, [7] and [8] obtained the
existence and multiplicity of the solution of problem (1.1) by different methods. In addition, [9]
and [10] pointed out the importance of the Cerami condition. In fact, these papers still require

nonlinearity to satisfy superlinear growth condition:
f(x, 0t > p(x)F(x,t), forall x € Qand ¢ is large enough.

As far as we know, there are few results in the case f(x, )t = p(x)F(x,t) for some x € Q and [¢|
large enough. In addition to the eigenvalue problem was studied in [11] and [12], we only see that [13]
and [14] discussed the multiplicity of nontrivial solutions and sign-changing solutions, respectively.
As described in [15], there are new difficulties in dealing with this situation.

|Vul?dx
LetSy = inf fBl—z be the best Sobolev constant and B; be the unit ball in RVN(N > 3),we

1 « bx3
0¢MEHO(31) (fBl |M|2 dx)2

consider the following elliptic problem

—Au = w7 in By,
u>0, in B, (1.2)
u = O, in aBl,

where g(x) = g(|x]) is a continuous radial function satisfying 2 < g(x) < 2* = % and g(0) > 2.

Theorem 1.1. Let g(x) be a continuous radial function satisfying

g(x) = q(x), 2<qx)<q" <2, ¢(0)>2.
Suppose that Qg = {x € By : q(x) = 2} is not empty and the measure satisfies

_ PR |
ST <3

Then problem (1.2) has at least a positive radial symmetric solution.

Remark 1.2. In [15], the authors considered the existence of a nontrivial solution of —A,u + uP™" =
w1y e er’p(RN) and u > 0 in RN for 1 < p < N, where Ayu = div(|VulP~2Vu). They showed
that if there exist positive constants Ry, R,, Ci, C, and 0 < I, I, < 1 such that ess infxeBR1 {g(x)} > p,

C N Np C, . ..
q(x) > p+ Tiog 1T for x € R¥\Bg, and g(x) < Nop ~ Tiog bl for x € Bg,, then there exists a nontrivial

solution to this equation. However, our Theorem 1.1 allows q(x) = 2 for some x € By.
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Remark 1.3. The hypothesis of Theorem 1.1 can not ensure that problem (1.2) satisfies the Ambrosetti-
Rabinowitz growth condition. Indeed, for the case p(x) = 2 and f(x,t) = /97! we have p* = 2 and
F(x,t) = ﬁt"“‘) fort > 0. It follows that f(x,0)t = p*F(x,1t) for any x € €.

Remark 1.4. In our paper, the L™ estimate is an essential tool that makes the solution go back to the
original problem. The condition of radial symmetry plays a major role in the estimation of the solution.

2. The auxiliary problem

According to g(x) > 2, It is not easy to determine whether the functional / satisfies the Palais-
Smale condition. To apply the mountain pass theorem, the first step is to modify the nonlinearity. By
the continuity of g(x), 2 < g(x) < ¢g© < 2" and ¢(0) > 2, we see that there exist 6 € (0, i) andr > 0
such that

qg(x)>2+r, x€ By gt +r<29, x€B,. (2.1)

Let ¢(r) € C7(R, [0, 1]) be an even function satisfying (7) = 1 for [¢| < 1, (r) = O for |¢| > 2 and
Y(t) decreases monotonically over R*. Define

!
by (1) = (up), my(t) = f b,(t)d,
0
for u € (0, 1]. We consider the auxiliary problem

—Au = (1= Q) (45) w1 + Q. in By,
u>0, in By, 2.2)
u= O’ in 8B1,

where Q(x) = Q(|x]) € C(By, [0, 1]) satisfies Q(x) = 1 for x € Bs and Q(x) = 0 for x € B, \ Bys.

Theorem 2.1. Assume that q(x) = q(|x]) is a continuous radial function satisfying 2 < q(x) < g% < 2*
and q(0) > 2, the measure of Qy = {x|q(x) = 2} satisfies S ]‘\,1|QOIZT*7-2 < % Then problem (2.2) has at
least a positive radial symmetric solution for any u € (0, 1].

Set HY, (B1) = {u € Hy(B1) | u(x) = ulx)). Il | = IVOllzqany- Lo © Hy,(Br) = R by
! . ) s
L,(u) = 5 fz;. \Vul? dx — Ll(l - Q()K,(u") dx — 5 %(u Y gy,

where k,(x,1) = k() = (515 ) 1707, K, (x,0) = K, () = [ ku(s) ds.

my, (1)

Lemma 2.2. K, (x, 1) have the following properties:

1
K, (x,1) < @tkﬂ(x, 1), K, (x, 1) < )7

th,(x,1) + C,,

fort >0, where C, > 0.
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Proof. According to the monotonicity of b,(t), one has

d ( t )_my(t)—tbﬂ(t)_t(by(f)—by(t))>0
di\mo»)  mo —  mon

for t > 0, where & € (0, ¢). Therefore, (;)

+ ky(x,1) t r.
is monotonically increasing on R*. Hence, = ( ) 1S
also monotonically increasing on R*. It implies that

ﬂi(\’) 1 m‘u([)

! " k(x,t 1
K, (x,1) = f k,(x, T)dt < f MTW)—]dr:—zk,,(x,z), (2.3)
0 0

o1 q(x)

for ¢ > 0. Obviously, m, (1) = ;—j fort > /%, where A =1 + ff Y(t)dr. For t > ;%’ one has

i Lo
K, (x,1) :f ky(x,7) d'r+f (%) 2A0+r=1 g0
0 2
g My my
_ " k,(x, —(—) Q(x)+r—1)d f(_) aer-1
*fo‘ (ﬂ(x o A T i 0o \A T T

thk,(x, 1)
g(x) +r’

=

<C,+

(2.4)

Combining (2.3) with (2.4), we obtain K,(x, ) < e )+ ——tk,(x,t) + C, fort > 0.

Lemma 2.3. Suppose that q(x) = q(|x|) is a continuous radial function satifying 2 < q(x) < g* < 2*
and q(0) > 2. Then 1, satisfies the (PS) condition for all u € (0, 1].

Proof. Let {u,} be a (PS) sequence of /, in Hé,r(Bl). There exists C > 0 such that
L) <C,  L(u,) > 0as n— oo (2.5)

By (2.1) and Lemma 2.2, we have

1, (un) = (1 (Un), Un)
_ o (- o (B
= 2(2+r)||un|| +f31( _Q(x))(T_ ﬂ(x,un)) x

1 _L (x)
+j1_;25(2+” q(x))Q(x)(u )'dx

.
22+ 7r) Un ”’

2

which implies that ﬁllunll2 < C + C, + 0o(|luyll). We obtain {u,} is bounded in Hg,r(Bl). Uptoa
subsequence, we may assume that

U, = u, 1in Hé,,(Bl),
u, > u, in L°(By), 1<s<?2"
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It implies that
i = wil® = (L) = I (u)), u; — gy + f (1 = QC)) e (1) = ke () (w; — uj)dx
B
# [ QU = ) -

B

It follows from (2.5) that
(I () = L(uy),u; —u;y >0, as i, j— +co. (2.6)
It is not difficult to see that
a0 < 1 () e,

By the Sobolev imbedding theorem and 2 < g(x) < g(x) + r < g + r < 2%, one has

fB (1 = Q) (ky () = ke (u))(u; — uj)dx
< C f (ot + laej + Jal 7 Q) s = s = 0 2.7)
B

and

00O = (Y Yy — up)dx
By

< Cf(|u,~|+|u,-|+|u,-|‘f—1+|uj|4*-1)|u,-—uj|—>o (2.8)

B

as i and j tend to +oco. From (2.6)—(2.8), we have [|u; — uj|| — 0 as i, j — +oco, which implies that {u,}
contains a strongly convergent subsequence in Hé’r(Bl). Hence I, satisfies the (PS) condition.

Lemma 2.4. I, has the following properties:
(1) there exist m, p > 0 such that 1,(u) > m for any u € Hé,r(Bl) with ||u|| = p;
(2) there exists w € Hé’r(Bl) such that ||wl| > p and I,(w) < 0.

Proof. By definition of the function k,, we have
k(1) < |t|q(")_1 + (%) |t|q(x)+r—1_

It follows that

|t|q(X) (M )r |t|q(X)+r
+

IKu(t)ISq(x) 1) o

A
Therefore, there exists C > 0 such that

o

()™ dx
B 9 (x)

f (1 = Q()K,(u") dx +
B
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< f [ulf dx + C f |u|fO*" dx. (2.9)
B B

By the Sobolev imbedding theorem, it implies from 2 < g(x) < g(x) + r < 2* that

f 7" dx < f (ul*” + ™) dx < CulP* + flull™). (2.10)
B B

Set Q. = {x € B|2 < g(x) < 2 + &}. By the Sobolev imbedding theorem and the Holder inequality,

we obtain
f ™ dx = f ul?™ dx + f |u|?™ dx
B Qg BI\QE

f (ul® + |u**®) dx + f (ul** + [ul) dx
Qa Bl\ge

f P dx+ | (u*?®+u*)dx
Qs Bl

IA

IA

SR T Nl + CQUull* + ). (2.11)

IA

Since S3[Qp| T <
(2.9)—(2.11), we obtain

_ 222 _ 222
%, for £ > 0 small enough, one has SN1|Q€| T < }T + %SN1|QO| ¥ . From

1 1 2 . . .
L) > (Z - Esmﬂofz*z) el = C(llutl > + Nl > + Jaal).

Therefore, there exist m, p > 0 such that [,(«) > m for any u € H(l),r(Bl) with ||u|| = p.
Fix a nonnegative radial function v, € Hé’r(B(;)\{O}. We have

£ |#vol7 £ 1 2irp, AT 2 2
L,(tvo) = SlIvoll” - dx < S|l — 57 | 7 vol™" + 17 [vol” ) dx <0,
2 Bs q(x) 2 2 Bs

for ¢ > O sufficiently large. Choosing w = tv,, we have ||w|| > p and I,(w) < O for # > 0 large enough.

Proof of Theorem 2.1. By Lemmas 2.3 and 2.4, we know that /, satisfy the (PS) condition and the
mountain pass geometry. Define

I = {y € C([0, 1], Hy (B 7(0) = 0, ¥(1) = w}, ¢, = inf max L,(y(1)).

yel t€[0,1]

We obtain that problem (2.2) has a solution u, by the mountain pass theorem (see [16]). After a
direct calculation, we derive that ||u;||2 = (Il’l(u#), u;) = 0, which implies that u, = 0. Hence, u, > 0.
Since 1,(u,) > 0 = I(0), we have u, # 0. One has u, is a positive solution to problem (2.2) by the
Strong Maximum Principle (see [17]).

It follows from (2.1) that

1€[0,1] 1e[0,11 \ 2 q*

Therefore, ¢, is uniformly bounded. In other words, we have the following results.

ZZ t2+r
¢, < max I,(tw) < max (—f IVw|*dx — —f wi dx).
B BtS

Remark 2.5. ¢, < D, where D is a positive constant independent of .
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3. L*-estimate and the proof of main results

In this section, we will show that solutions of auxiliary problem (2.2) are indeed solutions of
original problem (1.2) for sufficiently small u.
Lemma 3.1. If'v is a positive critical point of I, with 1,(v) = ¢, then f&; (Vv]> + v?)dx < L, where L
is a positive constant independent of p. i

Proof. From (2.1) and Lemma 2.2, one has

)
|

|
= L) = S

fB|(1 - 0(x) (ky(); v K, (x, v)) dx + ./1_;25 (% - %) OV dx

r

> q(x)
2 2040 s, O(xv™dx
r
> 9 x. .1
= 20+n )" G-

Let ¢ € C(Bs, R) satisfies |p(x)] < 1, ¢(x) = 1 for [x] < 5 and [Vg| < =. Multiply problem (2.2) by
ve? and integrate to obtain

f Vv VvgHdx = f ((I—Q(x))( )v"(x)+Q(x)vq(x))902dx
Bs Bs /1( )

_ f POy, (3.2)
Bs

According to (3.1) and (3.2), we have

(|Vv|2+v)dx < f IVv|*? dx + f v dx
Bb‘ Q

A

I\)\%
I\J

< 2 f Vv - V(vg»)dx + 4 f Vol vdx + f v dx

Bs Bs B%

8 + o2

< 2va-V(vg0 )dx + f Vidx

Bs 6*
< 2 f vq(x)(pzdx+ f 1+vq(x)

Bs

8 + 62

< o |Bé|+(2+ ) WO

8+62|B| ( 8+52) (2+’”)Cu
)

It implies from Remark 2.5 that fm (IVvI2 + vz) dx < L, where L is a positive constant independent of
2
.
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Lemma 3.2. If v is a positive radial symmetric critical point of I, with I,(v) = c,, then ||V||i=5,) < M,
where M is a positive constant independent of .

Proof. Leta >2and { € C7(B s,R). On the one hand, by the Young inequality, we have

- v Avdx = (a—l)f v VvPdx + 2 o'y - Vidx
Bs Bs Bs
2 2 2
4 -1 a a a
S G f AVviPdx+2 | it . vedx
@ By B,
2 2
2(& - 1) 2 @9 2 2
> Vvil*dx — “\V¢Itd
R TR VN
2 2
1 a
> — | Z|VWwiPdx-a f V|V Pdx. (3.3)
@ Jp B

3 [
2 2

On the other hand, one has

f ((1 - Q(x))( . ) piO1 Q(x)vq(x)“)v““gzdx
B

s my,(v)
2
— f Vq(x)+a—2§2dx
Bs
2
< f Vi dx + f V22 gy (3.4)
By By
Combining (3.3) with (3.4), and noticing that v is a solution to problem (2.2), we obtain
CIVviPdx < a af VIV Pdx + f VI dx + f V222 x | (3.5)
B, B, B; B;
2 2 2 2
Set o = g(l + %) Let i € Cy(Bs,, R) satisfies the following properties: 0 < §; < 1, {x = 1 for
x € Bs,,, and |V < m = 2%'. B; and £ are taken to be B, and ¢ in inequality (3.5), respectively.

Using the Sobolev embedding theorem, the Holder inequality and Lemma 3.1, we obtain

2
[f 2 )
B

Ok+1

([ @y af

k

<C | |V(&v?)Pdx

Bs,

SC( ZVvEPdx + f
Bs, B;

Electronic Research Archive Volume 31, Issue 5, 2472-2482.
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<Ca|——

<ca( "5

« 2
2%
< Ca?4+! (f YT-gt2 dx)
B

It implies that

4k+ 1

k

IVl 22e
L2 (Bs,y)

),

k

k

‘L cen’s

L

k

vidx + f
Bs

k

k

-
vq +a 2dx)

+t2

(IVvP ++?) dx)qz ( fB 5

k

2*—gt 42

< (CQ24"+1)$ vl o

£z
V-t dx)

2% gt 42

2*a

*a .
L2 -q"+2 (Bb'k)

k

1 +
< Ca (a + —)f VIVl dx +f Vi dx +f vl +“_2§;3dx]
@ Bdk Bs Bs

2*—gt 42

-2
2 o+ z 2t r
+ v dx y¥-atr2dx
Bs, Bs,
qt-2
+C
B

2*a
V-2 dx

Set B = 2(342) fork = 0,1,---. Then 5=2B4.1 = Bi. By (3.6), we have

Doing iteration yields

1
2 k+2\2B
M2 8y < (CBEA4) ™

. ||V||L2*ﬁk(35k)

1 .
Sk PR R N e
”V”Lz*ﬁk(B,;k) < C==1 %, 'Hj:thJ . 4751 Bj ”V”LZ*(B(;)
2

< (4C)% 2,;:1(/%)./ . (

2

B )ml 1)

22 T |

o (a)
2

2*—gt 42
—

(3.6)

Since B, > 2, the series ), (ﬁ%)j and ) j (ﬁ%)j are convergent. Letting k — co, we conclude that
j=1 j=1

¥ 5, < OV,

<
)

C
B

[
2

(Vv)* +v*) dx

1

2

Set p = |x|. Since v is positive radially symmetric, one has

1 d (
NI |\P
N1 dp

4

which implies that i

Hence,

N-1dv
(p dp

Electronic Research Archive

N1 dv
dp

) < 0. Notice that pN‘lezlpzo = 0, we have pN_lj—; < 0. That is

—)=(1—Q(p))(

IS <
¥l < IV,

1%

(V)

)
i

)SM.

<M.

o
) pae-1 4 Q(p)vq(p)—l >0,

<.
o
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Proof of Theorem 1.1. By definition of the function m,,, we have m,(t) = t for t < /lz It is easy to

see problem (2.2) reduce to problem (1.2) for |u| < /ll Let u > % We see that a positive solution u,

problem (2.2) is indeed a positive solution of problem (1.2).
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