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1. Introduction and main results

1.1. Background

In the past two decades, many attentions have been devoted to the investigation of the quasi-linear
Schrödinger equation:

i∂tz = −∆z +W(x)z − l(|z|2)z + γz∆(|z|2), x ∈ RN , (1.1)

where z : RN × R → C, W : RN → R is a given potential, γ is a real constant and l is real functions.
Equation (1.1) appears in various fields of physics (see [1, 2]), and is known to be more accurate in

many physical phenomena compared with the semi-linear Schrödinger equation.

i∂tz = −∆z +W(x)z − l(|z|2)z, x ∈ RN .

The additional term γz∆(|z|2) appears in various physical models and arises due to:
a) the non-locality of the nonlinear interaction for electron [3],
b) the weak nonlocal limit for nonlocal nonlinear Kerr media [4],
c) the surface term for superfluid film [5].

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2023032


657

In particular, the standing wave solution of Eq (1.1) is also a solution of the form
z(t, x) := exp(−iEt)u(x) with E > 0, we are led to study the following elliptic equation

−∆u + V(x)u + γ∆(u2)u = f (u), x ∈ RN , (1.2)

where V(x) = W(x) − E and f (t) := l(|t|2)t. The parameter γ represents the strength of each effect and
can be assumed to be positive or negative in different situations.

Notice that, for τ = 0, the Eq (1.2) is a Schrödinger-type equation, which is fundamental in modern
physics and many other fields, see e.g., [6–11].

1.2. Motivation

In the last decades, scholars have obtained existence and multiplicity of solutions for Eq (1.2)
with γ < 0, based on variational methods. To the best of our knowledge, Poppenberg, Schmitt and
Wang proved the existence of positive solutions for the first time in [12] by means of a constrained
minimization argument. By using a change of variable and converting the quasi-linear Eq (1.2) into a
semi-linear one in an Orlicz space framework, Liu et al. in [13] obtained existence of solutions for a
general case. Subsequently, Colin and Jeanjean chose the classical Sobolev space H1(RN) in [14], then
they can use a simpler and shorter proof than [13] to get the same conclusion. We refer the readers
to [15–22] for more results.

For γ > 0, in [23], Alves, Wang and Shen used the change of known variables s = H−1(t) for
t ∈ [0,M], where

H(s) =
∫ s

0

√
1 − γt2dt, (1.3)

and H−1(t) = −H−1(−t) for t ∈ [−M, 0). Since γ > 0 small enough, Eq (1.3) is well-defined and the
inverse function H−1(t) exists. They established the existence of weak solutions for Eq (1.2) based on
variational methods, for γ > 0 small enough and f (u) = |u|p−2u (p ∈ (2, 2N

N−2 )).
For the case γ = 1, notice that 1 − t2 may be negative, for this possibility, the change of variables

Eq (1.3) is no longer suitable for dealing with such problems. Recently, in [24] we considered the
existence of a positive solution for Eq (1.2) with γ = 1 and λ large enough:

−∆u + V(x)u + ∆(u2)u = λ f (u), x ∈ RN , (1.4)

where N ≥ 3, f (t) ∈ C(R) and superlinear in a neighborhood of t = 0. There is a more in-depth study
of this idea in [25], where treated the case that λ = 1. However in [24,25], we were mainly interested in
obtaining the existence and multiplicity of solutions for Eq (1.4), leaving nodal properties of solutions
unconsidered.

Motivated by [23–25] mentioned above, in this paper, we focus on the existence and multiplicity of
sign-changing solutions for Eq (1.4).

Compared with [24], the aim of this paper is two-fold. The first purpose is to investigate the
existence of a sign-changing solution for Eq (1.4). The second aim is to obtain infinite sign-changing
solutions for Eq (1.4) with symmetric condition.
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1.3. Our problem and main results

In this paper, we try to consider sign-changing solutions for the following one-parameter
supercritical quasi-linear Schrödinger equations:

−∆u + V(x)u + ∆(u2)u = λ f (u), x ∈ RN ,

where N ≥ 3, λ > 0 and V ∈ C(RN ,R) satisfying:
(V0): V(x) ≥ V0 > 0 for all x ∈ RN;
(V1): V(x) ≤ V∞ := lim

|x|→∞
V(x) = +∞.

We assume that the nonlinearity satisfies the following conditions: f (t) ∈ C(R);
( f1): there exists α ∈ (2, 2∗) such that

lim sup
t→0

f (t)
|t|α−2t

< +∞;

( f2): there exists β ∈ (2, 2∗) with β > α such that

lim inf
t→0

F(t)
|t|β

> 0,

where 2∗ = 2N
N−2 is the critical Sobolev exponent and F(t) =

∫ t

0
f (s)ds;

( f3): there exists θ ∈ (2, 2∗) such that

0 < θF(t) ≤ t f (t), for |t| small;

( f4): f (−t) = − f (t), for |t| small.

Remark 1.1. An example of the nonlinearity satisfying ( f1) − ( f3) can be taken as

f (t) = C1|t|α−2t +C2|t|q−2t,

with 2 < α < β < 2∗ < q and C1, C2 are positive constants. Notice that q > 2∗, hence our method in
this paper can be used to deal with the supercritical problems.

Inspired by Costa, Wang [26] and Huang, Jia [24], we establish a sign-changing solution for the
following quasi-linear Schrödinger equation

−div(h2(u)∇u) + h(u)h′(u)|∇u|2 + V(x)u = λ f̃ (u), x ∈ RN , (1.5)

where h(t) =
√

1 − 2t2, for |t| ≤
√

1/6 and f̃ (t) is a modified nonlinearity such that Eq (1.5) possess
variational framework. Next, we show Eq (1.5) has a sign-changing solution by using the methods of
invariant sets. Then, a regularity argument shows an L∞-estimate for this sign-changing solution which
depends on parameter λ. Finally, take λ large enough such that the solution of Eq (1.5) is the solution
of the original Eq (1.4).

Our main results are as follows.

Theorem 1.1. Assume that (V0), (V1), ( f1) − ( f3) hold. Then Eq (1.4) possesses at least one sign-
changing solution u ∈ E for all sufficiently large λ.

Theorem 1.2. Assume that (V0), (V1), ( f1) − ( f4) hold. For any given n ≥ 1, then Eq (1.4) possesses at
least n − 1 pairs sign-changing solutions u ∈ E for all sufficiently large λ.

From our results, we obtain the existence and multiplicity of sign-changing solutions for
supercritical problems.
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1.4. Outline of this paper

The outline of this paper is as follows. In Section 2, we describe the modified equation associated
with the Eq (1.4). We are devoted to the proofs of Theorems 1.1 and 1.2 in Section 3.

2. The modified problem

When viewed from the perspective of variational, one of the difficulties in treating Eq (1.4) lies
in without the behavior of nonlinearity at infinity. Hence, we first give the precise definition of the
modified problem.

The conditions ( f1) and ( f2) imply that there exist positive constants δ ∈ (0, 1
2 ), A and B such that

for −2δ ≤ t ≤ 2δ,
F(t) ≤ A|t|α and F(t) ≥ B|t|β. (2.1)

For fixed δ > 0, let d(t) ∈ C1(R,R) be a cut-off function satisfying:

d(t) =
{

1, if |t| ≤ δ,
0, if |t| ≥ 2δ,

|td′(t)| ≤ 2
δ

and 0 ≤ d(t) ≤ 1 for t ∈ R. Using the truncation argument introduced by Costa and
Wang [26], we define

F̃(t) = d(t)F(t) + (1 − d(t))F∞(t),

where
F∞(t) = A|t|α.

And f̃ (t) = F̃′(t). In what follows, we recall the properties of f̃ (t):

Lemma 2.1. [26] If ( f1)-( f3) are satisfied, then we get
(1) f̃ ∈ C(R,R) and f̃ (t) = o(1) as t → 0;
(2) lim

t→+∞

f̃ (t)
t = +∞;

(3) there exists C > 0 such that | f̃ (t)| ≤ C|t|α−1, for all t ∈ R;
(4) for all δ ∈ (0, 1), there exists a constant Cδ > 0 such that | f̃ (t)| ≤ δ|t|+Cδ|t|2

∗−1, where Cδ = Cδ
α−2∗
α−2 ;

(5) for all t , 0, it implies 0 < κF̃(t) ≤ t f̃ (t), where κ = min{α, θ}.

The technique to prove our main results deeply relies on the work of [23, 24, 26]. It should be
pointed out that we need to modify the equation as follows in order to adapt to the variational method:

−div(h2(u)∇u) + h(u)h′(u)|∇u|2 + V(x)u = λ f̃ (u), x ∈ RN , (2.2)

where h(t) : R→ R is given by

h(t) =


− 1

6t +
1
√

6
if t ≤ − 1

√
6
,

√
1 − 2t2 if |t| < 1

√
6
,

1
6t +

1
√

6
if t ≥ 1

√
6
.

Next, we define

H(t) =
∫ t

0
h(s)ds.
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Then, we will state the properties of the variable H−1(t) after it changes, which plays an important
role in proving our main conclusions.

Lemma 2.2. [23] (1) lim
t→0

H−1(t)
t = 1;

(2) lim
t→+∞

H−1(t)
t =

√
6;

(3) t ≤ H−1(t) ≤
√

6t, for all t ≥ 0,
√

6t ≤ H−1(t) ≤ t, for all t ≤ 0;
(4) −1

2 ≤
t

h(t)h
′(t) ≤ 0, for all t ∈ R.

Direct calculations show that if |u|∞ < min{δ,
√

1/6}, then h(u) =
√

1 − 2u2 and f̃ (u) = f (u).
Therefore, our mission is to prove the existence of sign-changing solution u for Eq (2.2) satisfying
|u|∞ < min{δ,

√
1/6}.

Note that Eq (2.2) is the Euler-Lagrange equation associated to the natural energy functional

Ĩλ(u) =
1
2

∫
RN

h2(u)|∇u|2dx +
1
2

∫
RN

V(x)|u|2dx − λ
∫
RN

F̃(u)dx. (2.3)

Taking the change variable

v = H(u) =
∫ u

0
h(s)ds,

we observe that the functional Ĩλ(u) can be written by the following way

Jλ(v) =
1
2

∫
RN
|∇v|2dx +

1
2

∫
RN

V(x)|H−1(v)|2dx − λ
∫
RN

F̃(H−1(v))dx.

From Lemmas 2.1 and 2.2, we can get that Jλ(v) is well-defined in E, Jλ ∈ C1(E,R) and

⟨J′λ(v), φ⟩ =
∫
RN
∇v∇φdx +

∫
RN

V(x)
H−1(v)

h(H−1(v))
φdx − λ

∫
RN

f̃ (H−1(v))
h(H−1(v))

φdx, for all φ ∈ E,

where

E = {u ∈ D1,2(RN) :
∫
RN

V(x)u2dx < ∞}

with the norm ∥u∥E =
(∫
RN (|∇u|2 + V(x)u2)dx

) 1
2 .

Remark 2.1. From condition (V1), it implies that embedding E ↪→ Lq(RN)(2 ≤ q < 2∗) is compact.
This compact result was firstly introduced by Bartsch, Pankov and Wang [27].

Lemma 2.3. If v ∈ E is a critical point of Jλ, then u = H−1(v) ∈ E and this u is a weak solution for Eq
(2.2).

Proof. Using the fact that H−1(v) ∈ C2 and Lemma 2.2, we can show that u = H−1(v) ∈ E through a
direct computation. If v is a critical point for Jλ, we have that∫

RN
∇v∇φdx +

∫
RN

V(x)
H−1(v)

h(H−1(v))
φdx − λ

∫
RN

f̃ (H−1(v))
h(H−1(v))

φdx = 0, for all φ ∈ E.
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Taking φ = h(u)ψ, where ψ ∈ C∞0 (RN), in the above equation to get∫
RN
∇v∇uh′(u)ψdx +

∫
RN
∇v∇ψh(u)dx +

∫
RN

V(x)uψdx − λ
∫
RN

f̃ (u)ψdx = 0,

or ∫
RN

(
−div(h2(u)∇u) + h(u)h′(u)|∇u|2 + V(x)u − λ f̃ (u)

)
ψdx = 0.

This ends the proof.

To find the sign-changing solutions of Eq (2.2), it is sufficient to discuss the existence of the sign-
changing solutions of the following equation

−∆v + V(x)
H−1(v)

h(H−1(v))
= λ

f̃ (H−1(v))
h(H−1(v))

, x ∈ RN . (2.4)

3. Proofs of Theorem 1.1 and Theorem 1.2

In this section, we shall use two abstract critical point theorems based on classical Mountain Pass
theorem and Symmetric Mountain Pass theorem to prove the existence and multiplicity of
sign-changing solutions for Eq (1.4). The two abstract critical point theorems are developed by Liu,
Liu and Wang in [28]. In order to prove Theorem 1.1, we make use of the following notations. Let E
be a Banach space, I ∈ C1(E,R), P,Q ⊂ E be open sets, M = P ∩ Q, Σ = ∂P ∩ ∂Q and W = P ∪ Q.
For c ∈ R, Kc = {u ∈ E : I(u) = c, I′(u) = 0} and Ic = {u ∈ E : I(u) ≤ c}.

Definition 3.1. [28] Suppose we have the following deformation properties: if Kc \W = ∅, there exists
ε0 > 0 such that for ε ∈ (0, ε0), there exists σ ∈ C(E, E) satisfying
(1) σ(P) ⊂ P, σ(Q) ⊂ Q;
(2) σ|Ic−2ε = id;
(3) σ(Ic+ε \W) ⊂ Ic−ε.

Then, {P,Q} is called an admissible family of invariant sets with respect to I at level c.

To obtain sign-changing solutions for Eq (2.4), the positive and negative cones as in many references
such as [28, 31] are defined:

P+ := {u ∈ E : u ≥ 0} and P− := {u ∈ E : u ≤ 0}.

For ε > 0, consider

P+ε := {u ∈ E : dist(u, P+) < ε} and P−ε := {u ∈ E : dist(u, P−) < ε}.

Now, we are ready to prove that there exists a sign-changing solution for the modified Eq (2.4), and
for this we take P = P+ε , Q = P−ε and I = Jλ.

Lemma 3.1. Assume that ( f1) − ( f3) and (V0) hold. Then the Palais-Smale sequence of Jλ is bounded.
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Proof. Since {vn} ⊂ E is a Palais-Smale sequence, then

Jλ(vn) =
1
2

∫
RN
|∇vn|

2dx +
1
2

∫
RN

V(x)|H−1(vn)|2dx − λ
∫
RN

F̃(H−1(vn))dx

= dλ + on(1)
(3.1)

and for any φ ∈ E, ⟨J′λ(vn), φ⟩ = on(1)∥φ∥, that is∫
RN

(
∇vn∇φ + V(x)

H−1(vn)
h(H−1(v))

φ

)
dx − λ

∫
RN

f̃ (H−1(vn))
h(H−1(vn))

φdx = on(1)∥φ∥. (3.2)

Fixing φ = H−1(vn)h(H−1(vn)), it follows from Lemma 2.2-(4) that

|∇(H−1(vn)h(H−1(vn)))| ≤
(
1 +

H−1(vn)
h(H−1(vn))

h′(H−1(vn))
)
|∇vn| ≤ |∇vn|. (3.3)

Notice that, Lemma 2.2-(3) implies that

|H−1(vn)h(H−1(vn))| ≤
√

6|vn|. (3.4)

Combining Eqs (3.3) and (3.4), we have

∥H−1(vn)h(H−1(vn))∥ ≤
√

6∥vn∥.

From ⟨J′λ(vn),H−1(vn)h(H−1(vn))⟩ = on(1)∥vn∥, we get

on(1)∥vn∥ =

∫
RN

(
1 +

H−1(vn)
h(H−1(vn))

h′(H−1(vn))
)
|∇vn|

2dx

+

∫
RN

V(x)|H−1(vn)|2dx − λ
∫
RN

f̃ (H−1(vn))H−1(vn)dx

≤

∫
RN
|∇vn|

2dx +
∫
RN

V(x)|H−1(vn)|2dx − λ
∫
RN

f̃ (H−1(vn))H−1(vn)dx.

(3.5)

Therefore, by Eqs (3.1), (3.2) and (3.5), Lemma 2.1-(5) and Lemma 2.2-(3), we have

κdλ + on(1) + on(1)∥vn∥ = κJλ(vn) − ⟨J′λ(vn),H−1(vn)h(H−1(vn))⟩

≥
κ − 2

2

∫
RN
|∇vn|

2dx +
κ − 2

2

∫
RN

V(x)|H−1(vn)|2dx

≥
κ − 2

2
min{1,V0}∥vn∥

2,

which implies ∥vn∥ < +∞.

Lemma 3.2. Up to subsequence, the Palais-Smale sequence {vn} converges to a critical point v0 of Jλ
with Jλ(v0) = c0.

Electronic Research Archive Volume 31, Issue 2, 656–674.



663

Proof. Since {vn} ⊂ E is bounded and the embedding E ↪→ Lα(RN) is compact with α ∈ [2, 2∗), up to a
subsequence, we get

vn ⇀ v0 weakly in E, vn → v0 strongly in Lα(RN), vn → v0 a.e. in RN .

We rewrite
Jλ(v) =

1
2

∫
RN
|∇v|2dx +

1
2

∫
RN

V(x)v2dx −
∫
RN

F(x, v)dx,

where
F(x, t) =

1
2

V(x)
(
t2 − |H−1(t)|2

)
+ λF̃(H−1(t)).

Using Lemmas 2.1 and 2.2, we have that for all x ∈ RN

lim
t→0

f (x, t)
t
= 0 and lim

t→∞

| f (x, t)|
|t|α−1 ≤ C,

where f (x, t) = dF(x,t)
dt . Thus, for all δ > 0, there exists a constant Cδ, such that

| f (x, t)| ≤ δ|t| +Cδ|t|α−1. (3.6)

From Eq (3.6) and vn → v0 strongly in Lα(RN), we have

lim
n→∞

∫
RN

(
f (x, vn) − f (x, v0)

)
(vn − v0)dx = 0.

Thus,
on(1) =⟨J′λ(vn) − J′λ(v0), vn − v0⟩

=

∫
RN

(
|∇(vn − v0)|2 + V(x)(vn − v0)2

)
dx

−

∫
RN

(
f (x, vn) − f (x, v0)

)
(vn − v0)dx + on(1)

≥∥vn − v0∥
2 + on(1),

which implies vn → v0 in E and v0 is critical point of Jλ.

3.1. Properties of operatorA

We now define an auxiliary operator A as follows: for any v ∈ E, assuming w = A(v) ∈ E is the
unique solution to the following equation

−∆ω + V(x)ω = f (x, v), ω ∈ E, (3.7)

where f (x, v) = λ f̃ (H−1(v))
h(H−1(v)) − V(x) H−1(v)

h(H−1(v)) + V(x)v.
We can use the auxiliary operator A to construct a descending flow for the functional Jλ(v).

Actually, the following three statements are equivalent:
• v is a solution of Eq (2.4),
• v is a critical point of Jλ(v),
• v is a fixed point ofA.
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Lemma 3.3. The operatorA is well defined as well as continuous and compact.

Proof. We firstly show thatA is continuous. Assume that vn → v in E. Up to a subsequence, suppose
that vn → v in Ls(RN) with s ∈ [2, 2∗]. Set ωn = A(vn) and ω = A(v), we have

−∆ωn + V(x)ωn = f (x, vn), (3.8)

and
−∆ω + V(x)ω = f (x, v). (3.9)

Testing with ωn in Eq (3.8), by Eq (3.6) we have

∥ωn∥
2 =

∫
RN

f (x, vn)ωndx

≤ δ∥vn∥∥ωn∥ +Cδ∥vn∥
α−1∥ωn∥.

Then {ωn} is bounded in E. After passing to subsequence, suppose ωn ⇀ ω∗ weakly in E, ωn → ω∗

in strongly Ls(RN) with s ∈ [2, 2∗). From ωn ⇀ ω∗ weakly in E, it is easy to see that ω∗ is a solution
of Eq (3.9) and then ω∗ = ω by the uniqueness. Moreover, testing with ωn − ω in Eqs (3.8) and (3.9),
one has

∥ωn − ω∥
2 =

∫
RN

(
f (x, vn) − f (x, v)

)
(ωn − ω)dx. (3.10)

Next, we are ready to estimate the right term of Eq (3.10). Let ϕ ∈ C∞0 (R) be a cut-off function such
that ϕ(t) ∈ [0, 1] for t ∈ R, ϕ(t) = 1 for |t| ≤ 1 and ϕ(t) = 0 for |t| ≥ 2. Setting

h1(t) = ϕ(t) f (t), h2(t) = f (t) − h1(t).

By Lemmas 2.1 and 2.2, there exists C > 0 such that |h1(t)| ≤ C|t| and |h2(t)| ≤ C|t|α−1 for t ∈ R.
Then, ∫

RN
(h1(v) − h1(vn))(ω − ωn)dx +

∫
RN

(h2(v) − h2(vn))(ω − ωn)dx

≤

(∫
RN
|h1(v) − h1(vn)|2 dx

) 1
2
(∫
RN
|ω − ωn|

2 dx
) 1

2

+

(∫
RN
|h2(v) − h2(vn)|

α
α−1 dx

) α−1
α

(∫
RN
|ω − ωn|

α dx
) 1
α

≤ C∥ω − ωn∥

(∫
RN
|h1(v) − h1(vn)|2 dx

) 1
2

+

(∫
RN
|h2(v) − h2(vn)|

α
α−1 dx

) α−1
α

 .
And it implies

∥ω − ωn∥ ≤ C

(∫
RN
|h1(v) − h1(vn)|2 dx

) 1
2

+

(∫
RN
|h2(v) − h2(vn)|

α
α−1 dx

) α−1
α

 .
Therefore, we can conclude that ∥ω − ωn∥ → 0 as n→ ∞ by the dominated convergence theorem.
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Finally, we give the proof of the compact ofA. Assume that {vn} is a bounded sequence, we can get
the boundness of {ωn} ⊂ E due to the continuous ofA. Passing to a subsequence, we may assume that
vn ⇀ v and ωn ⇀ ω weakly in E and strongly in Ls(RN) with s ∈ [2, 2∗). From Eq (3.8), we have∫

RN
(∇ωn∇φ + V(x)ωnφ) dx =

∫
RN

f (x, vn)φdx, for all φ ∈ E. (3.11)

Taking limit as n→ ∞ in Eq (3.11) yields∫
RN

(∇ω∇φ + V(x)ωφ) dx =
∫
RN

f (x, v)φdx.

This means ω = A(v) and thus

∥ωn − ω∥
2 =

∫
RN

(
f (x, vn) − f (x, v)

)
(ωn − ω)dx.

Using the similar method as before, we can get ∥ωn−ω∥ → 0, i.e.,A(vn)→ A(v) in E as n→ ∞.

Lemma 3.4. There exists ε0 > 0 such thatA(P±ε ) ⊂ P±ε , for all ε ∈ (0, ε0) and every nontrivial solution
v ∈ P−ε (v ∈ P+ε ) is negative (positive).

Proof. Due to the similarity of the above two conclusions, we only prove v ∈ P−ε . Let v ∈ E and
ω = A(v), for all q ∈ [2, 2∗], there exists S q > 0 such that

∥v±∥q = inf
u∈P∓
∥v − u∥q ≤ S q inf

u∈P∓
∥v − u∥ = S qdist(v, P∓).

Since dist(u, P−) ≤ ∥u+∥, we have

dist(ω, P−)∥ω+∥ ≤ ∥ω+∥2

= ⟨ω,ω+⟩

=

∫
RN
∇ω∇ω+dx +

∫
RN

V(x)ωω+dx

=

∫
RN

f (H−1(v))
h(H−1(v))

ω+dx

≤ C
∫
RN

(
δ|v+| +Cδ|v+|α−1

)
ω+dx

≤ δ∥v+∥2∥ω+∥2 +Cδ∥v+∥α−1
α ∥ω

+∥α

≤ C(δdist(v, P−) +Cδ(dist(v, P−))α−1)∥ω+∥.

In consequence,
dist(A(v), P−) ≤ C

(
δdist(v, P−) +Cδ(dist(v, P−))α−1

)
.

Therefore, if we choose δ small enough, there exists ε0 > 0 such that for ε ∈ (0, ε0), it implies

dist(A(v), P−) ≤
1
2

dist(v, P−)

for any v ∈ P−ε . It implies thatA(∂P−ε ) ⊂ P−ε . And if v ∈ P−ε withA(v) = v, then v ∈ P−.
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Lemma 3.5. (1) ⟨J′λ(v), v −A(v)⟩ ≥ ∥v −A(v)∥2 for all v ∈ E;
(2) ∥J′λ(v)∥ ≤ C∥v −A(v)∥ for some C > 0 and all v ∈ E.

Proof. BecauseA(v) is the solution of Eq (3.7), we have that

⟨J′λ(v), v −A(v)⟩ =
∫
RN
∇v∇(v −A(v))dx +

∫
RN

V(x)
H−1(v)

h(H−1(v))
(v − A(v))dx

− λ

∫
RN

f̃ (H−1(v))
h(H−1(v))

(v −A(v))dx

=

∫
RN
∇v∇(v −A(v))dx +

∫
RN

V(x)
H−1(v)

h(H−1(v))
(v −A(v))dx

−

∫
RN

V(x)
H−1(v)

h(H−1(v))
(v −A(v))dx +

∫
RN

V(x)v(v −A(v))dx

−

∫
RN
∇A(v)∇(v −A(v))dx −

∫
RN

V(x)A(v)(v −A(v))dx

=

∫
RN
|∇(v −A(v))|2dx +

∫
RN

V(x)(v −A(v))2dx

= ∥v −A(v)∥2.

For any φ ∈ E, we get

⟨J′λ(v), φ⟩ =
∫
RN
∇v∇φdx +

∫
RN

V(x)
H−1(v)

h(H−1(v))
φdx

− λ

∫
RN

f̃ (H−1(v))
h(H−1(v))

φdx

=

∫
RN
∇v∇φdx +

∫
RN

V(x)
H−1(v)

h(H−1(v))
φdx

−

∫
RN

V(x)
H−1(v)

h(H−1(v))
φdx +

∫
RN

V(x)vφdx − ⟨A(v), φ⟩

= ⟨v −A(v), φ⟩
≤ ∥v −A(v)∥∥φ∥.

Lemma 3.6. For v ∈ E, a < b and α > 0, if Jλ(v) ∈ [a, b] and ∥J′λ(v)∥ ≥ α, then there exists β > 0 such
that ∥v −A(v)∥ ≥ β.

Proof. Otherwise, there exists a sequence {vn} ⊂ E such that

Jλ(vn) ∈ [a, b], ∥J′λ(vn)∥ ≥ α, and ∥vn −A(vn)∥ → 0.

But, by Lemma 3.5-(2), we have a contradiction.

Following from [29] and [30], we can construct a locally Lipschitz continuous operator B on E0 :=
E \ K which inherits the main properties ofA.
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Lemma 3.7. The locally Lipschitz continuous operator B : E0 → E satisfying
(1) B(∂P+ε ) ⊂ P+ε and B(∂P−ε ) ⊂ P−ε for ε ∈ (0, ε0);
(2) 1

2∥v − B(v)∥ ≤ ∥v −A(v)∥ ≤ 2∥v − B(v)∥ for all v ∈ E0;
(3) ⟨J′λ(v), v −A(v)⟩ ≥ 1

2∥v −A(v)∥2 for all v ∈ E0.

By the proof of Lemma 3.5 in [28] and Lemma 3.7, we have

Lemma 3.8. {P+ε , P−ε } is an admissible family of invariant sets of the functional Jλ at any level c ∈ R.

3.2. Existence of one sign-changing solution

Next, we are ready to construct φ0 satisfying the hypotheses in the Theorem 2.4 in [28]. For
(t, s) ∈ ∆, v1, v2 ∈ C∞0 (RN) with supp(v1) ∩ supp(v2) = ∅ and v1 ≤ 0, v2 ≥ 0, define

φ0(t, s) := R(tv1 + sv2),

here R is a positive constant which be determined later. Actually, for t, s ∈ [0, 1], φ0(0, s) = Rsv2 ∈ P+ε
and φ0(t, 0) = Rsv1 ∈ P−ε .

Lemma 3.9. Assume that (V0), (V1), ( f1), ( f2) and ( f3) hold. Then, for λ ≥ 1, problem Eq (2.4) has a
sign-changing solution.

Proof. We shall prove two claims as follows, which will be useful for us to prove Lemma 3.9.
Claim 1. For q ∈ [2, 2∗], there exists S q > 0 independence of ε such that ∥v∥q ≤ 2S qε for v ∈ M =
P+ε ∩ P−ε .

In order to prove this claim, we consider

∥v±∥q = inf
w∈P∓
∥v − w∥q ≤ S q inf

w∈P∓
∥v − w∥ = S qdist(v, P∓) ≤ S qε.

Claim 2. If ε > 0 is small enough then Jλ(v) ≥ ε2

2 for v ∈ Σ = ∂P+ε ∩ ∂P−ε .
For v ∈ ∂P+ε ∩ ∂P−ε , then

∥v±∥ ≥ dist(v, P∓) = ε.

Since ∥v±∥q ≤ S qε and ∥v∥2 = ∥v+∥2 + ∥v−∥2, for ε > 0 small enough, we have

Jλ(v) ≥
1
2
∥v∥2 − δC∥v∥22 −Cδ∥v∥2

∗

2∗

≥ 2ε2(
1
2
− δC) −CCδS 2∗

2∗ε
2∗

≥
1
2
ε2.

Next, we are ready to verify the conditions (2) and (3) in Theorem 2.4 in [28]. Notice that ρ =
min{∥tv1 + (1 − t)v2∥2 : 0 ≤ t ≤ 1} > 0. Then, from the above Claim 1, we have φ0(∂0∆) ∩ M = ∅. In
fact, for R large enough, if v ∈ φ0(∂0∆), we have ∥v∥2 > ρR.

By the definition of F̃, for any v ∈ φ0(∂0∆), denote A = {x : |v| ≥ 2δ}, B = {x : |v| < 2δ}, and let
vA = v|A, vB = v|B. Then, we have

F̃(vB) ≥ F(vB) ≥ C|vB|
β, (3.12)
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F̃(vA) = F∞(vA) = C|vA|
α. (3.13)

And then
Jλ(v) ≤

1
2
∥vA∥

2 +
1
2
∥vB∥

2 −Cλ∥vA∥
α −Cλ∥vB∥

β

≤
1
2
∥vA∥

2 +
1
2
∥vB∥

2 −C∥vA∥
α −C∥vB∥

β,

which togethers with the above Claim 2. One has for R large enough and ε small enough,

sup
v∈φ0(∂0∆)

Jλ(v) < 0 < c∗.

Finally, from the Theorem 2.4 in [28], there exists v ∈ E \ (P+ε ∪ P−ε ), which is a sign-changing
solution of Eq (2.4).

We observe that the weak solutions of Eq (2.4) with L∞-norm less than min{
√

1/6, δ} are equivalent
to the weak solutions of Eq (1.4). Next, we turn to study the L∞ estimates of the critical points of Jλ .

Lemma 3.10. If v ∈ E is a weak solution of problem Eq (2.4), then v ∈ L∞(RN). Moreover,

|v|∞ ≤ Cλ
1

2∗−α ∥v∥
2∗−2
2∗−α , (3.14)

where C > 0 only depends on α,N.

Proof. Let v ∈ E be a weak solution of −∆v + V(x) H−1(v)
h(H−1(v)) = λ

f̃ (H−1(v))
h(H−1(v)) , i.e.,∫

RN
∇v∇φdx +

∫
RN

V(x)
H−1(v)

h(H−1(v))
φdx =

∫
RN
λ

f̃ (H−1(v))
h(H−1(v))

φdx, for all φ ∈ E. (3.15)

Let T > 0, and define

vT =


−T, if v ≤ −T,
v, if 0 < |v| ≤ T,
T, if v ≥ T.

Choosing φ = v2(η−1)
T v in Eq (3.15), where η > 1 will be determined later, we have∫
RN
|∇v|2v2(η−1)

T dx + 2(η − 1)
∫
{x||v(x)|<T }

v2(η−1)−1
T v|∇v|2dx

+

∫
RN

V(x)
H−1(v)

h(H−1(v))
v2(η−1)

T vdx = λ
∫
RN

f̃ (H−1(v))
h(H−1(v))

v2(η−1)
T vdx.

It follows from
∫
{x||v(x)|<T }

v2(η−1)−1
T v|∇v|2dx ≥ 0,

∫
RN V(x) H−1(v)

h(H−1(v))v
2(η−1)
T vdx ≥ 0 and Lemma 2.1-(3),

that ∫
RN
|∇v|2v2(η−1)

T dx ≤ λ
∫
RN

f̃ (H−1(v))
h(H−1(v))

v2(η−1)
T vdx

≤ λC
∫
RN

|H−1(v)|α−1

h(H−1(v))
v2(η−1)

T vdx

≤ λC
∫
RN
|v|αv2(η−1)

T dx.

(3.16)
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On the other hand, due to the Sobolev inequality, it implies(∫
RN

(v|vT |
η−2vT )2∗dx

) 2
2∗

≤ C
∫
RN
|∇(vvη−1

T )|2dx

≤ C
∫
RN
|∇v|2v2(η−1)

T dx +C(η − 1)2
∫
RN
|∇v|2v2(η−1)

T dx

≤ Cη2
∫
RN
|∇v|2v2(η−1)

T dx,

where we used that (a + b)2 ≤ 2(a2 + b2) and η2 ≥ (η − 1)2 + 1.
From Eq (3.16), the Sobolev embedding theorem and the Hölder inequality, it implies(∫

RN
(v|vT |

η−2vT )2∗dx
) 2

2∗

≤ λCη2
∫
RN
|v|α−2v2v2(η−1)

T dx

≤ λCη2
(∫
RN
|v|2

∗

dx
) α−2

2∗
(∫
RN

(|v||vT |
η−1)

22∗
2∗−α+2 dx

) 2∗−α+2
2∗

≤ λCη2∥v∥α−2
(∫
RN
|v|

η22∗

2∗−α+2 dx
) 2∗−α+2

2∗

.

Next, taking ζ = 22∗
2∗−α+2 , we obtain(∫

RN
(v|vT |

η−2vT )2∗dx
) 2

2∗

≤ λCη2∥v∥α−2∥v∥2ηηζ .

From the Fatou’s lemma, it follows that

∥v∥η2∗ ≤ (λCη2∥v∥α−2)
1

2η ∥v∥ηζ . (3.17)

Let us define ηn+1ζ = 2∗ηn where n = 0, 1, 2, ... and η0 =
2∗+2−α

2 . By Eq (3.17) we have

∥v∥η12∗ ≤ (λCη2
1∥v∥

α−2)
1

2η1 ∥v∥2∗η0 ≤ (λC∥v∥α−2)
1

2η1
+ 1

2η0 η
1
η0
0 η

1
η1
1 ∥v∥2∗ .

It follows from Moser’s iteration method that

∥v∥ηn2∗ ≤ (λC∥v∥α−2)
1

2η0

∑n
i=0( ζ

2∗ )i

(η0)
1
η0

∑n
i=0( ζ

2∗ )i

(
2∗

ζ
)

1
η0

∑n
i=0 i( ζ

2∗ )i

∥v∥2∗ .

Thus, we have
|v|∞ ≤ Cλ

1
2∗−α ∥v∥

2∗−2
2∗−α .

Lemma 3.11. Assume that ( f1) − ( f3) and (V0) hold. Let vλ be a critical point of Jλ with Jλ(vλ) = dλ.
Then there exists C > 0 (independent of λ) such that

∥vλ∥2 ≤ Cdλ. (3.18)
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Proof. From Lemma 2.1-(5) and Eq (3.4), we obtain

κdλ = κJλ(vλ) − ⟨J′λ(vλ),H
−1(vλ)h(H−1(vλ))⟩

=
κ

2

∫
RN
|∇vλ|2dx +

κ

2

∫
RN

V(x)|H−1(vλ)|2dx − λκ
∫
RN

F̃(H−1(vλ))dx

−

∫
RN
∇vλ∇

(
H−1(vλ)h(H−1(vλ))

)
dx −

∫
RN

V(x)|H−1(vλ)|2dx

+ λ

∫
RN

f̃ (H−1(vλ))H−1(vλ)dx

≥
κ − 2

2

∫
RN
|∇vλ|2dx +

κ − 2
2

∫
RN

V(x)|H−1(vλ)|2dx

≥
κ − 2

2
min{1,V0}∥vλ∥2.

It implies that ∥vλ∥2 ≤ Cdλ.

Proof of Theorem 1.1. Let v1, v2 ∈ C∞0 (RN), v1 ≤ 0, v2 ≥ 0 with supp(v1) ∩ supp(v2) = ∅ and R > 0
are large enough. Let φ0(t, s) := tRv1 + sRv2 for (t, s) ∈ ∆. Define

dλ = inf
φ∈Γ

sup
u∈φ(∆)\W

Jλ(v),

where Γ := {φ ∈ C(∆, E) : φ(∂1∆) ⊂ P, φ(∂2∆) ⊂ Q, φ|∂0∆ = φ0|∂0∆}.
By Lemma 3.9, Jλ has a sign-changing critical point vλ and Jλ(vλ) = dλ. Furthermore, from Eqs

(3.12) and (3.13), we obtain

dλ ≤ max
(t,s)∈∆

Jλ(tRv1 + sRv2)

≤ max
t∈[0,1]

(
t2

2

∫
RN

(|∇Rv1|
2 + 6V(x)Rv2

1)dx − λ
∫
RN

F̃(H−1(tRv1))dx
)

+ max
s∈[0,1]

(
s2

2

∫
RN

(|∇Rv2|
2 + 6V(x)Rv2

2)dx − λ
∫
RN

F̃(H−1(sRv2))dx
)

≤ Cλ−
2
α−2 +Cλ−

2
β−2 .

(3.19)

By Eqs (3.14), (3.18) and (3.19), we have

|vλ|∞ ≤ C(λ
1

2−α + λ
2∗−β

(2∗−α)(2−β) ).

Hence, there exists λ1 > 0 such that for all λ > λ1

|uλ|∞ = |H−1(vλ)|∞ ≤
√

6|vλ|∞ < min{
√

1/6, δ},

where δ is fixed in Eq (2.1). Thus, for λ > λ1, uλ = H−1(vλ) is a sign-changing solution of the original
Eq (1.4).
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3.3. Multiplicity of sign-changing solutions

To prove Theorem 1.2, we make on further assumption, G : E → E is an isometric involution,
i.e., G2 = id and d(Gu,Gv) = d(u, v) for u, v ∈ E. We assume I is G-invariant on E in the sense that
I(Gu) = I(u) for any u ∈ E. We also assume Q = GP. If for any u ∈ F, Gu ∈ F, then the subset F ⊂ E
is said to by symmetric. γ(F) can be called the genus of a closed symmetric subset F of E \ {0}.

Definition 3.2. If the following deformation property holds: there exist ε0 > 0 and a symmetric open
neighborhood N of Kc \W with γ(N) < +∞, such that for ε ∈ (0, ε0), there exists σ ∈ C(E, E) meet the
following four conditions:
(1) σ(P) ⊂ P, σ(Q) ⊂ Q;
(2) σ|Ic−2ε = id;
(3) σ ◦G = G ◦ σ;
(4) σ(Ic+ε \ (N ∪W)) ⊂ Ic−ε.
Then, we call P is a G-admissible invariant set with respect to I at level c.

We now assume that f is odd and we turn to prove the existence of infinitely many sign-changing
solutions to Eq (1.4). We plan to apply the Theorem 2.6 in [28], for this we take G = −id, P = P+ε ,
Q = P−ε and I = Jλ. Next, lemma is used to prove P is a G-admissible invariant set with respect to
Jλ ∈ C1(E,R) at any level c.

Lemma 3.12. P+ε is a G-admissible invariant set for the functional Jλ at any level c.

Proof. The proof is similar to Lemma 3.8. Since Jλ is even, thus σ is odd in u. Here, we omit the
details.

Proof of Theorem 1.2. Firstly, we shall use the Theorem 2.6 in [28] to get solutions for Eq (2.4) first.
Making use of estimates on the critical values, for any fixed n ∈ N we shall show Eq (1.4) has n − 1
pairs of sign-changing solutions for large λ.

For any n ∈ N, let {vi}
n
i=1 ⊂ C∞0 (RN) \ {0} be such that supp(vi) ∩ supp(v j) = ∅ for i , j. Define

φn ∈ C(Bn, E) as

φn(t) = Rn

n∑
i=1

tivi(·), t = (t1, t2, · · ·, tn) ∈ Bn,

where Rn > 0 will be determined later. Actually, φn(0) = 0 ∈ P+ε ∩ P−ε and φn(−t) = −φn(t) for t ∈ Bn.
Observe that

ρn = min{∥t1v1 + t2v2 + · · · + tnvn∥2 :
n∑

i=1

t2
i = 1} > 0,

then ∥v∥22 ≥ ρ
2
nR2

n for v ∈ φn(∂Bn) and it follows from Claims 1 and 2 in Lemma 3.9 that φn(∂Bn)∩ (P+ε ∩
P−ε ) = ∅. Similar to the proof of Theorem 1.1 (existence part), for large enough Rn > 0 independent on
λ we also have

sup
v∈φn(∂Bn)

Jλ(v) < 0 < inf
v∈Σ

Jλ(v).

For j = 2, 3, · · ·, n, let
c j,λ = inf

B∈Γ j
sup

v∈B\W
Jλ(v),
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where

Γ j = {B : B = φ(Bn \ Y) for some φ ∈ Hn,Y ⊂ Bn, n ≥ j with − Y = Y, γ(Y) ≤ n − j}

and
Hn = {φ : φ ∈ C(Bn, E), φ(−t) = −φ(t) for t ∈ Bn, φ(0) ∈ M and φ|∂Bn = φn|∂Bn}.

Then, by the Theorem 2.6 in [28], we have that 0 < c2,λ ≤ c3,λ ≤ · · · ≤ cn,λ are all critical values
of Jλ and there are at least (n − 1) pairs of sign-changing critical points at these critical values. Since
φn ∈ Hn, we have

cn,λ ≤ bn,λ := sup
v∈φn(Bn)

Jλ(v).

Due to supp(vi) ∩ supp(v j) = ∅ for i , j, similar with Eq (3.19), we have

sup
v∈φn(Bn)

Jλ(v) ≤ Cλ−
2
α−2 +Cλ−

2
β−2 .

Therefore, it follows from Lemmas 3.10 and 3.11, for λ large that these (n−1) pairs of sign-changing
critical points of Jλ are also solutions of the original Eq (1.4).
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https://doi.org/10.1016/S0294-1449(16)30422-X

12. M. Poppenberg, K. Schmitt, Z. Q. Wang, On the existence of soliton solutions to
quasilinear Schrödinger equations, Calc. Var. Partial Differ. Equations, 14 (2002), 329–344.
https://doi.org/10.1007/s005260100105

13. J. Liu, Y. Wang, Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations II, J. Differ.
Equations, 187 (2003), 473–493. https://doi.org/10.1016/S0022-0396(02)00064-5

14. M. Colin, L. Jeanjean, Solutions for a quasilinear Schrödinger equations: a
dual approach, Nonlinear Anal. Theory Methods Appl., 56 (2004), 213–226.
https://doi.org/10.1016/j.na.2003.09.008

15. S. Adachi, T. Watanabe, G-invariant positive solutions for a quasilinear Schrödinger equation, Adv.
Differ. Equations, 16 (2011), 289–324.

16. X. Fang, J. Zhang, Multiplicity of positive solutions for quasilinear elliptic equations involving
critical nonlinearity, Adv. Nonlinear Anal., 9 (2020), 1420–1436. https://doi.org/10.1515/anona-
2020-0058

17. H. Liu, Positive solution for a quasilinear elliptic equation involving critical or supercritical
exponent, J. Math. Phys., 57 (2016), 159–180. https://doi.org/10.1063/1.4947109

18. J. Liu, Y. Wang, Z. Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari
Method, Commun. Partial Differ. Equation, 29 (2004), 879–901. https://doi.org/10.1081/PDE-
120037335

19. E. Medeiros, U. Severo, On the existence of signed solution for a quasilinear elliptic problem in
RN , Mat. Contemp., 32 (2007), 193–205.

20. E. Silva, G. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical
growth, Calc. Var. Partial Differ. Equations, 39 (2010), 1–33. https://doi.org/10.1007/s00526-009-
0299-1

21. Y. Wang, Z. Li, Existence of solutions to quasilinear Schrödinger equations involving critical
Sobolev exponent, Taiwanese J. Math., 22 (2018), 401–420. https://doi.org/10.11650/tjm/8150

Electronic Research Archive Volume 31, Issue 2, 656–674.

http://dx.doi.org/https://doi.org/10.1007/s11071-022-07878-6
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2022.111832
http://dx.doi.org/https://doi.org/10.1016/j.amc.2020.125469
http://dx.doi.org/https://doi.org/10.1016/S0294-1449(16)30428-0
http://dx.doi.org/https://doi.org/10.1016/S0294-1449(16)30422-X
http://dx.doi.org/https://doi.org/10.1007/s005260100105
http://dx.doi.org/https://doi.org/10.1016/S0022-0396(02)00064-5
http://dx.doi.org/https://doi.org/10.1016/j.na.2003.09.008
http://dx.doi.org/https://doi.org/10.1515/anona-2020-0058
http://dx.doi.org/https://doi.org/10.1515/anona-2020-0058
http://dx.doi.org/https://doi.org/10.1063/1.4947109
http://dx.doi.org/https://doi.org/10.1081/PDE-120037335
http://dx.doi.org/https://doi.org/10.1081/PDE-120037335
http://dx.doi.org/https://doi.org/10.1007/s00526-009-0299-1
http://dx.doi.org/https://doi.org/10.1007/s00526-009-0299-1
http://dx.doi.org/https://doi.org/10.11650/tjm/8150


674

22. H. Zhang, F. Meng, J. Zhang, Nodal solutions for quasilinear schrödinger equations with
asymptotically 3-Linear nonlinearity, J. Geom. Anal., 32 (2022). https://doi.org/10.1007/s12220-
022-01043-6

23. C. Alves, Y. Wang, Y. Shen, Soliton solutions for a class of quasilinear Schrödinger equations with
a parameter, J. Differ. Equations, 259 (2015), 318–343. https://doi.org/10.1016/j.jde.2015.02.030

24. C. Huang, G. Jia, Existence of positive solutions for supercritical quasilinear Schrödinger elliptic
equations, J. Math. Anal. Appl., 472 (2019), 705–727. https://doi.org/10.1016/j.jmaa.2018.11.048

25. C. Huang, G. Jia, Multiple solutions for a class of quasilinear Schrödinger equations, Complex
Var. Elliptic Equations, 66 (2021), 347–359. https://doi.org/10.1080/17476933.2020.1727899

26. D. Costa, Z. Q. Wang, Multiplicity results for a class of superlinear elliptic problems, Pro. Amer.
Math. Soc., 133 (2005), 787–794. https://doi.org/10.1090/S0002-9939-04-07635-X

27. T. Bartsch, A. Pankov, Z. Q. Wang, Nonlinear Schrödinger equations with steep potential well,
Commun. Contemp. Math., 3 (2001), 549–569. https://doi.org/10.1142/S0219199701000494

28. J. Liu, X. Liu, Z. Q. Wang, Multiple mixed states of nodal solutions for nonlinear Schrödinger
systems, Calc. Var. Partial Differ. Equations, 52 (2015), 565–586. https://doi.org/10.1007/s00526-
014-0724-y

29. T. Bartsch, Z. Liu, On a superlinear elliptic p-Laplacian equation, J. Differ. Equations, 198 (2004),
149–175. https://doi.org/10.1016/j.jde.2003.08.001

30. T. Bartsch, Z. Liu, T. Weth, Nodal solutions of a p-Laplacian equation, Proc. London Math. Soc.,
91 (2005), 129–152. https://doi.org/10.1112/S0024611504015187

31. Z. Liu, Z. Wang, J. Zhang, Infinitely many sign-changing solutions for the nonlinear Schrödinger-
Poisson system, Ann. Mat. Pura Appl., 195 (2016), 775–794. https://doi.org/10.1007/s10231-015-
0489-8

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 31, Issue 2, 656–674.

http://dx.doi.org/https://doi.org/10.1007/s12220-022-01043-6
http://dx.doi.org/https://doi.org/10.1007/s12220-022-01043-6
http://dx.doi.org/https://doi.org/10.1016/j.jde.2015.02.030
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2018.11.048
http://dx.doi.org/https://doi.org/10.1080/17476933.2020.1727899
http://dx.doi.org/https://doi.org/10.1090/S0002-9939-04-07635-X
http://dx.doi.org/https://doi.org/10.1142/S0219199701000494
http://dx.doi.org/https://doi.org/10.1007/s00526-014-0724-y
http://dx.doi.org/https://doi.org/10.1007/s00526-014-0724-y
http://dx.doi.org/https://doi.org/10.1016/j.jde.2003.08.001
http://dx.doi.org/https://doi.org/10.1112/S0024611504015187
http://dx.doi.org/https://doi.org/10.1007/s10231-015-0489-8
http://dx.doi.org/https://doi.org/10.1007/s10231-015-0489-8
http://creativecommons.org/licenses/by/4.0

	Introduction and main results
	Background
	Motivation
	Our problem and main results
	Outline of this paper

	The modified problem
	Proofs of Theorem 1.1 and Theorem 1.2 
	Properties of operator A
	Existence of one sign-changing solution
	Multiplicity of sign-changing solutions


