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Abstract: This paper consider that the following semilinear elliptic equation
−∆u = uq(x)−1, in B1,

u > 0, in B1,

u = 0, in ∂B1,

(0.1)

where B1 is the unit ball in RN(N ≥ 3), q(x) = q(|x|) is a continuous radial function satifying 2 ≤ q(x) <
2∗ = 2N

N−2 and q(0) > 2. Using variational methods and a priori estimate, the existence of a positive
radial solution for (0.1) is obtained.

Keywords: semilinear elliptic problem; variable exponent; mountain pass lamma; a priori estimate;
positive radial solution

1. Introduction and main result

In recent years, the following nonlinear elliptic equation{
−∆p(x)u = f (x, u), in Ω,
u = 0, on ∂Ω

(1.1)

was studied due to the fact that it can be applied to fluid mechanics and the field of image processing
(see [1, 2]), where Ω ⊂ RN(N ≥ 3) is a bounded smooth domain, p ∈ C(Ω,R), 1 < p− = min

x∈Ω
p(x) ≤

p(x) ≤ max
x∈Ω

p(x) = p+ < N, ∆p(x)u := div(|∇u|p(x)−2∇u) and f : Ω × R→ R.

In 2003, Fan and Zhang in [3] gave several sufficient conditions for the solvability of nontrivial
solutions for problem (1.1). These conditions include either the sublinear growth condition

| f (x, t)| ≤ C
(
1 + |t|p

−
)
, for x ∈ Ω and t ∈ R
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or Ambrosetti-Rabinowitz type growth condition ((AR)-condition, for short): there is θ > p+ such that

f (x, t)t ≥ θF(x, t) > 0, for all x ∈ Ω and |t| large enough,

where C > 0, F(x, t) =
∫ t

0
f (x, s) ds, and | f (x, t)t| ≤ C(1+ |t|p

∗(x)) with p∗(x) = N p(x)
N−p(x) . Subsequently,

Chabrowski and Fu in [4] discussed problem (1.1) in a more general setting than that in [3].
As is well known, the (AR)-condition ensure the boundedness of Palais-Smale sequence of the

corresponding function. However, there are some papers considering the nonlinearity without
(AR)-condition. [5] proveed the existence of strong solutions of problem (1.1) without the growth
condition of the well-known AmbrosettiCRabinowitz type. Subsequently, [6] extended the results
of [5]. Under no AmbrosettiCRabinowitzs superquadraticity conditions, [7] and [8] obtained the
existence and multiplicity of the solution of problem (1.1) by different methods. In addition, [9]
and [10] pointed out the importance of the Cerami condition. In fact, these papers still require
nonlinearity to satisfy superlinear growth condition:

f (x, t)t > p(x)F(x, t), for all x ∈ Ω and |t| is large enough.

As far as we know, there are few results in the case f (x, t)t = p(x)F(x, t) for some x ∈ Ω and |t|
large enough. In addition to the eigenvalue problem was studied in [11] and [12], we only see that [13]
and [14] discussed the multiplicity of nontrivial solutions and sign-changing solutions, respectively.
As described in [15], there are new difficulties in dealing with this situation.

Let S N = inf
0,u∈H1

0 (B1)

∫
B1
|∇u|2dx(∫

B1
|u|2∗dx

) 2
2∗

be the best Sobolev constant and B1 be the unit ball in RN(N ≥ 3),we

consider the following elliptic problem
−∆u = uq(x)−1, in B1,

u > 0, in B1,

u = 0, in ∂B1,

(1.2)

where q(x) = q(|x|) is a continuous radial function satisfying 2 ≤ q(x) < 2∗ = 2N
N−2 and q(0) > 2.

Theorem 1.1. Let q(x) be a continuous radial function satisfying

q(x) = q(|x|), 2 ≤ q(x) ≤ q+ < 2∗, q(0) > 2.

Suppose that Ω0 = {x ∈ B1 : q(x) = 2} is not empty and the measure satisfies

S −1
N |Ω0|

2∗−2
2∗ <

1
2
.

Then problem (1.2) has at least a positive radial symmetric solution.

Remark 1.2. In [15], the authors considered the existence of a nontrivial solution of −∆pu + up−1 =

uq(x)−1, u ∈ W1,p
r (RN) and u ≥ 0 in RN for 1 < p < N, where ∆pu := div(|∇u|p−2∇u). They showed

that if there exist positive constants R1, R2, C1, C2 and 0 < l1, l2 < 1 such that ess infx∈BR1
{q(x)} > p,

q(x) ≥ p + C1
| log |x||l1 for x ∈ RN\BR1 and q(x) ≤ N p

N−p −
C2

| log |x||l2 for x ∈ BR2 , then there exists a nontrivial
solution to this equation. However, our Theorem 1.1 allows q(x) = 2 for some x ∈ B1.
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Remark 1.3. The hypothesis of Theorem 1.1 can not ensure that problem (1.2) satisfies the Ambrosetti-
Rabinowitz growth condition. Indeed, for the case p(x) ≡ 2 and f (x, t) = tq(x)−1, we have p+ = 2 and
F(x, t) = 1

q(x) t
q(x) for t ≥ 0. It follows that f (x, t)t = p+F(x, t) for any x ∈ Ω0.

Remark 1.4. In our paper, the L∞ estimate is an essential tool that makes the solution go back to the
original problem. The condition of radial symmetry plays a major role in the estimation of the solution.

2. The auxiliary problem

According to q(x) ≥ 2, It is not easy to determine whether the functional I satisfies the Palais-
Smale condition. To apply the mountain pass theorem, the first step is to modify the nonlinearity. By
the continuity of q(x), 2 ≤ q(x) ≤ q+ < 2∗ and q(0) > 2, we see that there exist δ ∈ (0, 1

4 ) and r > 0
such that

q(x) ≥ 2 + r, x ∈ B2δ; q+ + r < 2∗, x ∈ B1. (2.1)

Let ψ(t) ∈ C∞0 (R, [0, 1]) be an even function satisfying ψ(t) = 1 for |t| ≤ 1, ψ(t) = 0 for |t| ≥ 2 and
ψ(t) decreases monotonically over R+. Define

bµ(t) = ψ(µt), mµ(t) =
∫ t

0
bµ(τ)dτ,

for µ ∈ (0, 1]. We consider the auxiliary problem
−∆u = (1 − Q(x))

(
u

mµ(u)

)r
uq(x)−1 + Q(x)uq(x)−1, in B1,

u > 0, in B1,

u = 0, in ∂B1,

(2.2)

where Q(x) = Q(|x|) ∈ C(B1, [0, 1]) satisfies Q(x) = 1 for x ∈ Bδ and Q(x) = 0 for x ∈ B1 \ B2δ.

Theorem 2.1. Assume that q(x) = q(|x|) is a continuous radial function satisfying 2 ≤ q(x) ≤ q+ < 2∗

and q(0) > 2, the measure of Ω0 = {x|q(x) = 2} satisfies S −1
N |Ω0|

2∗−2
2∗ < 1

2 . Then problem (2.2) has at
least a positive radial symmetric solution for any µ ∈ (0, 1].

Set H1
0,r(B1) =

{
u ∈ H1

0(B1) | u(x) = u(|x|)
}
, ∥ · ∥ = ∥∇(·)∥L2(B1). Iµ : H1

0,r(B1)→ R by

Iµ(u) =
1
2

∫
B1

|∇u|2 dx −
∫

B1

(1 − Q(x))Kµ(u+) dx −
∫

B1

Q(x)
q(x)

(u+)q(x) dx,

where kµ(x, t) = kµ(t) =
(

t
mµ(t)

)r
tq(x)−1, Kµ(x, t) = Kµ(t) =

∫ t

0
kµ(s) ds.

Lemma 2.2. Kµ(x, t) have the following properties:

Kµ(x, t) ≤
1

q(x)
tkµ(x, t), Kµ(x, t) ≤

1
q(x) + r

tkµ(x, t) +Cµ,

for t > 0, where Cµ > 0.

Electronic Research Archive Volume 31, Issue 5, 2472–2482.
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Proof. According to the monotonicity of bµ(t), one has

d
dt

(
t

mµ(t)

)
=

mµ(t) − tbµ(t)
m2
µ(t)

=
t(bµ(ξ) − bµ(t))

m2
µ(t)

≥ 0,

for t > 0, where ξ ∈ (0, t). Therefore, t
mµ(t) is monotonically increasing on R+. Hence, kµ(x,t)

tq(x)−1 =
(

t
mµ(t)

)r
is

also monotonically increasing on R+. It implies that

Kµ(x, t) =
∫ t

0
kµ(x, τ)dτ ≤

∫ t

0

kµ(x, t)
tq(x)−1 τ

q(x)−1dτ =
1

q(x)
tkµ(x, t), (2.3)

for t > 0. Obviously, mµ(t) = A
µ

for t ≥ 2
µ
, where A = 1 +

∫ 2

1
ψ(τ)dτ. For t > 2

µ
, one has

Kµ(x, t) =
∫ 2

µ

0
kµ(x, τ) dτ +

∫ t

2
µ

(
µ

A

)r
τq(x)+r−1 dτ

=

∫ 2
µ

0

(
kµ(x, τ) −

(
µ

A

)r
τq(x)+r−1

)
dτ +

∫ t

0

(
µ

A

)r
τq(x)+r−1 dτ

≤ Cµ +
tkµ(x, t)
q(x) + r

. (2.4)

Combining (2.3) with (2.4), we obtain Kµ(x, t) ≤ 1
q(x)+r tkµ(x, t) +Cµ for t > 0.

Lemma 2.3. Suppose that q(x) = q(|x|) is a continuous radial function satifying 2 ≤ q(x) ≤ q+ < 2∗

and q(0) > 2. Then Iµ satisfies the (PS ) condition for all µ ∈ (0, 1].

Proof. Let {un} be a (PS ) sequence of Iµ in H1
0,r(B1). There exists C > 0 such that

|Iµ(un)| ≤ C, I
′

µ(un)→ 0 as n→ ∞. (2.5)

By (2.1) and Lemma 2.2, we have

Iµ(un) −
1

2 + r
⟨I
′

µ(un), un⟩

=
r

2(2 + r)
∥un∥

2 +

∫
B1

(1 − Q(x))
(
kµ(x, u+n )u+n

2 + r
− Kµ(x, u+n )

)
dx

+

∫
B2δ

(
1

2 + r
−

1
q(x)

)
Q(x)(u+n )q(x)dx

≥
r

2(2 + r)
∥un∥

2 −Cµ,

which implies that r
2(2+r)∥un∥

2 ≤ C + Cµ + o(∥un∥). We obtain {un} is bounded in H1
0,r(B1). Up to a

subsequence, we may assume that{
un ⇀ u, in H1

0,r(B1),
un → u, in Ls(B1), 1 ≤ s < 2∗.
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It implies that

∥ui − u j∥
2 = ⟨I

′

µ(ui) − I
′

µ(u j), ui − u j⟩ +

∫
B1

(1 − Q(x))(kµ(u+i ) − kµ(u+j ))(ui − u j)dx

+

∫
B1

Q(x)((u+i )q(x)−1 − (u+j )q(x)−1)(ui − u j)dx.

It follows from (2.5) that

⟨I
′

µ(ui) − I
′

µ(u j), ui − u j⟩ → 0, as i, j→ +∞. (2.6)

It is not difficult to see that

|kµ(t)| ≤ |t|q(x)−1 +

(
µ

A

)r
|t|q(x)+r−1.

By the Sobolev imbedding theorem and 2 ≤ q(x) < q(x) + r < q+ + r < 2∗, one has∣∣∣∣∣∣
∫

B1

(1 − Q(x))(kµ(u+i ) − kµ(u+j ))(ui − u j)dx

∣∣∣∣∣∣
≤ C

∫
B1

(
|ui| + |u j| + |ui|

q++r−1 + |u j|
q++r−1

)
|ui − u j| → 0 (2.7)

and ∣∣∣∣∣∣
∫

B1

Q(x)((u+i )q(x)−1 − (u+j )q(x)−1)(ui − u j)dx

∣∣∣∣∣∣
≤ C

∫
B1

(
|ui| + |u j| + |ui|

q+−1 + |u j|
q+−1

)
|ui − u j| → 0 (2.8)

as i and j tend to +∞. From (2.6)–(2.8), we have ∥ui − u j∥ → 0 as i, j→ +∞, which implies that {un}

contains a strongly convergent subsequence in H1
0,r(B1). Hence Iµ satisfies the (PS ) condition.

Lemma 2.4. Iµ has the following properties:
(1) there exist m, ρ > 0 such that Iµ(u) > m for any u ∈ H1

0,r(B1) with ∥u∥ = ρ;
(2) there exists w ∈ H1

0,r(B1) such that ∥w∥ > ρ and Iµ(w) < 0.

Proof. By definition of the function kµ, we have

|kµ(t)| ≤ |t|q(x)−1 +

(
µ

A

)r
|t|q(x)+r−1.

It follows that

|Kµ(t)| ≤
|t|q(x)

q(x)
+

(
µ

A

)r |t|q(x)+r

q(x) + r
.

Therefore, there exists C > 0 such that∣∣∣∣∣∣
∫

B1

(1 − Q(x))Kµ(u+) dx +
∫

B1

Q(x)
q(x)

(u+)q(x) dx

∣∣∣∣∣∣
Electronic Research Archive Volume 31, Issue 5, 2472–2482.
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≤

∫
B1

|u|q(x) dx +C
∫

B1

|u|q(x)+r dx. (2.9)

By the Sobolev imbedding theorem, it implies from 2 ≤ q(x) < q(x) + r < 2∗ that∫
B1

|u|q(x)+r dx ≤
∫

B1

(|u|2+r + |u|2
∗

) dx ≤ C(∥u∥2+r + ∥u∥2
∗

). (2.10)

Set Ωε = {x ∈ B1|2 ≤ q(x) < 2 + ε}. By the Sobolev imbedding theorem and the Hölder inequality,
we obtain ∫

B1

|u|q(x) dx =
∫
Ωε

|u|q(x) dx +
∫

B1\Ωε

|u|q(x) dx

≤

∫
Ωε

(|u|2 + |u|2+ε) dx +
∫

B1\Ωε

(|u|2+ε + |u|2
∗

) dx

≤

∫
Ωε

|u|2 dx +
∫

B1

(|u|2+ε + |u|2
∗

) dx

≤ S −1
N |Ωε|

2∗−2
2∗ ∥u∥2 +C(∥u∥2+ε + ∥u∥2

∗

). (2.11)

Since S −1
N |Ω0|

2∗−2
2∗ < 1

2 , for ε > 0 small enough, one has S −1
N |Ωε|

2∗−2
2∗ < 1

4 +
1
2S −1

N |Ω0|
2∗−2

2∗ . From
(2.9)–(2.11), we obtain

Iµ(u) ≥
(
1
4
−

1
2

S −1
N |Ω0|

2∗−2
2∗

)
∥u∥2 −C(∥u∥2+ε + ∥u∥2+r + ∥u∥2

∗

).

Therefore, there exist m, ρ > 0 such that Iµ(u) > m for any u ∈ H1
0,r(B1) with ∥u∥ = ρ.

Fix a nonnegative radial function v0 ∈ H1
0,r(Bδ)\{0}. We have

Iµ(tv0) =
t2

2
∥v0∥

2 −

∫
Bδ

|tv0|
q(x)

q(x)
dx ≤

t2

2
∥v0∥

2 −
1
2∗

∫
Bδ

(t2+r|v0|
2+r + t2∗ |v0|

2∗) dx < 0,

for t > 0 sufficiently large. Choosing w = tv0, we have ∥w∥ > ρ and Iµ(w) < 0 for t > 0 large enough.

Proof of Theorem 2.1. By Lemmas 2.3 and 2.4, we know that Iµ satisfy the (PS ) condition and the
mountain pass geometry. Define

Γ = {γ ∈ C([0, 1],H1
0,r(B1))| γ(0) = 0, γ(1) = w}, cµ = inf

γ∈Γ
max
t∈[0,1]

Iµ(γ(t)).

We obtain that problem (2.2) has a solution uµ by the mountain pass theorem (see [16]). After a
direct calculation, we derive that ∥u−µ∥

2 = ⟨I′µ(uµ), u
−
µ ⟩ = 0, which implies that u−µ = 0. Hence, uµ ≥ 0.

Since Iµ(uµ) > 0 = I(0), we have uµ , 0. One has uµ is a positive solution to problem (2.2) by the
Strong Maximum Principle (see [17]).

It follows from (2.1) that

cµ ≤ max
t∈[0,1]

Iµ(tw) ≤ max
t∈[0,1]

( t2

2

∫
B1

|∇w|2dx −
t2+r

q+

∫
Bδ

wq(x) dx
)
.

Therefore, cµ is uniformly bounded. In other words, we have the following results.

Remark 2.5. cµ ≤ D, where D is a positive constant independent of µ.
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3. L∞-estimate and the proof of main results

In this section, we will show that solutions of auxiliary problem (2.2) are indeed solutions of
original problem (1.2) for sufficiently small µ.

Lemma 3.1. If v is a positive critical point of Iµ with Iµ(v) = cµ, then
∫

B δ
2

(|∇v|2 + v2) dx ≤ L, where L

is a positive constant independent of µ.

Proof. From (2.1) and Lemma 2.2, one has

cµ = Iµ(v) −
1
2
⟨I
′

µ(v), v⟩

=

∫
B1

(1 − Q(x))
(
kµ(x, v)v

2
− Kµ(x, v)

)
dx +

∫
B2δ

(
1
2
−

1
q(x)

)
Q(x)vq(x)dx

≥
r

2(2 + r)

∫
B2δ

Q(x)vq(x)dx

≥
r

2(2 + r)

∫
Bδ

vq(x)dx. (3.1)

Let φ ∈ C∞0 (Bδ,R) satisfies |φ(x)| ≤ 1, φ(x) = 1 for |x| ≤ δ
2 and |∇φ| ≤ 4

δ
. Multiply problem (2.2) by

vφ2 and integrate to obtain∫
Bδ
∇v · ∇(vφ2)dx =

∫
Bδ

(
(1 − Q(x))

(
v

mµ(v)

)r

vq(x) + Q(x)vq(x)
)
φ2dx

=

∫
Bδ

vq(x)φ2dx. (3.2)

According to (3.1) and (3.2), we have∫
B δ

2

(|∇v|2 + v2) dx ≤
∫

Bδ
|∇v|2φ2 dx +

∫
B δ

2

v2 dx

≤ 2
∫

Bδ
∇v · ∇(vφ2)dx + 4

∫
Bδ
|∇φ|2v2dx +

∫
B δ

2

v2 dx

≤ 2
∫

Bδ
∇v · ∇(vφ2)dx +

8 + δ2

δ2

∫
Bδ

v2dx

≤ 2
∫

Bδ
vq(x)φ2dx +

8 + δ2

δ2

∫
Bδ

(
1 + vq(x)

)
dx

≤
8 + δ2

δ2 |Bδ| +

(
2 +

8 + δ2

δ2

) ∫
Bδ

vq(x)dx

≤
8 + δ2

δ2 |Bδ| +

(
2 +

8 + δ2

δ2

)
2(2 + r)cµ

r
.

It implies from Remark 2.5 that
∫

B δ
2

(
|∇v|2 + v2

)
dx ≤ L, where L is a positive constant independent of

µ.

Electronic Research Archive Volume 31, Issue 5, 2472–2482.
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Lemma 3.2. If v is a positive radial symmetric critical point of Iµ with Iµ(v) = cµ, then ∥v∥L∞(B1) ≤ M,
where M is a positive constant independent of µ.

Proof. Let α > 2 and ζ ∈ C∞0 (B δ
2
,R). On the one hand, by the Young inequality, we have

−

∫
B δ

2

ζ2vα−1∆v dx = (α − 1)
∫

B δ
2

ζ2vα−2|∇v|2dx + 2
∫

B δ
2

ζvα−1∇v · ∇ζdx

=
4(α − 1)
α2

∫
B δ

2

ζ2|∇v
α
2 |2dx + 2

∫
B δ

2

ζv
α
2∇v

α
2 · ∇ζdx

≥
2(α − 1)
α2

∫
B δ

2

ζ2|∇v
α
2 |2dx −

α2

2(α − 1)

∫
B δ

2

vα|∇ζ |2dx

≥
1
α

∫
B δ

2

ζ2|∇v
α
2 |2dx − α

∫
B δ

2

vα|∇ζ |2dx. (3.3)

On the other hand, one has∫
B δ

2

(
(1 − Q(x))

(
v

mµ(v)

)r

vq(x)−1 + Q(x)vq(x)−1
)

vα−1ζ2dx

=

∫
B δ

2

vq(x)+α−2ζ2dx

≤

∫
B δ

2

vαζ2dx +
∫

B δ
2

vq++α−2ζ2dx. (3.4)

Combining (3.3) with (3.4), and noticing that v is a solution to problem (2.2), we obtain∫
B δ

2

ζ2|∇v
α
2 |2dx ≤ α

α∫
B δ

2

vα|∇ζ |2dx +
∫

B δ
2

vαζ2dx +
∫

B δ
2

vq++α−2ζ2dx

 . (3.5)

Set δk =
δ
4

(
1 + 1

2k

)
. Let ζk ∈ C∞0 (Bδk ,R) satisfies the following properties: 0 ≤ ζk ≤ 1, ζk = 1 for

x ∈ Bδk+1 and |∇ζk| ≤
1

4(δk−δk+1) =
2k+1

δ
. B δ

2
and ζ are taken to be Bδk and ζk in inequality (3.5), respectively.

Using the Sobolev embedding theorem, the Hölder inequality and Lemma 3.1, we obtain∫
Bδk+1

v
2∗α

2 dx
 2

2∗

≤

∫
Bδk

(
ζkv

α
2
)2∗

dx
 2

2∗

≤ C
∫

Bδk

|∇(ζkv
α
2 )|2dx

≤ C
∫

Bδk

ζ2
k |∇v

α
2 |2dx +

∫
Bδk

vα|∇ζk|
2dx


Electronic Research Archive Volume 31, Issue 5, 2472–2482.
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≤ Cα
(α + 1

α

) ∫
Bδk

vα|∇ζk|
2dx +

∫
Bδk

vαζ2
k dx +

∫
Bδk

vq++α−2ζ2
k dx


≤ Cα

((α + 1
α

)
4k+1

δ2 + 1
) ∫

Bδk

vαdx +
∫

Bδk

vq++α−2dx


≤ Cα

α4k+2

δ2 |Bδk |
q+−2

2∗ +

∫
Bδk

v2∗dx
 q+−2

2∗

∫

Bδk

v
2∗α

2∗−q++2 dx
 2∗−q++2

2∗

≤ Cα

α4k+2

δ2 |Bδk |
q+−2

2∗ +C
∫

Bδk

(
|∇v|2 + v2

)
dx

 q+−2
2


∫

Bδk

v
2∗α

2∗−q++2 dx
 2∗−q++2

2∗

≤ Cα
(
α4k+2

δ2 |Bδk |
q+−2

2∗ +C(2L)
q+−2

2

) ∫
Bδk

v
2∗α

2∗−q++2 dx
 2∗−q++2

2∗

≤ Cα24k+1

∫
Bδk

v
2∗α

2∗−q++2 dx
 2∗−q++2

2∗

.

It implies that

∥v∥
L

2∗α
2 (Bδk+1 )

≤
(
Cα24k+1

) 1
α
∥v∥

L
2∗α

2∗−q++2 (Bδk )
. (3.6)

Set βk = 2
(2∗−q++2

2

)k for k = 0, 1, · · · . Then 2
2∗−q++2βk+1 = βk. By (3.6), we have

∥v∥L2∗βk+1 (Bδk+1 ) ≤
(
Cβ2

k+14k+2
) 1

2βk+1 ∥v∥L2∗βk (Bδk ).

Doing iteration yields

∥v∥L2∗βk (Bδk ) ≤ C
∑k

j=1
1

2β j · Πk
j=1β

1
β j

j · 4
∑k

j=1
j+1
β j ∥v∥

L2∗
(
B δ

2

)

≤ (4C)
1
4
∑k

j=1

(
2
β1

) j

·

(
β1

2

)∑k
j=1

j
2

(
2
β1

) j

· 2
∑k

j=1
j+1
2

(
2
β1

) j

∥v∥
L2∗

(
B δ

2

).
Since β1 > 2, the series

∞∑
j=1

(
2
β1

) j
and

∞∑
j=1

j
(

2
β1

) j
are convergent. Letting k → ∞, we conclude that

∥v∥
L∞

(
B δ

4

) ≤ C∥v∥
L2∗

(
B δ

2

) ≤ C

∫B δ
2

(|∇v|2 + v2) dx


1
2

≤ M.

Set ρ = |x|. Since v is positive radially symmetric, one has

−
1

ρN−1

d
dρ

(
ρN−1 dv

dρ

)
= (1 − Q(ρ))

(
v

mµ(v)

)ρ
vq(ρ)−1 + Q(ρ)vq(ρ)−1 ≥ 0,

which implies that d
dρ

(
ρN−1 dv

dρ

)
≤ 0. Notice that ρN−1 dv

dρ |ρ=0 = 0, we have ρN−1 dv
dρ ≤ 0. That is dv

dρ ≤ 0.
Hence,

∥v∥L∞(B1) ≤ ∥v∥L∞
(
B δ

4

) ≤ M.
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Proof of Theorem 1.1. By definition of the function mµ, we have mµ(t) = t for t ≤ 1
µ
. It is easy to

see problem (2.2) reduce to problem (1.2) for |u| ≤ 1
µ
. Let µ > 1

M . We see that a positive solution uµ
problem (2.2) is indeed a positive solution of problem (1.2).
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