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1. Introduction and assumptions

Greedy learning algorithms, or more specifically, applying greedy algorithms to tackle supervised
learning problems, have triggered enormous recent research activities since they possess the lower
computational burden [1–4]. Theoretical attempts of greedy learning have been widely concerned
recently in the framework of learning theory [1–3, 5, 6]. We consider the learning capability of
the rescaled pure greedy algorithm (RPGA) in a non-i.i.d sampling setting, which was initiated by
Petrova in [7].

A fast review of regression learning as well as greedy algorithms will be given as follows, respectively.
Let X be a compact metric space and Y = R. Let z = {zi}

n
i=1 = {(xi, yi)}ni=1 ∈ Zn be a stationary real-valued

sequence with unknown Borel probability distribution ρ on Z = X × Y .
The generalization error can be defined by

E( f ) =
∫

Z
( f (x) − y)2dρ, ∀ f : X → Y. (1.1)
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Minimizing E( f ), we can obtain the following regression function

fρ(x) =
∫

Y
ydρ(y|x),

where ρ(·|x) denotes the conditional probability measure (given x) on Y . The empirical error Ez( f )
which is a good approximation of the generalization error E( f ) for a fixed function f on X can be
defined by

Ez( f ) = ∥y − f ∥2n :=
1
n

n∑
i=1

( f (xi) − yi)2. (1.2)

The regression problem in learning theory aims at a good approximation fz of fρ, constructed by
learning algorithms. Denote by L2

ρX
(X) the Hilbert space of the square integrable functions defined on

X with respect to the measure ρX, where ρX denotes the marginal probability distribution on X and
∥ f (·)∥ρX = (

∫
X
| f (·)|2dρX)

1
2 . It is known that, for any f ∈ L2

ρX
(X), it holds that

E( f ) − E( fρ) = ∥ f − fρ∥2, (1.3)

where
∥u∥2 = E(|u(x)|2) = ∥u∥2ρX

.

The learning ability of the regression algorithm can be measured by the excess generalization error

∥ fz − fρ∥2 = E( fz) − E( fρ).

LetH be a real, separable Hilbert space endowed with inner product ⟨·, ·⟩ and norm ∥ · ∥ := ∥ · ∥H =
⟨·, ·⟩

1
2 . A set of functions D ⊂ H is called a dictionary if ∥g∥ = 1 for every g ∈ D, g ∈ D implies

−g ∈ D and the closure of span(D) isH . We define the RPGA(D) as follows:
RPGA(D):
Step 0: Define f0 := 0.
Step m (m ≥ 1):
(1) If f = fm−1, stop the algorithm and define fk = fm−1 = f , for k ≥ m.
(2) If f , fm−1, choose a direction φm ∈ D such that

|⟨ f − fm−1, φm⟩| = sup
φ∈D
|⟨ f − fm−1, φ⟩|. (1.4)

With
λm := ⟨ f − fm−1, φm⟩, (1.5)

f̂m := fm−1 + λmφm, (1.6)

sm :=
< f , f̂m >

∥ f̂m∥
2
, (1.7)

define the next approximant to be
fm = sm f̂m, (1.8)
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and proceed to Step m + 1.
Note that the RPGA uses the just appropriate scaling of the output of the pure greedy algorithm

(PGA) which can boost convergence rate of the PGA to the optimal approximation rate O(m−
1
2 ) for

functions inA1(D), see [7].
Throughout this paper, we derive the error bounds under the assumption that |y| ≤ M almost

surely for M ≥ 0, hence | fρ(x)| ≤ M for any x ∈ X. We also define the following truncation function
as in [8–10].

Definition 1. Fix M > 0, we define the truncation function πM on the space of the measurable functions
f : X → R as

πM( f )(x) =


M, i f f (x) > M,

f (x), i f | f (x)| ≤ M,

−M, i f f (x) < −M.

(1.9)

Now we use the RPGA to realize the greedy learning. Here we consider leaning by the indefinite
kernel K : X × X −→ R [11–14] and define the following hypothesis space by

HK, z =

{
f =

n∑
i=1

αiKxi =

n∑
i=1

αiK(xi, ·) : α = (α1, · · · , αn) ∈ Rn, n ∈ N
}
, (1.10)

where

∥ f ∥l1 := inf
{ n∑

i=1

|αi| : f =
n∑

i=1

αiKxi ∈ HK, z

}
. (1.11)

We now present the rescaled pure greedy learning algorithm (RPGLA) as follows:

Algorithm 1 RPGLA
Input: Given a data set z = {zi}

n
i=1 = {(xi, yi)}ni=1 ∈ Zn, K, T > 0 and the dictionary Dn = {Kxi , i =

1, ..., n}
Step 1. Normalization: K̃xi =

Kxi
∥Kxi ∥n

, i = 1, ..., n

Dictionary: D̃n = {K̃xi : i = 1, ..., n}
Step 2. Computation: Let f̃0 = 0

for k = 1, 2, ..., the approximation f̃k is generated by the RPGA(D̃n)
if ∥y − f̃k∥

2
n + ∥ f̃k∥l1 ≤ ∥y∥

2
n and k ≥ T break

end
Output: πM( f̃k)

Many greedy learning schemes were recently successfully used for the i.i.d. sampling [1–6, 15]. For
example, Barron et al. [5] have used a complexity regularization principle as the stopping criterion and
deduced the best learning rate O

(
n/ log n)−

1
2
)

of various greedy algorithms. Lin et al. [3] have provided
the learning capability of the relaxed greedy learning algorithm (RGLA) and proved that the learning
rate is faster than the order O(n−

1
2 ). Their numerous numerical simulation results have confirmed that

the relax greedy algorithm (RGA) is more stable in dealing with noisy machine learning problems than
the orthogonal greedy algorithm (OGA). Chen et al. [16] have introduced a sparse semi-supervised
method to learn the regression functions from samples using the OGA. They can derive the learning rate
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O(n−1) under mild assumptions. To reduce the computational burden of the OGA, Fang et al. [1] have
considered the applications of the orthogonal super greedy algorithm (OSGA) which selects more than
one atoms from a dictionary in each iteration in supervise learning and deduced an almost same learning
rate as that of the orthogonal greedy learning algorithm (OGLA) in [5]. Different from the traditional
variants RGA and OGA, Xu et al. [4] proposed the truncated greedy algorithm (TGA) which truncates
the step size of the PGA at a specified value in each greedy iteration to cut down the model complexity.
They also proved that for some specified learning tasks, the truncated greedy learning algorithm (TGLA)
can remove the logarithmic factor in the learning rates of the OGLA and the RGLA. All these results
show that in the realm of supervised learning, each greedy algorithm possesses its own pros and cons.
For instance, compared with the OGA, the PGA and the RGA have benefits in computation but suffer
from the low convergence rate. In this paper, we study the learning capability of the RPGA which is the
very simple modified version of the PGA. Motivated by the researches of [7], we proceed to deduce the
error bound of the RPGLA. Our results will show that the RPGLA furthermore reduce the computational
burden without sacrificing the generalization capability when compared with the OGLA and the RGLA.
However, usually the independent and identity assumption is rather restrictive. For example, in [17–19],
the authors presented the non-i.i.d. sampling setting for different learning algorithms, respectively. We
shall study β-mixing and non-identical sampling, see [20] and the references therein for the details.

Definition 2. Let z = {zt}t≥1 be a sequence of random variables. For any i, j ∈ N ∪ {+∞}, σ j
i denotes

the σ-algebra generated by the random variables {zt = (xt, yt)}
j
t=i. Then for any l ∈ N, the β-mixing

coefficients of the stochastic process z are defined as

β(l) = sup
j≥1
E sup

A∈σ∞j+l

|P(A|σ j
1) − P(A)|. (1.12)

z is said to be β-mixing, if β(l)→ 0 as l→ ∞. Specifically, it is said to be polynomially β-mixing, if
there exists some β0 > 0 and γ > 0 such that, for all l ≥ 1,

β(l) ≤ β0l−γ. (1.13)

The β-mixing condition is “just the right” assumption, which has been adopted in previous studies
for learning with weakly dependent samples, see [18, 21] and the references therein. It is quite easy to
establish and covers a more general non-i.i.d. cases such as Gaussian and Markov processes. Markov
chains appear so often and naturally in applications, especially in marking prediction, biological speech
recognition, sequence analysis, content-based web search and character recognition.

We assume that {zi}
n
i=1 is drawn according to the Borel probability measures {ρ(i)}i=1,2,··· on Z. Let

ρ(i)
X be the marginal distribution of ρ(i). For every x ∈ X, the conditional distribution of {ρ(i)}i=1,2,··· at

x is ρ(·|x).

Definition 3. We say that
{
ρ(i)

X
}

converges to ρX exponentially in (C s(X))∗, if for C > 0 and 0 < α < 1,

∥ρ(i)
X − ρX∥(Cs(X))∗ ≤ Cαi,∀i ∈ N. (1.14)

The above condition (1.14) is also equivalent to∣∣∣∣∣ ∫
X

f (x)dρ(i)
X −

∫
X

f (x)dρX

∣∣∣∣∣ ≤ Cαi(∥ f ∥∞ + | f |Cs(X)),∀ f ∈ C s(X), i ∈ N, (1.15)
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where
∥ f ∥Cs(X) := ∥ f ∥∞ + | f |Cs(X), (1.16)

and

| f |Cs(X) := sup
x,y∈X

| f (x) − f (y)|
(d(x, y))s . (1.17)

Before giving our key analysis, we firstly need to impose some mild assumptions concerning K,
HK, z and {ρ(y|x) : x ∈ X} below.

The kernel function K is said to satisfy a Lipschitz condition of order (α, β) with 0 < α, β ≤ 1, if for
some Cα,Cβ > 0,

|K(x, t) − K(x, t′)| ≤ Cα|t − t′|α,∀x, t, t′ ∈ X, (1.18)

|K(x, t) − K(x′, t)| ≤ Cβ|x − x′|β,∀t, x, x′ ∈ X. (1.19)

Let R > 0 and BR be the ball ofHK, z with radius R:

BR =

{
f ∈ HK, z : ∥ f ∥l1 ≤ R

}
. (1.20)

As [22], we give the complexity assumption of the unit ball B1.
Capacity assumption. We say that B1 has polynomial complexity exponent 0 < p < 2 if there is

some constant cp > 0 such that

logN2(B1, ϵ) ≤ cpϵ
−p, ∀ϵ > 0. (1.21)

The following concept describes the continuity of {ρ(y|x) : x ∈ X}.

Definition 4. We say that {ρ(y|x) : x ∈ X} satisfies a Lipschitz condition of order s in (Cs(Y))∗ if there is
some constant Cρ ≥ 0 such that

∥ρ(y|x) − ρ(y|u)∥(Cs(Y))∗ ≤ Cρ|x − u|s, ∀x, u ∈ X. (1.22)

Throughout this paper, we denote κ2 = supt,x∈X |K(x, t)|. Since all the constants are independent of δ,
n or λ, for simplicity of notation, we denote by C all the constants.

The rest of this paper is organized as follows: in Section 2, we will state the error decomposition
of the algorithm (1) and the rate of uniform convergence. In the forthcoming Sections 3–5, we will
analyze the drift error, the sample error and the hypothesis error. Finally, we conclude the main results
in Section 6.

2. Error decomposition and main results

We use the developed technique for coefficient regularization algorithms for the non-i.i.d. sampling
[19, 21] to analyze the learning ability of the algorithm (1). We first define the following function space

H1 =

{
f : f =

∞∑
j=1

α jKu j : {α j} ∈ l1, {u j} ⊂ X,Ku j =
Ku j

∥Ku j∥ρX

}
, (2.1)
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with the norm

∥ f ∥H1 := inf
{ ∞∑

j=1

|α j| : f =
∞∑
j=1

α jKu j

}
. (2.2)

We define the regularizing function

fλ := arg min
f∈H1
{E( f ) + λ∥ f ∥H1}, λ > 0. (2.3)

In order to describe the error caused by the change of {ρ(i)
X }, we introduce

En( f ) =
1
n

n∑
i=1

∫
Z
( f (u) − y)2dρ(i)(u, y). (2.4)

Now we can give the error decomposition for the algorithm (1).

E(πM( f̃k)) − E( fρ) ≤ P(λ) + S(z, λ) +H(z, λ) +D(λ), (2.5)

where

P(λ) = {E(πM( f̃k)) − En(πM( f̃k))} + {En( fλ) − E( fλ)},

S(z, λ) = {En(πM( f̃k)) − Ez(πM( f̃k))} + {Ez( fλ) − En( fλ)},

H(z, λ) = {Ez(πM( f̃k)) − Ez( fλ)},
D(λ) = E( fλ) − E( fρ) + λ∥ fλ∥H1 . (2.6)

The drift error P(λ) describes the change of ρ(i) from ρ, and the sample error S(z, λ) connects the
estimator πM( f̃k) with fλ. H(z, λ) andD(λ) are known as the hypothesis error and the approximation
error, respectively.

To compared with the main results in [16], we shall assumeD(λ) satisfies the same decay rate as follows

D(λ) ≤ cqλ
q, ∀ 0 < λ ≤ 1, (2.7)

for some exponent 0 < q ≤ 1 and a constant cq > 0.
Next we can state the generalization error bound and give the proofs in Sections 3–6.

Theorem 1. Assume zi = (xi, yi)n
i=1 satisfy condition (1.13), the hypothesis space HK, z satisfies the

capacity assumption (1.21) with 0 < p < 2, the kernel K satisfies a Lipschitz condition of order (α, β)
with 0 < k0 ≤ K(u, v) ≤ k1 for any u, v ∈ X, the target function fρ can be approximated with the exponent
0 < q ≤ 1 inH1, (1.14) for ρX and (1.22) for ρ(y|x) hold. Take k ≥ T ≥ n. Then for any 0 < δ < 1, with
confidence 1 − δ, we have

{E(πM( f̃k)) − E( fρ)} ≤ Ct{λq + b−1
n λ

2q−2 + b
− 2

2+p
n }, (2.8)

where t = log
(

6
δ−6bnβ(an)

)
with bn and an given explicitly later.
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Theorem 2. Under the assumptions of Theorem 1, if

n ≥
{
8

1
ζ ,

(6β0

δ

) 1
(γ+1)(1−ζ)−1

}
, ζ ∈

(
0,
γ

γ + 1

)
, (2.9)

then we obtain

∥πM( f̃k) − fρ∥2ρX
≤ D̃n−θ

′

log
(12
δ

)
, (2.10)

where

θ′ = min
{

qζ
2 − q

,
2ζ

2 + p

}
.

Let α = 0 and ζ = 1. Then we obtain the following learning rate of the i.i.d. sampling

∥πM( f̃k) − fρ∥2ρX
≤ C̃

(1
n

)min
{

q
2−q ,

2
2+p

}
log

(12
δ

)
,

which is the same as that in [16]. In particular, as p→ 0, 2
2+p → 1 which is the optimal convergence rate.

3. Estimates for the drift error

Proposition 3. Under the assumptions of Theorem 1, the inequality

P(λ) ≤
Cλ2q−2

n
, (3.1)

holds.

Proof. By (1.1) and (2.4), we get{(
E(πM( f̃k)) − E( fλ)

)
−

(
En(πM( f̃k)) − En( fλ)

)}
≤

1
n

n∑
i=1

∣∣∣∣∣ ∫
Z

[(
πM( f̃k)(u) − y

)2
−

(
fλ(u) − y

)2
]
d
(
ρ(u, y) − ρ(i)(u, y)

)∣∣∣∣∣
=

1
n

n∑
i=1

∣∣∣∣∣ ∫
X

(
πM( f̃k)(u) − fλ(u)

)(
πM( f̃k)(u) + fλ(u) − 2 fρ(u)

)
d
(
ρX(u) − ρ(i)

X (u)
)∣∣∣∣∣. (3.2)

Now (1.15) tells us that{(
E(πM( f̃k)) − E( fλ)

)
−

(
En(πM( f̃k)) − En( fλ)

)}
≤

1
n

n∑
i=1

Cαi
∥∥∥∥∥(πM( f̃k)(u) − fλ(u)

)(
πM( f̃k)(u) + fλ(u) − 2 fρ(u)

)∥∥∥∥∥
Cs(X)

≤
C
n
α

1 − α
(3M + ∥ fλ∥∞){2| f̃k|Cs(X) + 2| fλ|Cs(X) + 2| fρ|Cs(X) + 4M + 2∥ fλ∥∞}, (3.3)

where the last inequality holds true since ∥ f g∥Cs(X) ≤ ∥ f ∥C(X)∥g∥Cs(X) + ∥ f ∥Cs(X)∥g∥C(X), see [19].
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In the following, we estimate ∥ fλ∥∞,| fλ|Cs(X),| f̃k|Cs(X) and | fρ|Cs(X) separately. Let
fλ(x) =

∑∞
j=1 α j,λKu j(x), {α j,λ} ∈ l1. It follows that

| fλ(x)| ≤
κ

∥Ku j∥ρX

∞∑
j=1

|α j,λ|

≤
κ

∥Ku j∥ρX

∥ fλ∥H1 . (3.4)

Furthermore,

∥ fλ∥∞ ≤
κ

∥Ku j∥ρX

D(λ)
λ
. (3.5)

The Lipschitz condition (1.18) of the kernel function K yields for any f ∈ H1 that

| f (x) − f (x′)| ≤
Cα|x − x′|s

∥Ku j∥ρX

∥ f ∥H1 ,∀x, x′ ∈ X.

Together with (1.17), this implies that

| fλ|Cs(X) ≤
Cα∥ fλ∥H1

∥Ku j∥ρX

≤
Cα
∥Ku j∥ρX

D(λ)
λ
. (3.6)

In the same way, from the definition of f̃k, we have

| f̃k|Cs(X) ≤ Cα∥ f̃k∥l1

≤ Cα∥y∥2n
≤ CαM2. (3.7)

In addition, combining (1.17) with (1.22) gives

| fρ|Cs(X) = sup
x,x′∈X

|
∫

Y
ydρ(y|x) −

∫
Y

ydρ(y|x′)|

|x − x′|s

≤
∥y∥Cs(Y)Cρ|x − x′|s

|x − x′|s

≤ Cρ(M + (2M)1−s). (3.8)

Plugging (3.5), (3.6), (3.7) and (3.8) into (3.3), the desired estimate (3.1) follows, and the proposition
is proved.
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4. Estimates for the sample error

In our analysis, we apply the method in [18,23] to deal with the original weakly dependent sequence.
Let (an, bn) be any integer pair with bn = [n/2an]. The dependent observations are split into 2bn blocks,
each of size an. For 1 ≤ k ≤ 2bn, Qan

k denotes the marginal distribution of block (z(k−1)an+1, z(k−1)an+2, · ·

·, zkan). With the constructed blocks, one can then take a new sequence (z′1, · · ·, z
′
2bnan

) with product
distribution

∏2bn
k=1 Qan

k . We further define

Z1 = (z1, · · ·, zan , z2an+1, · · ·, z3an , · · ·, z2(bn−1)an+1, · · ·, z2(bn−1)an),
Z2 = (zan+1, · · ·, z2an , z3an+1, · · ·, z4an , · · ·, z(2bn−1)an+1, · · ·, z2bnan),

and correspondingly

Z′1 = (z′1, · · ·, z
′
an
, z′2an+1, · · ·, z

′
3an
, · · ·, z′2(bn−1)an+1, · · ·, z

′
2(bn−1)an

),

Z′2 = (z′an+1, · · ·, z
′
2an
, z′3an+1, · · ·, z

′
4an
, · · ·, z′(2bn−1)an+1, · · ·, z

′
2bnan

).

The sample error S(z, λ) can be rewritten as

S(z, λ) = {Ez( fλ) − Ez( fρ)} − {En( fλ)) − En( fρ)}

+ {En(πM( f̃k)) − En( fρ)} − {Ez(πM( f̃k)) − Ez( fρ)}
:= S1(z, λ) + S2(z, k).

We analyze the term S1(z, λ) by using the following inequality from [18].

Lemma 4.1. If g is a measurable function on Z satisfying
∥∥∥g(z) −

∫
Z

gdρ(i)
∥∥∥
∞
≤ M, then for any δ > 0,

with confidence 1 − δ, there holds

1
n

n∑
i=1

(
g(zi) −

∫
Z

gdρ(i)) ≤ b−1
n

{
8
3

M log
( 2
δ − 2bnβ(an)

)
+

√√
2
an

2anbn∑
i=1

∫
Z

g2dρ(i) log
( 2
δ − 2bnβ(an)

)
+ M

}
.

Proposition 4. Under the assumptions of Theorem 1, for any 0 < δ < 1, with confidence 1 − δ/3,

S2(z, λ) ≤ C
{
b−1

n

(
1 +

D(λ)2

λ2

)
+ D(λ)

}
t. (4.1)

Proof. Let g(z) = (y − fλ(u))2 − (y − fρ(u))2, z = (u, y) ∈ Z. Thus∥∥∥∥∥g(z) −
∫

Z
gdρ(i)

∥∥∥∥∥
∞

≤ 2
(
3M +

κ

∥Ku j∥ρX

D(λ)
λ

)2

:= 2Bλ

and ∫
Z

g2dρ(i) ≤ Bλ

∫
Z

gdρ(i).

Using Lemma 4.1, with confidence 1 − δ/3, we have

1
n

n∑
i=1

(
g(zi) −

∫
Z

gdρ(i)
)
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≤

(19t
3
+ 2

)
Bλb−1

n +
1

2anbn

2anbn∑
i=1

∫
Z

gdρ(i)

≤

(19t
3
+ 2

)
Bλb−1

n + 2
(
En( fλ) − En( fρ)

)
. (4.2)

Observe that

En( fλ) − En( fρ) ≤
(
En( fλ) − E( fλ) + E( fρ) − En( fρ)

)
+ D(λ). (4.3)

By (1.15), we have

En( fλ) − E( fλ) + E( fρ) − En( fρ)

≤
1
n

n∑
i=1

∣∣∣∣∣ ∫
X

(
fλ(u) − fρ(u)

)2d
(
ρ(i)

X (u) − ρX(u)
)∣∣∣∣∣

≤
1
n

n∑
i=1

Cαi
∥∥∥∥∥( fλ(u) − fρ(u)

)2
∥∥∥∥∥

Cs(X)

≤
Cα

n(1 − α)

(
1 +
D(λ)
λ

)2

, (4.4)

where the last inequality follows from (3.6) and (3.8).
Combining (4.2), (4.3) and (4.4), we get the desired error bound (4.1) of S1(z, λ). Proposition 4 is

proved.

We continue to analyze S2(z, k) by applying the following probability inequality for the β-mixing
sequences from [18].

Lemma 4.2. Let G be a class of measurable functions on Z. Moreover, assume that
∥∥∥g−

∫
Z

gd(i)
∥∥∥
∞
≤ M

for all g ∈ G . Then

Prob
{

sup
g∈G

1
n

n∑
i=1

(
g(zi) −

∫
Z

g(z)dρ(i)
)
> ϵ +

M
bn

}
≤

∏
1

+
∏

2

+2bnβ(an),

where ∏
1

= Prob
{

sup
g∈G

1
bn

bn∑
j=1

(
2bn

n

(2 j−1)an∑
i=2( j−1)an+1

(
g(z′i) −

∫
Z

g(z)dρ(i)
))
≥ ϵ

}
,

∏
2

= Prob
{

sup
g∈G

1
bn

bn∑
j=1

(
2bn

n

2 jan∑
i=(2 j−1)an+1

(
g(z′i) −

∫
Z

g(z)dρ(i)
))
≥ ϵ

}
.

To get the upper bounds of the terms
∏

1 and
∏

2, we need to invoke the following inequality for the
non-identical sequence of probability distributions.

Proposition 5. Assume {Xi}
n
i=1 is a random sequence in the measurable space

(
Xn,

∏n
i=1 Qi

)
. Let F be

a set of measurable functions on X and B > 0 be a constant such that each f ∈ F satisfies ∥ f ∥∞ ≤ B.
Suppose there exists a nonnegative functional w on F and some positive constants (∆i)n

i=1 such that

E f 2(Xi) ≤ w( f ) + ∆i,∀ f ∈ F . (4.5)
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Also assume for some a > 0 and p ∈ (0, 2),

logN2(F , ε) ≤ aε−p,∀ε > 0.

Then for any x > 0 and any D > 0, with probability at least 1 − e−x there holds

1
n

n∑
i=1

E f (Xi) −
1
n

n∑
i=1

f (Xi) ≤ D−1w( f ) + c′pη̃ +
(D + 18B + 2)x

n
,∀ f ∈ F ,

where c′p is a constant depending only on p and

η̃ := max
{
D

2−p
2+p , B

2−p
2+p + 1

}(a
n

) 2
p+2

+
1
n

n∑
i=1

∆i.

The above inequalities imply the estimate of S2(z, k).

Proposition 6. Under the assumptions of Theorem 1, for any 0 < δ < 1, with confidence 1 − δ/3,

S2(z, k) ≤
1
2
{E(πM( f̃k)) − E( fρ)} +Cp,Φ,ρηR +

(192M2 + 2)t
bn

, (4.6)

where

ηR :=
(Rp

bn

) 2
2+p

+
α

1 − α
1
n

max{R, 1}. (4.7)

Proof. Define the function set G̃ on Zan by

G̃ =
{
G(t1, · · ·, tan) =

2bn

n

an∑
k=1

g(tk) : g ∈ G ,G =
{
g(z) = g(u, y) = (y − πM( f )(u))2

− (y − fρ(u))2 : f ∈ BR

}}
and

w(G) : =
∫

Zan

G2(t1, · · ·, tan)dρ(t1)dρ(t2) · · · dρ(tan)

=
4a2

nb2
n

n2

∫
Z

g2dρ.

It follows that

EG2(z′(k−1)an+1, z
′
(k−1)an+2, · · ·, z

′
kan

)

≤
4b2

nan

n2

kan∑
i=(k−1)an+1

∫
Z

g2dρ(i)

≤ w(G) +
4b2

nan

n2

kan∑
i=(k−1)an+1

∣∣∣∣∣ ∫
Z

g2d(ρ(i) − ρ)
∣∣∣∣∣. (4.8)
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We see from (1.15) and (1.22) that∣∣∣∣∣ ∫
Z

g2d(ρ(i) − ρ)
∣∣∣∣∣ ≤ Cαi

∥∥∥∥∥( fρ(u) − πM( f )(u))2
∫

Y
(2y − πM( f )(u) − fρ(u))2dρ(y|u)

∥∥∥∥∥
Cs(X)

≤ Cαi(1 + R). (4.9)

By (4.8) and (4.9), we know that ∆k in (4.5) satisfies

∆k ≤
4b2

nan

n2 Cρ,Φmax{R, 1}
an∑
i=1

α(k−1)an+i.

Let w = {t⃗ j = (t j
1, · · ·, t

j
an)}

d
j=1 ⊂ (Zan)d, d ∈ N. We know that for any functions G1 =

2bn
n

∑an
k=1 g1(tk)

and G2 =
2bn
n

∑an
k=1 g2(tk) in G̃ ,

d2
2,w(G1,G2) =

1
d

d∑
j=1

(
G1(t⃗ j) −G2(t⃗ j)

)2

=
1
d

d∑
j=1

(2bn

n

an∑
k=1

(
g1(t j

k) − g2(t j
k)
))2

≤
1

dan

d∑
j=1

an∑
k=1

(
g1(t j

k) − g2(t j
k)
)2

= d2
2,w(g1, g2),

so
N2(G̃ , ϵ) ≤ N2(G , ϵ). (4.10)

Moreover,
N2(G , ϵ) ≤ N2(BR,

ϵ

4M
).

This together with (4.10) yields

log N2(G̃ , ϵ) ≤ log N2(G , ϵ) ≤ cp(4M)pRPϵ−p.

Note that ∥G∥∞ ≤ ∥g∥∞ ≤ 8M2. It is also easy to see that

EG(z′(k−1)an+1, z
′
(k−1)an+2, · · ·, z

′
kan

) ≤
2bn

n

kan∑
i=(k−1)an+1

∫
Z

gdρ(i),

and

w(G) =
4a2

nb2
n

n2

∫
Z

g2dρ ≤
∫

Z
g2dρ ≤ 8M2

∫
Z

gdρ.

Now applying Proposition 5 to G̃ in
(
(Zan)bn ,

∏bn
j=1 Qan

2 j−1
)
. Let B = 8M2 and a = cp(4M)pRp. Then

for any D > 0, g ∈ G , with confidence at least 1 − e−t, we have

1
bn

bn∑
j=1

(
2bn

n

(2 j−1)an∑
i=2( j−1)an+1

( ∫
Z

g(z)dρ(i) − g(z′i)
))
≤

8M2

D

( ∫
Z

gdρ
)
+ c′pη1 +

(D + 144M2 + 2)t
bn

.
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Here

η1 = max
{
D

2−p
2+p , (8M2)

2−p
2+p + 1

}{cp(4M)pRp

bn

} 2
2+p

+
4bnan

n2 Cρ,Φmax{R, 1}
bn∑
j=1

an∑
i=1

α(2 j−2)an+i.

It follows by taking ϵ1 = c′pη1 +
(D+144M2+2)t

bn
that

Prob
{

sup
g∈G

1
bn

bn∑
j=1

(
2bn

n

(2 j−1)an∑
i=2( j−1)an+1

( ∫
Z

g(z)dρ(i) − g(z′i)
))
−

8M2

D

( ∫
Z

gdρ
)
≥ ϵ1

}
≤ e−t.

Applying Proposition 5 to G̃ in
(
(Zan)bn ,

∏bn
j=1 Qan

2 j−1
)

once again, we have

Prob
{

sup
g∈G

1
bn

bn∑
j=1

(
2bn

n

2 jan∑
i=(2 j−1)an+1

( ∫
Z

g(z)dρ(i) − g(z′i)
))
−

8M2

D

( ∫
Z

gdρ
)
≥ ϵ2

}
≤ e−t.

Here ϵ2 = c′pη2 +
(D+144M2+2)t

bn
with

η2 = max
{
D

2−p
2+p , (8M2)

2−p
2+p + 1

}{cp(4M)pRp

bn

} 2
2+p

+
4bnan

n2 Cρ,Φmax{R, 1}
bn∑
j=1

an∑
i=1

α(2 j−1)an+i.

Moreover, we obviously have

4bnan

n2

bn∑
j=1

an∑
i=1

α(2 j−2)an+i +
4bnan

n2

bn∑
j=1

an∑
i=1

α(2 j−1)an+i

≤
2
n
α

1 − α
,

and ∥∥∥∥∥g(z) −
∫

Z
g(z)dρ(i)

∥∥∥∥∥
∞

< 16M2.

We know from Lemma 4.2 by taking ε = c′pη̃ +
(D+144M2+2)t

bn
with

η̃ =

{
max

{
D

2−p
2+p , (8M2)

2−p
2+p + 1

}{cp(4M)pRp

bn

} 2
2+p

+
2
n

Cρ,Φmax{R, 1}
α

1 − α

}
,

then

Prob
{

sup
g∈G

1
n

n∑
j=1

( ∫
Z

g(z)dρ(i) − g(zi)
)
−

16M2

D

( ∫
Z

gdρ
)
> ϵ +

16M2

bn

}
≤ 2e−t + 2bnβ(an).

Then we obtain (4.6) by taking 2e−t + 2bnβ(an) := δ3 and D = 32M2.
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5. Estimates for the hypothesis error

Different from the widely regularized method with data-dependent hypothesis spaces [8,10,21,22],
our estimation for the hypothesis error Ez(πM( f̃k)) − Ez( fλ) is based on the following lemma, see
Theorem 3.3 in [7].

Lemma 5.1. If f ∈ H , h ∈ Hn
1 , then the output ( fm)m≥0 of the RPGA satisfies the inequality

∥ f − fm∥
2 − ∥ f − h∥2 ≤

4
m + 1

∥h∥2
Hn

1
, m = 0, 1, 2, · · ·, (5.1)

where

Hn
1 =

{
h =

∑
i

αn
i K

n
ui

: αn
i = αi∥Kui∥n,K

n
ui
=

Kui

∥Kui∥n
,
∑

i

αiKui ∈ H1

}
(5.2)

with
∥ f ∥Hn

1
:= inf

{∑
i

|αn
i | : f =

∑
i

αiKui

}
. (5.3)

Proposition 7. Under the assumptions of Theorem 1, for k ≥ T and any 0 < δ < 1, with the confidence
at least 1 − δ/3, there holds

H(z, λ) ≤ 4 min
{{(19t

3
+ 2

)
Mb−1

n + M +
α

n(1 − α)

(k2
1

k2
0

+
2Cαk1

k2
0

)
+ 1

}2

,
k2

1

k2
0

}
D2(λ)

(k + 1)λ2 . (5.4)

Proof. By Lemma 5.1, we have

H(z, λ) = {Ez(πM( f̃k)) − Ez( fλ)} ≤ 4
∥ fλ∥2Hn

1

k + 1
. (5.5)

From the definitions of ∥ f ∥Hn
1

and ∥ f ∥H1 , we have

∥ fλ∥2Hn
1
≤

k2
1

k2
0

∥ fλ∥2H1
. (5.6)

Meanwhile, we define the function g(x) = |Kui(x)|2, for any i. Notice that∥∥∥∥∥g(x) −
∫

X
gdρ( j)

X

∥∥∥∥∥
∞

≤ 2
k2

1

k2
0

:= 2M,

and ∫
Z

g2dρ( j)
X ≤ M

∫
Z

gdρ( j)
X .

Using Lemma 4.1, with confidence 1 − δ/3, we have

1
n

n∑
j=1

(
g(x j) −

∫
X

gdρ( j)
X

)
≤

(19t
3
+ 2

)
Mb−1

n + M. (5.7)
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By (1.17) and (1.15), we get

1
n

n∑
j=1

( ∫
X

gdρ( j)
X −

∫
X

gdρX

)
≤

1
n

n∑
j=1

Cα j(∥g∥∞ + |g|Cs(X))

≤
α

n(1 − α)

(k2
1

k2
0

+
2Cαk1

k2
0

)
. (5.8)

This in connection with (5.7) tells us that

1
n

n∑
j=1

|K(ui, x j)|2 − EK
2
ui
=

1
n

n∑
j=1

(
g(x j) −

∫
X

gdρX

)
≤

(19t
3
+ 2

)
Mb−1

n + M +
α

n(1 − α)

(k2
1

k2
0

+
2Cαk1

k2
0

)
. (5.9)

It is easy to see that ∥Ku j∥
2
ρX
= EK

2
u j
= 1. Now (5.9) implies that

∥Kui∥n =

√√
1
n

n∑
j=1

|K(ui, x j)|2

≤
1
n

n∑
j=1

|K(ui, x j)|2

≤

(19t
3
+ 2

)
Mb−1

n + M +
α

n(1 − α)

(k2
1

k2
0

+
2Cαk1

k2
0

)
+ 1. (5.10)

Therefore,

∥ fλ∥2Hn
1
≤

{(19t
3
+ 2

)
Mb−1

n + M +
α

n(1 − α)

(k2
1

k2
0

+
2Cαk1

k2
0

)
+ 1

}2

∥ fλ∥2H1
. (5.11)

Combining (5.5), (5.6), (5.11), we obtain (5.4).

6. Proofs of main results

Proof of Theorem 1. Combining the bounds (2.7), (3.1), (4.1), (4.6) and (5.4), with confidence at least
1 − δ,

{E(πM( f̃k)) − E( fρ)} ≤ cqλ
q + 4 min

{{(19t
3
+ 2

)
Mb−1

n + M

+
α

1 − α

(k2
1

k2
0

+
2Cαk1

k2
0

)
+ 1

}2

,
k2

1

k2
0

} c2
qλ

2q

(k + 1)λ2

+
Cλ2q−2

n
+C

{
b−1

n

(
1 +

c2
qλ

2q

λ2

)
+ cqλ

q
}
t

+
1
2
{E(πM( f̃k)) − E( fρ)} +Cp,Φ,ρηR +

(192M2 + 2)t
bn

. (6.1)
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Note that k ≥ T ≥ n. By taking R = M2, then

{E(πM( f̃k)) − E( fρ)} ≤ t
{
(k + 1)−1λ2q−2 + n−1λ2q−2 + b−1

n λ
2q−2

+ λq + b
− 2

2+p
n + n−1 + b−1

n

}
≤ Ct

{
λq + b−1

n λ
2q−2 + b

− 2
2+p

n

}
. (6.2)

This finishes the proof of Theorem 1.

Proof of Theorem 2. Under the conditions of Theorem 1, let n1−ζ ≤ an < n1−ζ + 1, ζ ∈ [0, 1] and n ≥ 8
1
ζ .

Then

1
bn
≤

1
n

2an
− 1
≤

2(n1−ζ + 1)
n − 2n1−ζ

≤
4n1−ζ

n − 2n1−ζ =
4n−ζ

1 − 2n−ζ

≤ 8n−ζ . (6.3)

Substitute (6.3) into (6.2), we obtain

{E(πM( f̃k)) − E( fρ)} ≤ Ct{λq + n−ζλ2q−2 + n−
2ζ

2+p }. (6.4)

By setting λ = n−θ, we know that

{E(πM( f̃k)) − E( fρ)} ≤ D2tn−θ
′

, (6.5)

where
θ′ = min

{
qθ, ζ − (2 − 2q)θ,

2ζ
2 + p

}
.

To balance the errors in (2.5), we take θ = ζ

2−q . Then

θ′ = min
{

qζ
2 − q

,
2ζ

2 + p

}
.

Finally, we choose

n ≥
(6β0

δ

) 1
(γ+1)(1−ζ)−1

, ζ ∈
(
0,
γ

γ + 1

)
,

it follows from β(an) ≤ β0(an)−γ and an ≥ n1−ζ that

12bnβ(an)
δ

≤ 1,

thus
t = log

6
δ − 6bnβ(an)

≤ log
12
δ
.

This finishes the proof of Theorem 2.
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