

ERA, 31(5): 2472–2482. DOI: 10.3934/era.2023125 Received: 14 December 2022 Revised: 13 February 2023 Accepted: 15 February 2023 Published: 03 March 2023

http://www.aimspress.com/journal/era

Research article

Existence of a positive radial solution for semilinear elliptic problem involving variable exponent

Changmu Chu*, Shan Li and Hongmin Suo

School of preparatory education, Guizhou Minzu University, Guizhou 550025, China

* Correspondence: Email:gzmychuchangmu@sina.com.

Abstract: This paper consider that the following semilinear elliptic equation

$$\begin{cases}
-\Delta u = u^{q(x)-1}, & \text{in } B_1, \\
u > 0, & \text{in } B_1, \\
u = 0, & \text{in } \partial B_1,
\end{cases}$$
(0.1)

where B_1 is the unit ball in $\mathbb{R}^N (N \ge 3)$, q(x) = q(|x|) is a continuous radial function satisfying $2 \le q(x) < 2^* = \frac{2N}{N-2}$ and q(0) > 2. Using variational methods and a priori estimate, the existence of a positive radial solution for (0.1) is obtained.

Keywords: semilinear elliptic problem; variable exponent; mountain pass lamma; a priori estimate; positive radial solution

1. Introduction and main result

In recent years, the following nonlinear elliptic equation

$$\begin{cases} -\Delta_{p(x)}u = f(x, u), & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega \end{cases}$$
(1.1)

was studied due to the fact that it can be applied to fluid mechanics and the field of image processing (see [1,2]), where $\Omega \subset \mathbb{R}^N (N \ge 3)$ is a bounded smooth domain, $p \in C(\overline{\Omega}, \mathbb{R})$, $1 < p^- = \min_{x \in \overline{\Omega}} p(x) \le p(x) \le \max p(x) = p^+ < N$, $\Delta_{p(x)}u := div(|\nabla u|^{p(x)-2}\nabla u)$ and $f : \overline{\Omega} \times \mathbb{R} \to \mathbb{R}$.

In 2003, Fan and Zhang in [3] gave several sufficient conditions for the solvability of nontrivial solutions for problem (1.1). These conditions include either the sublinear growth condition

$$|f(x,t)| \le C(1+|t|^{p^{-}}), \text{ for } x \in \Omega \text{ and } t \in \mathbb{R}$$

or Ambrosetti-Rabinowitz type growth condition ((*AR*)-condition, for short): there is $\theta > p^+$ such that

 $f(x, t)t \ge \theta F(x, t) > 0$, for all $x \in \Omega$ and |t| large enough,

where C > 0, $F(x, t) = \int_0^t f(x, s) ds$, and $|f(x, t)t| \le C(1 + |t|^{p^*(x)})$ with $p^*(x) = \frac{Np(x)}{N-p(x)}$. Subsequently, Chabrowski and Fu in [4] discussed problem (1.1) in a more general setting than that in [3].

As is well known, the (AR)-condition ensure the boundedness of Palais-Smale sequence of the corresponding function. However, there are some papers considering the nonlinearity without (AR)-condition. [5] proveed the existence of strong solutions of problem (1.1) without the growth condition of the well-known AmbrosettiCRabinowitz type. Subsequently, [6] extended the results of [5]. Under no AmbrosettiCRabinowitzs superquadraticity conditions, [7] and [8] obtained the existence and multiplicity of the solution of problem (1.1) by different methods. In addition, [9] and [10] pointed out the importance of the Cerami condition. In fact, these papers still require nonlinearity to satisfy superlinear growth condition:

f(x, t)t > p(x)F(x, t), for all $x \in \Omega$ and |t| is large enough.

As far as we know, there are few results in the case f(x, t)t = p(x)F(x, t) for some $x \in \Omega$ and |t| large enough. In addition to the eigenvalue problem was studied in [11] and [12], we only see that [13] and [14] discussed the multiplicity of nontrivial solutions and sign-changing solutions, respectively. As described in [15], there are new difficulties in dealing with this situation.

Let $S_N = \inf_{0 \neq u \in H_0^1(B_1)} \frac{\int_{B_1} |\nabla u|^2 dx}{\left(\int_{B_1} |u|^{2^*} dx\right)^{\frac{2}{2^*}}}$ be the best Sobolev constant and B_1 be the unit ball in $\mathbb{R}^N (N \ge 3)$, we

consider the following elliptic problem

$$\begin{cases}
-\Delta u = u^{q(x)-1}, & \text{in } B_1, \\
u > 0, & \text{in } B_1, \\
u = 0, & \text{in } \partial B_1,
\end{cases}$$
(1.2)

where q(x) = q(|x|) is a continuous radial function satisfying $2 \le q(x) < 2^* = \frac{2N}{N-2}$ and q(0) > 2.

Theorem 1.1. Let q(x) be a continuous radial function satisfying

$$q(x) = q(|x|), \quad 2 \le q(x) \le q^+ < 2^*, \quad q(0) > 2.$$

Suppose that $\Omega_0 = \{x \in B_1 : q(x) = 2\}$ is not empty and the measure satisfies

$$S_N^{-1} |\Omega_0|^{\frac{2^*-2}{2^*}} < \frac{1}{2}.$$

Then problem (1.2) has at least a positive radial symmetric solution.

Remark 1.2. In [15], the authors considered the existence of a nontrivial solution of $-\Delta_p u + u^{p-1} = u^{q(x)-1}$, $u \in W_r^{1,p}(\mathbb{R}^N)$ and $u \ge 0$ in \mathbb{R}^N for $1 , where <math>\Delta_p u := div(|\nabla u|^{p-2}\nabla u)$. They showed that if there exist positive constants R_1 , R_2 , C_1 , C_2 and $0 < l_1$, $l_2 < 1$ such that ess $\inf_{x \in B_{R_1}} \{q(x)\} > p$, $q(x) \ge p + \frac{C_1}{|\log |x||^{l_1}}$ for $x \in \mathbb{R}^N \setminus B_{R_1}$ and $q(x) \le \frac{Np}{N-p} - \frac{C_2}{|\log |x||^{l_2}}$ for $x \in B_{R_2}$, then there exists a nontrivial solution to this equation. However, our Theorem 1.1 allows q(x) = 2 for some $x \in B_1$.

Electronic Research Archive

Remark 1.3. The hypothesis of Theorem 1.1 can not ensure that problem (1.2) satisfies the Ambrosetti-Rabinowitz growth condition. Indeed, for the case $p(x) \equiv 2$ and $f(x, t) = t^{q(x)-1}$, we have $p^+ = 2$ and $F(x, t) = \frac{1}{q(x)}t^{q(x)}$ for $t \ge 0$. It follows that $f(x, t)t = p^+F(x, t)$ for any $x \in \Omega_0$.

Remark 1.4. In our paper, the L^{∞} estimate is an essential tool that makes the solution go back to the original problem. The condition of radial symmetry plays a major role in the estimation of the solution.

2. The auxiliary problem

According to $q(x) \ge 2$, It is not easy to determine whether the functional *I* satisfies the Palais-Smale condition. To apply the mountain pass theorem, the first step is to modify the nonlinearity. By the continuity of q(x), $2 \le q(x) \le q^+ < 2^*$ and q(0) > 2, we see that there exist $\delta \in (0, \frac{1}{4})$ and r > 0 such that

$$q(x) \ge 2 + r, \quad x \in B_{2\delta}; \qquad q^+ + r < 2^*, \quad x \in B_1.$$
 (2.1)

Let $\psi(t) \in C_0^{\infty}(\mathbb{R}, [0, 1])$ be an even function satisfying $\psi(t) = 1$ for $|t| \le 1$, $\psi(t) = 0$ for $|t| \ge 2$ and $\psi(t)$ decreases monotonically over \mathbb{R}^+ . Define

$$b_{\mu}(t) = \psi(\mu t), \qquad m_{\mu}(t) = \int_0^t b_{\mu}(\tau) d\tau,$$

for $\mu \in (0, 1]$. We consider the auxiliary problem

$$\begin{cases} -\Delta u = (1 - Q(x)) \left(\frac{u}{m_{\mu}(u)}\right)^r u^{q(x)-1} + Q(x) u^{q(x)-1}, & \text{in } B_1, \\ u > 0, & \text{in } B_1, \\ u = 0, & \text{in } \partial B_1, \end{cases}$$
(2.2)

where $Q(x) = Q(|x|) \in C(B_1, [0, 1])$ satisfies Q(x) = 1 for $x \in B_\delta$ and Q(x) = 0 for $x \in B_1 \setminus B_{2\delta}$.

Theorem 2.1. Assume that q(x) = q(|x|) is a continuous radial function satisfying $2 \le q(x) \le q^+ < 2^*$ and q(0) > 2, the measure of $\Omega_0 = \{x|q(x) = 2\}$ satisfies $S_N^{-1}|\Omega_0|^{\frac{2^*-2}{2^*}} < \frac{1}{2}$. Then problem (2.2) has at least a positive radial symmetric solution for any $\mu \in (0, 1]$.

Set
$$H_{0,r}^1(B_1) = \left\{ u \in H_0^1(B_1) \mid u(x) = u(|x|) \right\}, \|\cdot\| = \|\nabla(\cdot)\|_{L^2(B_1)}. I_\mu : H_{0,r}^1(B_1) \to \mathbb{R}$$
 by

$$I_{\mu}(u) = \frac{1}{2} \int_{B_1} |\nabla u|^2 \, dx - \int_{B_1} (1 - Q(x)) K_{\mu}(u^+) \, dx - \int_{B_1} \frac{Q(x)}{q(x)} (u^+)^{q(x)} \, dx,$$

where $k_{\mu}(x,t) = k_{\mu}(t) = \left(\frac{t}{m_{\mu}(t)}\right)^r t^{q(x)-1}, K_{\mu}(x,t) = K_{\mu}(t) = \int_0^t k_{\mu}(s) \, ds.$

Lemma 2.2. $K_{\mu}(x, t)$ have the following properties:

$$K_{\mu}(x,t) \le \frac{1}{q(x)} t k_{\mu}(x,t), \qquad K_{\mu}(x,t) \le \frac{1}{q(x)+r} t k_{\mu}(x,t) + C_{\mu},$$

for t > 0*, where* $C_{\mu} > 0$ *.*

Electronic Research Archive

Proof. According to the monotonicity of $b_{\mu}(t)$, one has

$$\frac{d}{dt}\left(\frac{t}{m_{\mu}(t)}\right) = \frac{m_{\mu}(t) - tb_{\mu}(t)}{m_{\mu}^{2}(t)} = \frac{t(b_{\mu}(\xi) - b_{\mu}(t))}{m_{\mu}^{2}(t)} \ge 0,$$

for t > 0, where $\xi \in (0, t)$. Therefore, $\frac{t}{m_{\mu}(t)}$ is monotonically increasing on \mathbb{R}^+ . Hence, $\frac{k_{\mu}(x,t)}{t^{q(x)-1}} = \left(\frac{t}{m_{\mu}(t)}\right)^r$ is also monotonically increasing on \mathbb{R}^+ . It implies that

$$K_{\mu}(x,t) = \int_{0}^{t} k_{\mu}(x,\tau) d\tau \le \int_{0}^{t} \frac{k_{\mu}(x,t)}{t^{q(x)-1}} \tau^{q(x)-1} d\tau = \frac{1}{q(x)} t k_{\mu}(x,t),$$
(2.3)

for t > 0. Obviously, $m_{\mu}(t) = \frac{A}{\mu}$ for $t \ge \frac{2}{\mu}$, where $A = 1 + \int_{1}^{2} \psi(\tau) d\tau$. For $t > \frac{2}{\mu}$, one has

$$\begin{aligned} K_{\mu}(x,t) &= \int_{0}^{\frac{2}{\mu}} k_{\mu}(x,\tau) \, d\tau + \int_{\frac{2}{\mu}}^{t} \left(\frac{\mu}{A}\right)^{r} \tau^{q(x)+r-1} \, d\tau \\ &= \int_{0}^{\frac{2}{\mu}} \left(k_{\mu}(x,\tau) - \left(\frac{\mu}{A}\right)^{r} \tau^{q(x)+r-1}\right) \, d\tau + \int_{0}^{t} \left(\frac{\mu}{A}\right)^{r} \tau^{q(x)+r-1} \, d\tau \\ &\leq C_{\mu} + \frac{tk_{\mu}(x,t)}{q(x)+r}. \end{aligned}$$
(2.4)

Combining (2.3) with (2.4), we obtain $K_{\mu}(x,t) \leq \frac{1}{q(x)+r}tk_{\mu}(x,t) + C_{\mu}$ for t > 0.

Lemma 2.3. Suppose that q(x) = q(|x|) is a continuous radial function satisfying $2 \le q(x) \le q^+ < 2^*$ and q(0) > 2. Then I_{μ} satisfies the (PS) condition for all $\mu \in (0, 1]$.

Proof. Let $\{u_n\}$ be a (*PS*) sequence of I_{μ} in $H^1_{0,r}(B_1)$. There exists C > 0 such that

$$|I_{\mu}(u_n)| \le C, \quad I'_{\mu}(u_n) \to 0 \text{ as } n \to \infty.$$
(2.5)

By (2.1) and Lemma 2.2, we have

$$I_{\mu}(u_{n}) - \frac{1}{2+r} \langle I'_{\mu}(u_{n}), u_{n} \rangle$$

$$= \frac{r}{2(2+r)} ||u_{n}||^{2} + \int_{B_{1}} (1-Q(x)) \left(\frac{k_{\mu}(x, u_{n}^{+})u_{n}^{+}}{2+r} - K_{\mu}(x, u_{n}^{+}) \right) dx$$

$$+ \int_{B_{2\delta}} \left(\frac{1}{2+r} - \frac{1}{q(x)} \right) Q(x)(u_{n}^{+})^{q(x)} dx$$

$$\geq \frac{r}{2(2+r)} ||u_{n}||^{2} - C_{\mu},$$

which implies that $\frac{r}{2(2+r)} ||u_n||^2 \le C + C_{\mu} + o(||u_n||)$. We obtain $\{u_n\}$ is bounded in $H^1_{0,r}(B_1)$. Up to a subsequence, we may assume that

$$\begin{cases} u_n \rightarrow u, & \text{in } H^1_{0,r}(B_1), \\ u_n \rightarrow u, & \text{in } L^s(B_1), \ 1 \le s < 2^* \end{cases}$$

Electronic Research Archive

It implies that

$$\begin{aligned} \|u_i - u_j\|^2 &= \langle I'_{\mu}(u_i) - I'_{\mu}(u_j), u_i - u_j \rangle + \int_{B_1} (1 - Q(x))(k_{\mu}(u_i^+) - k_{\mu}(u_j^+))(u_i - u_j)dx \\ &+ \int_{B_1} Q(x)((u_i^+)^{q(x)-1} - (u_j^+)^{q(x)-1})(u_i - u_j)dx. \end{aligned}$$

It follows from (2.5) that

$$\langle I'_{\mu}(u_i) - I'_{\mu}(u_j), u_i - u_j \rangle \to 0, \quad \text{as} \quad i, \ j \to +\infty.$$
 (2.6)

It is not difficult to see that

$$|k_{\mu}(t)| \le |t|^{q(x)-1} + \left(\frac{\mu}{A}\right)^r |t|^{q(x)+r-1}$$

By the Sobolev imbedding theorem and $2 \le q(x) < q(x) + r < q^+ + r < 2^*$, one has

$$\left| \int_{B_1} (1 - Q(x))(k_{\mu}(u_i^+) - k_{\mu}(u_j^+))(u_i - u_j)dx \right|$$

$$\leq C \int_{B_1} \left(|u_i| + |u_j| + |u_i|^{q^+ + r - 1} + |u_j|^{q^+ + r - 1} \right) |u_i - u_j| \to 0$$
(2.7)

and

$$\left| \int_{B_1} Q(x)((u_i^+)^{q(x)-1} - (u_j^+)^{q(x)-1})(u_i - u_j)dx \right| \\ \leq C \int_{B_1} \left(|u_i| + |u_j| + |u_i|^{q^+-1} + |u_j|^{q^+-1} \right) |u_i - u_j| \to 0$$
(2.8)

as *i* and *j* tend to $+\infty$. From (2.6)–(2.8), we have $||u_i - u_j|| \to 0$ as *i*, $j \to +\infty$, which implies that $\{u_n\}$ contains a strongly convergent subsequence in $H^1_{0,r}(B_1)$. Hence I_{μ} satisfies the (*PS*) condition.

Lemma 2.4. I_{μ} has the following properties:

(1) there exist m, $\rho > 0$ such that $I_{\mu}(u) > m$ for any $u \in H^{1}_{0,r}(B_{1})$ with $||u|| = \rho$; (2) there exists $w \in H^{1}_{0,r}(B_{1})$ such that $||w|| > \rho$ and $I_{\mu}(w) < 0$.

Proof. By definition of the function k_{μ} , we have

$$|k_{\mu}(t)| \le |t|^{q(x)-1} + \left(\frac{\mu}{A}\right)^r |t|^{q(x)+r-1}$$

It follows that

$$|K_{\mu}(t)| \leq \frac{|t|^{q(x)}}{q(x)} + \left(\frac{\mu}{A}\right)^r \frac{|t|^{q(x)+r}}{q(x)+r}.$$

Therefore, there exists C > 0 such that

$$\left| \int_{B_1} (1 - Q(x)) K_{\mu}(u^+) \, dx + \int_{B_1} \frac{Q(x)}{q(x)} (u^+)^{q(x)} \, dx \right|$$

Electronic Research Archive

$$\leq \int_{B_1} |u|^{q(x)} dx + C \int_{B_1} |u|^{q(x)+r} dx.$$
(2.9)

By the Sobolev imbedding theorem, it implies from $2 \le q(x) < q(x) + r < 2^*$ that

$$\int_{B_1} |u|^{q(x)+r} \, dx \le \int_{B_1} (|u|^{2+r} + |u|^{2^*}) \, dx \le C(||u||^{2+r} + ||u||^{2^*}). \tag{2.10}$$

Set $\Omega_{\varepsilon} = \{x \in B_1 | 2 \le q(x) < 2 + \varepsilon\}$. By the Sobolev imbedding theorem and the Hölder inequality, we obtain

$$\int_{B_{1}} |u|^{q(x)} dx = \int_{\Omega_{\varepsilon}} |u|^{q(x)} dx + \int_{B_{1} \setminus \Omega_{\varepsilon}} |u|^{q(x)} dx
\leq \int_{\Omega_{\varepsilon}} (|u|^{2} + |u|^{2+\varepsilon}) dx + \int_{B_{1} \setminus \Omega_{\varepsilon}} (|u|^{2+\varepsilon} + |u|^{2^{*}}) dx
\leq \int_{\Omega_{\varepsilon}} |u|^{2} dx + \int_{B_{1}} (|u|^{2+\varepsilon} + |u|^{2^{*}}) dx
\leq S_{N}^{-1} |\Omega_{\varepsilon}|^{\frac{2^{*}-2}{2^{*}}} ||u||^{2} + C(||u||^{2+\varepsilon} + ||u||^{2^{*}}).$$
(2.11)

Since $S_N^{-1}|\Omega_0|^{\frac{2^*-2}{2^*}} < \frac{1}{2}$, for $\varepsilon > 0$ small enough, one has $S_N^{-1}|\Omega_\varepsilon|^{\frac{2^*-2}{2^*}} < \frac{1}{4} + \frac{1}{2}S_N^{-1}|\Omega_0|^{\frac{2^*-2}{2^*}}$. From (2.9)–(2.11), we obtain

$$I_{\mu}(u) \geq \left(\frac{1}{4} - \frac{1}{2}S_{N}^{-1}|\Omega_{0}|^{\frac{2^{*}-2}{2^{*}}}\right)||u||^{2} - C(||u||^{2+\varepsilon} + ||u||^{2+r} + ||u||^{2^{*}}).$$

Therefore, there exist m, $\rho > 0$ such that $I_{\mu}(u) > m$ for any $u \in H^1_{0,r}(B_1)$ with $||u|| = \rho$. Fix a nonnegative radial function $v_0 \in H^1_{0,r}(B_{\delta}) \setminus \{0\}$. We have

$$I_{\mu}(tv_{0}) = \frac{t^{2}}{2} ||v_{0}||^{2} - \int_{B_{\delta}} \frac{|tv_{0}|^{q(x)}}{q(x)} dx \le \frac{t^{2}}{2} ||v_{0}||^{2} - \frac{1}{2^{*}} \int_{B_{\delta}} (t^{2+r} |v_{0}|^{2+r} + t^{2^{*}} |v_{0}|^{2^{*}}) dx < 0,$$

for t > 0 sufficiently large. Choosing $w = tv_0$, we have $||w|| > \rho$ and $I_{\mu}(w) < 0$ for t > 0 large enough.

Proof of Theorem 2.1. By Lemmas 2.3 and 2.4, we know that I_{μ} satisfy the (*PS*) condition and the mountain pass geometry. Define

$$\Gamma = \{\gamma \in C([0, 1], H^1_{0, r}(B_1)) | \gamma(0) = 0, \ \gamma(1) = w\}, \ c_{\mu} = \inf_{\gamma \in \Gamma} \max_{t \in [0, 1]} I_{\mu}(\gamma(t))$$

We obtain that problem (2.2) has a solution u_{μ} by the mountain pass theorem (see [16]). After a direct calculation, we derive that $||u_{\mu}^{-}||^{2} = \langle I'_{\mu}(u_{\mu}), u_{\mu}^{-} \rangle = 0$, which implies that $u_{\mu}^{-} = 0$. Hence, $u_{\mu} \ge 0$. Since $I_{\mu}(u_{\mu}) > 0 = I(0)$, we have $u_{\mu} \ne 0$. One has u_{μ} is a positive solution to problem (2.2) by the Strong Maximum Principle (see [17]).

It follows from (2.1) that

$$c_{\mu} \leq \max_{t \in [0,1]} I_{\mu}(tw) \leq \max_{t \in [0,1]} \Big(\frac{t^2}{2} \int_{B_1} |\nabla w|^2 dx - \frac{t^{2+r}}{q^+} \int_{B_{\delta}} w^{q(x)} dx \Big).$$

Therefore, c_{μ} is uniformly bounded. In other words, we have the following results.

Remark 2.5. $c_{\mu} \leq D$, where D is a positive constant independent of μ .

Electronic Research Archive

3. L^{∞} -estimate and the proof of main results

In this section, we will show that solutions of auxiliary problem (2.2) are indeed solutions of original problem (1.2) for sufficiently small μ .

Lemma 3.1. If v is a positive critical point of I_{μ} with $I_{\mu}(v) = c_{\mu}$, then $\int_{B_{\frac{\delta}{2}}} (|\nabla v|^2 + v^2) dx \leq L$, where L is a positive constant independent of μ .

Proof. From (2.1) and Lemma 2.2, one has

$$c_{\mu} = I_{\mu}(v) - \frac{1}{2} \langle I'_{\mu}(v), v \rangle$$

$$= \int_{B_{1}} (1 - Q(x)) \left(\frac{k_{\mu}(x, v)v}{2} - K_{\mu}(x, v) \right) dx + \int_{B_{2\delta}} \left(\frac{1}{2} - \frac{1}{q(x)} \right) Q(x) v^{q(x)} dx$$

$$\geq \frac{r}{2(2 + r)} \int_{B_{2\delta}} Q(x) v^{q(x)} dx$$

$$\geq \frac{r}{2(2 + r)} \int_{B_{\delta}} v^{q(x)} dx.$$
(3.1)

Let $\varphi \in C_0^{\infty}(B_{\delta}, \mathbb{R})$ satisfies $|\varphi(x)| \le 1$, $\varphi(x) = 1$ for $|x| \le \frac{\delta}{2}$ and $|\nabla \varphi| \le \frac{4}{\delta}$. Multiply problem (2.2) by $v\varphi^2$ and integrate to obtain

$$\int_{B_{\delta}} \nabla v \cdot \nabla (v\varphi^2) dx = \int_{B_{\delta}} \left((1 - Q(x)) \left(\frac{v}{m_{\mu}(v)} \right)^r v^{q(x)} + Q(x) v^{q(x)} \right) \varphi^2 dx$$
$$= \int_{B_{\delta}} v^{q(x)} \varphi^2 dx. \tag{3.2}$$

According to (3.1) and (3.2), we have

$$\begin{split} \int_{B_{\delta}} (|\nabla v|^{2} + v^{2}) \, dx &\leq \int_{B_{\delta}} |\nabla v|^{2} \varphi^{2} \, dx + \int_{B_{\delta}} v^{2} \, dx \\ &\leq 2 \int_{B_{\delta}} \nabla v \cdot \nabla (v\varphi^{2}) dx + 4 \int_{B_{\delta}} |\nabla \varphi|^{2} v^{2} dx + \int_{B_{\delta}} v^{2} \, dx \\ &\leq 2 \int_{B_{\delta}} \nabla v \cdot \nabla (v\varphi^{2}) dx + \frac{8 + \delta^{2}}{\delta^{2}} \int_{B_{\delta}} v^{2} dx \\ &\leq 2 \int_{B_{\delta}} v^{q(x)} \varphi^{2} dx + \frac{8 + \delta^{2}}{\delta^{2}} \int_{B_{\delta}} (1 + v^{q(x)}) \, dx \\ &\leq \frac{8 + \delta^{2}}{\delta^{2}} |B_{\delta}| + \left(2 + \frac{8 + \delta^{2}}{\delta^{2}}\right) \int_{B_{\delta}} v^{q(x)} dx \\ &\leq \frac{8 + \delta^{2}}{\delta^{2}} |B_{\delta}| + \left(2 + \frac{8 + \delta^{2}}{\delta^{2}}\right) \frac{2(2 + r)c_{\mu}}{r}. \end{split}$$

It implies from Remark 2.5 that $\int_{B_{\frac{\delta}{2}}} (|\nabla v|^2 + v^2) dx \le L$, where *L* is a positive constant independent of μ .

Electronic Research Archive

Lemma 3.2. If v is a positive radial symmetric critical point of I_{μ} with $I_{\mu}(v) = c_{\mu}$, then $||v||_{L^{\infty}(B_1)} \leq M$, where M is a positive constant independent of μ .

Proof. Let $\alpha > 2$ and $\zeta \in C_0^{\infty}(B_{\frac{\delta}{2}}, \mathbb{R})$. On the one hand, by the Young inequality, we have

$$-\int_{B_{\frac{\delta}{2}}} \zeta^2 v^{\alpha-1} \Delta v \, dx = (\alpha-1) \int_{B_{\frac{\delta}{2}}} \zeta^2 v^{\alpha-2} |\nabla v|^2 dx + 2 \int_{B_{\frac{\delta}{2}}} \zeta v^{\alpha-1} \nabla v \cdot \nabla \zeta dx$$
$$= \frac{4(\alpha-1)}{\alpha^2} \int_{B_{\frac{\delta}{2}}} \zeta^2 |\nabla v^{\frac{\alpha}{2}}|^2 dx + 2 \int_{B_{\frac{\delta}{2}}} \zeta v^{\frac{\alpha}{2}} \nabla v^{\frac{\alpha}{2}} \cdot \nabla \zeta dx$$
$$\geq \frac{2(\alpha-1)}{\alpha^2} \int_{B_{\frac{\delta}{2}}} \zeta^2 |\nabla v^{\frac{\alpha}{2}}|^2 dx - \frac{\alpha^2}{2(\alpha-1)} \int_{B_{\frac{\delta}{2}}} v^{\alpha} |\nabla \zeta|^2 dx$$
$$\geq \frac{1}{\alpha} \int_{B_{\frac{\delta}{2}}} \zeta^2 |\nabla v^{\frac{\alpha}{2}}|^2 dx - \alpha \int_{B_{\frac{\delta}{2}}} v^{\alpha} |\nabla \zeta|^2 dx. \tag{3.3}$$

On the other hand, one has

$$\int_{B_{\frac{\delta}{2}}} \left((1 - Q(x)) \left(\frac{v}{m_{\mu}(v)} \right)^{r} v^{q(x)-1} + Q(x) v^{q(x)-1} \right) v^{\alpha-1} \zeta^{2} dx \\
= \int_{B_{\frac{\delta}{2}}} v^{q(x)+\alpha-2} \zeta^{2} dx \\
\leq \int_{B_{\frac{\delta}{2}}} v^{\alpha} \zeta^{2} dx + \int_{B_{\frac{\delta}{2}}} v^{q^{+}+\alpha-2} \zeta^{2} dx.$$
(3.4)

Combining (3.3) with (3.4), and noticing that v is a solution to problem (2.2), we obtain

$$\int_{B_{\frac{\delta}{2}}} \zeta^2 |\nabla v^{\frac{\alpha}{2}}|^2 dx \le \alpha \left(\alpha \int_{B_{\frac{\delta}{2}}} v^{\alpha} |\nabla \zeta|^2 dx + \int_{B_{\frac{\delta}{2}}} v^{\alpha} \zeta^2 dx + \int_{B_{\frac{\delta}{2}}} v^{q^+ + \alpha - 2} \zeta^2 dx \right). \tag{3.5}$$

Set $\delta_k = \frac{\delta}{4} \left(1 + \frac{1}{2^k}\right)$. Let $\zeta_k \in C_0^{\infty}(B_{\delta_k}, \mathbb{R})$ satisfies the following properties: $0 \le \zeta_k \le 1$, $\zeta_k = 1$ for $x \in B_{\delta_{k+1}}$ and $|\nabla \zeta_k| \le \frac{1}{4(\delta_k - \delta_{k+1})} = \frac{2^{k+1}}{\delta}$. B_{δ_2} and ζ are taken to be B_{δ_k} and ζ_k in inequality (3.5), respectively. Using the Sobolev embedding theorem, the Hölder inequality and Lemma 3.1, we obtain

$$\left(\int_{B_{\delta_{k+1}}} v^{\frac{2^{*\alpha}}{2}} dx\right)^{\frac{2}{2^{*}}}$$

$$\leq \left(\int_{B_{\delta_{k}}} \left(\zeta_{k} v^{\frac{\alpha}{2}}\right)^{2^{*}} dx\right)^{\frac{2}{2^{*}}}$$

$$\leq C \int_{B_{\delta_{k}}} |\nabla(\zeta_{k} v^{\frac{\alpha}{2}})|^{2} dx$$

$$\leq C \left(\int_{B_{\delta_{k}}} \zeta_{k}^{2} |\nabla v^{\frac{\alpha}{2}}|^{2} dx + \int_{B_{\delta_{k}}} v^{\alpha} |\nabla \zeta_{k}|^{2} dx\right)$$

Electronic Research Archive

$$\begin{split} &\leq C\alpha \left(\left(\alpha + \frac{1}{\alpha}\right) \int_{B_{\delta_{k}}} v^{\alpha} |\nabla \zeta_{k}|^{2} dx + \int_{B_{\delta_{k}}} v^{\alpha} \zeta_{k}^{2} dx + \int_{B_{\delta_{k}}} v^{q^{+}+\alpha-2} \zeta_{k}^{2} dx \right) \\ &\leq C\alpha \left(\left(\left(\alpha + \frac{1}{\alpha}\right) \frac{4^{k+1}}{\delta^{2}} + 1 \right) \int_{B_{\delta_{k}}} v^{\alpha} dx + \int_{B_{\delta_{k}}} v^{q^{+}+\alpha-2} dx \right) \\ &\leq C\alpha \left(\frac{\alpha 4^{k+2}}{\delta^{2}} |B_{\delta_{k}}|^{\frac{q^{+}-2}{2^{*}}} + \left(\int_{B_{\delta_{k}}} v^{2^{*}} dx \right)^{\frac{q^{+}-2}{2^{*}}} \right) \left(\int_{B_{\delta_{k}}} v^{\frac{2^{*}a}{2^{*}-q^{+}+2}} dx \right)^{\frac{2^{*}-q^{+}+2}{2^{*}}} \\ &\leq C\alpha \left(\frac{\alpha 4^{k+2}}{\delta^{2}} |B_{\delta_{k}}|^{\frac{q^{+}-2}{2^{*}}} + C \left(\int_{B_{\delta_{k}}} (|\nabla v|^{2} + v^{2}) dx \right)^{\frac{q^{+}-2}{2}} \right) \left(\int_{B_{\delta_{k}}} v^{\frac{2^{*}a}{2^{*}-q^{+}+2}} dx \right)^{\frac{2^{*}-q^{+}+2}{2^{*}}} \\ &\leq C\alpha \left(\frac{\alpha 4^{k+2}}{\delta^{2}} |B_{\delta_{k}}|^{\frac{q^{+}-2}{2^{*}}} + C (2L)^{\frac{q^{+}-2}{2}} \right) \left(\int_{B_{\delta_{k}}} v^{\frac{2^{*}a}{2^{*}-q^{+}+2}} dx \right)^{\frac{2^{*}-q^{+}+2}{2^{*}}} \\ &\leq C\alpha^{2} 4^{k+1} \left(\int_{B_{\delta_{k}}} v^{\frac{2^{*}a}{2^{*}-q^{+}+2}} dx \right)^{\frac{2^{*}-q^{+}+2}{2^{*}}} . \end{split}$$

It implies that

$$\|v\|_{L^{\frac{2^{*}\alpha}{2}}(B_{\delta_{k+1}})} \le \left(C\alpha^2 4^{k+1}\right)^{\frac{1}{\alpha}} \|v\|_{L^{\frac{2^{*}\alpha}{2^{*}-q^{*}+2}}(B_{\delta_{k}})}.$$

$$= 0, 1, \cdots. \text{ Then } \frac{2}{2^{*}-2^{*}}\beta_{k+1} = \beta_{k}. \text{ By (3.6), we have}$$
(3.6)

Set $\beta_k = 2(\frac{2^*-q^*+2}{2})^k$ for $k = 0, 1, \cdots$. Then $\frac{2}{2^*-q^*+2}\beta_{k+1} = \beta_k$. By (3.6), we have $\|v\|_{L^{2^*\beta_{k+1}}(B_{\delta_{k+1}})} \le \left(C\beta_{k+1}^2 4^{k+2}\right)^{\frac{1}{2\beta_{k+1}}} \|v\|_{L^{2^*\beta_k}(B_{\delta_k})}.$

Doing iteration yields

$$\begin{split} \|v\|_{L^{2^{*}\beta_{k}}(B_{\delta_{k}})} &\leq C^{\sum_{j=1}^{k} \frac{1}{2\beta_{j}}} \cdot \prod_{j=1}^{k} \beta_{j}^{\frac{1}{\beta_{j}}} \cdot 4^{\sum_{j=1}^{k} \frac{j+1}{\beta_{j}}} \|v\|_{L^{2^{*}}\left(B_{\frac{\delta}{2}}\right)} \\ &\leq (4C)^{\frac{1}{4} \sum_{j=1}^{k} \left(\frac{2}{\beta_{1}}\right)^{j}} \cdot \left(\frac{\beta_{1}}{2}\right)^{\sum_{j=1}^{k} \frac{j}{2}\left(\frac{2}{\beta_{1}}\right)^{j}} \cdot 2^{\sum_{j=1}^{k} \frac{j+1}{2}\left(\frac{2}{\beta_{1}}\right)^{j}} \|v\|_{L^{2^{*}}\left(B_{\frac{\delta}{2}}\right)} \end{split}$$

Since $\beta_1 > 2$, the series $\sum_{j=1}^{\infty} \left(\frac{2}{\beta_1}\right)^j$ and $\sum_{j=1}^{\infty} j\left(\frac{2}{\beta_1}\right)^j$ are convergent. Letting $k \to \infty$, we conclude that

$$\|v\|_{L^{\infty}\left(B_{\frac{\delta}{4}}\right)} \leq C\|v\|_{L^{2^{*}}\left(B_{\frac{\delta}{2}}\right)} \leq C\left(\int_{B_{\frac{\delta}{2}}} (|\nabla v|^{2} + v^{2}) \, dx\right)^{\frac{1}{2}} \leq M.$$

Set $\rho = |x|$. Since *v* is positive radially symmetric, one has

$$-\frac{1}{\rho^{N-1}}\frac{d}{d\rho}\left(\rho^{N-1}\frac{dv}{d\rho}\right) = (1-Q(\rho))\left(\frac{v}{m_{\mu}(v)}\right)^{\rho}v^{q(\rho)-1} + Q(\rho)v^{q(\rho)-1} \ge 0,$$

which implies that $\frac{d}{d\rho} \left(\rho^{N-1} \frac{dv}{d\rho} \right) \le 0$. Notice that $\rho^{N-1} \frac{dv}{d\rho}|_{\rho=0} = 0$, we have $\rho^{N-1} \frac{dv}{d\rho} \le 0$. That is $\frac{dv}{d\rho} \le 0$. Hence,

$$||v||_{L^{\infty}(B_1)} \le ||v||_{L^{\infty}(B_{\frac{\delta}{4}})} \le M.$$

Electronic Research Archive

Proof of Theorem 1.1. By definition of the function m_{μ} , we have $m_{\mu}(t) = t$ for $t \leq \frac{1}{\mu}$. It is easy to see problem (2.2) reduce to problem (1.2) for $|u| \leq \frac{1}{\mu}$. Let $\mu > \frac{1}{M}$. We see that a positive solution u_{μ} problem (2.2) is indeed a positive solution of problem (1.2).

Acknowledgments

Thanks for the support of National Natural Science Foundation of China (No. 11861021).

Conflict of interest

The authors declared that there was no competition of interests.

References

- 1. Y. M. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, *SIAM J. Appl. Math.*, **66** (2006), 1383–1406. https://doi.org/10.1137/050624522
- 2. M. Růžička, *Electrorheological Fluids: Modeling and Mathematical Theory*, Springer, Berlin, Germany, 2000. https://doi.org/10.1007/BFb0104029
- 3. X. L. Fan, Q. H. Zhang, Existence of solutions for *p*(*x*)-Laplacian Dirichlet problem, *Nonlinear Anal.*, **52** (2003), 1843–1852. https://doi.org/10.1016/S0362-546X(02)00150-5
- 4. J. Chabrowski, Y. Q. Fu, Existence of solutions for *p*(*x*)-Laplacian problems on a bounded domain, *J. Math. Anal. Appl.*, **306** (2005), 604–618. https://doi.org/10.1016/j.jmaa.2004.10.028
- 5. Q. H. Zhang, C. S. Zhao, Existence of strong solutions of a *p*(*x*)-Laplacian Dirichlet problem without the Ambrosetti-Rabinowitz condition, *Comput. Math. Appl.*, **69** (2015), 1–12. https://doi.org/10.1016/j.camwa.2014.10.022
- G. Li, V. D. Rădulescu, D. D. Repovš, Q. H. Zhang, Nonhomogeneous Dirichlet problems without the Ambrosetti-Rabinowitz condition, *Topol. Methods Nonlinear Anal.*, **51** (2018), 55– 77. https://doi.org/10.12775/TMNA.2017.037
- 7. C. Ji, F. Fang, Infinitely many solutions for the *p*(*x*)-Laplacian equations without (*AR*)-type growth condition, *Ann. Polonici Math.*, **105** (2012), 87–99. https://doi.org/10.4064/ap105-1-8
- 8. Z. Yucedag, Existence of solutions for *p*(*x*) Laplacian equations without Ambrosetti-Rabinowitz type condition, *Bull. Malays. Math. Sci. Soc.*, **38** (2015), 1023–1033. https://doi.org/10.1007/s40840-014-0057-1
- 9. Z. Tan, F. Fang, On superlinear *p*(*x*)-Laplacian problems without Ambrosetti and Rabinowitz condition, *Nonlinear Anal.*, **75** (2012), 3902–3915. https://doi.org/10.1016/j.na.2012.02.010
- 10. A. B. Zang, *p*(*x*)-Laplacian equations satisfying Cerami condition, *J. Math. Anal. Appl.*, **337** (2008), 547–555. https://doi.org/10.1016/j.jmaa.2007.04.007
- 11. S. Aouaoui, Existence of solutions for eigenvalue problems with nonstandard growth conditions, *Electron. J. Differ. Equations*, **176** (2013), 1–14. https://doi.org/10.1186/1687-2770-2013-177
- V. Rădulescu, Nonlinear elliptic equations with variable exponent: old and new, *Nonlinear Anal.*, 121 (2015), 336–369. https://doi.org/10.1016/j.na.2014.11.007

- J. Garcia-Mellian, J. D. Rossi, J. C. S. De Lis, A variable exponent diffusion problem of concave-convex nature, *Topol. Methods Nonlinear Anal.*, 47 (2016), 613–639. https://doi.org/10.12775/TMNA.2016.019
- C. M. Chu, X.Q. Liu, Y. L. Xie, Sign-changing solutions for semilinear elliptic equation with variable exponent, *J. Math. Anal. Appl.*, 507 (2022), 125748. https://doi.org/10.1016/j.jmaa.2021.125748
- 15. M. Hashizume, M. Sano, Strauss's radial compactness and nonlinear elliptic equation involving a variable critical exponent, *J. Funct. Spaces*, **2018** (2018), 1–13. https://doi.org/10.1155/2018/5497172
- 16. A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, *J. Funct. Anal.*, **14** (1973), 347–381. https://doi.org/10.1016/0022-1236(73)90051-7
- 17. J. L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, *Appl. Math. Optim.*, **12** (1984), 191–202. https://doi.org/10.1007/BF01449041

 \bigcirc 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)