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Abstract: The textural roughness of asphalt pavement surface is an important indicator to characterize 

pavement skid resistance. In this paper, multi-visual technology was applied to capture the surface 

image of asphalt pavement which was transformed into a visualized 3D point cloud model. Then, based 

on the principle of the digital elevation model (DEM), the disordered 3D point cloud is rasterized and 

projected into a 2D matrix which contains generalized point cloud elevation information. Meanwhile, 

the 2D matrix is transformed into grayscale to build the equivalent grayscale image. Furthermore, the 

fractal dimensions were calculated in terms of one-dimensional pavement section profile, two-

dimensional grayscale, and equivalent grayscale to characterize the pavement roughness. The results 

showed that the fractal dimensions are positively correlated with the mean texture depth (MTD), and 

the fractal dimension of equivalent grayscale has the best correlation with MTD. It should be 

highlighted that the equivalent grayscale image is directly transformed by the reconstruction of the 

three-dimensional point cloud, and the grayscale value of each point can represent the elevation of 

different pavement surfaces.  Therefore, the equivalent grayscale image can better reflect the real 

roughness of the pavement surface. Meanwhile, the proposed method in this paper can effectively 

reduce the influence of some factors (e.g., light and color, etc..) on the texture detection of the 

pavement surface. 
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1. Introduction 

The surface texture and friction coefficient of asphalt pavements do not only affect driving comfort 

but also play an important role in traffic safety during vehicle acceleration and deceleration [1–3]. The 

texture characteristics of the surface are a crucial factor to ensure high anti-skid performance of asphalt 

pavement, however, the texture roughness of asphalt pavement contains significant randomness and 

complexity. In order to classify the texture characteristics of asphalt pavement with different aggregate 

gradations, the Permanent International Association of Road Congresses (PIARC) [4] defined 

pavement texture into four types according to the wavelength (wl) and amplitude (A) of the deviations, 

including micro-texture (0 mm< wl < 0.5 mm; 0.001 mm < A < 0.5 mm), macro-texture (0.5 mm < wl 

< 50 mm; 0. 1 mm < A < 20 mm), mega-texture (50 mm < wl < 500 mm; 1 mm < A < 50 mm), and 

roughness or unevenness (wl > 500 mm; 1 mm < A < 200 mm).  In general, the micro-texture is 

affected by the surface properties of aggregates (e.g., mineral properties) and bituminous materials. 

Similarly, macro-texture is influenced by the mix properties of asphalt mixture, including the shape, 

size, and gradation of the aggregates [5,6]. In general, the mean texture depth (MTD) and mean profile 

depth (MPD) are usually used to evaluate the macro-texture [7]. The MPD is obtained by the laser in 

a two-dimensional scenario, while MTD is tested in three-dimensional by the sand patch method 

which can reflect more complex pavement surface in detail [8]. In other words, the MPD always 

reflects a two-dimensional profile of pavement surface, which cannot fully describe the three-

dimensional characteristics of pavement texture. For instance, the MTD value is 0.6231 mm and 

MPD value is 1.7472 mm, which indicates the difference in the magnitude (Figure 1).  

 

Figure 1. Schematic diagram for the difference between MPD and MTD. 
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Currently, the means for detecting pavement texture information are roughly divided into two 

categories, namely, direct and indirect measurement technologies, which can directly obtain the two-

dimensional or three-dimensional morphology of the pavement surface. The direct measurement 

technologies (e.g., CT scanning, laser scanning, mechanical stylus and image processing) are intuitive 

and graphic which can be directly used for evaluating the texture characteristics of pavement 

surface [9–11]. The indirect measurement technology is to measure other indicators related to the 

pavement texture characteristics by simpler means (e.g., sand patch method, British pendulum tester 

and razor blade method) [11]. It should be pointed out that both of the direct and indirect measurement 

technologies have advantages and disadvantages [12]. For instance, most of the direct measurement 

technologies have the disadvantages of high cost (e.g., CT scanning and laser scanning measurement), 

but the measurement results tend to be more accurate and can better reflect the texture characteristics 

of pavement (e.g., CT scanning, Laser scanning and mechanical stylus) [13]. As for indirect 

measurement methods, the sand patch method is punctual, the lane must be closed, and not for a 

network level, etc.. Although the British Pendulum Tester is low cost and easy to operate, its 

measurement results tend to be influenced by the environment and are relatively less accurate [14]. 

Likewise, razor blade method is of high precision, but it has high requirements for optical 

environments, so it is not suitable for the field test [15]. 

The computer vision-based texture detection method is on the rise, including image processing 

technology and binocular stereo vision [16,17]. These technologies provided a new direction for 

pavement texture detection and the essence of which is the use of image processing techniques to 

extract useful information in the photograph. It has the advantages of simple equipment, low cost, easy 

operation, and labour-saving to non-destructively detect pavement texture on a large scale [18,19]. 

Zhang et al. [20] improved the threshold segmentation method to achieve effective segmentation of 

pavement texture images. An aggregate distribution uniformity index was proposed based on the 

number and location of texture, which can be used to comprehensively evaluate the aggregate 

distribution uniformity of asphalt pavement. Ghaderi and Abedini [21] analyzed two-dimensional 

digital images of airport asphalt pavement through three mainstream digital image processing methods, 

among which the calculation results obtained by the edge pixel number regression model and fuzzy 

logic edge detection method have a good correlation with MTD. Nevertheless, the existing image 

processing was based on a binary image or grayscale image. Since the color image information was 

underutilized to reduce the data loss in the process of image transformation, it thus leaded to 

insufficient accuracy of subsequent parameter calculation or model reconstruction. Therefore, the 

processing technology based on pavement surface images and the investigation on pavement texture 

characteristics needs to be further promoted and improved. 

The primary objective of this paper is to present a new method to characterize the asphalt 

pavement surface texture. The method combines image processing techniques, 3D reconstruction 

techniques, and fractal theory. At first, the pavement surface will be reconstructed, and then the 

equivalent pixel matrix of grayscale is obtained to make a digitized pavement image which contains 

pavement texture information. Further, the texture distribution of asphalt pavement is then quantified 

after combined with fractal theory. Finally, the asphalt pavement texture is captured by the field test to 

demonstrate feasibility of the proposed method. Compared with traditional methods, the method in 

this paper is less costly and more efficient. The 3D reconstruction technology based on image 

processing can overcome the problem of insufficient accuracy in extracting pavement texture 

information from 2D digital images. Moreover, the 3D point cloud of pavement is rasterized and 
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grayed out, which can solve the problem of redundant and difficult to calculate 3D point cloud data. 

The proposed method is expected to provide a potential reference for quantifying asphalt pavement 

texture. The flow chart of this research is shown in the Figure 2. 

 

Figure 2. The flow chart of research. 

2. Image acquisition and 3D reconstruction of pavement surface 

2.1. Image acquisition 

The first step is to acquire the image of asphalt pavement surface containing information such as 

geometrical morphology and spatial location of the measured objects. A mobile phone with a 12-
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megapixel rear CMOS camera was used to capture pavement surface images. A pavement with open 

space, uniform lighting, and a flat surface was selected for shooting. It is better to keep the subject and 

background as separate as possible and minimize the influence of light and shadow on the inherent 

color. In addition, in order to characterize the realistic size, calibration points need to be placed in 

advance. Dan et al. [22] provided different styles of calibration points, consisting of a central point and 

two circles. Based on this principle, a square calibration plate of size 300 mm × 300 mm was designed 

and marked with calibration points on its four corners,  the square calibration plate and the shooting 

methods is shown in Figure 3. To follow the principle of full coverage and high overlap, the camera 

height of photographing plane was 600 mm above the calibration plate and a total of 20–30 

photographs were taken with a rotation angle of 45° (Figure 4). It should be pointed out that the number 

and angle of photos taken directly affect the accuracy of 3D reconstruction. Secondly, the camera 

baseline used for photography should not be too large, and the photographs taken should reflect the 

texture characteristics of the pavement as much as possible.  

      

Figure 3. Schematic diagram of the square calibration plate. 
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Figure 4. The diagram of the shooting position. 

2.2. 3D morphology reconstruction of asphalt pavement surface 

The determinants of whether the reconstruction model can be used to obtain the pavement texture 

depth are the accuracy of photograph matching and the accuracy of object characteristics. The 

structure-from-motion method (SFM) is suitable for photograph sets captured from multiple 

viewpoints, and the corresponding relationship of the same pixel points in the photographs can be 

obtained through the characteristic matching algorithm, and the three-dimensional coordinate 

information of spatial points can be obtained by using matching constraint relationship in combination 

with the principle of triangulation [22–24]. The 3D reconstruction technology based on multiocular 

vision and SFM can improve the accuracy and speed of identification of the characterist ics of 

represented objects, allowing spatial information about the objects to be presented more accurately.  

Therefore, this technology is used in the three-dimensional reconstruction of the pavement 

structure herein. 

Firstly, the captured image was adjusted to remove blurred or severely distorted images caused 

by misfocusing. In the second step, the connection points were matched between the key points and 

the captured photos to build a sparse point cloud and the camera positions were marked. In the third 

step, the coordinates of the calibration points were imported in the four corners of the calibration plate 

to scale the model to the real size. In the fourth step, the dense point cloud was generated. Three-

dimensional point cloud reconstruction is shown in Figure 5. It is necessary to be pointed out that the 

detected mark position and real coordinates will have pixel-level errors, which are generated during 

photography and alignment. The photos with errors exceeding five pixels are eliminated, from which 

the overall non-linear optimization of the initial sparse point cloud results was then conducted to 

improve the accuracy of the established dense point cloud. 
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Figure 5. Three-dimensional point cloud reconstruction. 

Moreover, the experimental results showed that the intensity of illumination and the photographic 

angle affect the accuracy and success rate of the reconstruction model. Therefore, in full light, a small 

aperture can be used to help eliminate false focus and photographic blur, a low ISO can be set to reduce 

noise, and a short exposure time can be used to prevent blur caused by jitter [25–27]. In this study, 

oblique photography was adopted and the external light source is natural light. On the one hand, for 

the possible front-light side and backlight side (shadow), the shadow will not change. On the other 

hand, since the photographing time of each photo was less than 1 second and less than 10 seconds were 

taken for each detection point, it can be considered that the light source position and lighting condition 

has no obvious change during the period of the photographic process [22]. Therefore, the modelling 

accuracy will not be affected accordingly. As a matter of fact, the reflection type of light on asphalt 

pavement is diffuse reflection. Regardless of whether the light source is oblique or not, there is no 

obvious shadow on the pavement surface except for the possibility of relatively dim light. However, 

blurry or distorted photographs may be rejected in the alignment stage (i.e., reconstruction may also 

fail if there are few valid photographs or a lack of different angles used). 

2.3. Point cloud rasterization and pixel matrix output 

The reconstructed 3D point cloud contains millions of [x, y, z] disordered coordinate points, which 

needs to be converted into an easy-to-study pixel matrix output. In this paper, the point cloud was 

rasterized by combining the principle of the digital elevation model (DEM); Digital elevation model 

is a digital simulation (i.e., digital representation of terrain surface form) of ground terrain by finite 

terrain elevation data [28,29]. The rasterization process was dividing the point cloud data into several 

grid cells of equal size, and certain attribute values, such as elevation values, intensity values, etc., 

were put into the grid cells to form an image with a coordinate system. The basic method of dividing 

the grid is as follows: 
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Cols = int (
Xmax-Xmin

GSD
) +1                            (1) 

Rows = int (
Ymax-Ymin

GSD
) +1                           (2) 

Lays = int (
Zmax-Zmin

GSD
) +1                            (3) 

in which, Xmax, Xmin, Ymax, Ymin, Zmax, Zmin represent the maximum and minimum values of X, Y 

and Z coordinates of the point cloud area respectively; GSD is the grid resolution. Cols, Rows, and 

Lays are the grid column number, row number, and layer number of the cloud points, respectively. 

The rasterized 3D point cloud is a two-dimensional grid, and each grid contains the elevation value of 

the location of which the range is between 0–1. In addition, in order to facilitate the subsequent 

calculation, the elevation value of each grid was multiplied by 255 and rounded to obtain the equivalent 

grayscale image. In other words, the equivalent grayscale image is the result of refining and 

simplifying the 3D point cloud and processing it in two dimensions. 

3. Pavement texture and fractal dimension calculation 

3.1. Profile characteristics of pavement surface 

The one-dimensional profile of pavement surface can visually demonstrate the rough condition 

which is contained in the equivalent grayscale image. In this paper, a row or column in the equivalent 

grayscale image was randomly selected as a one-dimensional discrete signal, which is regarded as the 

cross-section contour of the pavement surface. Due to the inevitable noise in the process of 3D 

reconstruction, the displayed one-dimensional discrete signal will change sharply. Therefore, it needs 

to be decomposed and reconstructed. In this paper, the original data was decomposed and reconstructed 

by wavelet analysis based on the Mallat algorithm [30–32]. The calculation procedure is as follows. 

First, the wavelet decomposition was carried out to get the signal of each scale according to the 

original signal f(t). Then, a threshold was selected for soft threshold quantization processing (STQP) 

of high-frequency signals under various scales. Finally, one-dimensional wavelet reconstruction was 

carried out by incorporating the low-frequency signal after wavelet decomposition and the high-

frequency signal after STQP. 

As a matter of fact, the selection of wavelet basis, the number of decomposition layers, and the 

selection rules of threshold are the key factors that affect the final reconstruction effectiveness. For the 

selection of wavelet basis, the Daubechies 3 wavelet (db3) was used as the mother wavelet to analyse 

the pavement image because it contains more local peaks to better represent the typical pavement 

roughness texture profile [33,34]. For the number of decomposition layers, on the one hand, it should 

not be too large because it will lead to serious distortion of the reconstructed profile signal; on the 

other hand, it should not be too small because it will be difficult to distinguish between the noise and 

the characteristics exhibited by the profile signal. In this paper, the length of the original profile signal 

is 256 pixels, and the number of decomposition layers was chosen to be three. For one-dimensional 

profile signals, the standard deviation in the high-frequency signal is usually selected as the threshold 

for STQP, i.e., the absolute value of the high-frequency signal below the threshold is set to zero, and 

the absolute value above the threshold is subtracted from the threshold. The decomposed image is 
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shown in Figure 6. The soft-threshold quantized data of the high-frequency signal is stored in the 

matrix for reconstruction, and the reconstructed pavement profile is shown in Figure 7. 

 

Figure 6. One-dimensional discrete signal decomposition: (a) low-frequency signal of the 

first decomposition, (b) high-frequency signal of the first decomposition, (c) low-

frequency signal of the second decomposition, (d) high-frequency signal of the second 

decomposition, (e) low-frequency signal of the third decomposition, (f) high-frequency 

signal of the third decomposition. 

 

Figure 7. Reconstruction of pavement cross-section profile. 
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3.2. Fractal dimension of one-dimensional profile 

Fractals are used to characterize the self-similarity of objects or quantities at various scales and 

are usually described by the Fractal Dimension (FD). The cross-sectional profile of asphalt pavement 

surface has obvious random distribution and complex variability, and its surface texture has been 

proven to have fractal characteristics in a certain scale range. Therefore, the fractal dimension of the 

reconstructed pavement surface profile was calculated by the box dimension method (BDM) to 

quantify the morphological characteristics of asphalt pavement surface and compare it with MTD 

through the experimental test. The main principle of this method (i.e., BDM) is to place the 

reconstructed pavement surface profile on an evenly divided grid and calculate the minimum number 

of grids needed to cover the profile. Then, the fractal dimension FD_1D can be calculated by 

progressive refinement of the grid to check the change in the number of boxes required to cover it. The 

results are listed in Table 1. 

3.3. Fractal dimension of the two-dimensional pixel matrix 

3.3.1. Image pre-processing 

There are many studies on asphalt pavement texture based on 2D digital images [35,36], however, 

there are two problems with the two-dimensional digital image of the asphalt pavement surface. Firstly, 

the images (photographs) are easily affected by lighting and shooting angle, and the grayscale 

distribution matrix does not reflect the texture characteristics of the pavement very accurately. 

Secondly, there is inevitable data loss in the process of converting color images to grayscale images. 

In addition, due to the equipment, environment, and other reasons, the images are mixed with noise at 

different degrees during the image acquisition process. Therefore, the images need to be pre-processed 

with noise reduction before processing by computer. In this paper, two types of processing were 

performed on the captured pavement images separately. At first, the pavement images were pre-

processed with noise reduction, and then the RGB images were grayed out to obtain two-dimensional 

grayscale images. Secondly, the 3D point cloud was reconstructed based on multi-vision, and the 

equivalent grayscale image was obtained by coordinate transformation. Then, the noise reduction was 

conducted by the same method. 

For two-dimensional grayscale images and equivalent grayscale images, the method of two-

dimensional wavelet decomposition for noise reduction is demonstrated as bellow [37]. 

Firstly, the mother wavelet and the level N of the wavelet decomposition were selected, and then 

the decomposition of the signal s should be calculated from the first layer to the Nth decomposition. 

Next, for each layer from 1 to N, a threshold was selected and a soft threshold quantization of the high-

frequency coefficients at this layer was performed. Finally, based on the low-frequency coefficients of 

the Nth layer of the wavelet decomposition and the modified high-frequency coefficients of each layer 

from the first layer to the Nth layer, the wavelet reconstruction of the 2-D signal was calculated. As an 

example, the noise reduction results are shown in Figure 8. 

After noise reduction, both two-dimensional grayscale and equivalent grayscale images can be 

mathematically represented as an m × n two-dimensional matrix with horizontal coordinates x and 

vertical coordinates y. If Zi,j = (xi, yj), a three-dimensional distribution of grayscale can be illustrated, 

which represents the surface texture characteristics of asphalt pavement, as shown in Figures 9 and 10. 
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They are both essentially pixel matrices of size 256 × 256. 

 

Figure 8. Noise reduction results: (a) original image of 2D grayscale; (b) reconstructed 

image of 2D grayscale; (c) original image of equivalent grayscale; (d) reconstructed image 

of equivalent grayscale. 

 

Figure 9. Grayscale distribution of the two-dimensional grayscale image. 
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Figure 10. Grayscale distribution of the equivalent grayscale image. 

3.3.2. Fractal dimension calculation 

The fractal dimension can be used to measure the roughness of the image, also known as the 

complexity of the grayscale distribution surface. The higher the fractal dimension indicates a more 

complex surface, and the image will be rougher [38]. For an image of M × M size, (x,y) represents the 

position in space in 3D space, and z represents the gray value of its corresponding point gray(x,y). In 

this paper, the fractal dimension of a two-dimensional grayscale image and equivalent grayscale image 

were calculated separately using the differential box dimension calculation method as follows: 

In the first step, the image was chunked into a grid of s × s (M/2 ≥ s ≥ 2), where M is the edge 

length of the vertical projection of the 3D spatial surface, s is the edge length of the cut grid, and s is 

an integer. 

In the second step, in each s×s chunk, there is a box column, whose size is s × s × s’ (Figure 11). 

If the maximum gray value is G, which is usually 256, the box scale is defined as r = G/s' = M/s. 

In the third step, the maximum gray value and the minimum gray value were calculated for each 

chunk, which requires k boxes and l boxes to be filled respectively, then nr = k - l + 1. 

In the fourth step, the total number of boxes needed to cover the entire surface (Nr) was 

calculated by 

Nr=sum(nr)                               (4) 

The relationship between the total number of counted boxes and the box scale is known from the 

box dimension principle, as follows: 

Nr=r-FD                                 (5) 

Therefore, the fractal dimension can be given by 

FD= log(Nr) /log(
1

r
)                            (6) 
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In the fifth step, different grid division sizes were set and a linear fit to the data points was 

performed using the least squares method to find the linear equation as follows: 

   log(Nr) =aln (
1

r
) +b                            (7) 

Combined with Eq (6), the slope a in Eq (7) is precisely the fractal dimension (FD). The fractal 

dimension of the equivalent grayscale image (FD_Ptcloud) and the fractal dimension of the two-

dimensional grayscale image (FD_Photo) were calculated respectively.  

 

Figure 11. Principle of differential box dimension method. 

4. Results and discussions 

4.1. MTD by sand spreading method 

The sand spreading method is used to obtain the mean texture depth (MTD) to validate the method 

of fractal dimension and characterize the pavement texture characteristics. In this paper, 30 

measurement points were selected to detect and calculate the MTD of pavement surface of the Zhutang 

West Road (Located in Hunan Province, China). As shown in Figure 12, the clean fine sand with 

particle size ranging from 0.15 to 0.3 mm and total volume V was spread evenly on the test points, and 

the pusher plate with rubber sheet glued on the bottom was used to repeat the paving motion from 

inside to outside until the sand fills in the gap of the rough pavement surface, and the sand was spread 

to form a circle as outwards as possible. Then, the horizontal and vertical diameters D1 and D2 of the 

formed circle were measured with a steel ruler, and the average value was taken as D. Finally, the mean 

texture depth of all measurement points can be calculated by the Eq (5). 

MTD=
4V

πD2                                     (8) 
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Figure 12. Schematic diagram of sand spreading method. 

4.2. Correlation between MTD and fractal dimension 

Based on the image data and point cloud data of 30 pavement measurement points, the 1D 

pavement profile, 2D grayscale image, and equivalent grayscale image were obtained respectively. 

According to the method described in Section 3, the fractal dimensions of pavement texture were 

calculated separately by programming. The results of the fractal dimension and MTD of 30 pavement 

measurement points are listed in Table 1. The relation between fractal dimension and MTD is 

illustrated in Figures 13–15, respectively. 

It can be seen from Figure 13 that there is a positive correlation between the fractal dimension of 

the one-dimensional pavement surface profile and the mean texture depth, i.e., the larger the fractal 

dimension represents the rougher pavement surface, and the MTD is greater accordingly. It can be 

assumed that the fractal dimension can characterize the texture information of the pavement to some 

extent. However, this kind of correlation is not very obvious (e.g., R2 = 0.61454). 

From the comparison between Figures 14 and 15, the fractal dimension of an equivalent grayscale 

image and MTD has better relationship (R2 = 0.8383). As a matter of fact, a two-dimensional grayscale 

image is more likely to be influenced by the pavement surface color, because the essence of a two-

dimensional grayscale image is converted from an RGB image. In the two-dimensional grayscale 

image, different colors of pavement surface will lead to large fluctuations in the value of grayscale, 

and then the calculated height difference between two adjacent points is inconsistent with the actual 

situation. On the contrary, the equivalent grayscale image is transformed from the reconstructed 3D 

point cloud, and the grayscale value of each point represents the elevation of different pavement 

surfaces. Therefore, the equivalent grayscale image can better reflect the real roughness of the 

pavement surface. 
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Table 1. Pavement texture depth and fractal dimension of the West Zhutang Road. 

Measurement point number 
MTD 

(mm) 
FD-1D* FD-Photo** FD-Ptcloud*** 

U1 0.6517 1.3565 2.5245 2.4616 

U2 0.5619 1.3431 2.5127 2.3902 

U3 0.5813 1.3630 2.5386 2.4226 

U4 0.5715 1.3390 2.5603 2.4387 

U5 0.6069 1.3305 2.5617 2.4609 

U6 0.6315 1.2989 2.5387 2.4816 

U7 0.5302 1.3570 2.5761 2.3838 

U8 0.6953 1.3737 2.5486 2.4507 

U9 0.5715 1.3569 2.5513 2.4277 

U10 0.5965 1.3389 2.5193 2.4544 

V1 0.5715 1.3376 2.5071 2.4145 

V2 0.5595 1.3607 2.5660 2.4492 

V3 0.6069 1.3459 2.5211 2.4308 

V4 0.6017 1.3542 2.5851 2.4414 

V5 0.5965 1.3503 2.6194 2.4067 

V6 0.5072 1.3099 2.5257 2.4009 

V7 0.5813 1.3444 2.5860 2.4772 

V8 0.6538 1.3764 2.5924 2.4791 

V9 0.5526 1.3210 2.6330 2.4036 

V10 0.5572 1.3236 2.5941 2.3924 

W1 0.6096 1.3432 2.5793 2.494 

W2 0.5739 1.3575 2.5287 2.4841 

W3 0.5739 1.3627 2.5540 2.4654 

W4 0.6372 1.3316 2.5434 2.4896 

W5 0.5346 1.3328 2.5356 2.4254 

W6 0.6487 1.3483 2.5659 2.5221 

W7 0.8899 1.4395 2.6585 2.6335 

W8 0.7611 1.3636 2.6297 2.575 

W9 0.8414 1.4008 2.6312 2.6216 

W10 0.8371 1.4096 2.6313 2.5953 

FD-1D* represents the fractal dimension of one-dimensional pavement section profile; 

FD-Photo** represents the fractal dimension of two-dimensional grayscale image 

FD-Ptcloud*** represents the fractal dimension of equivalent grayscale image 



2352 

Electronic Research Archive  Volume 31, Issue 4, 2337–2357. 

 

Figure 13. Correlation between MTD and fractal dimension of one-dimensional pavement 

section profile. 

 

Figure 14. Correlation between MTD and fractal dimension of two-dimensional grayscale image. 
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Figure 15. Correlation between MTD and fractal dimension of equivalent grayscale image. 

It should be pointed out that about 20~30 photos were taken at each test point in this paper, 

and the shooting time of each photo was about 3 seconds. Therefore, each test point takes between 1 

and 2 minutes. As for the sand patch method, it takes at least 10 minutes for one measuring point from 

preparation to completion. As a matter of fact, a modest reduction in the number of photos taken 

(e.g., 10 high-definition images) can also achieve the same accuracy, depending on the quality of the 

images taken. If the photo quality is high enough, the number of photos required is lower, and the 

shooting time can be further reduced. Therefore, the method proposed in this paper has obvious 

advantages in terms of efficiency. Compared with the existing image processing methods, the proposed 

method in this paper makes full use of the depth information of the shot image to determine the texture 

depth of pavement more accurately. However, at current stage, the method can only be used at a fixed 

point like the sand patch method, which affects the normal traffic passage (i.e., the lane closure is 

required). If an integrated device is developed in the future and high-performance cameras from 

different angles are integrated in the front of the vehicle (e.g., the cameras have functions of high-

definition, high-sensitive photography, and quick photography), all cameras can shoot simultaneously, 

which will greatly reduce the shooting time. Therefore, the method proposed in this paper will continue 

to carry out research in the field of image synthesis and reconstruction to obtain the pavement texture 

image continuously, accurately and efficiently. 

5. Conclusions 

This paper aims to investigate the fractal characteristics of asphalt pavement texture roughness 

incorporating 3D reconstruction technology. In this paper, three-dimensional image reconstruction, 
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three-dimensional point cloud rasterization, and wavelet decomposition theory, were applied for 

pavement image processing. The new technical process was proposed from two-dimensional pavement 

image to three-dimensional reconstruction point cloud, and then to equivalent grayscale images. 

Furthermore, the calculation of fractal dimension under different conditions and analysis of pavement 

roughness were carried out. The main conclusions can be drawn as bellow. 

1) Based on the technology of multiocular vision integrating photographs from different shooting 

angles, the 3D reconstruction of pavement surface morphology was carried out by the SFM method to 

establish a pavement texture model. Through rasterization, the disordered and huge number of 3D 

point clouds were transformed into equivalent grayscale images which contain the pavement texture 

information in the form of a data matrix. 

2) Based on the equivalent grayscale image, the db3 wavelet was used as the mother wavelet to 

decompose the one-dimensional pavement section profile, and then the pavement profile is 

reconstructed after soft threshold quantization processing to calculate its fractal dimension. It is found 

that the fractal dimension has a positive correlation with the MTD, and the larger the fractal dimension, 

the greater the roughness of pavement surface. 

3) The fractal dimensions of equivalent grayscale and two-dimensional grayscale were calculated 

based on the difference box dimension method. By comparing the correlation degree between the two 

fractal dimensions and the actual pavement MTD, it can be found that the fractal dimension of two-

dimensional grayscale is generally higher than that of equivalent grayscale, and the fractal dimension 

of equivalent grayscale has a better correlation with MTD. 

4) The equivalent grayscale image was directly transformed by the reconstruction of the three-

dimensional point cloud, and the grayscale value of each point represents the elevation of different 

pavement surfaces. Therefore, the equivalent grayscale image can better reflect the real roughness of 

the pavement surface. 

In this paper, an efficient evaluation method for asphalt pavement texture was proposed and 

validated by on-site test. The calculation results showed that the fractal dimension of pavement fits 

well with MTD, which provides a potential reference for quantifying asphalt pavement texture. 

Compared with traditional methods, the method in this paper overcome the problem of insufficient 

accuracy in extracting pavement texture information from 2D digital images and solved the problem 

of redundant and difficult to calculate 3D point cloud data. However, to provide enough data to 

construct the 3D point cloud (Figure 5), some photos must be taken. Therefore, these pavement 

condition evaluations should be made from one point to another, and it would not be possible to obtain 

data in continuous way, as other devices are able to do, which needs further to be studied to improve 

the accuracy of the proposed method in the future. 
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