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Abstract: This paper presents a novel concept of G-Hardy-Rogers functional operators on metric
spaces endowed with a graph. It investigates sufficient circumstances under which such a mapping
becomes a Picard operator. As applications of the principal idea discussed herein, a few important
corresponding fixed point results in ordered metric spaces and cyclic operators are pointed out and
analyzed. For upcoming research papers in this field, comparative graphical illustrations are created to
highlight the pre-eminence of proposed notions with respect to the existing ones.
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1. Introduction and preliminaries

The contraction mapping principle due to Banach [1] is among popular results in metric fixed point
theory (FPT). Following Banach [1], the investigation of fixed and common fixed points of operators
obeying various contractive inequalities attracted several researchers (for example, see [2–6]). In
1973, Hardy and Rogers [7] presented a FP theorem using a more wider contractive expression which
improved the FP result due to Reich [8]. The principal result in [7] is the following.

Theorem 1.1. [7] If (Θ, ρ) is a complete metric space (MS) and the mapping τ : Θ −→ Θ satisfies:

ρ(τ%, τσ) ≤ αρ(%, σ) + βρ(%, τ%) + γρ(σ, τσ) + δρ(%, τσ) + λρ(σ, τ%), (1.1)

for all %, σ ∈ Θ, given that α, β, γ, δ, λ are positive reals obeying α + β + γ + δ + λ < 1, then τ has a
unique FP in Θ.
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A short time ago, Roldán et al. [9] brought up new FP theorems for a family of contractions
depending on two functions and some parameters under the name multiparametric contractions and
discussed a significant number of Hardy-Roger’s type contractions in the framework of both metric
and quasi metric spaces. Later after, more than a handful of researchers have come up with
multifarious improvements to Theorem 1.1. For a few of these modifications, one can consult [10–15]
and the references therein.

Let (Θ, ρ) be a MS and τ : Θ −→ Θ be a mapping. Consistent with Petrusel and Rus [16], we call
τ a Picard operator (PO, for short), if τ possesses a unique FP u∗ and lim

l−→∞
τl% = u∗ for all % ∈ Θ. The

mapping τ is said to be a weakly Picard operator (WPO, for short), if the sequence {τl%}l∈N converges
for all % ∈ Θ, and the limit is a FP of τ.

Let Ω represents the diagonal of the Cartesian product Θ×Θ (i.e., Ω = Θ×Θ) and let Ψ be a directed
graph such that the set ∆(Ψ) of its nodes coincides with Θ, and the set H(Ψ) of its edges contains all
loops; that is, Ω ⊆ H(Ψ). We presume throughout that Ψ does not contain any parallel edge so as to
have Ψ = (∆(Ψ),H(Ψ)). We also take Ψ as a weighted graph(see [17, P.309]) by allocating to each
edge, the distance between its nodes. By Ψ−1, we depict the conversion of Ψ; in other words, the graph
derived from Ψ by inverting the orientation of edges. Hence,

H(Ψ−1) = {(%, σ) ∈ Θ × Θ : (σ, %) ∈ H(Ψ)}.

The symbol Ψ̂ represents the graph with no orientation gotten from Ψ by overlooking the orientation
of edges. Indeed, it is more handy to regard Ψ̂ as a graph with orientation in which case the set of its
edges is symmetric. Via this observation,

H(Ψ̂) = H(Ψ) ∪ H(Ψ−1).

We say that (∆′,H′) is a subgraph of Ψ if ∆′ ⊆ ∆(Ψ),H′ ⊆ H(Ψ) and, for each (%, σ) ∈ H′, %, σ ∈ ∆′.
Furthermore, we record some basis of graph connectivity. All of these fundamentals can be found

in [17]. Let %, σ be any two nodes of a graph Ψ. Then, a path in Ψ from % to σ of length L(L ∈ N), is a
sequence {%i}

L
i=0 of L + 1 nodes such that %0 = %, %L = σ and (%l−1, %l) ∈ H(Ψ) for i = 1, L. A graph Ψ

is said to be connected if there is a path between any two nodes. Ψ is called weakly connected if Ψ̂ is
connected. If Ψ is such that H(Ψ) is symmetric and % is a vertex in Ψ, then the subgraph Ψ% comprising
of all edges and nodes which are contained in some path starting from % is termed the component of
Ψ containing %. In this instance, ∆(Ψ%) = [Ψ]%, where [Ψ]% is the equivalence class of the relation ∼
given on ∆(Ψ) by the assignment σ ∼ z if there is a path in Ψ from σ to z. Obviously, Ψ% is connected.

If τ : Θ −→ Θ is an operator, then by Fix(τ) = {% ∈ Θ : % = τ%}, we depict the set of all FP of τ.
Represent also Θτ = {% ∈ Θ : (%, τ%) ∈ H(Ψ)}.

Definition 1.2. A mapping τ : Θ −→ Θ is said to be orbitally continuous if for all % ∈ Θ and any
sequence {ζl}l∈N of positive integers, τζl% −→ σ implies τ(τζl%) −→ τσ as l −→ ∞.

Consistent with Definition 1.2, Bojor [18] gave the following concept.

Definition 1.3. [18] A mapping τ : Θ −→ Θ is called orbitally Ψ-continuous, if for any % ∈ Θ and a
sequence {%l}l∈N,

%l −→ % and (%l, %l+1) ∈ H(Ψ) for l ∈ N implies τ%l −→ τ%.
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Meanwhile, a number of results have been established discussing sufficient criteria for an operator
to be a PO, provided (Θ, ρ) is equipped with a graph. The earliest breakthrough in this context was
announced by Jachymski [19], who employed graph theoretic jargons in place of partial order to launch
the idea of Ψ-contraction in the manner given herewith.

Definition 1.4. [19] Let (Θ, ρ) be a MS. A mapping τ : Θ −→ Θ is called a Banach Ψ-contraction
(Ψ-contraction, for short) if τ preserves edges of Ψ in the following sense:

∀%, σ ∈ Θ
(
(%, σ) ∈ H(Ψ) implies (τ%, τσ) ∈ H(Ψ)

)
,

and τ decreases weights of edges of Ψ; that is,

there exists α ∈ (0, 1), for all %, σ ∈ Θ
(
(%, σ) ∈ H(Ψ) implies ρ(τ%, τσ) ≤ αρ(%, σ)

)
.

The following notion is common in the literature.

Definition 1.5. Let (Θ, ρ) be a MS. The operator τ is named a C̀iric̀-Reich-Rus operator if there exist
positive reals α, β, γ with α + β + γ < 1 such that for all %, σ ∈ Θ,

ρ(τ%, τσ) ≤ αρ(%, σ) + βρ(%, τ%) + γρ(σ, τσ).

Recently, Bojor [18] examined the existence of FP for C̀iric̀-Reich-Rus operator in complete MS
equipped with a graph by launching the idea of Ψ-C̀iric̀-Reich-Rus operator in the following sense.

Definition 1.6. [18, Definition 7] Let (Θ, ρ) be a MS. The mapping τ : Θ −→ Θ is called a Ψ-C̀iric̀-
Reich-Rus operator, if :

(CRR1)
(
(%, σ) ∈ H(Ψ) implies (τ%, τσ) ∈ H(Ψ)

)
, for all %, σ ∈ Θ;

(CRR2) there exist nonnegative numbers α, β, γ with α + β + γ < 1 such that for each (%, σ) ∈ H(Ψ),

ρ(τ%, τσ) ≤ αρ(%, σ) + βρ(%, τ%) + γρ(σ, τσ).

It has been demonstrated in [18, Example 2] that every C̀iric̀-Reich-Rus operator is a Ψ-C̀iric̀-Reich-
Rus operator, but the converse does not always hold.

Definition 1.7. [18, Definition 8] Let (Θ, ρ) be a MS equipped with a graph Ψ and τ : Θ −→ Θ be an
operator. We say that the graph Ψ is τ-connected if for all nodes %, σ of Ψ with (%, σ) < H(Ψ), there
is a path in Ψ, {%i}

L
i=0 from % to σ such that %0 = %, %L = σ and (%i, τ%i) ∈ H(Ψ) for all i = 1, L − 1. A

graph Ψ is weakly τ-connected if Ψ̂ is τ-connected.

The principle result in [18] is the following.

Theorem 1.8. [18, Theorem 6] Let (Θ, ρ) be a complete MS equipped with a graph Ψ and τ : Θ −→ Θ

be a Ψ-C̀iric̀-Reich-Rus operator. Suppose further that:

(B1) Ψ is τ-connected;
(B2) for any sequence {%l}l∈N in Θ, if %l −→ % and (%l, %l+1) ∈ H(Ψ) for l ∈ N, then there exists a

subsequence {%ζl} with (%ζl , %) ∈ H(Ψ) for l ∈ N.

Then τ is a PO.

Electronic Research Archive Volume 31, Issue 2, 675–690.
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For some recent advancements to the ideas of Ψ-contractions, one can consult [20–24] and the
references therein.

The focus of this paper is to study new conditions for the existence of FP for Hardy-Rogers
operator in MS equipped with a graph by initiating the notion of Ψ-Hardy-Rogers operators. As some
applications of our principal result, new FP theorems in partially ordered MS and cyclic operators are
deduced. Our principal result is further invited to investigate novel conditions for the existence of a
solution to an integral equation. Nontrivial comparative examples are provided to show that the ideas
proposed herein properly contained a few well-known results in the corresponding literature.

2. Main result

Motivated by Theorem 1.1, we employ in this section the idea of Jachysmki [19] to introduce the
concept of Ψ-Hardy-Rogers operator in the following manner.

Definition 2.1. Let (Θ, ρ) be a MS. The mapping τ : Θ −→ Θ is called a Ψ-Hardy-Rogers operator if
it satisfies the following conditions:

(H1)
(
(%, σ) ∈ H(Ψ) implies (τ%, τσ) ∈ H(Ψ)

)
, for all %, σ ∈ Θ;

(H2) there exist nonnegative numbers α, β, γ, δ, ζ with α+β+γ+δ+ζ < 1 such that for all (%, σ) ∈ H(Ψ),

ρ(τ%, τσ) ≤ αρ(%, σ) + βρ(%, τ%) + γρ(σ, τσ) + δρ(%, τσ) + ζρ(σ, τ%). (2.1)

Example 2.2. Any Hardy-Rogers operator is a Ψ0-Hardy-Rogers operator, where the graph Ψ0 is given
by H(Ψ0) = Θ × Θ.

The next example points out that every Ψ-Hardy-Rogers operator needs not be a Hardy-Rogers
operator.

Example 2.3. Let Θ = {1, 2, 3, 4} and ρ(%, σ) = |%−σ| for all %, σ ∈ Θ. Define the operator τ : Θ −→ Θ

as follows:

τ% =

1, if % ∈ {1, 2}
2, if % ∈ {3, 4}.

By considering the constants α = 1
12 , β = 1

12 , γ = 1
4 , δ = 1

3 and λ = 1
12 , we see that τ is a Ψ-Hardy-Rogers

operator, where Ψ = (∆(Ψ),H(Ψ)) with ∆(Ψ) = Θ and

H(Ψ) = {(1, 2), (1, 3), (1, 4), (2, 4), (3, 4)} ∪Ω.

However, τ is not a Hardy-Rogers operator, since for % = 2 and σ = 3, we get

ρ(τ2, τ3) = 1 >
7

12

=
1

12
ρ(2, 3) +

1
12
ρ(2, τ2) +

1
4
ρ(3, τ3) +

1
3
ρ(2, τ3) +

1
12
ρ(3, τ2).

The graph of Example 2.3 is represented in Figure 1.
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1 2

3 4

Figure 1. The graph model of Example 2.3.

We approach our main result via the following lemma.

Lemma 2.4. Let (Θ, ρ) be a MS equipped with a graph Ψ and τ : Θ −→ Θ be a Ψ-Hardy-Rogers
operator. If % ∈ Θ satisfies the condition (%, τ%) ∈ H(Ψ), then there exists an ω ∈ (0, 1) such that for all
l ∈ N,

ρ(τl%, τl+1%) ≤ ωlρ(%, τ%). (2.2)

Proof. Let % ∈ Θ with (%, τ%) ∈ H(Ψ). An easy induction shows that
(τl%, τl+1%) ∈ H(Ψ) for all l ∈ N.Then, for all l ∈ N,

ρ(τl%, τl+1%) ≤ αρ(τl−1%, τl%) + βρ(τl−1%, τl%) + γρ(τl%, τl+1%)
+δρ(τl−1%, τl+1%) + λρ(τl%, τl%)

≤ αρ(τl−1%, τl%) + βρ(τl−1%, τl%) + γρ(τl%, τl+1%)
+δ[ρ(τl−1%, τl%) + ρ(τl%, τl+1%)],

from which we have

ρ(τl%, τl+1%) ≤
(
α + β + δ

1 − γ − δ

)
ρ(τl−1%, τl%). (2.3)

By symmetry, we can interchange β with γ and δ with λ in (2.3), to have

ρ(τl%, τl+1%) ≤
(
α + γ + λ

1 − β − λ

)
ρ(τl−1%, τl%). (2.4)

Then

ω = min
{(
α + γ + λ

1 − β − λ

)
,

(
α + β + δ

1 − γ − δ

)}
∈ (0, 1),

and ρ(τl%, τl+1%) ≤ ωρ(τl−1%, τl%). Hence, for all l ∈ N,

ρ(τl%, τl+1%) ≤ ωlρ(%, τ%).

Lemma 2.5. Let (Θ, ρ) be a MS equipped with the graph Ψ and τ : Θ −→ Θ be a Ψ-Hardy-Rogers
operator such that the graph Ψ is τ-connected. Then, for all % ∈ Θ, the sequence {τl%}l∈N is Cauchy.
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Proof. Let % ∈ Θ be fixed. We discuss two cases:

Case 1. If (%, τ%) ∈ H(Ψ), then by Lemma 2.4, there exists ω ∈ (0, 1) such that ρ(τl%, τl+1%) ≤ ωlρ(%, τ%),
for all l ∈ N. Since ω ∈ (0, 1), we have

∞∑
l=0

ρ(τl%, τl+1%) ≤
∞∑

l=0

ωlρ(%, τ%) =
1

1 − ω
ρ(%, τ%) < ∞.

Hence, a standard argument shows that {τl%}l∈N is a Cauchy sequence.
Case 2. If (%, τ%) < H(Ψ), then by τ-connectedness of Ψ, we can find a path in Ψ, {%i}

L
i=0 from % to τ% such

that %0 = %, %L = τ% with (%i−1, %i) ∈ H(Ψ) for all i = 1, L and (%i, τ%i) ∈ H(Ψ) for all i = 1, L − 1.
Then, by triangle inequality and (2.2), we get

ρ(τl%, τl+1%) ≤
L∑

i=1

ρ(τl%i−1, τ
l%i)

≤ α

L∑
i=1

ρ(τl−1%i−1, τ
l−1%i) + β

L∑
i=1

ρ(τl−1%i−1, τ
l%i − 1)

+γ

L∑
i=1

ρ(τl−1%i, τ
l%i) + δ

L∑
i=1

ρ(τl−1%i−1, τ
l%i) + λ

L∑
i=1

ρ(τl−1%i, τ
l%i − 1)

≤ α

L∑
i=1

ρ(τl−1%i−1, τ
l−1%i) + βρ(τl−1%, τl%) + βωl−1

L∑
i=2

ρ(%i−1, τ%i−1)

+γρ(τl%, τl+1%) + γωl−1
L∑

i=2

ρ(%i, τ%i)

+δ

L∑
i=1

ρ(τl−1%i−1, τ
l%i) + λ

L∑
i=1

ρ(τl−1%i, τ
l%i)

≤ (α + β + γ)
L∑

i=1

ρ(τl−1%i−1, τ
l−1%i) + (β + γ)

L∑
i=2

ωl−1ρ(%i, τ%i−1)

+δ

L∑
i=1

ρ(τl−1%i−1, τ
l%i) + λ

L∑
i=1

ρ(τl−1%i, τ
l%i − 1).

Let %l =
∑L

i=1 ρ(τl%i−1, τ
l%i), r(%) = (β + γ)

∑L
i=2 ρ(%i, τ%i−1), η =

α+β+γ

1−δ−λ . Then,

%l ≤ (α + β + γ)%l−1 + (β + γ)ωl−1r(%) + (δ + λ)%l,

from which we have

%l ≤

(
α + β + γ

1 − δ − λ

)
%l−1 +

(
β + γ

1 − δ − λ

)
ωl−1r(%)

≤ η%l−1 +

(
β + γ

1 − δ − λ

)
ωl−1r(%).

(2.5)
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Using (2.5) and direct calculation, we obtain

%l ≤ l
(

β + γ

1 − δ − λ

)
ωl−1r(%), (2.6)

for all l ∈ N. Since η ∈ (0, 1) and by (2.6),
∞∑

l=0

ρ(τl%, τl+1%) ≤
∞∑

l=0

%l

≤

(
β + γ

1 − δ − λ

)
r(%)

∞∑
l=0

lωl−1

=
β + γ

(1 − δ − λ)(1 − ω)2 r(%) < ∞,

and a standard argument reveals that {%l}l∈N is a Cauchy sequence.

The next result is the principal theorem of this paper.

Theorem 2.6. Let (Θ, ρ) be a complete MS equipped with a graph Ψ and τ : Θ −→ Θ be a Ψ-Hardy-
Rogers operator. Assume further that

(G1) Ψ is τ-connected;
(G2) for any sequence {%l}l∈N in Θ, if %l −→ % as l −→ ∞ and (%l, %l+1) ∈ H(Ψ) for all l ∈ N, then there

is a subsequence {%ζl}ζ∈N with (%ζl , %) ∈ H(Ψ) for all ζ ∈ N.

Then τ is a PO.

Proof. By Lemma 2.5, {τl%}l∈N is a Cauchy sequence in Θ for all % ∈ Θ. And, by hypothesis, it follows
that {τl%}l∈N is convergent. Let %, σ ∈ Θ. Then τl% −→ u∗ and τlσ −→ v∗ as l −→ ∞. Now, consider
the following cases:
Case 1. If (%, σ) ∈ H(Ψ), we have (τl%, τlσ) ∈ H(Ψ) for all l ∈ N. Then, for all l ∈ N,

ρ(τl%, τlσ) ≤ αρ(τl−1%, τl−1σ) + βρ(τl−1%, τl%) + γρ(τl−1σ, τlσ)
+ δρ(τl−1%, τlσ) + λρ(τl−1σ, τl%).

(2.7)

Taking limit as l −→ ∞ in (2.7), yields

ρ(u∗, v∗) ≤ αρ(u∗, v∗) + δρ(u∗, v∗) + λρ(v∗, u∗)
= (α + δ + λ)ρ(u∗, v∗),

from which we get (1 − α − δ − λ)ρ(u∗, v∗) ≤ 0. Since (1 − α − δ − λ) > 0, it comes up that u∗ = v∗.
Case 2. If (%, σ) < H(Ψ), there is a path in Ψ, {%i}

L
i=0 from % to σ such that %0 = %, %L = σ with

(%i−1, %i) ∈ H(Ψ) for all i = 1, L and (%i, τ%i) ∈ H(Ψ) for all i = 1, L − 1. Then (τl%i−1, τ
l%i) ∈ H(Ψ) for

all l ∈ N and i = 1, L − 1. And, by triangle inequality, we get

ρ(τl%, τny) ≤
L∑

i=1

ρ(τl%i−1, τ
l%i)

≤ α

L∑
i=1

ρ(τl−1%i−1, τ
l−1%i) + β

L∑
i=1

ρ(τl−1%i−1, τ
l%i−1) + γρ(τl−1%i, τ

l%i)

+ δρ(τl−1%i−1, τ
l%i) + λρ(τl−1%i, τ

l%i−1).

(2.8)
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By Lemma 2.5 and hypothesis, {τl%i}l∈N is convergent. Hence, using the continuity of the distance ρ,
we obtain that {ρ(τl%i−1, τ

l%i)}l∈N is convergent. Let lim
l−→∞

ρ(τl%i−1, τ
l%i) = ζi for all i = 1, L. Then letting

l −→ ∞ in (2.8), gives ρ(u∗, v∗) ≤ 0, which imply that u∗ = v∗. Whence, for all % ∈ Θ, there exists
u∗ ∈ Θ such that lim

l−→∞
τl% = u∗.

Now, we will show that u∗ = τu∗. Since the graph Ψ is τ-connected, there exists at least %0 ∈ Θ

such that (%0, τ%0) ∈ H(Ψ) and so (τl%0, τ
l+1%0) ∈ H(Ψ) for all l ∈ N. But lim

l−→∞
τl% = u∗, then by the

assumption (iii), there exists a subsequence {τζl%0}l∈N with (τζl+1%0, τu∗) ∈ H(Ψ) for all l ∈ N. Then, for
all l ∈ N, we have

ρ(u∗, τu∗) ≤ ρ(u∗, τζl+1%0) + ρ(τζl+1%0, τu∗)
≤ ρ(u∗, τζl+1%0) + αρ(τζl%0, u∗) + βρ(τζl%0, τ

ζl%0) + γρ(u∗, τu∗)
+ δρ(τζl%0, τu∗) + λρ(u∗, τζl+1%0).

(2.9)

As l −→ ∞ in (2.9), we have ρ(u∗, τu∗) ≤ γρ(u∗, τu∗); from which we have u∗ = τu∗ ∈ Fix(τ).
If we have τσ = σ for some σ ∈ Θ, then from above, we must get τny −→ u∗, so σ = u∗. It follows
that τ is a PO.

Example 2.7. Let Θ = {l + 1 : l = 1, 3} ∪ {4l : l = 2, 4} and ρ(%, σ) = |% − σ|, for all %, σ ∈ Θ. Then
(Θ, ρ) is a complete MS. Define the operator τ : Θ −→ Θ as follows:

τ% =

 %

4 , if % ∈ {4l : l = 2, 4}
2, if % ∈ {l + 1 : l = 1, 3}.

Let α = 11
100 , β = 3

25 , γ = 7
100 , δ = 1

50 and λ = 1
20 , and consider the graph Ψ = (∆(Ψ),H(Ψ)), where

∆(Ψ) = Θ and
H(Ψ) = {(%, σ) ∈ Θ × Θ\{(2, 8), (3, 12)}} ∪Ω.

Then, it is easy to see that the operator τ is edge-preserving and Ψ is τ-connected.
To see that the inequality (2.1) is satisfied, we examine the following cases:

Case 1: %, σ ∈ {4l : l = 2, 4}, % = σ;
Case 2: %, σ ∈ {4l : l = 2, 4}, % , σ;
Case 3: %, σ ∈ {l + 1 : l = 1, 3}, % = σ;
Case 4: %, σ ∈ {l + 1 : l = 1, 3}, % , σ;
Case 5: % ∈ {4l : l = 2, 4} and σ ∈ {l + 1 : l = 1, 3};
Case 6: % ∈ {l + 1 : l = 1, 3} and σ ∈ {4l : l = 2, 4}.

We show via the following Table 1 that the inequality (2.1) is valid under the above Cases 1–6.
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Table 1. Table of values for cases 1–6.

2 3

4

8 12

16

Figure 2. The symmetric graph Ψ̂ given in Example 2.7.
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Figure 3. Illustration of the contractive inequality 2.1.

Hence, all the hypotheses of Theorem 2.6 are valid, and thus τ has a unique FP u∗ = 2 and
lim

l−→∞
τl% = 2 for all % ∈ Θ. Therefore, τ is a PO.

Corollary 1. Let (Θ, ρ) be a complete MS equipped with a graph Ψ and τ : Θ −→ Θ be an operator.
Assume further that:

(C1) Ψ is weakly connected;
(C2) there exist nonnegative numbers p, q, r obeying p + 2q + 2r < 1 such that for each (%, σ) ∈ H(Ψ),

ρ(τ%, τσ) ≤ pρ(%, σ) + q[ρ(%, τ%) + ρ(σ, τσ)]
r[ρ(%, τσ) + ρ(σ, τ%)];

(C3) for any sequence {%l}l∈N in Θ, if %l −→ % and (%l, %l+1) ∈ H(Ψ) for each l ∈ N, then there is a
subsequence {%ζl}ζ∈N with (%ζl , %) ∈ H(Ψ) for l ∈ N.

Then τ is a PO.

Proof. Obviously, the mapping τ is a Ψ̂-Hardy-Rogers operator. Hence, taking β = γ and δ = λ in
Theorem 2.6, completes the proof.

Corollary 2. [18, Theorem 6] Let (Θ, ρ) be a complete MS equipped with a graph Ψ and τ : Θ −→ Θ

be an operator. Assume further that:

(D1) Ψ is τ-connected;
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(D2) there exist nonnegative numbers p, q, r obeying p + q + r < 1 such that for each (%, σ) ∈ H(Ψ),

ρ(τ%, τσ) ≤ pρ(%, σ) + qρ(%, τ%) + rρ(σ, τσ);

(D3) for any sequence {%l}l∈N in Θ, if %l −→ % and (%l, %l+1) ∈ H(Ψ) for each l ∈ N, there exists a
subsequence {%ζl}ζ∈N with (%ζl , %) ∈ H(Ψ) for each l ∈ N.

Then τ is a PO.

Proof. By condition (D2), τ is a Ψ-C̀iric̀-Reich-Rus operator. Hence, τ is a Ψ-Hardy-Rogers operator
with the constant α = p, β = q, γ = r and λ = 0. Thus, by Theorem 2.6, τ is a PO.

3. Applications in partially ordered MS and cyclic operators

In this section, we apply Theorem 2.6 to derive some of its analogues in the bodywork of partially
ordered MS and cyclic operators.

Theorem 3.1. Let (Θ,�) be a partially ordered set and ρ be a metric on Θ such that the MS (Θ, ρ) is
complete. Let τ : Θ −→ Θ be an increasing operator such that the following conditions are obeyed:

(P1) there exist nonnegative numbers α, β, γ, δ, λ with α + β + γ + δ + λ < 1 such that for all %, σ ∈ Θ,
with % � σ, we have

ρ(τ%, τσ) ≤ αρ(%, σ) + βρ(%, τ%) + γρ(σ, τσ)
+δρ(%, τσ) + λρ(σ, τ%);

(P2) for each %, σ ∈ Θ, incomparable elements of (%,�), there exists z ∈ Θ such that % � z, σ � z and
z � τz;

(P3) if an increasing sequence {%l}l∈N converges to % ∈ Θ, then %l � % for each l ∈ N.

Then τ is a Picard operator.

Proof. Consider the graph Ψ with ∆(Ψ) = Θ, and

H(Ψ) = {(%, σ) ∈ Θ × Θ : % � σ}.

Since the mapping τ is increasing, and (P1) is satisfied, it follows that τ is a Ψ-Hardy-Rogers operator.
By (P2), the graph Ψ is τ-connected, and the assumption (P3) implies that Condition (G2) of Theorem
2.6. Whence, the conclusion can be deduced from Theorem 2.6.

Hereunder, we discuss FP theorem for cyclic operators. Let ζ ≥ 2 and {Di}
ζ
i=1 be nonempty closed

subsets of a complete MS Θ. A mapping τ :
ζ⋃

i=1

Di −→

ζ⋃
i=1

Di is called a cyclic operator, if

τ(Di) ⊆ Di+1, (3.1)

for all i ∈ {1, 2, · · · , ζ}, where Dζ+1 = D1.
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Theorem 3.2. Let D1,D2, · · · ,Dζ ,Dζ+1 = D1 be nonempty closed subsets of a complete MS (Θ, ρ) and

suppose that τ :
ζ⋃

i=1

Di −→

ζ⋃
i=1

Di be a cyclic operator. If there exist nonnegative numbers α, β, γ, δ, λ

obeying α + β + γ + δ + λ < 1 such that for each pair (%, σ) ∈ Di × Di+1, i = 1, ζ, we have

ρ(τ%, τσ) ≤ αρ(%, σ) + βρ(%, τ%) + γρ(σ, τσ)
+δρ(%, τσ) + λρ(σ, τ%),

then τ is a PO.

Proof. Take Υ =

ζ⋃
i=1

Di. Then (Υ, ρ) is a complete MS. Consider the graph Ψ with ∆(Ψ) = Υ, and

H(Ψ) = {(%, σ) ∈ Υ × Υ : there exists i ∈ {1, · · · , ζ} such that % ∈ Di and σ ∈ Di+1}.

Since τ is a cyclic operator, we get (τ%, τσ) ∈ H(Ψ), for all (%, σ) ∈ H(Ψ). Now, by hypothesis, τ is
a Ψ-Hardy-Rogers operator and the graph Ψ is τ-connected. Let {%l}l∈N be a sequence in Θ such that
%l −→ % and (%l, %l+1) ∈ H(Ψ) for each l ∈ N. Then there exists j ∈ {1, 2, · · · , l} such that % ∈ D j.
But in respect of (3.1), the sequence {%l}l∈N has an infinite number of terms in each Di, for all i ∈ 1, ζ.
The subsequence of the sequence {%l}l∈N formed by the terms which is in D j−1 obeys condition (G2) of
Theorem 2.6. Consequently, τ is a PO.

If, in Theorem 3.2, β = γ and δ = 0, we derive the main result of Petric [16]. In similar steps, more
consequences of Theorems 2.6, 3.1, 3.2 can be pointed out and discussed.

4. Applications to existence of solutions of integral equations

Integral equations are found to be of great usefulness in studying dynamical systems and stochastic
processes. Some examples are in the areas of oscillation problems, sweeping process, granular systems,
control problems, an so on. Integral equations arise in several phenomena in mathematical physics,
bio-mathematics, control theory, critical point theory for non-smooth energy functionals, differential
variational inequalities, fuzzy set arithmetic, traffic problems, to mention but a few. Commonly, the first
most concerned problem in the study of differential or integral equation is the conditions for existence
of its solutions. Along this direction, many authors have employed different FP approaches to obtain
existence results of differential or integral equations in abstract spaces (e.g., see [25, 26]).

In this section, Theorem 2.6 is applied to study new conditions for the existence of a solution to the
integral equation:

%(t) = g(t) +

∫ T

0
A(t, s)K(s, %(s))ds. (4.1)

Note that if, in (4.1), g(t) = 0, then Problem (4.1) represents an integral reformulation of physical
phenomenon such as the motion of a spring that is under the influence of a frictional force or a damping
force.

Let Θ = C ([0,T ],R) be the set of real-valued continuous functions defined on [0,T ], and let ρ :
Θ × Θ −→ R be defined by

ρ(%, σ) = max{|%(t) − σ(σ)| : t ∈ [0,T ]}, for all %, σ ∈ Θ.
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Then (Θ, ρ) is a complete MS. Suppose also that (Θ, ρ) is equipped with a graph G. Moreover, let
L : Θ −→ Θ be defined by

L(%)(t) = g(t) +

∫ T

0
A(t, s)K(s, %(s))ds. (4.2)

Assume that:

(P1) K : [0,T ] × R −→ R is continuous;
(P2) g : [0,T ] −→ R is continuous;
(P3) A : [0,T ] × R −→ [0,∞) is continuous;
(P4)

(
(%, σ) ∈ E(G) implies (L%, Lσ) ∈ E(G)

)
, for all %, σ ∈ Θ;

(P5) there exist nonnegative reals α, β, γ, δ, ζ with α+ β+ γ + δ+ ζ < 1 such that for all (%, σ) ∈ E(G),
and, for all s ∈ [0,T ],

|K(s, %(s)) − K(s, σ(s))| ≤ α|%(s) − σ(s)| + β|%(s) − L(%(s))| + γ|σ(s) − L(σ(s))|
+δ|%(s) − L(σ(s))| + ζ |σ(s) − L(%(s))|;

(P6) for any sequence {%n}n∈N, if %n −→ % as n −→ ∞ and (%n, %n+1) ∈ E(G) for all n ∈ N, then there is
a subsequence {%ζn}ζ∈N with (%ζn , %) ∈ E(G) for all n ∈ N;

(P7) max
t∈[0,T ]

∫ T

0
A(t, s)ds ≤ 1.

Theorem 4.1. Under the hypotheses (P1)–(P7), the integral Eq (4.1) has a solution in Θ.

Proof. Consider the operator L : Θ −→ Θ given by (4.3). Let (%, σ) ∈ E(G). Then, from (P5), we
obtain

|L(%)(t) − L(σ)(t)|

=

∣∣∣∣∣∣
∫ T

0
A(t, s)[K(s, %(s)) − K(s, σ(s))]ds

∣∣∣∣∣∣
≤

∫ T

0
A(t, s)|K(s, %(s)) − K(s, σ(s))|ds

≤

∫ T

0
A(t, s)ds

{
α|%(s) − σ(s)| + β|%(s) − L(%(s))| + γ|σ(s) − L(σ(s))|

+ δ|%(s) − L(σ(s))| + ζ |σ(s) − L(%(s))|
}
.

(4.3)

From (4.3),

max
t∈[0,T ]

|L(%)(t) − L(σ)(t)|

≤ max
t∈[0,T ]

{
α|%(s) − σ(s)| + β|%(s) − L(%(s))| + γ|σ(s) − L(σ(s))|

+ δ|%(s) − L(σ(s))| + ζ |σ(s) − L(%(s))|
}
.
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The above expression is equivalent to

ρ(L%, Lσ) ≤ αρ(%, σ) + βρ(%, L%) + γρ(σ, Lσ)
+δρ(%, Lσ) + ζρ(σ, L%).

Hence, all the assumptions of Theorem 2.6 are satisfied, and consequently the operator L has a fixed
point in Θ, which corresponds to the solution of the integral Eq (4.1).

5. Conclusions

In this note, the notion of Ψ-Hardy-Rogers operator has been introduced and new conditions for
such mapping to be a PO have been examined. A few important special cases in the framework of
partially ordered MS and cyclic operators have been pointed out and discussed. As an additional
application, Theorem 2.6 is employed to discuss novel conditions for the existence of a solution to an
integral equation. The main idea presented herein is an extension of the results in [7,19]. The concepts
of set-valued Ψ-Hardy-Rogers operator τ : Θ −→ 2Θ and fuzzy set-valued Ψ-Hardy-Rogers operator
τ : Θ −→ IΘ, where IΘ is the family of fuzzy sets in Θ, would be some appreciable future investigations
in the domain of multivalued mappings.
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