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Abstract: This paper models stochastic process of price time series of CS I 300 index in Chinese
financial market, analyzes volatility characteristics of intraday high-frequency price data. In the
new generalized Barndorff-Nielsen and Shephard model, the lag caused by asynchrony of market
information and market microstructure noises are considered, and the problem of lack of long-term
dependence is solved. To speed up the valuation process, several machine learning and deep learning
algorithms are used to estimate parameter and evaluate forecast results. Tracking historical jumps of
different magnitudes offers promising avenues for simulating dynamic price processes and predicting
future jumps. Numerical results show that the deterministic component of stochastic volatility
processes would always be captured over short and longer-term windows. Research finding could
be suitable for influence investors and regulators interested in predicting market dynamics based on
high-frequency realized volatility.
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1. Introduction

As we all know, financial fluctuations may come not only from the financial system itself, but
also from other aspects of social and economic life. For example, COVID-19, has caused frequent
and violent fluctuations in global financial markets [1, 2]. In the post-COVID-19 era, affected by
internal and external factors in the market, the price of financial assets has been unstable during the first
half of 2021. Facing a world with more dynamic economic situation, enterprises and research circles
are realising the importance of the challenges and opportunities presented by financial fluctuations.
The volatility of financial assets, which is the intensity of changes in the rate of return of financial
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assets over a period of time, is unobservable [3]. The measurement of volatility, which describes the
potential deviation from the expected value, is the core issue in the study of financial volatility. The
accurate prediction of financial volatility is the key factor for successful financial asset pricing [4],
economic forecasting [5], risk management [6], portfolio optimization [7], and quantitative investment
[8]. Volatility Analysis of financial time series is a practical method to study the law of volatility and
estimate volatility.

An effective way to fit dynamic asset changes is stochastic volatility modeling in the research of
financial quantification. There are a lot of derivative pricing models that could be used to model stock
prices. He et al. (2021) [9] proposed a new stochastic volatility model to provide a better fit to real
data and showed numerically the validity by comparing the results with the Monte Carlo simulation
results. He et al. (2021) [10] used the FMLS (finite moment log-stable) model with the stochastic
volatility to analyse the effect of both jumps and stochastic volatility. The numerical experiments that
it is effective and converges very rapidly. Most interestingly, new progress has been made in the field
of volatility estimation under high frequency environment in recent years. A large amount of literature
focuses on the three directions of high-frequency volatility estimation, namely, model establishment
[11], model evaluation [12], and model application [13]. Asset price process [14] (continuous, finite
jump or Lévy jump) and data characteristics [15] (whether there is microstructure noise and whether
regular sampling is implemented) are the two main contents in the field of volatility estimation under
high frequency environment.

Jump, excessive fluctuation of asset price in a certain period of time, is one of the key issues in asset
price dynamics research. Theoretically, when there is no jump in asset price, the realized fluctuation
is an unbiased and consistent estimation of potential fluctuation. However, the jump phenomenon
of price volatility in the capital market is widespread. The jump leads to consistent overestimation
of continuity fluctuations, causes realized volatility and realized range volatility to no longer be an
unbiased and consistent estimate of potential volatility. In response to this jump phenomenon of asset
price fluctuations, estimation of realized bipower variation, which was first proposed by Barndorff-
Nielsen and Shephard, was used to decompose realized fluctuations into continuous fluctuations and
jump fluctuations [16].

The Barndorff-Nielsen and Shephard model (BN-S) model [17], which is used to describe the
random behavior of price process in the research field of non-parametric methods for high-frequency
time series, is a popular stochastic volatility model with a Lévy process as driving factor of financial
asset price. From academic points of view, the classic BN-S model has many attractive properties.
But its theoretical framework is not completely satisfied in many application scenarios. Problems
such as lack of long-term dependence may lead to the failure of the model in use. Recently, a variety
of improvement schemes to the basic model are proposed, generalized BN-S models are constructed,
and multiple dimensional applications, such as jump capture [18], pricing [19], and risk management
[20], are implemented in the process of random fluctuations in asset prices. Roberts et al. (2020) [21]
computed infinitesimal generators of generalized BN-S model driven by Lévy processes, and captured
large or small jumps from each sensor receives data. SenGupta (2014) [22] derived the price
expression for the put asian options in financial market when the asset is driven by the generalized
BN-S model with stochastic volatility. Arai et al. (2017) [23] built generalized BN-S model under
many additional conditions to obtain locally risk-minimizing strategies for call and put options.

Artificial intelligence in big data environment provides new tools for financial research and
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enriches the previous research on volatility estimation [24]. Over the past few years, data processing
classifiers based on machine learning and deep learning have always shown excellent performance in
the field of financial prediction [25]. Machine learning [26] could be used to deal with the nonlinear
relationship and interaction between variables, which would effectively solve the collinearity problem
between variables. The nonlinearity and randomness in financial time series could be captured by
machine learning, so machine learning algorithms show bigger prediction ability than linear models.
Monfared et al. (2014) [27] used machine learning algorithms to predict the volatility of the National
Association of Securities Dealers Automated Quotations index in the United States. The results show
that machine learning could improve the prediction ability. Compared with machine learning, deep
learning [28] has stronger optimization capabilities and more advantages when dealing with big data
sets. Recurrent neural network (RNN) is widely used because of its strong learning capability,
stability and simulation ability for volatility prediction. Liu (2019) [29] deployed RNN for predicting
the volatility of the S&P 500 index, and found that RNN has stronger prediction ability than
Generalized AutoRegressive Conditional Heteroskedasticity (GARCH). Fischer et al. (2018) [30]
used Long Short Term Memory (LSTM) to predict out-of-sample directional movements for the S&P
500, and found that the performance of the stock portfolio constructed by this method is better than
that of other linear models. The contribution of this paper is that the proposed approach through the
use of machine learning algorithms enhances the forecasting ability of high-frequency CS I 300 index
volatility, which is essential for dynamic jump prediction in hedging, and purposes of arbitrage, and
that the new model solves the problem of the classical BN-S model and enhances the forecasting
efficiency of high-frequency CS I 300 index volatility by fusing machine learning and deep learning
algorithms with a generalized BN-S model.

In the research of asset volatility under random uncertain environment, the classic BN-S model
including a single OU process is often constructed in the previous literature. However, the model
will fail in application due to the lack of long-term dependence. Some existing studies solve this
problem by superimposing the OU process, but the actual economic significance of different stochastic
processes is less considered. The generalized BN-S model is used to study the volatility of daily
sampled commodity prices by many authors in the US and European markets. There are fewer relevant
studies on the Asia-Pacific market, and fewer relevant studies using the minute sampling frequency.

As one of the fastest-growing markets in the world, the Asia-Pacific securities market has attracted
more and more attention [31]. The CS I 300 index covers most of the domestic market value of China
(the largest economy in the Asia-Pacific region), and reflects the market’s mainstream investment
returns and changes in the trader structure. The use of samples with high sampling frequency in the
day can retain more market information and discover more detailed fluctuation characteristics caused
by the impact of various information on the market. This research focuses on the price dynamics of
the CS I 300 index with high sampling frequency, and uses the generalized BN-S model to
quantitatively analyze the volatility process of financial time series to capture the deterministic
component of the random process of price fluctuations. The impact of overnight information [32] on
the market is avoided in data preprocessing. Samples with high sampling frequency in the day are
used to retain market information to a greater extent and discover more volatility characteristics
caused by abnormal information shocks on the market.

Our approach to exploring stochastic process of high-frequency asset price dynamics has several
advantages. First, the certainty element (θ) in the new model helps us freely fit stock index prices
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and dynamic volatility in a correlated but different way. Because the superposition of Lévy process is
considered, it can solve the problem that the classical BN-S model does not have enough dependence
for a long time. Many previous studies believe that future volatility is unobservable and completely
random. It is noteworthy that, in [33], a generalized BN-S model with the superposition of Lévy
process extracted deterministic component in daily random volatility of crude oil out of low frequency
price time series. Is there a deterministic component in random volatility that can improve the accuracy
of volatility estimation? This paper studies the extension and application of the BN-S model in high-
frequency financial time series field. The high-frequency data incorporate more market information
than the daily price. Model description shows that the generalized new BN-S model is more superior
in long-term volatility fitting and forecasting. Numerical results show that the deterministic component
of stochastic volatility processes would always be captured over short and longer-term windows.

Second, the characteristics of information transmission and high-frequency data in the real
financial market are fully considered in this paper. The new model realize the estimation of delay
parameter (b) in the case of the jump in volatility caused by sluggish market response is not
synchronized with the jump of asset price. Unlike low-frequency random volatility models,
high-frequency random volatility models need to consider the impact of market microstructure noises
based on data characteristics. Overnight information is another key factor affecting the accuracy of
prediction results in high-frequency data processing. The impacts of market microstructure noises and
overnight information are also considered in data analysis. The numerical results on CS I 300 index
show the effectiveness of the generalized BN-S model when it is used for high-frequency data with
noise.

Third, the new model supports the cooperation of machine learning and stochastic volatility models,
applies big data techniques to feature learning and parameter estimation on empirical datasets of stock
index prices, and captures the deterministic components of the intraday price volatility of CS I 300
stock index. It is easy to estimate the dynamic deterministic parameter with the help of machine
learning algorithms and deep learning algorithms. It shows the application of data science in obtaining
“deterministic components” from processes that are generally considered to be completely random. 11
kinds of machine learning and deep learning algorithms (Logistic regression, Support vector machine,
K-nearest neighbors, K-means, Naive bayes, Gradient boost, Decision tree, Random forest, Neural
network, LSTM and LSTM network with batch) are used to process data to estimate parameters. We
believe that more algorithms could further prove the validity of the model and ensure the accuracy
of the results. In general, the results offer promising avenues for simulating dynamic price processes
and predicting future jumps. Research finding could be suitable for influence investors and regulators
interested in predicting market dynamics based on high-frequency realized volatility.

The paper is organized as follows. In Section 2, the generalized BN-S model is introduced. In
Section 3, the high-frequency CS I 300 stock index price data is selected as the research sample, the
high-frequency financial time series are preprocessed, the descriptive statistical characteristics of the
data set are obtained, and the distribution of price fluctuations is analysed. Based on the research results
obtained in Section 3, a deterministic component out of high-frequency price stochastic processes is
derived by using machine learning and deep learning algorithms to realize parameter analysis and
estimation in Section 4. In Section 5, a brief conclusion is provided.
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2. Barndorff-Nielsen and Shephard model

Financial time series of different assets share many common features (heavy tailed distributions of
log-returns, aggregational gaussianity, quasi long-range dependence). Many of these facts are
successfully captured by stochastic models with Lévy processes. Lévy processes can be used to
characterize the dynamic changes of the time series of financial asset prices with jump processes.
BN-S model, which is a widely used stochastic model with Lévy processes, is used to describe the
stochastic behavior of random time series in the research field of nonparametric methods of
high-frequency time series. A brief introduction to this model is given as follows.

Consider a frictionless financial market in which a risk-free asset with a constant rate of return r
and a stock are traded on a fixed horizon date T . The classical BN-S model assumes that the price
process of a stock (or, a commodity) S = (S t)t≥0, which is defined in a filtered probability space
(Ω,F , (Ft)0≤t≤T ,P), is given by

S t = S 0 exp(Xt), (2.1)

the log-return Xt is given by
dXt = (µ + βσ2

t )dt + σtdWt + ρdZλt, (2.2)

where σt is the volatility at time t, the parameters µ, β, ρ ∈ R, and ρ ≤ 0. The variance process is given
by

dσ2
t = −λσ

2
t dt + dZλt, σ2

0 > 0, (2.3)

where λ > 0.
With respect to the probability measure P, the process W = (Wt) is a standard Brownian motion.

Observe that the Ornstein-Uhlenbeck process in this model is driven by an incremental Lévy process,
which is a random process of positive mean recovery. The process Z = (Zλt) is the subordinator (also
known as background driving Lévy process or “BDLP”). The processes W and Z are independent of
each other. Also, (Ft) is a conventional augmentation of the filtering produced by (W,Z).

Solving (2.3) we obtain

σ2
t = e−λt +

∫ t

0
e−λ(t−s) dZλs. (2.4)

Clearly, the process σ2 = (σ2
t ) is strictly positive. The classical BN-S model has excellent

performance in describing the dynamic characteristic response mode of stable asset prices in a short
time. It is commonly used to capture some stylized features of time series observed in financial
markets, such as semiheavy tails, aggregational Gaussianity, quasi long range dependency and
self-similarity.

However, the results and theoretical framework of the classical BN-S model are not completely
satisfactory in empirical situations. There are several problems in the classical model, which may make
the model difficult to use in practice. For example, empirical results show that the jump in volatility
is positively correlated with stock or commodity prices. But the jump phenomenon in volatility does
not usually occur at the same time with the change in price because of the lag in market response. The
topic of delayed response in the financial market has been studied in papers such as [34]. On the other
hand, the study in [35] handles this problem with a delayed price formula, where the price volatility
obeys the form σ(S t −b), for some delay parameter b > 0. However, the parameter b is also stochastic,
and this makes the resulting model unnecessarily involved.
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Furthermore, the classical BN-S model does not have long-term dependence property.
Consequently, due to the high sequence correlation between hidden variables and parameters, for the
analysis of the empirical data based on this model the convergence rate is slow. The classical BN-S
model contains a single BDLP, which makes the logarithmic return, volatility and variance in the
model completely dependent on each other. When the model is used over a long period of time, this
absolute correlation may lead to inaccurate results. As a result, the model encounters serious failures
in volatility estimation.

These problems are overcome in a new generalized model. It is clear that for the long-term
implementation of the classical BN-S model, a single Lévy subordination is obviously ineffective.
The research results [36] show that the superposition of Ornstein-Uhlenbeck (OU) type processes can
achieve long-range dependence. The superposition of Lévy subordinations successfully fits the
asynchronous changes from price and volatility in an interrelated but independent way. Referencing
the previous research results [33], the structure of a generalized BN-S model will be introduced as
follows.

The key point of our research is to capture the deterministic components out of high-frequency
price stochastic processes. As proposed in [33], suppose Zt and Z∗t , with same (finite) variance, are
two independent Lévy subordinators. There exists a Lévy subordinate Zλt independent of W, such that

dZλt = ρ′dZλt +
√

1 − ρ′2dZ∗λt, 0 ≤ ρ′ ≤ 1. (2.5)

For 0 ≤ ρ′ ≤ 1, Z and Z are positively correlated Lévy subordinators. Assume that the dynamics of
S t are given by (2.1) and (2.2), where σt is given by

dσ2
t = −λσ

2
t dt + dZλt, σ2

0 > 0. (2.6)

In (2.6), the OU process Z = (Zλt) is related to the corresponding Z in (2.3) and is also independent
of W.

In the following study, delay parameter b and the long range dependence property of model are
considered. As shown in [33], the price S = (S t)t≥0 on some risk-neutral filtered probability space
(Ω,F , (Ft)0≤t≤T ,P) is modeled by (2.1). And the convex combination of two independent subordinators
Z and Z(b) would be implemented to expressed the dynamics of Xt in (2.2) by

dXt = (µ + βσ2
t )dt + σtdWt + ρ((1 − θ)dZλt + θdZ(b)

λt ), (2.7)

where 0 ≤ θ ≤ 1, θ is a deterministic parameter. At time t, λ > 0 is the proportional parameter. Zλt and
Z(b)
λt are independent Lévy processes. Compared to Zλt, the process Z(b)

λt corresponds to the greater Lévy
intensity. For instance, if the Lévy densities of Z and Z(b) are given by v1ae−ax and v2ae−ax, respectively
(for a > 0, v1 > 0, v2 > 0, and x > 0), then v2 > v1. Also, in (2.8) the processes W, Z and Z(b)are
independent, and (Ft) is the usual augmentation of the filtration generated by (W; Z; Z(b)).

In fact, the real financial market often deviates from the efficient market. The short-term changes
of asset prices are usually affected by various market factors (e.g., transaction cost, asymmetric
information of traders, etc.), which makes the observed prices deviate from the real prices. This
deviation is called market microstructure noise. The observed asset price process, generally bought in
noise, could be divided into two components

Xt = Xt + εt, (2.8)
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where Xt is the observed log price, Xt is the factual true value of log price, and εt is market
microstructure noise. The asset log price processes and market microstructure noise are independent
of each other. εt is independent identically distributed, Eεt = 0 and Var(εt) = Eε2

t . Market
microstructure noise has a significant impact on estimation of high-frequency covariance matrix.
Market microstructure noise has a significant impact on estimation of high-frequency covariance
matrix. For high sampling frequency, the estimated value of realized covariance is in fact not the
covariance of assets price, but the covariance of market microstructure noise. The asset price process
S t in (2.1) is given by

S t = S 0exp(Xt − εt). (2.9)

The convex combination of two independent subordinators Zλt and Z(b)
λt would be implemented to

expressed the dynamics of log price in (2.7) is given by

d(Xt − ε) = (µ + βσ2
t )dt + σtdWt + ρ((1 − θ)dZλt + θdZ(b)

λt ). (2.10)

The variance process in (2.3) in this case is given by

dσ2
t = −λσ

2
t dt + (1 − θ′)dZλt + θ

′

dZ(b)
λt , σ

2
0 > 0, (2.11)

where θ′ ∈ [0, 1] is deterministic parameter. For simplicity, assume θ = θ
′

for the rest of this paper.
The sum of (1 − θ′)dZλt and θ′dZ(b)

λt , is a Lévy process, which is positively correlated with Zλt and Z(b)
λt .

After a simple calculation, the solution of (2.11) can be explicitly written as

σ2
t = e−λtσ2

0 +

∫ t

0
e−λ(t−s) ((1 − θ

′

)dZλt + θ
′

dZ(b)
λt ). (2.12)

This enforces positivity of σ2
t . Thus, the process σ2

t is strictly positive and it is bounded from below
by the deterministic function e−λtσ2

0. The instantaneous variance of log returns is given by

(σ2
t + ρ

2(1 − θ)2λVar[Z1] + ρ2θ2λVar[Z(b)
1 ])dt.

The short-range-dependence problem of the classical BN-S model can be improved in the new
model. The dynamics given by the new model incorporates a long-range dependence. Assume that JZ

is a jump measure related to the subordinate Z of the Lévy process, J(b)
Z corresponds to the subordinate

Z(b) of the Lévy process, and J(s) =
∫ s

0

∫
R+

JZ(λdτ, dy), J(b)
(s) =

∫ s

0

∫
R+

J(b)
Z (λdτ, dy). Considering the

logarithmic regression of the classical BN-S model and the new model, the covariances of Xt and Xs

are given by

Corr(Xt, Xs) =

∫ s

0
σ2
τdτ + ρ

2J(s)√
(
∫ t

0
σ2
τdτ + tρ2λVar(Z1))(

∫ s

0
σ2
τdτ + sρ2λVar(Z1))

, t > s (2.13)

and

Corr(Xt, Xs) =

∫ s

0
σ2
τdτ + ρ

2(1 − θ)2J(s) + ρ2θ2J(b)(s)
√
α(t)α(s)

, t > s (2.14)
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respectively, where α(ν) =
∫ ν

0
σ2
τdτ+νρ

2λ((1−θ)2Var(Z1)+θ2Var(Z(b)
1 )).When s takes a fixed value, for

the classical BN-S model, Corr(Xt, Xs) rapidly becomes smaller with the increase of t. Such attenuation
may cause the failure of the classical model in applications with a long time span. It can be seen that
the BN-S model, when used to fit the random fluctuation process of risky assets, may get inaccurate
fluctuation simulation results, affected by the change of the time parameter t.

On the other hand, variance of the log-returns Xt and Xs (as shown in (2.14)) are∫ t

0
σ2
τdτ + νρ

2λ((1 − θ)2Var(Z1) + θ2Var(Z(b)
1 ))

and ∫ s

0
σ2
τdτ + νρ

2λ((1 − θ)2Var(Z1) + θ2Var(Z(b)
1 ))

respectively.
Affected by the value of the parameter θ, Corr(Xt, Xs) will never become “too small”. Because the

value of t must have an upper limit when s takes a fixed value. This is the main difference between the
results of (2.13) and (2.14). It can be clearly seen from the results that the generalized new BN-S
model incorporates a long-range dependence and provides more accurate characteristics for the
dynamic volatility analysis in the asset price process. The new model can accurately capture the
essential characteristics of the random fluctuation process of financial time series.

In addition, compared to the classical BN-S model, the parameter θ in the new model can help us
freely fit asset prices and volatility in a correlated but different way. For dynamic prices, the jump is not
completely random, and there is a deterministic element (θ) that can be implemented to be effectively
applied to the new BN-S model in a longer time. The large fluctuations can be captured in the future
from historical experience data (θ = 1), and the initial Lévy subordinate function Zλt could be converted
into a stronger Lévy subordinate function Z(b)

λt to correspond to the large fluctuations. If there is no big
jump apprehended for the upcoming time, the Lévy subordinate function Z(b)

λt could be converted into
Lévy subordinate function Zλt based on historical data (θ = 0) by using machine learning and deep
learning algorithms.

Obviously, an important challenge in the application of the new model is to obtain an estimate of
the value of a deterministic component of the empirical data. In this paper, the new model is used
to analyze the price dynamics of high frequency CS I 300 stock index. Several machine learning
algorithms and deep learning algorithms are implemented to forecast parameter θ.

3. Data

3.1. Sources of data

The CS I 300 index is always considered to have strong market representation. It covers most
of China’s domestic circulating market value and reflects the overall trend of China’s Shanghai and
Shenzhen markets. In particular, its constituent stocks include many mainstream investment stocks
with market representation, liquidity and trading activity. So it is often used to study the returns of
mainstream investments and changes in financial price fluctuations in the market.

The main purpose of this paper is to explore the volatility characteristics of intra-day high-frequency
price data, and then to study the quantitative indicators in the process of random fluctuations in financial
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time series. The generality and extensiveness of the application of the new model in the previous
section are considered, and the CS I 300 index price is considered as the empirical data of analysis.
The corresponding intra-day high-frequency data is selected as the research sample. It is conducive to
maximally retain market information to select research samples with a higher sampling frequency. The
intraday closing price data of the CS I 300 index on consecutive trading days from January 1, 2021 to
June 30, 2021 is considered as a sample. The sampling frequency of this sample is 1 minute. The data
set contains a total of 28, 320 observations in 118 consecutive trading days (Data source: Wind*).

The fluctuation curve of the historical data over time is shown in Figure 1.

Figure 1. Curve of closing price per minute.

It is necessary to discuss the data distribution characteristics of intra-day price changes and yield
fluctuations, which help us to explore the basic laws of CS I 300 stock index time series fluctuations.
In order to study the change trend and distribution characteristics of CS I 300 stock index over time
in different time intervals, an intuitive way is chosen to visually analyze the data structure. Figure 2
shows the moving average curve of the CS I 300 index under different time spans.

Normally, the trading hours of the CS I 300 index are each working day in 9 : 30 − 11 : 30 and
13 : 00 − 15 : 00, Beijing time (the effective trading time per day is a total of 4 hours). So four
time spans of 1 minute, 30 minutes, 120 minutes (half a day) and 240 minutes (1 day) are chosen to
observe the data set. In Figure 2, blue represents the price change curve per minute, and red represents
daily price fluctuations. It can be clearly seen that the general trends of the two curves are similar, but
there are fewer repetitions. The blue curve fluctuates more sharply than the red one, which shows that
the high-frequency data during the day contains more market information than the closing price. The
yellow line (representing the price change every 30 minutes) and the blue line overlap more severely
than the red line. The green curve, which represents price changes every 2 hours, is more stable than
the yellow line. These results are also considered to confirm the above view, that is, the data set at a
higher sampling frequency is more effective for us to find the realized volatility estimator. Compared

*In the field of financial data, Wind has built a complete and accurate large-scale financial engineering and financial data center on
financial and securities data in China. Uniform Resource Locator of wind is: https://www.wind.com.
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with previous studies, the data set used in this paper has more advantages.

Figure 2. Moving average for CS I 300 index.

3.2. Data preprocessing

A lot of misleading information exists in the unprocessed empirical data for various reasons.
Unprocessed data is used directly, which may lead to undesirable results such as a decrease in the
prediction accuracy of the time series. Therefore, the observed samples should be filtered before
doing data analysis.

Compared with the fluctuations in daily stock index yields and trading volume, the impact of
overnight information on the market should not be ignored. Most of these price changes on overnight
information are concentrated within ten minutes of the opening. In other words, price fluctuations
within ten minutes of the opening could not represent changes in stock index fluctuations throughout
the trading day. In order to avoid shocking intra-day fluctuations and causing abnormal data (such as
high kurtosis, increasing outliers, etc.), the data within 10 minutes of the opening of the daily
observation sample should be excluded. After the overnight information was digested by the market,
the empirical data would reflect the daily operation of the CS I 300 index price more accurately. In
addition, we remove the outliers and zero-value data from the observed data to keep the observed
sample data tidy.

After preprocessing the empirical data according to the above filter conditions, the usable sample
data are filtered out (28, 081 observations in total). The rejection rate of sample data is 0.84%. It
shows that the observed samples have both liquidity and validity, and the intra-day high-frequency
price information is effectively stored in the empirical data.

3.3. Descriptive analysis

For the convenience of research, the observed samples are divided and numbered in chronological
order. For example, Sample 1, Sample 2, . . . , Sample 6, represent the samples from January through
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June of 2021. Variance of realized volatility and realized covariance generally decrease with
increased sampling frequency. Market microstructure noise has a significant impact on estimation of
high-frequency covariance. Therefore, in the realized covariance estimation of financial
high-frequency data, it is necessary to balance the variance and bias to select the appropriate sampling
frequency. As proposed in [37], the sampling frequency of 5 minutes is selected in this paper. The
statistical descriptions of the samples of high-frequency CS I 300 index intraday prices are given in
Table 1.

Table 1. Statistical description of CS I 300 index high-frequency prices.

Overall sample Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

Count 28081 940 705 1081 987 846 987
Mean 5245.46 5471.63 5563.75 5116.65 5067.71 5151.67 5202.71
Median 5187.84 5485.11 5523.59 5074.30 5087.45 5161.70 5221.97
Minimum 4886.40 5209.49 5319.68 4891.91 4902.15 4929.86 5065.91
Maximum 5908.34 5653.55 5894.03 5454.05 5177.60 5364.37 5343.28
Skewness 0.60 -0.68 0.40 0.94 -0.73 0.11 -0.21
Kurtosis -0.50 0.23 -0.86 -0.17 -0.66 -1.19 -1.16

The fluctuation characteristics of CS I 300 prices could be seen from the statistical results in Table 1.
The highest price was 5908.34 in February, and the lowest price of 4886.4 appeared in March. Sample
2 has the least amount of data, but its mean and median are higher than those of other samples. It
shows that the price in February is more advantageous compared with other months. The distribution
of price data is not completely symmetrical. The skewness of the overall sample of Sample 1, Samples
4 and 6, are all less than zero. Their distributions have negative deviations, and the tail on the left is
longer than the right. Because there are a few variables with small values, the left tail of the curve is
dragged longer. In contrast to them, there are heavy-tailed distributions on the right side of Samples 2,
3 and 5 (the skewness of these three samples are all greater than 0). This phenomenon is most obvious
in May, followed by June. The kurtosis of the observed samples are less than 3, which shows that
the observed samples do not have leptokurtic characteristics. We believe this is related to sampling
frequency. In the case of sampling frequency per minute, the kurtosis of the sample is less than that
of normal distribution. The generalized BN-S model mentioned in Section 2 is suitable to discuss
the above data characteristics, because Lévy processes in the model could be used to characterize the
dynamic changes of the time series of financial asset prices with jump processes.

Figure 3 provides the difference in the distribution of intra-day high-frequency price samples of CS I
300 in different time periods through a box plot. Compared with other samples, the prices in January
and February are more advantageous, and the price fluctuation in February is also the largest.

A histogram of price distribution explains the dispersion and distribution of CS I 300 in half a year
in Figure 4. Obviously, the CS I 300 index is the densest in the range of 5000–5200. Together with
Figure 3, it could be seen that the prices from March to June are mostly within this range. It shows
that the price fluctuations from January to February are likely to be more volatile, and the fluctuates in
the smooth from March to June. The larger jumps we are concerned about are most likely to occur in
Samples 1 and 2.
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Figure 3. Daily boxplot for CS I 300 index.

Figure 4. Distribution plot for CS I 300 index.

Generally, the high-frequency price has a smaller range of changes than the low-frequency price in
the same period of time. For example, the price change per minute is often smaller than the change
every two minutes in the same upward trend. In order to observe small changes in high-frequency data,
the value of the percentage of price change is more suitable to be used as observational data than price
data in the analysis of the volatility distribution of high-frequency data.

The histogram of the CS I 300 price change percentage is shown in Figure 5. It’s seen that CS I 300
price change statistics per minute, which do not follow the normal distribution, are mainly concentrated
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in 0 (both positive and negative values exist). The graph is skewed to the right, which indicates that
there are more rising empirical data than falling ones in the overall sample.

Figure 5. Histogram for daily change percentage in CS I 300 index.

Figure 6. Heatmap for the realized volatility of high-frequency CS I 300 index.

In order to explore the characteristics of the volatility change of the CS I 300, the realized volatility
is described separately from the perspective of value distribution and change trend. Figure 6 is a
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heatmap of the realized volatility with the sample month as the horizontal axis and the date as the
vertical axis. Through the black and white areas in the figure, the realized volatility date with a volatility
change of more than 1% could be identified. Obviously, the realized volatility of CS I 300 experienced
more frequent fluctuations in each month of the first half of the year. February contains the largest
number of days with large fluctuations.

Figure 7 shows the trend of the realized volatility within half a year. As can be seen from the
figure, the autocorrelation exists in the realized volatility data of the high-frequency CS I 300 stock
index (Volatility Clustering). The widest range of realized volatility changes occurred in February and
March.

Figure 7. Line plot for the realized volatility of high-frequency CS I 300 index.

Volatility jumps with different amplitudes and frequencies exist in each sample of the CS I 300.
In the following section, the information of data characteristics shown in the above charts is used for
learning and parameter estimation of empirical data.

4. Parameter analysis and estimation

By using the data analysis results in Section 3, the value of θ in the generalized new BN-S model in
Section 2 is found, and the deterministic component in the random process of high-frequency price data
fluctuations is captured in this section. In order to achieve the above goals, the classification problem
based on the historical data set was created by implementing the following steps.

Step 1. Index the available historical price data and price change percentage data per minute of CS I
300 in chronological order.

Step 2. According to the data fluctuation characteristics obtained in Section 3, create new data
structures from historical data sets. Take the percentage of change in the closing price for 10
consecutive minutes as a subset of the rows, stacking layer by layer. Divide the empirical data
according to the above rules to form a new CS I 300 index price data matrix.

Step 3. Consider the volatility of the closing price per minute in the historical price data of the CS I
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300 stock index, and determine the value of K to define the big jumps (large increases) in the high-
frequency closing price fluctuation. Each time closing price is K lower than the price of the previous
minute needs to be identified (for example, if K = 0.1%, the date and time, when the closing price of
CS I 300 index is 0.1% lower than the previous minute’s one, should be marked).

Step 4. Create a target column θ in the new data matrix and assign values. If there are at least two
big jumps in the next 10 minutes, the parameter θ in the target column of the row is 1. Otherwise, the
θ corresponding to the row is 0.

Step 5. Use several different machine learning algorithms and deep learning algorithms to learn
from empirical data sets and estimate the value of θ. Substitute the obtained value of θ into (2.8) in
Section 2, which means that the deterministic component of the CS I 300 fluctuation random process
is captured.

The variables involved in the above steps could be adjusted according to the characteristics of the
data set. The adjustment rules could refer to the following reminders.

1) In step 2, if a multi-dimensional data structure is created by adjusting the division of data, the
effectiveness of the result will be improved. In general, the more elements contained in a row subset,
the more information is carried in the new matrix, and the accuracy of the result may be improved. At
the same time, it also increases the workload of calculation and reduces the predictable time span.

2) In step 3, adjusting the value of K is believed to be an effective way to improve the results.
Different values of K are suitable for different retrieval targets. Generally, the shorter the time, the
smaller the change range of the observed data. A higher sampling frequency is often suitable for using
a smaller value of K, which can identify more big jumps the same period.

3) In step 4, the value of θ is related to the number of the big jumps identified in a period.
In the same data set, the more subset elements selected in step 2, the more big jumps recognized in

each row of the matrix, and the greater the possibility of θ = 1. Setting the threshold for identifying
the number of big jumps to be small will lead to a high probability of θ = 1, and a low probability of
θ = 0.

The above steps could be used to calculate θ with reasonable accuracy to prove that these steps are
feasible.

Various machine learning and deep learning algorithms are used for the new matrix formed in
step 2 on Python. The input are the subset elements in each row of the matrix, and the output is the
value of θ (0 or 1) in the target column of the new matrix mentioned in step 3. The algorithms we
used are (A) Logistic regression, (B) Support vector machine, (C) K-nearest neighbors, (D) K-means,
(E) Naive bayes, (F) Gradient boost, (G) Decision tree, (H) Random forest, (I) Neural network, (J)
Long and short-term memory neural network (LSTM) and (K) LSTM network with batch normalizer.
Specifically, logistic regression realize the estimation of θ through maximum likelihood estimation.
Support vector machine solves the maximum-margin hyperplane of the sample to binary classify the
θ value. K-nearest neighbors predict the classification of θ by identifying whether there are jumps
during the adjacent time intervals. The evaluation of θ could be realized by calculating the distance of
the object and the cluster center in K-means algorithm. Naive bayes estimates the classification of θ
based on bayesian theorem and attribute conditional independence assumption. Gradient boost realize
the estimation of θ by training the new weak classifier on the basis of negative gradient information
of the loss function and accumulating the weak classifiers. After the decision tree is constructed, a
reasonable θ is found through pruning. Random forest contains many decision trees. Two hidden and
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output layers are built in the neural network in algorithm (I). If the output probability of the softmax
activation function corresponding to θ = 1 is greater than 0.3, the parameter θ is 1. In algorithm (J),
Long short-term memory (LSTM) neural network realize forward calculation and back propagation
through forward method and backward method. In algorithm (K), Batch normalizer has a positive
effect on the training speed of LSTM.

Referring to the data characteristics analyzed in Section 3, four sets of training set and test set dates
are selected from the empirical data set to run the classifiers, and find the corresponding index in step
1. The date selection is shown in Table 2.

Table 2. Time and index of the classifiers.

Training Time (Index) Testing Time (Index)

T1 01/01/2021 9:40:00 (0) to 02/18/2021 9:40:00 (1316) to
02/10/2021 15:00:00 (1315) 02/26/2021 15:00:00 (1644)

T2 01/01/2021 9:40:00 (0) to 03/01/2021 9:40:00 (1645) to
02/26/2021 15:00:00 (1644) 03/12/2021 15:00:00 (2114)

T3 04/01/2021 9:40:00 (2726) to 06/01/2021 9:40:00 (4559) to
05/31/2021 15:00:00 (4558) 06/30/2021 15:00:00 (5545)

T4 06/25/2021 9:40:00 (5358) to 06/29/2021 14:00:00 (5486) to
06/29/2021 13:59:00 (5485) 06/30/2021 15:00:00 (5545)

The fluctuation patterns of monthly data, weekly data, daily data, and intraday data are all
considered in selecting test samples. The analysis results in Section 3 show that the average price of
Sample 2 is the highest, and the volatility is the most intense in February. Therefore, the daily data of
February (T1) where the maximum volatility is located could be selected as the estimated sample.
After experiencing huge ups and downs, CS I 300 continued to fall in March, so the price changes in
the first two weeks of Sample 3 deserve attention and related weekly data (T2) could be estimated.
Monthly data forecast within a more stable range (T3) is also worthy of attention. It is also
meaningful to estimate the parameters on intra-day historical data in the last five days in the data set
(T4). The daily historical data in the last five days in the data set is selected to estimate the value of θ.

In step 5, it is worth noting that the estimation results of θ by using 6 algorithms are not necessarily
the same. The prediction results of different machine learning and deep learning algorithms often have
different accuracy. In order to avoid possible misjudgments and make the results more accurate, the
prediction results of various algorithms are evaluated. “Support” refers to the number of responsive
samples that appeared during the calculation process. “Precision” is used to express the accuracy rate
in all the prediction results, where θ takes 1 or 0. It is defined as the ratio of the number of accurate
predictions θ = 1 (θ = 0) to the number of all prediction results θ = 1 (θ = 0). “Recall” shows the
efficiency that θ = 1 (θ = 0) is accurately predicted. It represents the ratio of the quantity accurately
predicted θ = 1 (θ = 0) to the true quantity θ = 1 (θ = 0). The accuracy of parameter prediction results
could be represented by the values of “precision” and “recall”. The harmonic average of “precision”
and “recall” is considered suitable to show the predictive effect of different algorithms directly. Its
value is indicated by “F1-score”.

Several machine learning algorithms and deep learning algorithms are used for the empirical data
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set in the above time periods, and the results of the classification report of the accuracy evaluation of θ
are recorded in Tables 3–6.

It can be seen that the number of “support” in the report results, not affected by different algorithms,
is only related to the time window T. It shows the number of jumps could be accurately identified by
the eleven algorithms we used for the empirical price data of CS I 300 Index. Comparing the number
of “supports” (T4 < T1 < T2 < T3), we find that as the time window T grows, the more jumps would
be identified. It’s just like we thought.

The classification results in Table 3 illustrate that when threshold of the asset return K for identifying
jumps is 0.1, there’s a strong possibility that θ is equal to 1, while θ = 0 is still a possibility, not a
probability. And the results in Tables 4–6 have reached the same conclusion.

Table 3. Accuracy report about θ estimation in T1.

T1 precision recall f1-score support precision recall f1-score support
θ = 0 θ = 0 θ = 0 θ = 0 θ = 1 θ = 1 θ = 1 θ = 1

(A) 0.00 0.00 0.00 37 0.89 1.00 0.94 293
(B) 0.25 0.46 0.33 37 0.92 0.83 0.87 293
(C) 0.21 0.22 0.21 37 0.90 0.90 0.90 293
(D) 0.16 0.11 0.13 37 0.89 0.11 0.20 293
(E) 0.03 0.03 0.03 37 0.88 0.87 0.88 293
(F) 0.17 0.03 0.05 37 0.89 0.98 0.93 293
(G) 0.15 0.41 0.22 37 0.90 0.71 0.80 293
(H) 0.14 0.05 0.08 37 0.89 0.96 0.92 293
(I) 0.17 0.05 0.08 37 0.89 0.97 0.93 293
(J) 0.00 0.00 0.00 37 0.89 0.99 0.93 293
(K) 0.14 0.03 0.05 37 0.89 0.98 0.93 293

Table 4. Accuracy report about θ estimation in T2.

T2 precision recall f1-score support precision recall f1-score support
θ = 0 θ = 0 θ = 0 θ = 0 θ = 1 θ = 1 θ = 1 θ = 1

(A) 0.00 0.00 0.00 72 0.85 1.00 0.92 399
(B) 0.08 0.10 0.09 72 0.83 0.79 0.81 399
(C) 0.21 0.29 0.25 72 0.86 0.80 0.83 399
(D) 0.19 0.11 0.14 72 0.92 0.12 0.22 399
(E) 0.36 0.68 0.47 72 0.93 0.78 0.85 399
(F) 0.36 0.11 0.17 72 0.86 0.96 0.91 399
(G) 0.17 0.33 0.22 72 0.85 0.70 0.77 399
(H) 0.23 0.08 0.12 72 0.85 0.95 0.90 399
(I) 0.18 0.08 0.11 72 0.85 0.93 0.89 399
(J) 0.26 0.17 0.20 72 0.86 0.91 0.88 399
(K) 0.36 0.25 0.30 72 0.87 0.92 0.90 399
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Table 5. Accuracy report about θ estimation in T3.

T3 precision recall f1-score support precision recall f1-score support
θ = 0 θ = 0 θ = 0 θ = 0 θ = 1 θ = 1 θ = 1 θ = 1

(A) 0.42 0.34 0.38 454 0.51 0.59 0.54 525
(B) 0.45 0.51 0.48 454 0.52 0.46 0.49 525
(C) 0.48 0.58 0.53 454 0.56 0.45 0.50 525
(D) 0.43 0.09 0.15 454 0.48 0.14 0.21 525
(E) 0.54 0.78 0.64 454 0.69 0.43 0.53 525
(F) 0.49 0.53 0.51 454 0.57 0.53 0.55 525
(G) 0.48 0.49 0.49 454 0.55 0.54 0.55 525
(H) 0.49 0.57 0.53 454 0.57 0.50 0.53 525
(I) 0.46 0.31 0.37 454 0.53 0.68 0.60 525
(J) 0.47 0.34 0.40 454 0.54 0.67 0.60 525
(K) 0.45 0.24 0.31 454 0.53 0.74 0.62 525

Table 6. Accuracy report about θ estimation in T4.

T4 precision recall f1-score support precision recall f1-score support
θ = 0 θ = 0 θ = 0 θ = 0 θ = 1 θ = 1 θ = 1 θ = 1

(A) 0.78 0.90 0.83 39 0.43 0.23 0.30 13
(B) 0.77 0.92 0.84 39 0.40 0.15 0.22 13
(C) 0.76 0.90 0.82 39 0.33 0.15 0.21 13
(D) 0.80 0.10 0.18 39 0.09 0.08 0.08 13
(E) 0.83 0.90 0.86 39 0.60 0.46 0.52 13
(F) 0.70 0.67 0.68 39 0.13 0.15 0.14 13
(G) 0.74 0.59 0.66 39 0.24 0.38 0.29 13
(H) 0.79 0.85 0.81 39 0.40 0.31 0.35 13
(I) 0.78 0.72 0.75 39 0.31 0.38 0.34 13
(J) 0.81 0.64 0.71 39 0.33 0.54 0.41 13
(K) 0.84 0.69 0.76 39 0.40 0.62 0.48 13

The difference, however, is that the probability of θ = 1 is different when using different algorithms
in different time windows. Comparing the results in Tables 3 and 5, the possibility of θ = 1 in the
parameter estimation results of daily data is greater than that of monthly data. It shows that the price
fluctuation in T1 is wider than that in T3, which is also entirely consistent with our analysis results in
Section 3. The similar conclusions can be obtained in the comparison of Tables 4 and 6.

Machine learning algorithms can more effectively extract information from large amounts of
structured or unstructured data, and analyze data with less understanding of data structure or the
relationship between input and output (including nonlinear relationship) to realize the quantification
and prediction of high-frequency transaction data. Machine learning and deep learning algorithms
automate the decision-making process to overcome the limitations of human decision-making.
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Machine learning and deep learning algorithms automate the decision-making process to overcome
the limitations of human decision-making. The efficiency of the analysis results shows the advantages
of using machine learning and deep learning algorithms to deal with nonlinear and collinear relations,
the accuracy of stock price fitting and the ability to predict future jumps.

In the end, the results of the classification reports could be used to determine the value of θ. After
the dynamic value of θ, as deterministic component in stochastic process of CS I 300 index price
fluctuations, is substituted into formula (2.10), the dynamic process of the price fluctuation of CS I
300 index would be described flexibly and effectively by the generalized BN-S model, formulas (2.9)–
(2.11).

5. Conclusions

The fluctuation of price is a regular phenomenon, which has been empirically seen to widely exist
in financial markets. This paper introduces a new generalized BN-S model to describe stochastic
fluctuations in high-frequency asset price dynamics. The new model considers the lag caused by the
asynchrony of market information, and adds new parameters to the classic BN-S model, which
effectively expands the application range.

The high-frequency CS I 300 index in Chinese financial market was selected as the research
sample. The empirical data was preprocessed (the influence of overnight information on the market
was removed), and a series of statistical analyses were performed to estimate its volatility
characteristics. With the help of machine learning and deep learning algorithms, we analyzed
dynamic prices in different time spans (monthly data, weekly data, daily data and intraday data), and
estimated the deterministic component in the stochastic fluctuation process of high-frequency price
data to show good operability of the new model.

Our work provides a new perspective for the analysis of price fluctuations in the financial sector, and
is of positive significance for improving the accuracy of dynamic fluctuation estimation. In ongoing
work, we are working on extensions of new models to accommodate to more complicated financial
market scenarios and investor needs. Future research will include, but not be limited to, the study of
predicting the existence and magnitude of dynamic jumps in high-frequency fluctuations, confirming
quantified trading timing and avoiding the risk of abnormal fluctuations.
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