
Electronic
Research Archive

http://www.aimspress.com/journal/era

ERA, 31(2): 729–753.
DOI: 10.3934/era.2023036
Received: 29 August 2022
Revised: 24 October 2022
Accepted: 02 November 2022
Published: 22 November 2022

Research article

A blockchain-based privacy-preserving transaction scheme with public
verification and reliable audit

Shuang Yao1,2 and Dawei Zhang1,2,∗

1 Department of Computer and Information Technology, Beijing Jiaotong University, Beijing
100044, China

2 Beijing Key Laboratory of Security and Privacy in Intelligent Transportation, Beijing 100044,
China

* Correspondence: Email: dwzhang@bjtu.edu.cn.

Abstract: With the continuous development of Internet of Things, finance, big data and many other
fields, blockchain has been widely used in these areas for transactions, data sharing, product traceabil-
ity and so on. Numerous assets have appeared in the blockchain, and there are some levels of conflicts
among privacy protection of these assets, transaction transparency and auditability in blockchain; so
how to provide privacy preserving, make public verifications and audit the encrypted assets are chal-
lenging problems. In this paper, we propose a privacy-preserving transaction scheme with public ver-
ification and reliable audit in blockchain. First, we provide privacy preserving of transaction contents
based on homomorphic encryption. It is flexible, as we decouple user identity and transaction contents.
Then, we propose and design a multiplicative zero-knowledge proof with formal security analysis. Fur-
thermore, several verification rules are defined by us in the scheme, such as balance verification and
multiplicative verification based on the proposed multiplicative zero-knowledge proof. Our scheme
enables reliable and offline auditing for each transaction, and we aggregate the zero-knowledge proofs
to save the ledger space. Finally, we make a security analysis of our proposal in terms of transac-
tion confidentiality, public verification and audit reliability, and we give a performance analysis of the
proposed scheme.

Keywords: blockchain; privacy-preserving; verification; zero-knowledge proof; audit

1. Introduction

Blockchain, as a type of decentralized and public computational paradigm using multi-party con-
sensus, provides new solutions for data security and information sharing in many scenarios. Increas-
ingly numerous assets have gradually appeared in the blockchain amid blockchain’s wide application

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2023036

730

in various field such as the Internet of Things, smart grids and so on [1, 2]. For example, many prod-
ucts’ information is processed by blockchain for product traceability in the Internet of Things. Some
blockchain-based data sharing schemes are also designed for sensitive information such as medical
data and so on, that needs both privacy and some levels of data sharing [3–5]. Effective evaluation
of privacy risk and ensuring privacy have always attracted broad attention [6–9]. In addition, many
blockchain-based privacy preserving payment mechanisms for the Internet of Things have also been
constructed to provide efficient and decentralized transactions [10, 11]. Therefore, how to achieve
privacy of transaction contents, making monetary assets and data assets hidden from observers, and
how to achieve public verification of transactions to ensure monetary assets and data assets satisfy
transaction rules are crucial and have been focused on.

Traditional ledger-based transaction schemes in blockchain, such as Bitcoin, etc., lack of pri-
vacy. All transaction information, including transaction values that are permanently recorded on the
blockchain is public, and it can be obtained by attackers for malicious using and spreading. There-
fore, in order to hide transaction contents to make blockchain-based transactions more reliable, many
cryptographic solutions have been used to offer privacy enhancing schemes in cryptocurrency which is
based on the public blockchain. For example, Monero achieves hiding of transaction amounts by using
Pedersen commitments. It also uses the homomorphic property of commitments and Bulletproofs to
verify transactions. Zcash introduces one time encryption to protect transaction contents privacy and
uses zero-knowledge Succinct Non-interactive ARgument of Knowledge (zk-SNARK) to ensure the
transaction compliance. However, these solutions provide strong privacy guarantees that give users
potential to circumvent regulatory controls, such as money laundering without authorities, evasion,
fraud and many illicit activities that create many regulatory concerns. Enforcing reliable auditing in
a blockchain-based transaction system is crucial [12], and especially in a system that offers privacy
protection of transaction information, it is more challenging and essential.

Therefore, there are many challenging concerns about blockchain transaction privacy, effective au-
diting and public verification, as we mentioned above. More concretely, in terms of data assets such as
the quantity of goods in supply chains, and sensitive information of patients in medical data sharing,
many schemes do not pay attention to the public verification for data compliance while preserving pri-
vacy. For monetary assets in the unspent transaction output (UTXO) model, there is a lack of flexible
transaction schemes that can both preserve privacy and achieve auditing of a transaction amount for
a single transaction. How to simultaneously preserve privacy, keep a public ledger and reliably audit
is challenging. Also, as there are extra leger space requirements in the UTXO model with the gen-
eration of transaction outputs and deletion of transaction inputs, how to save storage space of ledger
and achieve efficiency gains for the user should be taken into consideration. Aiming to address these
challenges, we focus on designing and constructing an efficient blockchain-based privacy preserving
transaction scheme with public verification and reliable auditing. The main contributions of our paper
are summarized as follow shows:

• We propose a privacy-preserving transaction scheme in blockchain. Our scheme offers privacy
preserving both for monetary assets and data assets based on homomorphic encryption. We de-
coupled transaction identity information from transaction contents for the convenience of com-
bining with different blockchain identity privacy protection schemes, which is more flexible.
• We propose and design a multiplicative zero-knowledge proof to prove the encrypted values

(C1,C2,C3) corresponding to (v1, v2, v3) satisfy multiplicative relationship v1 · v2 = v3. It can

Electronic Research Archive Volume 31, Issue 2, 729–753.

731

be widely used in blockchain based financial applications, blockchain based supply chains and
many other scenarios to achieve data compliance and preserve privacy. We give formal security
analysis of the proposed multiplicative zero-knowledge proof.
• We achieve public verification of hidden transaction contents based on zero-knowledge proof in

our privacy preserving transaction scheme. We define several types of verification rules. For
monetary assets, it achieves the balance verification relied on the signature of knowledge. For
data assets, it achieves multiplicative verification by applying the proposed multiplicative zero-
knowledge proof, which can also be used to save transaction computation and storage cost in the
specific scenario in UTXO model.
• We also achieve reliable auditing of hidden transaction contents. In our scheme, we introduce the

auditor. It can audit transaction values of each transaction instead of total transaction amounts,
which is different from many existing schemes. There is also a verification of the audit zero-
knowledge proof to ensure the audit reliability.
• We give formal security analysis of our blockchain-based privacy preserving transaction scheme.

We also aggregate the balance proofs and audit proofs to save the ledger space. We implement
the proposed scheme and evaluate its performance, and then we make a functional comparison
between our scheme and others.

The rest of the paper is organized as follows. The related work is presented in Section 2. We give
a brief introduction about background knowledge in Section 3. In Section 4, we present the proposed
multiplicative zero-knowledge proof. We present our blockchain-based privacy-preserving transaction
scheme in Section 5. Section 6 gives the security analysis of the proposed scheme. In Section 7, we
give the performance analysis of the proposed scheme. Conclusions are drawn in Section 8.

2. Related work

Blockchain is a new concept that involves a consensus mechanism and distributed data storage. It
was put forward as Bitcoin [13] in 2008. All transactions in Bitcoin are public and transparent. It
cannot satisfy the confidentiality requirement of some applications. In 2014, Monero [14], which is
a cryptocurrency deriving from Bitcoin, was proposed. It uses linkable ring signature, stealth address
and RingCT to hide sensitive information of transactions such as transaction contents and user iden-
tities. Other cryptocurrencies that focus on privacy protection are Zerocash [15] and Zerocoin [16].
Zerocash leverages encryption and zk-SNARKs [17] to achieve strong privacy guarantees of transac-
tions. Zerocoin provides strong user anonymity and coin security based on RSA accumulators and
non-interactive zero-knowledge proofs. Mimblewimble [18] is also a privacy-enhancing cryptocur-
rency using confidential transactions [19] which is based on the Pedersen commitments [20] to hide
transaction amount. Though these solutions achieve privacy protection of blockchain, neither of them
satisfies the auditability, which is not compatible with illegal behaviors and is essential in financial
applications.

In [21], the first distributed ledger system with auditing is proposed. In this system, commitments
are used to hide transaction amount. They also provide a rough audit about the sums of transaction
values. However, it needs some auditors to keep online and make queries to the system users to achieve
audit, which leads auditors and all users to communicate with each other sequentially and significantly
reduces the efficiency. In [22], the authors achieve an advance zero-knowledge ledger by proposing

Electronic Research Archive Volume 31, Issue 2, 729–753.

732

an efficient range-proof technique based on the improved inner product based zero-knowledge proofs.
The reducing of proof size greatly improves the system efficiency. In [23], a private, authenticated
and auditable blockchain is proposed. It achieves privacy protection and auditability in terms of user
identity and transaction contents based on additive homomorphic encryption and BBS group signature.
In [24], the authors propose a decentralized system framework using the blockchain and IPFS system
to provide high security for sharing and exchanging the multimedia file system. They use the secure
authentication protocol which is based on zero-knowledge proofs to guarantee multimedia data user
privacy. In [25], the authors achieve anonymity of users and privacy of transaction amount. As for
regulation, the system can regulate the total amount of transactions in a certain time. Also, there are
some auditable solutions based on the account model [26–28].

Table 1. Functional comparison between our scheme and others.

Scheme TM TC BV MV DIC AR AoET
[14] UTXO Yes Yes No No No No
[15] UTXO Yes Yes No No No No
[18] UTXO Yes Yes No Yes No No
[23] UTXO Yes Yes No No Yes Yes
[25] UTXO Yes Yes No No No No
Ours UTXO, data assets Yes Yes Yes Yes Yes Yes

We give the analysis and functional comparison between our scheme and other comparable schemes
in Table 1 in aspects of transaction model (TM), transaction confidentiality (TC), balance verification
(BV), multiplicative verification decoupled user identity and transaction contents (DIC), audit reliabil-
ity (AR) and audit of each transaction (AoET). In summary, as we can see in Table 1, the above papers
provide various privacy protections in terms of both identity and transaction contents, and they rarely
achieve precise auditing of transactions, which is essential in financial applications. In particular, they
mainly focus on transfer transactions, as blockchain has been widely applied in supply chains, data
sharing and many other fields; and it is also quite necessary to provide efficient verifications for those
scenarios with both monetary assets and data assets, which has been ignored.

3. Preliminaries

In this section, we introduce some related techniques that are used in this paper.

3.1. UTXO model

At present, there are many decentralized payment systems, such as Bitcoin, RSCoin [29], Fabcoin
in Hyperledger fabric [30] and so on, that are based on the UTXO model, in which each transaction is
formed by a set of inputs and a set of outputs. It is different from the traditional account model used by
Ethereum, where the transaction value is specified and moved from one account to another. The UTXO
model is shown in Figure 1. It represents some amount of monetary assets that have been authorized
by one user to be spent by another. Details of monetary assets’ flowS in transactions with the UTXO
model are recorded in the blockchain ledger.

Electronic Research Archive Volume 31, Issue 2, 729–753.

733

3.2. Pedersen commitment

Pedersen commitment is used to achieve transaction confidentiality in Bitcoin. It can be described
as follows.

• setup(1λ): This algorithm takes the security parameter λ as input, and it generates the cyclic group
G with q order. G is the generator of group G. H is the random element of G. It outputs the public
parameter pp = {G,G,H, q}.
• Cm(pp, v): This algorithm takes the public parameter pp, commitment c, the value v and the blind

element r as input. It computes c = rG + vH as the commitment of v.
• Open(pp, c, v, r): This algorithm takes the public parameter pp, commitment c, the value v and

the blind element r as input. It checks whether c = rG + vH holds or not.

Figure 1. UTXO model

3.3. Hard problems and complexity assumptions

Definition 1. (Discrete logarithm (DL) problem). Let G be a cyclic group. Given a random instance
(P, aP), where P ∈ G, and a ∈ Z∗p, computation of a is computationally hard by a polynomial time
algorithm. The probability that a polynomial time algorithm A can solve the DL problem is defined as
AdvDL

A (λ).

Definition 2. (Discrete logarithm assumption). For any probabilistic polynomial time algorithm A,
AdvDL

A (λ) is negligible; that is, AdvDL
A (λ) ≤ ε, for some negligible function ε.

3.4. A variant of ElGamal encryption

There is a homomorphic encryption based on ElGamal encryption called twisted ElGamal [28],
which is zero-knowledge friendly. Given a cyclic group G with order q, let P and H be two random
generators of G. So, pp = {G, P,H, q}. Then, it consists of the following algorithms:

keygen: It takes pp as input and randomly chooses x ∈ Z∗q as secret key. It computes public key
Y = xP, and then it outputs (X,Y).

enc: It takes the public key Y and message m as input. It randomly chooses s ∈ Z∗q, computes
C1 = sP, C2 = mH + sP and outputs C = {C1,C2}.

dec: It takes the ciphtertext C and secret key as input. It computes mH = C2 − x−1 ·C1 to obtain m.

Electronic Research Archive Volume 31, Issue 2, 729–753.

734

3.5. Non-interactive zero-knowledge proof

A non-interactive zero-knowledge (NIZK) proof [31] is a protocol that the prover can use to con-
vince the verifier that it indeed has the knowledge of a secret value by some public information without
revealing the secret value. The non-interactive zero-knowledge proof has properties of completeness,
soundness, and zero-knowledge [32]. We introduce a non-interactive zero-knowledge proof that is the
signature of knowledge of the discrete logarithm (SKDL) [33, 34]. Let G be a cyclic group. P,G ∈ G.
A pair (c, s) ∈ {0, 1}k×Z∗n satisfying c = H0(P,Y, sP+cY) is a signature of the knowledge of the discrete
logarithm of Y ∈ G to the base P. It is denoted as S KDL{(a) | Y = aP}. It is as follows:

(1) The prover randomly chooses r ∈ Z∗q, then it computes T = rP, c = H0(P,Y,T) and s = r − ca.
The prover sends (c, s) to the verifier.

(2) The verifier verifies whether c = H0(P,Y, sP + cY) holds. If the equation holds, it means that the
prover knows the knowledge of the discrete logarithm of Y to the base P.

4. Proposed multiplicative zero-knowledge proof

Our proposed multiplicative zero-knowledge proof aims to convince the verifier that v3 encrypted in
C3 is actually the product of v1 and v2, encrypted respectively in C1 and C2, i.e., v1 · v2 = v3. It mainly
contains three steps that are as follows:

setup: Let G be a cyclic group with q order, where q is λ bits. P and H are two random generators
of G. Then, the public parameter is pp = {G, P,H, q}.

prove: The prover randomly chooses s1, s2, s3 ∈ Z
∗
q, and then it computes C1 = v1H + s1P, C2 =

v2H + s2P and C3 = v3H + s3P. The prover randomly chooses y1, y2, y3, s′1, s
′
2, s
′
3 ∈ Z

∗
q, and then it

computes d1 = y1H + s′1P, d2 = y2H + s′2P, d3 = y3H + s′3P and d4 = y2C21 + s′4P. The prover sends
the generated C1,C2,C3,d1,d2,d3,d4 to the verifier. The verifier randomly chooses a challenge c ∈ Z∗q
and returns it to the prover. Then, the prover computes u1 = y1 + v1c, u2 = y2 + v2c, u3 = y3 + v3c,
θ1 = s′1 + s1c, θ2 = s′2 + s2c, θ3 = s′3 + s3c and θ4 = s′4 + (s3 − s1v2)c. The prover sends the generated
u1,u2,u3,θ1,θ2,θ3,θ4 to the verifier.

verify: The verifier computes d′1 = θ1P + u1H − cC1, d′2 = θ2P + u2H − cC2,d′3 = θ3P + u3H − cC3,
d′4 = θ4P + u2C1 − cC3, and then it checks whether d′1 = d1, d′2 = d2, d′3 = d3 and d′4 = d4 holds. If the
above equations hold, it outputs 1. Otherwise, it outputs 0.

According to the above steps, the prover proves that C1,C2,C3 are encrypted values of v1, v2, v3

satisfying v1 · v2 = v3. In addition, the above proof can turn to be non-interactive by applying the
Fiat-Shamir heuristic [35]. Particularly, there are some applications in blockchain for the proposed
multiplicative zero-knowledge proof to be used in variants of scenarios, no matter for monetary assets
and data assets. We give explanations about it in Section 7.

Theorem 1. The proposed multiplicative proof is a zero-knowledge proof under the Discrete logarithm
assumption, which means that it satisfies correctness, zero knowledge (can be simulated) and a proof
of knowledge (has an extractor).

We prove it through Lemmas 1–3.

Lemma 1. The proposed multiplicative zero-knowledge proof satisfies correctness.

Electronic Research Archive Volume 31, Issue 2, 729–753.

735

Proof of Lemma 1. If the prover follows the computation steps specified for it, we have the following.

d′1 = (s′1 + s1c)P + (y1 + v1c)H − c(v1H + s1P) (4.1)
= y1H + s′1P = d1

d′2 = (s′2 + s2c)P + (y2 + v2c)H − c(v2H + s2P) (4.2)
= y2H + s′2P = d2

d′3 = (s′3 + s3c)P + (y3 + v3c)H − c(v3H + s3P) (4.3)
= y3H + s′3P = d3

d′4 = y2C1 + v2cC1 + (s′4 + (s3 − s1v2))P − c(v3H + s3P) (4.4)
= y2C1 + s′4P + (v1v2cH − v3cH)
+ (v2s1cP − v2s1cP) + (s3cP − s3cP) = d4

As we can see from the above equations, Eqs (4.1)–(4.4) hold. Therefore, the verifier always accepts
the proof, and then the proposed multiplicative zero-knowledge proof satisfies correctness.

Lemma 2. The proposed multiplicative zero-knowledge proof can be simulated under the Discrete
logarithm assumption.

Proof of Lemma 2. We describe a simulator that can outputs the proof. It randomly chooses a set of
values v1, v2, v3 and computes C1 = v1H + s1P, C2 = v2H + s2P, C3 = v3H + s3P. The distribution of
these values generated by the simulator is indistinguishable from the distribution output by the prover.
In the remainder of the simulation, it does not assume knowledge of v1, v2, v3.

The simulator randomly chooses a challenge c ∈ Z∗q and u1, u2, u3, θ1, θ2, θ3, θ4. It computes
d1 = θ1P + u1H − cC1, d2 = θ2P + u2H − cC2, d3 = θ3P + u3H − cC3 and d4 = u2C1 + θ4P − cC3

that satisfy Eqs (4.1)–(4.4). Moreover, these values have the same distribution as those in the real
proof. The simulator outputs c,u1,u2,u3,θ1,θ2,θ3,θ4,d1,d2,d3,d4 that are indistinguishable from the real
proof in the multiplicative proof. Therefore, the proposed multiplicative zero-knowledge proof can be
simulated under the Discrete logarithm assumption.

Lemma 3. The proposed multiplicative zero-knowledge proof has an extractor.

Proof of Lemma 3. Suppose there exits an extractor that enables one to rewind a prover in the multi-
plicative proof we proposed above to the point before it generates c. To the challenge value c, there is
(u1, u2, u3, θ1, θ2, θ3, θ4). For challenge value c′ , c, the prover responds with (u′1, u

′
2, u

′
3, θ
′
1, θ
′
2, θ
′
3, θ
′
4).

If the prover is convincing, then all Eqs (4.1)–(4.4) hold.
So, we have ∆c = c − c′, ∆u1 = u1 − u′1, and ∆u2,∆u3,∆θ1,∆θ2,∆θ3,∆θ4 are similar with ∆u1.

Considering Eq (4.1), we have ∆cC1 = ∆θ1P+∆u1H, so let v∗1 = ∆u1/∆c and let s∗1 = ∆θ1/∆c. Similarly,
from Eqs (4.2)–(4.4), we obtain v∗2, s∗2,v∗3, s∗3 and s∗ = ∆θ4/∆c. We have (v∗1v∗2−v∗3)H = (s∗3− s∗−v∗2s∗1)P.
Therefore, the extractor obtains a Discrete logarithm problem solution logPH = (s∗3− s∗− v∗2s∗1)/(v∗1v∗2−
v∗3). Therefore, the proposed multiplicative zero-knowledge proof has an extractor.

Electronic Research Archive Volume 31, Issue 2, 729–753.

736

5. Proposed blockchain-based privacy-preserving transaction scheme

5.1. Overview

We propose a blockchain-based transaction scheme with privacy-preserving that enables reliable
auditing and different verification rules. There are four roles in our scheme that are described as
follows:

• Trusted Center: It initializes the whole scheme.
• Users: It includes payer and payee that involves in the blockchain based transactions. It also

contains users that transact, share and store data assets through blockchain.
• Validator: It verifies whether proposed encrypted transactions satisfy verification rules.
• Auditor: It audits encrypted transactions in the scheme.

Figure 2. Overview of our scheme.

As we can see in Figure 3, the transaction overflow of our privacy preserving transaction scheme is
summarized as follows:

(1) Setup: The trusted center makes an initialization and generates an audit key pair for auditor.
(2) Transact: Users generate transactions, and they send transactions to validators.
(3) Verify: Validators receive transaction and verify whether it satisfies verification rules and audit

reliability.
(4) Aggregate: Balance and audit zero-knowledge proofs in transaction are aggregated and sent to

committing nodes.
(5) Chain: committing nodes make verifications of the aggregated information. If they pass verifica-

tions, transactions are committed to the blockchain.

Electronic Research Archive Volume 31, Issue 2, 729–753.

737

(6) Audit: The auditor audit transaction contents. It does not need to be online all the time and can
achieves audit transaction contents of each transaction.

2-2 4-4 6-6 8-8 10-10 12-12
0

1

2

3

4

5

Co
m

pu
ta

tio
n

tim
e(

m
s)

n inputs-n'outputs per transaction(n-n')

 Generate encrypted values
 Balance zero-knowledge prove
 Audit zero-knowledge prove

Figure 3. Computation time comparison in transact phase with increasing inputs and outputs.

Notations in our paper are summarized in Table 2. In our scheme, transaction tx is used to record
the encrypted payment process between payers and payees for monetary assets, and it is used to record
the encrypted data transaction for data assets. Transactions are finally recorded in the ledger of the
blockchain. The structure of transaction tx is tx = {tx.in, tx.out, tx.data, πbl, πrp, πpro, πau}. tx.in is the
encrypted inputs of the transaction, and tx.out is the encrypted outputs of the transaction. tx.data is the
encrypted data of data assets. πbl is the balance proof generated by users for balance verification. πrp

is the range proof to prove the transaction value is in a certain range [0, vmax], where vmax is a system
parameter. πpro is the multiplicative proof that can prove transaction values satisfy product relationship,
and πau is the audit proof to prove the auditor can reliably audit the transaction.

More concretely, tx.in includes n inputs of a transaction such that tx.in = {Cin
i | C

in
i = {Cin

1i,C
in
2i}, i ∈

[1, n]}. The value of each input Cin
i is vin

i . tx.out includes n′ outputs of a transaction and the change Cc,
which can be presented as tx.out = {Cout

j ,Cc | Cout
j = {Cout

1 j ,C
out
2 j }, j ∈ [1, n′],Cc = {C1c,C2c}. The value

of each output Cout
j is vout

j , and the change value is vc. tx.out includes encrypted data tx.data = {C1 =

{C11,C21},C2 = {C12,C22},C3 = {C13,C23}, ...}, where C1,C2,C3 are encrypted data of some values
v1, v2, v3.

Electronic Research Archive Volume 31, Issue 2, 729–753.

738

Table 2. Notations.

Symbols Descriptions
λ Security parameter
pp Public parameters
G A cyclic group
tx Transaction
tx.in Transaction encrypted inputs
tx.out Transaction encrypted outputs
tx.data Transaction encrypted data
Cin

i ,C
out
j Encrypted inputs and outputs

C1,C2,C3 Encrypted data assets

5.2. Security model

Our scheme is designed to satisfy the security requirements of transaction confidentiality, public
verification and audit reliability.

Definition 3. (Transaction confidentiality). Transaction confidentiality means the plaintext of transac-
tion contents such as payment value or data assets cannot be obtained by an attacker in our system.

We define the transaction confidentiality of our scheme by the following transaction confidentiality
experiment. The adversaryA is a user in the system, and it has the UTXO that belongs to him.

|Pr



pp← setup(1λ);
(X,Y)← keygen(pp);

({ptx.rmdr0, ptx.rmdr1})← A1(pp,Y);

b = b′ : b
R
← {0, 1};

tx.out∗ ← tx(pp, ptx.rmdr.Y)
π∗au ← au(pp, ptx.out, πpau,Y);

b′ ← AO2 (tx.out∗, π∗au)


−

1
2
| ≤ negl(λ),

in which the definitions of the oracles Opre and OGenCT are as follows:

• Opre: On input ((Cin
i , v

in
i , s

in
i), vρ), run ptx ← pretx(pp,Cin

i , v
in
i , s

in
i , vρ,Y) and store

{(Cin
i , v

in
i , s

in
i), vρ,Y, ptx} into the list L.

• OGenCT : On input (ptx.rmdr), search L, run tx.out ← tx(pp, ptx.rmdr,Y) and πau ←

au(pp, ptx.out, πpau,Y), and then return tx.out and πau.

Public verification means that transactions in our scheme can be publicly verified by validators to
satisfy various verification rules. We design two types of verification rules, and they are transaction
balance and transaction multiplicative relationship that are defined as follows.

Definition 4. (Transaction balance). For monetary assets, it satisfies balance verification such that the
sum of inputs’ values is equal to the sum of outputs’ values.

We define the transaction balance of our scheme by the following transaction balance experiment.
The adversaryA is a user in the system, and it has the UTXO that belongs to him.

Electronic Research Archive Volume 31, Issue 2, 729–753.

739

Pr


pp← setup(1λ);

veribl(pp, πbl) = 1∧ (X,Y)← keygen(pp);∑n
1 vin

i ,
∑n′

j=1 vout
j + vout

c : (tx.in, tx.out, vin
i , πbl)← AO(pp,Y)

 ≤ negl(λ),

in which the definitions of the oracles Opre and Obal are as follows:

• Opre: On input ((Cin
i , v

in
i , s

in
i), vρ), run ptx ← pretx(pp,Cin

i , v
in
i , s

in
i , vρ,Y) and store

{(Cin
i , v

in
i , s

in
i), vρ,Y, ptx} into the list L.

• Obal: On input ptx.rmdr, run tx.out ← tx(pp, ptx.rmdr,Y), search L to find the corresponding
πpbp and Pb, then run πbl ← bl(pp, πpbp, Pb), and return tx.out and πbl.

Definition 5. (Transaction multiplicative relationship). For data assets, the validator can publicly
verify whether some values v1, v2, v3 satisfy multiplicative relationship such as v1 · v2 = v3.

We define the transaction multiplicative relationship of our scheme by the following transaction
multiplicative relationship experiment. The adversaryA is a user in the system.

Pr


pp← setup(1λ);

veripro(pp, πpro,C1,C2,C3) = 1 (X,Y)← keygen(pp);
∧v3 , v1 · v2 : (v1, v2, v3,C1,C2,C3, πpro)← AO(pp,Y)

 ≤ negl(λ),

in which the definitions of the oracles Opro are as follows:

• Opro: On input v1, v2, v3, run (C1,C2,C3) ← tx(pp, v1, v2, v3,Y) and πpro ←

pro(pp, v1, v2, v3,C21,C22,C23), and return C1,C2,C3 and πpro.

Definition 6. (Audit reliability). Audit reliability means they can be reliably audited by the auditor.

We define the audit reliability of our scheme by the following audit reliability experiment. The
adversaryA is a user in the system and it has the UTXO that belongs to him.

Pr
[

pp← setup(1λ);
veriau(pp, πau,C f orge) = 1 : (C f orge)← A(pp, v f ,out

j ,Y f);

]
≤ negl(λ)

5.3. Description of the proposed scheme

It consists of six phases, including Setup, Transact, Verify, Aggregate, Chain and Audit.
Setup: In the setup phase, the trusted center generates public parameters and audit key pair. First,

it executes the setup(1λ) algorithm, where λ is the security parameter. G is a cyclic group which is q
order, where q is λ bits. P and H are two random generators ofG. H0, H1, H2 and H3 are hash functions
that satisfy H0 := G × G→ Zq, H1 := G × G × G × G→ Zq, H2 : G × G × G × G × G × G × G→ Zq,
H3 := G ×

2n′+2
× G→ Zq. Second, it executes the keygen(pp) algorithm. It randomly chooses x ∈ Zq

as the audit secret key X, and then it computes the audit public key Y = x · P. At last, the trusted center
outputs the audit public key Y and the public parameters pp = {G, P,H, q,H0,H1,H2,H3}.

Transact: In the transact phase, the payee and the payer generate transaction that preserves privacy
of the transaction contents that can be audited by the auditor. In addition, they also generate proofs to
ensure the transaction satisfy verification rules and reliable audit. In this phase, they provide balance
proof that ensures the sum of outputs is equal to the sum of inputs, range proof that ensures the trans-
action value is greater than zero, multiplicative proof that ensures that some transaction data satisfies

Electronic Research Archive Volume 31, Issue 2, 729–753.

740

the multiplicative relationship and audit proof that guarantees the audit reliability. In this phase, there
are five algorithms that are described as follows:

(1) The pretx(pp,Cin
i , vin

i , s
in
i , vρ,Y) algorithm is executed by the payer. It takes as input the public

parameters pp, transaction inputs Cin
i , value vin

i , randomness sin
i , transfer value vρ and the audit

public key Y . It outputs the pre-transaction ptx as the following shows:

• The payer selects n inputs Cin
i of total value v =

∑n
i=1 vin

i ≥ vρ. Let pre-transaction input
be ptx.in = {Cin

i | i ∈ [1, n]}. It generates n′ outputs of total value vρ =
∑n′

j=1 vout
j . Let the

pre-transaction remainder be ptx.rmdr = {vout
j | j ∈ [1, n′]}.

• The payer computes the change value vout
c = v − vρ. Let the change value be ptx.chg = vout

c .
It randomly selects randomness of the change value sout

c ∈ Zq. It computes Cout
1c = sout

c Y and
Cout

2c = sout
c P + vout

c H. Let Cout
c = {Cout

1c ,C
out
2c }, and it stores Cout

c in tx.out.
• The payer generates the pre-transaction balance proof πpbp. It randomly chooses ra ∈ Zq and

computes sin
s = −

∑n
i=1 sin

i + sout
c . It computes Xa = sin

s P, Ra = raP, ea = H0(Ra, Xa) and
σa = ra + esin

s . So, the pre-transaction balance proof πpbp = {σa, ea,Ra, Xa}.
• The payer computes the pre-transaction audit proof πpau. The proof can be described as

S KDL{(vout
c , sout

c) : Cout
1c = sout

c Y ∧ Cout
2c = sout

c P + vout
c H}, which ensures that this transaction

can be reliably audited. It randomly chooses sout′
c ∈ Zq and vout′

c ∈ Zq, then it computes R1c =

sout′
c Y , R2c = sout′

c P+vout′
c H, c̃p = H1(R1c,R2c,Cout

c), σc,1 = sout′
c + c̃psout

c and σc,2 = vout′
c + c̃pvout

c .
So the pre-transaction audit proof is πpau = {σc,1, σc,2,R1c,R2c, c̃p}.

The payer outputs the generated pre-transaction ptx = {ptx.in, ptx.out, πpbp, πpau}, where
ptx.out = {ptx.chg, ptx.rmdr}.

(2) The tx(pp, ptx.rmdr,Y) algorithm is executed by the payee. It takes as input the public parameters
pp, pre-transaction remainder ptx.rmdr and the audit public key Y . It generates the transaction
outputs tx.out, balance randomness Pb and range proof πrp as the following shows: The payee
checks whether

∑n
i=1 vin

i =
∑n′

j=1 vout
j +vout

c holds. If it does not hold, it aborts. Otherwise, the payee
executes the txenc(pp, vin

i ,Y) algorithm, which is twisted ElGamal encryption. This algorithm
randomly chooses sout

j ∈ Zq and computes Cout
1 j = sout

j Y and Cout
2 j = sout

j P + vout
j H, and then it stores

them to tx.out. The payee computes sout
s =

∑n′
j=1 sout

j and the balance randomness Pb = sout
s P, and

then the payee executes the Bulletproofs [36] to generate range proof πrp = {πrpc , πrp j | j ∈ [1, n′]}.
For data assets such as v1, v2, v3(v3 = v1v2), it generates C1,C2,C3 by txenc(pp, v1, v2, v3,Y) in the
same way, and it stores them in tx.data = {C1,C2,C3}.

(3) The bl(pp, πpbp, Pb) algorithm is executed by the payer and payee. It takes as input the public pa-
rameters pp, pre-transaction balance proof πpbp and balance randomness Pb. It generates balance
proof πbl as the following shows:

• The payee computes e′a = H0(Ra, Xa), and then it verifies whether σaP = Ra + e′aXa holds. If
it does not hold, the payee aborts. Otherwise, the payee randomly chooses rb ∈ Za, computes
Rb = rbP, 4R = Ra + Rb and X̄ = Xa + Pb. It calculates e = H0(4R, X̄) and computes
σB = rb + esout

s . The payee sends these generated σB and Pb to the payer.
• The payer computes 4R = Ra + Rb, X̄ = Xa + Pb = xsP, e = H0(4R, X̄), σA = ra + esin

s and
σ = σA + σB. Therefore, the generated balance proof is πbl = {σ, e,4R, X̄}.

(4) The pro(pp, v1, v2, v3,C21,C22,C23) algorithm is executed by the user. It proves that some en-
crypted transaction values v1, v2, v3 satisfy the product relationship v1v2 = v3. It takes as input the

Electronic Research Archive Volume 31, Issue 2, 729–753.

741

public parameters pp, C21 = v1H + s1P, C22 = v2H + s2P and C23 = v3H + s3P that are encrypted
values of v1, v2, v3. It generates multiplicative proof πpro as the following shows:

• The user randomly chooses y1, y2, y3, s′1, s
′
2, s
′
3 ∈ Zq, and then it computes d1 = y1H +

s′1P, d2 = y2H + s′2P, d3 = y3H + s′3P and d4 = y2C21 + s′3H. It computes c =

H2(d1, d2, d3, d4,C21,C22,C23).
• It computes u1 = y1 +v1c, u2 = y2 +v2c, u3 = y3 +v3c, θ1 = s′1 + s1c, θ2 = s′2 + s2c, θ3 = s′3 + s3c

and θ4 = s′3 +(s3− s1v2)c. So, the multiplicative proof πpro is πpro = {c, u1, u2, u3, θ1, θ2, θ3, θ4}.

(5) The au(pp, ptx.out, πpau,Y) algorithm is run by the payee. It takes as input public parameters pp,
a remainder ptx.rmdr, the pre-transaction audit proof πpau and the audit public key Y . It outputs
the audit proof πau as the following shows:

• The payee randomly chooses sout′
j ∈ Zq and computes R1 = R1c +

∑n′
j=1 R1 j = R1c +

∑n′
1 j sout′

j Y ,
and then it randomly selects vout′

j ∈ Zq and computes R2 = R2c +
∑n′

2 j R2 j = R2c +
∑n′

2 j(sout′
j P +

vout′
j H).

• It calculates c̃ = H3(R1,R2, tx.out) and σ j,1 = sout′
j + c̃sout

j , σ j,2 = vout′
j + c̃vout

j , where vout
j is the

output value, and sout
j is the random number.

• It computes σ̄ = σc,1 +
∑n′

j=1 σ j,1 and σ′ = σc,2 +
∑n′

j=2 σ j,2. So, the audit proof πau is
πau = {σ̄, σ′,R1,R2, c̃}.

Finally, the payee sends the transaction to the validating nodes.
Verify: In the verify phase, validating nodes are responsible for verifying whether the transaction

meets some requirements that we defined. There are four verifying algorithms that are described as the
following shows:

(1) The verirp(pp, tx.out, πrp) algorithm takes as input the public parameters pp, transaction output
tx.out and the range proof πrp. It uses the Bulletproofs [36] to verify whether the transaction
output is in a certain range [0, vmax]. The detailed Bulletproofs can be seen in [36].

(2) The veribl(pp, πbl) algorithm takes as input the public parameters pp and balance proof πbl. It
verifies whether the transaction satisfies the balance property as the following shows: It computes
e′ = H0(M R, X̄), and then it checks whether e′ = e and σP = 4R + eX̄ hold. If they hold, it
outputs true which means that the transaction satisfies balance property.

(3) The veripro(pp, πpro) algorithm takes as input the public parameters pp and the multiplicative
proof πpro. It verifies whether these encrypted transaction values satisfy product relationship
v1v2 = v3. It computes d′1 = θ1P + u1H − cC21, d′2 = θ2P + u2H − cC22,d′3 = θ3P + u3H − cC23,
d′4 = θ4P+u2C21−cC23 and c′ = H2(d′1, d

′
2, d

′
3, d

′
4,C21,C22,C23), and then it checks whether c′ = c

holds. If it holds, it outputs true which means that these encrypted transaction values satisfy
product relationship.

(4) The veriau(pp, πau) algorithm takes as input the public parameters pp and audit proof πau. It
verifies whether the transaction can be reliably audited as the following shows: It computes R′1 =

σ̄Y − c̃Cout
1c −
∑n′

j=1 c̃Cout
1 j , R′2 = σ′H + σ̄P− c̃Cout

2c −
∑n′

j=1 c̃Cout
2 j and c̃′ = H3(R′1,R

′
2, tx.out). It checks

whether c̃ = c̃′ holds. If this equation holds, it outputs true, which means that the transaction can
be reliably audited.

Aggregate(σk,M R, σ′k, σ̄k,R1k,R2k): In the aggregate phase, the ordering nodes takes as input the
balance signature σk, balance randomness M R, audit signature σ′k, σ̄k, and audit randomness R1k,R2k,

Electronic Research Archive Volume 31, Issue 2, 729–753.

742

it aggregates m transactions’ balance signature and audit signature, where k ∈ m. The ordering nodes
compute σAgg =

∑m
1 σk, RAgg =

∑m
1 M Rk, σ′Agg =

∑m
1 σ

′, σ̄Agg =
∑m

1 σ̄k, R1
Agg =

∑m
1 R1k and R2

Agg =∑m
1 R2k. Therefore, the aggregated message is in f oAgg = {σAgg,RAgg, σ

′
Agg, σ̄Agg,R1

Agg,R
2
Agg}.

Chain(in f oAgg, X̄k, tx.outk, ek, c̃k): In the chain phase, the committing nodes take as input the aggre-
gated message in f oAgg, public randomness X̄k, transaction outputs tx.outk, hash value ek corresponding
to each transaction and balance challenge value c̃k. They verify the correctness of the aggregated mes-
sage in f oAgg by checking whether σAggP = RAgg +

∑
k ekX̄k, σ̄AggP = R1

Agg + c̃kCout
1c +

∑n′
j=1 c̃kCout

1 j and
σ′AggH + σ̄AggP = R2

Agg + c̃kCout
2c +

∑n′
j=1 c̃kCout

2 j hold. If these two equations hold, it outputs true, then
committing nodes add transactions that have been verified onto the ledger and the updated ledger is Λ.

Audit(pp, X, tx.out): In the audit phase, the auditor takes as input the public parameters pp, audit
secret key X and transaction outputs tx.out, and it computes vout

j H = Cout
2 j − X−1Ċout

1 j and auditing
transaction by comparing vout

j H with the pre-computed bH, where b ∈ [0, vmax).

6. Security analysis

6.1. Transaction confidentiality

Theorem 2 (Transaction confidentiality). Our scheme satisfies transaction confidentiality, if the twisted
ElGamal algorithm is IND-CPA secure, and the audit proof πau is zero-knowledge.

Proof of Theorem 2. We prove it via the following games. Let Wini denote the probability that the
adversaryA wins the Gamei.

Game0: We proceed with the transaction confidentiality experiment defined in Section 5.2. The
challenger C and the adversaryA interact as the following shows:

(1) C computes pp← setup(λ) and (X,Y)← keygen. It returns the generated pp and Y toA.
(2) A queries OPre and OGenCT . C answers these queries. On input ((Cin

i , v
in
i , s

in
i), vρ), run ptx ←

pretx(pp,Cin
i , v

in
i , s

in
i , vρ,Y) and store {(Cin

i , v
in
i , s

in
i), vρ,Y, ptx} into the list L. On input (ptx.rmdr),

search L, run tx.out ← tx(pp, ptx.rmdr,Y) and πau ← au(pp, ptx.out, πpau,Y), and then return
tx.out and πau.

(3) A chooses {ptx.rmdr0, ptx.rmdr1}. C randomly selects b ∈ [0, 1] and computes tx.out∗ ←
tx(pp, ptx.rmdrb,Y), π∗au ← au(pp, ptx.rmdrb, ptx.chg, πpau,Y). It returns the generated
{tx.out∗, π∗au} toA.

(4) A generates the guess b′ of b. If b = b′, it wins the experiment.

Therefore, we have AdvA(λ) = Pr[Win0] − 1
2 .

Game1: Game1 is similar to Game0 except that the audit proof πau is generated by simulator S =

(S 1, S 2). S 1 generates the trapdoor τ, and then S 2 takes τ as input without any proof. It outputs the
simulated proof πau. Therefore, the proof generated by S 2 is the same as the proof computed in Game1.
The probability thatA wins Game1 satisfies

|Pr[Win1] − Pr[Win0]| ≤ negl(λ). (6.1)

As we can see in Lemma 1, we have Pr[Win1] ≤ negl(λ).

Lemma 4. If the twisted ElGamal algorithm is IND-CPA secure, then for all PPT adversary A, we
have Pr[Win1] ≤ negl(λ).

Electronic Research Archive Volume 31, Issue 2, 729–753.

743

Proof of Lemma 4. Suppose that there is a PPT adversary A that wins Game1 with non-negligible
advantage, and then we can contruct algorithm B that can break the IND-CPA secure property of the
twisted ElGamal algorithm. B simulates Game1 as the following shows:

(1) B computes pp ← setup(λ) and (X,Y) ← keygen(pp). It uses S 1 to generate the trapdoor τ, and
then it returns them toA.

(2) A queries the oracle OPre and the oracle OGenCT . The challenger C answers these queries.
OPre: A makes this query with (Cin

i , v
in
i , s

in
i , vρ). C receives this query, and then it executes ptx ←

pretx(Cin
i , v

in
i , s

in
i , vρ,Y). It stores (Cin

i , v
in
i , s

in
i , vρ,Y, ptx) in the list L.

OGenCT : Amakes this query with (ptx.rmdr). C receives this query, and then it executes tx.out ←
tx(pp, ptx.rmdr,Y). It takes the trapdoor τ generated by S 2, and it outputs simulated πtr. It returns
tx.out and πtr toA.

(3) A selects two pre-transaction remainders {ptx.rmdr0, ptx.rmdr1}. B sends {ptx.rmdr0, ptx.rmdr1}

to its challenger C. B receives Cout∗
j = {Cout∗

1 j ,C
out∗
1 j }, where Cout∗

j is the encrypted value that is
obtained by encrypting ptx.rmdrb using audit public key Y . Let tx.out∗ = {Cout∗

j }. B takes the
trapdoor τ as input. It outputs the simulated audit proof π∗tr. B returns tx.out∗ and π∗tr to A as
challenge.

(4) A generates b′ as the guess of b, then B returns the guess generated byA.

We can see that B successfully simulates the Game1, so it can break the IND-CPA secure property
of twisted ElGamal algorithm with the same advantage. We prove the Lemma 4.

To sum up, we prove that if the twisted ElGamal algorithm is IND-CPA secure, and the audit proof
πau is zero-knowledge, our scheme satisfies transaction confidentiality.

6.2. Public verification

6.2.1. Balance verification

Theorem 3 (Balance verification). Our scheme enables transaction balance verification, which means
that outputs of the transaction and the inputs of the transaction are equal, if the Discrete logarithm
assumption holds.

Proof of Theorem 3. Suppose that there is a PPT adversaryA that wins the transaction balance exper-
iment we defined in Section 3 with non-negligible advantage, and then we can construct algorithm B
that can solve the Discrete logarithm problem with the same advantage. Let pp = (G, P,H, q,H0).
(P,H) is the instance of B’s Discrete logarithm problem, where P and H are two random generators of
G. B simulates the experiment as the following shows:

(1) B computes pp← setup(λ) and (X,Y)← keygen(pp). It returns the generated public parameters
pp and the public key Y toA.

(2) A queries oracles OPre and OGenBal. These oracles answer these queries.
OPre: A makes this query with (Cin

i , v
in
i , s

in
i , vρ). C computes (ptx)← pretx(pp,Cin

i , v
in
i , s

in
i , vρ,Y),

and then it stores (Cin
i , v

in
i , s

in
i , vρ,Y, ptx) into the list L.

OGenBal: A makes this query with (ptx.rmdr). C receives this query and computes tx.out ←
tr(pp, ptx.rmdr,
Y). It selects L to find the corresponding (πpbp, Pb), and then it computes πbp ← bl(pp, πpbp, Pb).
It returns tx.out and πbp toA.

Electronic Research Archive Volume 31, Issue 2, 729–753.

744

(3) A obtains complete transaction information that includes transaction inputs tx.in = {Cin
i |C

in
i =

{Cin
1i,C

in
2i, i ∈ [1, n]}}, transaction outputs tx.out = {Cout

j ,Cout
c |C

out
j = {Cout

1 j ,C
out
2 j }, j = [1, n′],Cout

c =

{Cout
1c ,C

out
2c }} and transaction balance information πbl = {σ, e,M, X̄}. B rewinds e2 and σ2. There-

fore, we have:

Yσ − e(Cout
1c +

n′∑
j=1

Cout
1 j −

n∑
i=1

Cin
i) (6.2)

= Yσ2 − e2(Cout
1c +

n′∑
j=1

Cout
1 j −

n∑
i=1

Cin
i)

e(Cout
2c +

n′∑
j=1

Cout
2 j −

n∑
i=1

Cin
2i) − σP (6.3)

= e2(Cout
2c +

n′∑
j=1

Cout
2 j −

n∑
i=1

Cin
2i) − σ2P

Let x∗s = (σ − σ2)/(e − e2), and then X̄∗ = x∗sG can be regarded as the transaction public balance
excess value. We have

x∗sY = Cout
1c +

n′∑
j=1

Cout
1 j −

n∑
i=1

Cin
1i (6.4)

x∗sG = X̄∗ = Cout
2c +

n′∑
j=1

Cout
2 j −

n∑
i=1

Cin
2i (6.5)

If
∑n

i=1 vin
i ,
∑n′

j=1 vout
j + vout

c , then we have

x∗sG = X̄∗ = Cout
2c +

n′∑
j=1

Cout
2 j −

n∑
i=1

Cin
2i (6.6)

= (
n∑

i=1

vin
i − vout

c −

n′∑
j=1

vout
j)H + (sout

s − sin
s)G

So, we have (
∑n

i=1 vin
i − vout

c −
∑n′

j=1 vout
j)H = (sout

s − sin
s − x∗s)P. Therefore, B can take logPH =

(sout
s − sin

s − x∗s)/(
∑n

i=1 vin
i − vout

c −
∑n′

j=1 vout
j) as the solution of the Discrete logarithm problem.

Thus, if the Discrete logarithm problem is hard to solve, our scheme satisfy the transaction balance
property.

6.2.2. Multiplicative verification

Theorem 4 (Multiplicative verification). Our scheme enables multiplicative verification, which means
that our scheme is able to prove and verify some encrypted values v1, v2, v3 satisfy product relationship
v1 · v2 = v3, if the Discrete logarithm assumption holds.

Electronic Research Archive Volume 31, Issue 2, 729–753.

745

Proof of Theorem 4. Suppose that there exists a PPT adversary A that can break the multiplicative
verification property with non-negligible advantage, and then we can construct algorithm B that can
solve the Discrete logarithm problem with the same advantage. Let pp = (G, P,H, q,H0). (P,H) is
the instance of B’s Discrete logarithm problem, where P and H are two random generators of G. B
simulates the experiment as the following shows:

(1) B computes pp← setup(λ) and (X,Y)← keygen(pp). It returns the generated public parameters
pp and the public key Y toA.

(2) A queries the Opro oracle with (v1, v2, v3,C21,C22,C23). C computes πpro ←

pro(pp, v1, v2, v3,C21,C22,C23). It returns πpro to the adversaryA.
(3) A obtains the transaction information (C21,C22,C23) and multiplicative proofs πpro =

{c, u1, u2, u3, θ1, θ2, θ3, θ4}. B rewinds c′, u′1, u′2, u′3,θ′1,θ′2,θ′3 and θ′4. Therefore, we have

θ1P + u1H − cC21 = θ′1P + u′1H − c′C21 (6.7)
θ2P + u2H − cC22 = θ′2P + u′2H − c′C22 (6.8)
θ3P + u3H − cC23 = θ′3P + u′3H − c′C23 (6.9)

u2C21 + θ4P − cC23 = u′2C21 + θ′4P − c′C23 (6.10)

Let v∗1 = (u1 − u′1)/(c − c′), s∗1 = (θ1 − θ
′
1)/(c − c′),v∗2 = (u2 − u′2)/(c − c′), s∗2 = (θ2 − θ

′
2)/(c −

c′),v∗3 = (u3 − u′3)/(c − c′), s∗3 = (θ3 − θ
′
3)/(c − c′) and s∗ = (θ4 − θ

′
4)/(c − c′). Then, we have

v∗3H + s∗3P = v∗1v∗2H + (v∗2s∗1 + s∗)P. If v∗1v∗2 , v∗3, we have (v∗1v∗2 − v∗3)H = (s∗3 − s∗ − v∗2s∗1)P. B can
take logPH = (s∗3 − s∗ − v∗2s∗1)/(v∗1v∗2 − v∗3) as the solution of the Discrete logarithm problem.

Thus, if the Discrete logarithm problem is hard to solve, our scheme satisfies multiplicative verifi-
cation.

6.3. Reliable audit

Theorem 5 (Reliable audit). Transactions in our privacy-preserving transaction scheme can be reli-
ably audited.

Proof of Theorem 5. Suppose that trading parties (payee and payer) may construct a fake to escape
audit. The adversary’s malicious actions can be roughly summarized as the following two types:

(1) The adversary A randomly chooses Y ′ ∈ G,Y ′ , Y to generate encrypted transaction outputs
instead of using audit public key Y . It computes Cout′

1 j = sout
j Y ′, Cout′

j = {Cout′
1 j ,C

out
2 j }. Therefore,

validating nodes can verify it as the following shows:

R′1 = σ̄Y − c̃Cout
1c − c̃

n′∑
j=1

Cout′
1 j (6.11)

= sout′
c Y +

n′∑
j=1

sout′
j Y + c̃sout

c Y

+ c̃
n′∑
j=1

sout
j Y − c̃sout

c Y ′ − c̃
n′∑
j=1

sout
j Y ′.

Electronic Research Archive Volume 31, Issue 2, 729–753.

746

We can see that Y ′ , Y , so R′1 , sout′
c Y +

∑n′
j=1 sout′

j Y and R′1 , sout′
c Y +

∑n′
j=1 sout′

j Y ′. Therefore, we
have R′1 , R1. Besides, hash functions are collision-resistant, so we get c̃′ , c̃.

(2) The adversary A randomly chooses vout′
j , vout

j to generate encrypted transaction outputs instead
of using the real transaction value vout

j . It computes Cout′
2 j = sout

j P + vout′
j H,Cout′

j = {Cout
1 j ,C

out′
2 j }.

Therefore, validating nodes can verify it as the following shows:

R′2 = σ′H + σ̄P − c̃Cout
2c − c̃

n′∑
j=1

Cout′
2 j (6.12)

= vout′
c H + sout′

c P +

n′∑
j=1

vout′
j H +

n′∑
j=1

sout′
j P

+ c̃
n′∑
j=1

vout
j H − c̃

n′∑
j=1

vout′
j H

= R2c +

n′∑
j=1

vout′
j H +

n′∑
j=1

sout′
j P

+ c̃H
n′∑

n=1

(vout
j − vout′

j)

We can see that vout′
j , vout

j , so R′2 , R2c +
∑n′

j=1 vout′
j H +

∑n′
j=1 sout′

j P that is R′2 , R2. Therefore, we
get c̃′ , c̃.

In summary, the probability of the audit proof information forged by the adversaryA that can pass
the verification is negligible. Therefore, our scheme satisfies transaction auditability.

7. Performance analysis

In order to evaluate the performance of our proposed scheme, we implement the prototype of the
proposed privacy preserving transaction scheme which mainly focuses on the transaction layer without
considering the differences of consensus mechanisms. This makes our privacy preserving transaction
scheme more feasible for different blockchain systems. Our implementation is in Golang language on
a laptop with 8GB of RAM, an Intel Core i7-8500U 2.00GHz. The elliptic curve we used is secp256k1,
and the hash function is sha256.

According to Table 3, we give an evaluation of the computation time about each step of the main
phase in our proposed privacy preserving transaction scheme. We take the most frequently used 2
inputs-1 outputs as instance. As we can see from Table 3, computation times in each phase such as
setup, transact, verify and audit are all in milliseconds. The total time is approximate 7.65 ms. It is
practical and feasible for low frequency transaction scenarios.

Electronic Research Archive Volume 31, Issue 2, 729–753.

747

Table 3. Computation time of the main phase of our proposed scheme in milliseconds.

Phase Step Time (ms)
Setup Setup 0.232
Transact Generate encrypted outputs 0.439

Generate balance proofs 0.877
Generate multiplicative proofs 1.308
Generate Audit proofs 0.953

Verify Balance proofs verification 0.349
Multiplicative relationship verification 1.810
Audit proofs verification 1.244

Audit Audit 0.438

2-2 4-4 6-6 8-8 10-10 12-12
0

1

2

3

4

5

6

Co
m

pu
ta

tio
n

tim
e(

m
s)

n inputs-n'outputs per transaction(n-n')

 Verify balance zero-knowledge proofs
 Verify audit zero-knowledge proofs
 Audit

Figure 4. Computation time comparison in verify and audit phase with increasing inputs and
outputs.

In Figures 3 and 4, we also evaluate our privacy preserving transaction scheme’s time costs in
transact, verify and audit phases with increasing inputs and outputs. According to Figure 3, as the
number of inputs and outputs grows from 2-2 to 12-12 in one transaction, the balance zero-knowledge
prove time and audit zero-knowledge prove time are approximately 0.9 and 1.0 ms with no obvious
increasing. In Figure 4, the balance zero-knowledge proofs verification time requirements is kept

Electronic Research Archive Volume 31, Issue 2, 729–753.

748

approximate 0.4 ms as the number of inputs and outputs increasing from 2-2 to 12-12. Though the
time of generating encrypted values grows from 0.8 to 4.9 ms in Figure 3, and the time of verifying
audit zero-knowledge proofs and auditing time are increasing from 1.6 to 5.4 ms and 0.9 to 5.1 ms
respectively in Figure 4, they are still within milliseconds.

Figure 5 presents the verification time comparison before and after aggregation, and Figure 6
presents the block size comparison before and after aggregation. According to Figure 5, the verifi-
cation time linearly grows from 4.9 to 21.0 ms as the number of inputs and outputs is set to be 2-2, 4-4,
6-6, 8-8, 10-10, 12-12 respectively when there is no aggregation of balance proofs and audit proofs.
However, in our proposed privacy preserving transaction scheme, we aggregate the balance proofs and
audit proofs, which greatly shortens the verification time, as it approximately grows 3.8 to 7.5 ms
when the number of inputs and outputs is set to be 2-2, 4-4, 6-6, 8-8, 10-10, 12-12, respectively. For
the reason that we replace the multiplication operation with the faster add operation of group in our ag-
gregation algorithm, the verification time has no obvious growth. Therefore, our aggregation algorithm
makes the transaction verification more efficient. As we can see in Figure 6, the growth rate of block
size has been significantly slowed as the number of transactions in a block after we make aggregation
of the audit proofs and balance proofs. Thus, the aggregation technique reduces the storage size of
proof at least 50% of the size before optimization. It effectively saves the ledger space.

2 4 6 8 10 12

0

5

10

15

20

25

V
er

ifi
ca

tio
n

tim
e

pe
r t

ra
ns

ac
tio

n(
m

s)

n inputs-n' outputs per transaction

 Before aggregation
 After aggregation

Figure 5. Verification time comparison before and after aggregation.

Electronic Research Archive Volume 31, Issue 2, 729–753.

749

10 20 30 40 50 60

0

2000

4000

6000

8000

10000
Bl

oc
k

siz
e(

B)

The number of transactions per block

 Before aggregation
 After aggregation

Figure 6. Block size comparison before and after aggregation.

Our scheme has functional advantages. In particular, there are several applications in blockchain for
the proposed multiplicative zero-knowledge proof to be used in some specific scenarios. For monetary
assets in UTXO model, if there are k outputs with the same value v for a user and the total amount
of them is sum = v · k, it needs to computes k encrypted values that C1 = {C11 = s1Y,C21 = vH +

s1P}, ...,Ck = {C1k = skY,C2k = vH + skP}, and it needs to store k encrypted values C1,C2, ...,Ck in the
leger. However, by using the proposed multiplicative zero-knowledge proof, it only needs to compute
two encrypted values Cv,Ck and only stores these two ciphertexts in the leger without influencing
the transaction balance and reliable audit. It is obvious that using the proposed multiplicative zero-
knowledge proof achieves space savings of ledger and efficiency gains for the user. For data assets
such as those in supply chain, suppose that the quantity of goods is r, the unit price of goods is v, and
the total amount is t = v · r. r, v and tneed to record in chain with privacy preserving. We can compute
Cv = {C1v = svY,C2v = vH + svP} ,Cr = {C1r = srY,C2r = rH + srP}, and Ct = {C1t = stY,C2t =

tH + stP}. This hides the transaction information, and then the multiplicative zero-knowledge proof
ensures t = v · r to be public verified by validators in blockchain without revealing t, r and v.

8. Conclusions

In this paper, we propose a privacy preserving transaction scheme with public verification and re-
liable audit in blockchain. Our scheme not only provides confidentiality for transaction contents in a
more flexible way by decoupling user identity and transaction contents, but also defines several verifi-

Electronic Research Archive Volume 31, Issue 2, 729–753.

750

cation rules that makes full use of validators in blockchain. It enables balance verification for monetary
assets, and then we design a multiplicative zero-knowledge proof with security analysis, which can be
potentially used in blockchain based financial applications, supply chains and so on. Then, validators
can optionally multiplicative verification of data assets to ensure the data compliance by applying the
proposed multiplicative proof. In addition, our proposal enables the auditor to make precise audit of
each transaction which audit reliability is guaranteed by publicly verifying the audit proof. Security
analysis shows that the proposed scheme satisfies the security requirements we defined. Performance
analysis indicates that its computation cost is in milliseconds, and the aggregation effectively saves the
storage space. Also, how to construct a more efficient range-proof is still to be taken into consideration.

Acknowledgments

This paper was supported by National Natural Science Foundation of China (Grant no.
U21A20463).

Conflict of interest

The authors declare there is no conflicts of interest.

References

1. Y. Cao, F. Jia, G. Manogaran, Efficient traceability systems of steel products using
blockchain-based industrial Internet of Things, IEEE Trans. Ind. Inf., 16 (2019), 6004–6012.
https://doi.org/10.1109/TII.2019.2942211

2. L. Li, J. Liu, L. Cheng, S. Qiu, W. Wang, X. Zhang, et al, Creditcoin: a privacy-preserving
blockchain-based incentive announcement network for communications of smart vehicles, IEEE
Trans. Intell. Transp. Syst., 19 (2018), 2204–2220. https://10.1109/TITS.2017.2777990

3. S. J. Lee, J. C. Chew, Y. J. Liu, C. Y. Chen, Y. K. Tsai, Medical blockchain: data sharing and
privacy preserving of EHR based on smart contract, Int. J. Inf. Secur. Appl., 65 (2022), 103117.
https://doi.org/10.1016/j.jisa.2022.103117

4. H. Huang, P. Zhu, F. Xiao, X. Sun, Q. Huang, A blockchain-based scheme for
privacy-preserving and secure sharing of medical, Comput. Secur., 99 (2020), 102010.
https://doi.org/10.1016/j.cose.2020.102010

5. S. Purohit, P. Calyam, L. M. Alarcon, R. N. Bhamidipati, HonestChain: consortium blockchain
for protected data sharing in health information systems, Peer-to-Peer Netw. Appl., 14 (2021),
3012–3028. https://doi.org/10.1007/s12083-021-01153-y

6. W. Wang, J. Song, G. Xu, Y. Li, H. Wang, C. Su, Contractward: automated vulnerability detection
models for ethereum smart contracts, IEEE Trans. Network Sci. Eng., 8 (2020), 1133–1144.
https://doi.org/10.1109/TNSE.2020.2968505

7. X. Liu, J. Liu, S. Zhu, W. Wang, X. Zhang, Privacy risk analysis and mitigation of ana-
lytics libraries in the android ecosystem, IEEE Trans. Mob. Comput., 9 (2020), 1184–1199.
https://doi.org/10.1109/TMC.2019.2903186

Electronic Research Archive Volume 31, Issue 2, 729–753.

http://dx.doi.org/https://doi.org/10.1109/TII.2019.2942211
http://dx.doi.org/https://10.1109/TITS.2017.2777990
http://dx.doi.org/https://doi.org/10.1016/j.jisa.2022.103117
http://dx.doi.org/https://doi.org/10.1016/j.cose.2020.102010
http://dx.doi.org/https://doi.org/10.1007/s12083-021-01153-y
http://dx.doi.org/https://doi.org/10.1109/TNSE.2020.2968505
http://dx.doi.org/https://doi.org/10.1109/TMC.2019.2903186

751

8. W. Wang, Y. Shang, Y. He, Y. Li, J. Liu, BotMark: automated botnet detection with hy-
brid analysis of flow-based and graph-based traffic behaviors, Inf. Sci., 511 (2020), 284–296.
https://doi.org/10.1016/j.ins.2019.09.024

9. W. Wang, M. Zhao, J. Wang, Effective android malware detection with a hybrid model based on
deep autoencoder and convolutional neural network, J. Ambient Intell. Hum. Comput., 10 (2010),
3035–3043. https://doi.org/10.1007/s12652-018-0803-6

10. Y. Zhang, J. Wen, The IoT electric business model: using blockchain technology for the Internet
of Things, Peer-to-Peer Netw. Appl., 10 (2017), 983–994. https://doi.org/10.1007/s12083-016-
0456-1

11. D. Gabay, K. Akkaya, M. Cebe, Privacy-preserving authentication scheme for connected electric
vehicles using blockchain and zero knowledge proofs, IEEE Trans. Veh. Technol., 69 (2020),
5760–5772. https://doi.org/10.1109/TVT.2020.2977361

12. L. Xue, D. Liu, J. Ni, X. Lin, S. X. Shen, Enabling regulatory compliance and enforcement
in decentralized anonymous payment, IEEE Trans. Dependable Secure Comput., 2022 (2022).
https://doi.org/10.1109/TDSC.2022.3144991

13. S. Nakamoto, Bitcoin: a peer-to-peer electronic cash system, Decentralized Bus. Rev., 2008
(2008), 21260. Available from: https://www.belegger.nl/Forum/Upload/2017/10425916.pdf.

14. Monero: a secure, private, untraceable cryptocurrency, 2021. Available from:
https://www.getmonero.org/.

15. B. E. Sasson, A. Chinesa, C. Garman, M. Green, I. Miers, E. Tromer, et al., Zerocash: decen-
tralized anonymous payments from bitcoin, in 2014 IEEE Symposium on Security and Privacy,
IEEE, (2014), 459–474. https://doi.org/10.1109/SP.2014.36

16. I. Miers, C. Garman, M. Green, D. A. Rubin, Zerocoin: anonymous distributed e-cash
from bitcoin, in 2013 IEEE Symposium on Security and Privacy, IEEE, (2013), 397–411.
https://doi.org/10.1109/SP.2013.34

17. E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, M. Virza, SNARKs for C: verifying program
executions succinctly and in zero knowledge, in Annual Cryptology Conference, Springer, Berlin,
Heidelberg, 8043 (2013), 90–108. https://doi.org/10.1007/978-3-642-40084-1 6

18. G. Fuchsbauer, M. Orrù, Y. Seurin, Aggregate cash systems: a cryptographic investigation of mim-
blewimble, in Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Springer, Cham, 11476 (2019), 657–689. https://doi.org/10.1007/978-3-030-17653-
2 22

19. G. Maxwell, Confidential transactions. Available from: https://www.weusecoins.com/confidential-
transactions/.

20. P. T. Pedersen, Non-interactive and information-theoretic secure verifiable secret sharing, in An-
nual International Cryptology Conference, Springer, Berlin, Heidelberg, 576 (1991), 129–140.
https://doi.org/10.1007/3-540-46766-1 9

21. N. Narula, W. Vasquez, M. Virza, zkLedger: privacy-preserving auditing for distributed ledgers, in
15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18), (2018),
65–80. Available from: https://www.usenix.org/conference/nsdi18/presentation/narula.

Electronic Research Archive Volume 31, Issue 2, 729–753.

http://dx.doi.org/https://doi.org/10.1016/j.ins.2019.09.024
http://dx.doi.org/https://doi.org/10.1007/s12652-018-0803-6
http://dx.doi.org/https://doi.org/10.1007/s12083-016- 0456-1
http://dx.doi.org/https://doi.org/10.1007/s12083-016- 0456-1
http://dx.doi.org/https://doi.org/10.1109/TVT.2020.2977361
http://dx.doi.org/https://doi.org/10.1109/TDSC.2022.3144991
http://dx.doi.org/https://doi.org/10.1109/SP.2014.36
http://dx.doi.org/https://doi.org/10.1109/SP.2013.34
http://dx.doi.org/https://doi.org/10.1007/978-3-642-40084-1_6
http://dx.doi.org/https://doi.org/10.1007/978-3-030-17653-2_22
http://dx.doi.org/https://doi.org/10.1007/978-3-030-17653-2_22
http://dx.doi.org/https://doi.org/10.1007/3-540-46766-1_9

752

22. R. Singh, A. D. Dwivedi, R. R. Mukkamala, W. S. Alnumay, Privacy-preserving ledger for
blockchain and Internet of Things-enabled cyber-physical systems, Comput. Electr. Eng., 103
(2022), 108290. https://doi.org/10.1016/j.compeleceng.2022.108290

23. H. T. Yuen, PAChain: private, authenticated & auditable consortium blockchain
and its implementation, Future Gener. Comput. Syst., 112 (2020), 913–929.
https://doi.org/10.1016/j.future.2020.05.011

24. S. Dhar, A. Khare, R. Singh, Advanced security model for multimedia data shar-
ing in Internet of Things, Trans. Emerging Telecommun. Technol., 2022 (2022), e4621.
https://doi.org/10.1002/ett.4621

25. K. Wüst, K. Kostiainen, V. Čapkun, S. Čapkun, Prcash: fast, private and regulated transactions
for digital currencies, in International Conference on Financial Cryptography and Data Security,
Springer, Cham, 11598 (2019), 158–178. https://doi.org/10.1007/978-3-030-32101-7 11

26. S. Malik, V. Dedeoglu, S. Kanhere, R. Jurdak, Privchain: provenance and privacy preservation in
blockchain enabled supply chains, preprint, arXiv:2104.13964.

27. P. Chatzigiannis, F. Baldimtsi, Miniledger: compact-sized anonymous and auditable distributed
payments, in European Symposium on Research in Computer Security, Springer, Cham, 12972
(2021), 407–429. https://doi.org/10.1007/978-3-030-88418-5 20

28. Y. Chen, X. Ma, C. Tang, H. M. Au, PGC: decentralized confidential payment system with au-
ditability, in European Symposium on Research in Computer Security, Springer, Cham, 12308
(2020), 591–610. https://doi.org/10.1007/978-3-030-58951-6 29

29. G. Danezis, S. Meiklejohn, Centrally banked cryptocurrencies, preprint, arXiv:1505.06895.

30. E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. D. Caro, et al., Hyperledger
fabric: a distributed operating system for permissioned blockchains, in Proceedings of the Thir-
teenth EuroSys Conference, (2018), 1–15. https://doi.org/10.1145/3190508.3190538

31. S. Goldwasser, S. Micali, C. Rackoff, The knowledge complexity of interactive proof systems,
SIAM J. Comput., 18 (1989), 186–208. https://doi.org/10.1137/0218012

32. M. Blum, P. Feldman, S. Micali, Non-interactive zero-knowledge and its applications, in Providing
Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, (2019),
329–349.

33. J. Camenisch, M. Stadler, Efficient group signature schemes for large groups, in Annual
International Cryptology Conference, Springer, Berlin, Heidelberg, 1294 (1997), 410–424.
https://doi.org/10.1007/BFb0052252

34. F. Hao, Schnorr Non-interactive Zero-knowledge Proof, Tech. Rep., 2017. Available from:
https://www.rfc-editor.org/rfc/rfc8235.

35. A. Fiat, A. Shamir, How to prove yourself: practical solutions to identification and signature
problems, in Conference on the Theory and Application of Cryptographic Techniques, Springer,
Berlin, Heidelberg, 263 (1986), 186–194. https://doi.org/10.1007/3-540-47721-7 12

Electronic Research Archive Volume 31, Issue 2, 729–753.

http://dx.doi.org/https://doi.org/10.1016/j.compeleceng.2022.108290
http://dx.doi.org/https://doi.org/10.1016/j.future.2020.05.011
http://dx.doi.org/https://doi.org/10.1002/ett.4621
http://dx.doi.org/https://doi.org/10.1007/978-3-030-32101-7_11
http://dx.doi.org/https://doi.org/10.1007/978-3-030-88418-5_20
http://dx.doi.org/https://doi.org/10.1007/978-3-030-58951-6_29
http://dx.doi.org/https://doi.org/10.1145/3190508.3190538
http://dx.doi.org/https://doi.org/10.1137/0218012
http://dx.doi.org/https://doi.org/10.1007/BFb0052252
http://dx.doi.org/https://doi.org/10.1007/3-540-47721-7_12

753

36. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, G. Maxwell, Bulletproofs: short proofs for
confidential transactions and more, in 2018 IEEE Symposium on Security and Privacy (SP), IEEE,
(2018), 315–334. https://doi.org/10.1109/SP.2018.00020

c© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 31, Issue 2, 729–753.

http://dx.doi.org/https://doi.org/10.1109/SP.2018.00020
http://creativecommons.org/licenses/by/4.0

	Introduction
	Related work
	Preliminaries
	UTXO model
	Pedersen commitment
	Hard problems and complexity assumptions
	A variant of ElGamal encryption
	Non-interactive zero-knowledge proof

	Proposed multiplicative zero-knowledge proof
	Proposed blockchain-based privacy-preserving transaction scheme
	Overview
	Security model
	Description of the proposed scheme

	Security analysis
	Transaction confidentiality
	Public verification
	Balance verification
	Multiplicative verification

	Reliable audit

	Performance analysis
	Conclusions

