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1. Introduction

In differential geometry, on a smooth manifold M, we have the following classical structures (cf.
Kobayashi and Nomizu [1, Proposition 3.10]):

(a) the space of polyvector fields, under the wedge product and Schouten bracket, forms a Gersten-
haber (also called super-Poisson) algebra;

(b) the space of differential forms, together with the exterior differential and wedge product, forms a
commutative differential graded algebra; and

(c) vector fields act on differential forms by Lie derivative and by contraction, which satisfies the
following two identities:

Ly=doiwx+txod, [ix,Ly]=1txy, (1.1)

where X, Y are vector fields on M, Ly is the Lie derivative and ty is the contraction.

There are analogous statements in the holomorphic, symplectic and even in the non-commutative ge-
ometry.
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For instance, given an associative algebra A, which is viewed as a non-commutative “space”, the
Hochschild cohomology HH*(A, A) and Hochschild homology HH,(A, A) play the roles of polyvector
fields and differential forms on this space, and the Connes cyclic operator on HH,(A, A) substitutes the
de Rham differential. One may similarly define a version of contraction and Lie derivative as in the
smooth manifolds case, which satisfy (1.1). This was first obtained by Daletskii-Gelfand-Tsygan [2],
and summarized by Tamarkin-Tsygan in [3]. According to Tamarkin-Tsygan, a pair of spaces satisfy-
ing the above (a), (b) and (c) form a structure of differential calculus, a notion introduced in the same
paper. In this note, we first show a similar result:

Theorem 1.1. Let A be an A-algebra over a field K. Then the Hochschild cohomology and homology
of A,
(HH.(A’ A)’ HHO(A,A)a U, [_, _], m’ B)

is a differential calculus, where U is the cup product, N is the cap product, [—, —] is the Gerstenhaber
Lie bracket and B is the Connes differential.

This result is known to experts Dolgushev-Tamarkin-Tsygan [4] and has been essentially laid out
by Kontsevich in his article Formal (non)commutative symplectic geometry, and was also explained in
Section 7 of his work Notes on A -algebras, A, -categories and noncommutative geometry [5], joint
with Soibelman. We here give all necessary calculations required to prove (1.1), which seems to be
rarely found in the literature.

Another motivation for us to show the above result is that it is related to the study of Calabi-Yau
algebras, a notion introduced by Ginzburg in [6], where he also showed that, for a Calabi-Yau algebra,
say A, there is a Batalin-Vilkovisky algebra structure on its Hochschild cohomology. The proof is
heavily based on the differential calculus structure on the Hochschild (co)homology of A (see also [7]).

On the other hand, for a Calabi-Yau algebra, if it is Koszul (see Priddy [8]), then its Koszul dual
algebra is a cyclic associative algebra (that is, an associative algebra with a cyclically invariant non-
degenerate pairing). Tradler showed in [9] that there is also a Batalin-Vilkovisky algebra structure
on the Hochschild cohomology of such cyclic associative algebra. Recently in [10], Chen, the third
author and Zhou proved that for a Koszul Calabi-Yau algebra the Batalin-Vilkovisky algebras on the
Hochschild cohomology of A and on that of its Koszul dual are isomorphic.

To understand the Batalin-Vilkovisky algebra structure on Calabi-Yau algebra in a more general
setting, such as N-Koszul Calabi-Yau algebras in the sense of Berger [11], or even more generally,
exact complete Calabi-Yau algebras in the sense of Van den Bergh [12], one is led to understand the
differential calculus structure on cyclic A,-algebras (that is, A.-algebras with a cyclically invariant
non-degenerate pairing), since in both of these two cases, the “Koszul dual” of these types of Calabi-
Yau algebras are cyclic A-algebras.

Corollary 1.2 (Tradler [9]). If A is a cyclic Aw-algebra, that is, A is a finite dimensional A.-algebra
with a cyclically invariant non-degenerate pairing, then the Hochschild cohomology HH®*(A, A) has a
Batalin-Vilkovisky algebra structure.

This corollary is originally due to Tradler [9, Theorem 2]. Here we give an alternative proof, which
is in the same spirit of Menichi [13] for finite dimensional symmetric algebras from the differential
calculus point of view.
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1.1. Convention

Throughout the note, we work over a ground field K. All algebras are associative algebras over K
with unit. All vector spaces, their tensors and morphisms etc. are over K.

2. Gerstenhaber algebras and differential calculi

In this section, we recall the definitions of differential calculus and some of its applications. Let us
start with Gerstenhaber algebras.

Definition 2.1 (Gerstenhaber [14]). A Gerstenhaber algebra is a quaternion (H*, U, [—, —], 1), where
H* is a N-graded vector space and 1 € H?, such that:

(1) (H*,V) is a graded commutative algebra with unit 1 € H?;
(2) (H*,[—, —]) is a graded Lie algebra of degree —1, i.e.,
[f. 81 = (=D ED g, ]

and a graded Jacobi identity
(—DVEDVEDLf, el, Al + (=DEDUD[[e R, f]4+ (=DPDEED[R, £, 6] = 0;
(3) The Lie bracket [—, —] is a derivation with respect to the product U, i.e.,

[f,gUhl=[f,glUh+ (-1)EVDeu[f, ],

for arbitrary homogenous elements f, g, h € H®, where |f] is the degree of the homogenous element f.

Definition 2.2 (Tamarkin-Tsygan [3]). Let H* be a N-graded vector space and H, be Z-graded vector
space. A differential calculus is the data

(H.$ H09 Ua [_a _]’ ]19 ﬁ, B)

such that:
(1) (H*,U,[-, -], 1) is a Gerstenhaber algebra;

(2) H, is a graded module over (H*, U) through the map
N:H"®H, > H,_,, fOoumr fNgu,

foru € H, and f € H", i.e., if we define ¢4(u) := f Ny, then tpu, = tyty;

(3) there exists amap B : H, — H,,; such that B> = 0, and

[er, Leler = Ui

where L, := [B, ], = By — (—1)¥i,B, for f, g homogenous elements of H*.

Electronic Research Archive Volume 30, Issue 9, 3211-3237.
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Hochschild [15] introduced the cohomology theory of associative algebras. But the Hochschild co-
homology ring of a K-algebra is a Gerstenhaber algebra, which was first discovered by Gerstenhaber in
[14]. Given a K-algebra A, its Hochschild cohomology groups are defined as HH"(A, A) = Ext)j.(A, A)
forn > 0, where A = A®g A is the enveloping algebra of A. There exists a projective resolution of A
as A°-module, the so called normalized bar resolution B_ar.(A) which is given by B_ar,(A) =A ®Z®r ®A,
where A = A/(K - 1,), that is,

Bar(A): - > A®A ®ADLARA ®A— o ARABA S AR A),
where the map u : A® A — A is the multiplication of A, and the differential d, is given by

d(ap®a;® - ®a, ®ar) =apd; @A, ® - B a, @ ary

r—1

+ D (e @ ® - ®T | ® Tl ®Tin ® - O ®dyyl
i=1

+(-D'ay®a; ®---®a,_; ®a,a,,.

The Hochschild cohomology complex is C*(A,A) = HomAe(ﬁ.(A),A). Note that C"(A,A) =
Homy.(A ® A ®AA) = HomK(Zgr, A) for each r > 0. We also identify C°(A,A) with A. Thus
C*(A, A) has the following form:

—®(r+1)

&0 — r r
C*(A,A): A — Homg(A,A) > --- > HomK(.Z® ,A) 6—> Homg (A ,A) &

It is not difficult to give the definition of ¢°, in fact, for any f in HomK(Z®r, A), the map ¢"(f) is defined

by
SN@® - ®au) =(-1)"a- f@® - @)
+ Zr:(—l)i+r_1f(a_1® ®0m ® A1 Ui ® - ®Uryy)
i=1
+flar®---®a,) - ap.
Moreover, the cup product f U g € C"*"(A, A) = Homg(A ", A) for f € C™(A,A) and g € C"(A, A)
is given by

(fUar®- - ®apy) :=8a1®: - ®ay) - flan @ ® Gpin).

One can prove that this cup product induces a well-defined product in Hochschild cohomology
U: HH"(A,A) x HH"(A,A) — HH"™""'(A, A).

As a consequence, the graded K-vector space HH®*(A, A) = @nzo HH"(A, A) is a graded commutative
algebra with unit 14 [14, Corollary 1].

Furthermore, the Lie bracket is defined as follows. Let f € C"(A,A) and g € C"(A,A). If m,n > 1,
then for 1 <i < m, define f o; g € C"™"" (A, A) by

(foig)(a_l®"'®am+n—l) = f(a_l®"'®m®g(a_i®"'®ai+n—l)®m®"'®am+n—1)a

Electronic Research Archive Volume 30, Issue 9, 3211-3237.



3215

if m>1andn =0, then g € A and define
(foig)ar® - ®ayu1):=f(a1® - ®a_1®gRA® - ®Uy_1),

for any other case, set f o; g to be zero. Now we define
f3g:= Y (=)D f o g
i=1

and
[f, g := fog — (=) " Vg,
Such bracket [ , ]induces a well-defined Lie bracket in Hochschild cohomology

[, ]: HH"(A, A) x HH"(A, A) — HH™""'(A, A).

It is well known that (HH®*(A, A), U, [ , ], 1) is a Gerstenhaber algebra [14, Page 267].
Meanwhile, the Hochschild chain complex is defined by C.(A,A) := A ®, Bar,(A). Note that
C.(ALA) =A@ (AR A A=A ®Z®r, and the differential is given by

blap®@a;1 ®---®a,)
r—1

- Z(—l)"ao ® QU ®UATI ®Um ®  ®° + (-1)a,a0® AT ® - ® Gr_y.
i=0

For f e C"(A,A)and ay®a; ® --- ®a, € C,(A, A), the cap product is
fNa®ar®:--®a,) =apf(a® - ®dy) U1 @+ ®ay,

while the Connes differential is defined by
Blay®@a®--8a) = ) (-1)'18%8 0% 68 - @ .
i=0

Originally, the differential calculus on Hochschild cohomology and homology of associative alge-
bras was obtained by Daletskii-Gelfand-Tsygan [2]; see also Tamarkin-Tsygan [3].

Theorem 2.3 (Daletskii-Gelfand-Tsygan, [2]). Let A be an associative algebra. Denote by HH®*(A, A)
and HH,(A, A) the Hochschild cohomology and homology of A respectively. Then

(HH*(A,A),HH.(A,A), U, [-,-],N, B)

is a differential calculus, where U is the cup product, N is the cap product, [—, —] is the Gerstenhaber
Lie bracket and B is the Connes differential.

Let (H*,H,., U, [-, -], 1, N, B) be a differential calculus. Consider H, := Homg(H_,, K) the graded
dual space of H,. Then we can define the following two operations:

kp:H, — H,_ |, B :H, — H,

o+1>

k(W) = DM, B@w) = (~)Q(Bu)
for any arbitrary homogenous elements f € H*, u € H, and Q € H defined as well as the map
N :H"®H, - H,_, by f N Q :=«ks(£2). Then we have the following proposition.

Electronic Research Archive Volume 30, Issue 9, 3211-3237.
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Proposition 2.4. The data (H*,H.,, U, [—, -], 1,n’, B’) is a differential calculus.

Proof. Note that (H*, U, [—, —], 1) is a Gerstenhaber algebra and B’? = 0. First, we have
(k) QW) = kp(kg( Q) (w) = (=DM (Q)(u5p)
(=1) MIHRAD Qg 1) = (= 1) IEHADO )
(= 1)l ( Q) = Kpug (W),
for arbitrary homogenous elements f, g € H®, u € H, and Q) € H..
Next, we verify the condition (3) of the Definition 2.2. Let L, := [B', k,] = B'k, — (=1)%'k,B’, then
we have
L(Q)(u) = (B'ky, — (= 1)k B )(Q)()
— (—1)|Q|_|g|Kg(Q)(B,Ll) _ (_1)|g|+|g|(IQI+I)B/(Q)(Lgﬂ)
— (_ 1)|Q|_|g|+|g||Q|Q(Lg(B,L1)) _ (_ 1)|gIIQI+IQIQ(B(Lg'u))
- _(_1)|Q|+|gIIQIQ(Lg’u),
and from this we get that
[k, L) = (kpLy — (=D¥ VL) Q)(w)
- (_1)IfI(QI—\g|+I)L‘;(Q)(Lf,u) + (—l)lgl(ngl)Kf(Q)(Lg,u)
= (=)W DR QL g ) 4 (— DI DRI L)
- (—1)(|f|+|g|+])|glﬂ([Lf,Lg],u)
— (—1)(|f|+lg|+l)IQ|Q(L[fg],u)
= K ).

The proposition now follows. O

For finite dimensional associative algebras, we have the following result.

Corollary 2.5 (Menichi [16], Remark 17). Let A be a finite dimensional algebra, and denote by
HH®(A, A”) the Hochschild cohomology of A with value in A’ := Homg(A,K). Then the data
(HH®*(A,A), HH*(A,A"), U, [—, =], 14, ", B’) is a differential calculus.

Proof. For finite dimensional algebra A, we have HH*(A,A”) = HH,(A, A)’. Thus by Proposition 2.4,
this corollary holds. O

3. Differential calculi with duality and Batalin-Vilkovisky algebras

In this section we consider a refined version of differential calculus which is called differential
calculus with duality.

Definition 3.1 (Lambre [17]). A differential calculus (H*,H,, U, [—, =], 1, N, B) is called a differential
calculus with duality if there exists an element (called volume form) n € H; for some integer d such
that B(n7) = 0 and the map

d(-):=—-nn:H" - H,,

is an H*-module isomorphism. In this situation, the map d is called the Van den Bergh-Poincaré duality.

Electronic Research Archive Volume 30, Issue 9, 3211-3237.
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This structure is strongly related to the so-called Batalin-Vilkovisky algebras.

Definition 3.2. A Batalin-Vilkovisky algebra is a Gerstenhaber algebra (H®, U, [—, —], 1) with a linear
map A : H* — H*"! such that A> = 0, A(1) = 0 and

I8l = D (AP U Q) - A Ug - (DI UA()),
for arbitrary homogeneous elements f, g € H®.

Given a differential calculus with duality (H*, H,, U, [-, -], 1, N, B, n7), the following commutative
diagram

H* A He*!
l’ Lg
Hg. L Hye
defines an operator A := —9~! o B o 8, which is called the Batalin-Vilkovisky operator. In particular,

we have the following result due to Lambre which is important in constructing the Batalin-Vilkovisky
algebra from differential calculus structures (cf. Lambre [17, Theorem 1.6]).

Theorem 3.3 (Lambre [17]). Let (H*,H,,U,[—,—],1,N, B,n) be a differential calculus with duality.
Then the quintuple (H®, U, [, ], 1, A) is a Batalin-Vilkovisky algebra.

Proof. Take A := —97'Bd, and let f € H?, g € HY, z € H,,.

Claim:
[f.glud™'(2) = (D" PAgU (FUI (@) + (1) f U(gUAI(2) G.1)
—fUARGUI @)+ (D) P DeyA(f UG (2)). '
Indeed, by the equation [tg, Lf]gr = t[g 1, We can obtain the equation:
[f-8]Nz=(=D""'B(fN(gN2)+fN(BEgN2) 32)
— (- Ve N B(f Nz) - (-DP Vg N (f N BQ)). .
Since A is an H*-module isomorphism and apply d~' to Eq (3.2), we can obtain this claim.
Letz=n,thend'(z) =d7'(7) = 1 € H’, so
A(L) = -67"'Bod™ () = —67'B(n) =0,
and
AoA=098"Boo"'Bd =3'BBo = 0.
By Eq (3.1), we have that
[f,8] = (1)’ DA U f) = fUAR) + (=D)P Vg U A(f)
— (_1)p(q—1)+qu(f U g) _ f U A(g) + (_1)(p—1)(q—1)+q(p—1)A(f) Ug
= (-DP(A(fUg - A(fHUg—(=1)"fUA(g)).
Thus we have the theorem. |
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Note that not all associative algebras admit the structure of differential calculus with duality on its
Hochschild (co)homology. In the literature, there are two main classes of associative algebras having
this property: Calabi-Yau algebras and finite dimensional symmetric algebras. The notion of Calabi-
Yau algebras is introduced by Ginzburg [6]. More precisely, an algebra A is called Calabi-Yau algebra
of dimension d if A has a finite length resolution of finitely generated projective A°-modules, and there
is an isomorphism RHomy.(A, A°) = A[—d] in the derived category of A°-modules. The following
result is due to Ginzburg [6, Theorem 3.4.3]; see also Lambre [17].

Theorem 3.4 (Ginzburg [6]). Let A be a Calabi-Yau algebra of dimension d. Then
(HH*(A,A), HH.(4,A), U, [, ],14,N, B)

is differential calculus with duality, and therefore there is a Batalin-Vilkovisky algebra on HH*(A, A).

Another version of differential calculus with duality is defined on the Hochschild (co)homology of
symmetric algebras. Recall a finite dimensional algebra A is symmetric if there exists a nondegenerate
bilinear form (-, —) : A® A — K such that {ab, c¢) = (a, bc) and {(a, b) = (b, a) for arbitrary elements
a,b,ceA.

Theorem 3.5 (Tradler [9], Menichi [13]). Let A be a symmetric algebra. Then
(HH.(A7 A)’ HH.(A7A,)7 U7 [_7 _]7 1A7 m,’ B,)

is differential calculus with duality, and therefore there is a Batalin-Vilkovisky algebra on HH*(A, A).

Following this line, there are some interesting relevant works. Indeed, there is a “twisted” ver-
sion of Theorem 3.4 and Theorem 3.5, which are obtained recently by Kowalzig and Krihmer [18]
and Lambre, Zhou and Zimmermann [19] respectively. More generally, Menichi [13] considered the
algebras over a cyclic operad with multiplication and showed their cohomology gives rise to a Batalin-
Vilkovisky algebra structure.

4. Hochschild (co)homology of A -algebras

In this section, we review the definitions of Hochschild (co)homology for A.-algebras, and give
a proof of the Gerstenhaber algebra structure on their Hochschild cohomology. Let us start with the
definition of A -algebras.

Definition 4.1 (Stasheff [20]). An A.-algebra over K is a graded vector space A := EBI.GZ A; with
K-linear maps m,, : A*" — A of degree n — 2 for each n > 1, called the A.-operators, satisfying the
following A -relations
DY myid® @ m@id®) = 0,
n=j+k+I>1

Jil>0,k>1
that is,

n n—

knj+kj+ j+ki
(=1 CACACh mj+1+1(611, e ,Clj,mk(ajn, T ,Clj+k),aj+k+1, e ,a,) =0, 4.1)

k
k=1 j=0

~

where n; = la;|+---+|a;|+ jandn = j+ k+ 1.
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Recall that the bar construction B(A) of A is the tensor coalgebra @(SA)@’” with the coproduct
n=0

n
Alar,--a] = Y lar, @@ [am, - al,
i=0

where [ay, - - - , a,] denotes the element (sa;) ®- - - ® (sa,) € (sA)®", and s is the suspension with degree
|s| = 1. For simplicity, we also write [a;,] := (sa;) ® --- ® (sa,) and a,, := a; ® - - - ® a, with some
abuse of notation.

Given an A-algebra (A, {m,},>1), we denote by C*(A, A) := Hom(B(A), A) the Hochchild cochain
of A. Notice that we consider the graded-version Hom and total degree. The standard algebraic
structures on Hochchild cochain complex (and induces on Hochchild cohomology) of A..-algebra may
obtain from its brace algebra (see Gerstenhaber-Voronov [21]). Let us recall that the braces are the
maps

C'(A,A) X -+ X C*(A,A) = C*(AA), (f, fis- s o flf, o fid
given as follows: for any homogeneous elements [a,, - - ,a,] € B(A), f{fi, -, fillai,--- ,a,] is given
by

k
> mi (1fil+1)
Z(_l)[:1 : f[ala"' afl[ai1+1a"' ’ajl]"" 7ﬁ<[aik+19"' ’ajk]a"' aan]a

where the sumrunoverall 0 <i; < j; <--- <y < jy <mandn; = Ziszl la| + i. Clearly, the degree of

fUfis -, fid satisfies | f{fi, -+, fildl = |fI+1fil+- - - +|fil + k. If £ = 1, then we denote that fog := f{g},
actually, it is just the pre-Lie operator introduced by Gerstenhaber [14]:

felad = > D" flay;, glai ;1. ajeral.

0<i<j<n

For any homogeneous elements f, g € C*(A, A), the Gerstenhaber Lie bracket of f, g is given by

[f.8] := fog — (-1 DED g5 f

By [Getzler [22], Lemma 1.2], with the formula

(f5g)3h — f5(gdh) = flg, h} + (=1)EFDED £ip oy, (4.2)

we know that (C*(A, A), [—, —]) is a graded Lie algebra of degree 1. Note that the space of coderivations
Coder(B(A)) is a graded Lie algebra with bracket the graded commutator, and there is an isomorphisms
of graded Lie algebra between sC*(A, A) and Coder(B(A)) (see [Getzler-Jones [23], Proposition 1.2]).
Since B(A) is cofree, the coderivation is determined by its corestriction to degree 1, and we have the
following equivalent definition:

Definition 4.2 (Stasheff [20]). An A.-algebra A is a graded vector space A equipped with a codiffer-
ential
D : B(A) — B(A)

(i.e., a coderivation of degree |D| = —1 with D o D = 0) and D(1) = 0.
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In the following, if (A, {m,},>1) 1S an A,-algebra in Definition 4.1, then we denote by (A, m) its

associated A-algebra in Definition 4.2 with |m| = —2. In fact, we consider the following composition:
51
Coder(B(A)) = sC*(A,A) — C°(A,A), a codifferential D € Coder(B(A)) of degree —1 corresponds
to a Hochschild cochain m € C*(A, A) of degree —2. The condition D?> = 0 corresponds to mdm = 0
which can be translated to Eq (4.1) in the definition of A.-algebras. The cup product on C*(A,A) is
given by
fug:= (_1)|gl(|f|+l)m{g’ f}

for any homogeneous elements f, g € C*(A, A). Clearly, [f U g| = |f] + |gl-

Definition 4.3. Let (A, m) be an A, -algebra. An A-bimodule M of A is a graded vector space with
operations

bij: A" @M®AY — M, i,j>0
of degree i + j — 1 such that for any integers k and /, any homogeneous element w € M,

k k—i+l
6
0= Z (=D lbk—i+l,l(al,j—lami(aj,i+j—l)’ S W, Akel)

i=1 j

where

0, :iSj_1+j—1+i(k+l—i—j),
=>G+j—-Deoi+k—i+{- i+ j-1),
05 :i(8k+j_1+|W|)+k—j+i(l—i—j+1)
and g; := ), |a;|. We denote by (M, b) the A,-bimodule M.
=1
Remark 4.4. An A.-algebra A itself is naturally an A,-bimodule of A. Meanwhile, for an A.-
bimodule M of A, its dual M’ of M is still an A,-bimodule of A.

Now we recall the definition of the Hochschild cohomology of A-algebras with value in an A.-
bimodules.

Definition 4.5. Let (A, m) be an A,-algebra and (M, b) be an A,-bimodule over (A,m). Then the
Hochschild cohomology HH*(A, M) of A with value in M is given by the cohomology of the Hochschild

cochain complex
(C*(A, M), 9)
where C*(A, M) := Hom(B(A), M), the differential 6(f) := bd f — (—1)/*! fom, for f € Hom(B(A), M)

and

boflay,-a:= Y (Wb lay, -, flas,- - al,- al,

0<i<j<n
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fom[al"” aan] = Z (_1)mf[al"” 9m[ai+1a"' 7aj]a"' 9an]a

0<i<j<n

where 1; = i(larl + 1). Especially, when M = A, 6(f) = [m, f]1 = mdf — (=1)V*! fom.
r=1

An important feature of the Hochschild cochain complex C*(A, A) of an A.,-algebra A is that it also
admits an A-algebra structure (see [Getzler [22], Proposition 1.7]). From this A.-algebra structure
we have the following equations:

m{lm, f1, g} + (=D""'m{f, [m, g1} + [m,m{f, g} = 0, (4.3)
m{lm, f1, & h} + (=D m{f, [m, g1, h} + (=1)""¥lm{f, g, [m, A}
+mim{f, g}, b} + (=D 'm{f, m{g, h}} + [m, m{f, g, h}] = 0, (4.4)

for any homogenous elements f, g,h € C*(A, A). In particular, we have

Proposition 4.6. Let (A,m) be an A-algebra, then (C*(A,A),[ , 1,9) is a differential graded Lie
algebra.

Proof. By Eq (4.2), (C*(A,A),[, ]) is a graded Lie algebra. We only need to show that

SLf.81 = [6f. 81 + (=D [f. 6g],
for any f, g € C*(A, A). Equivalently, we need to prove

[m. [, 811 = [[m, f1,8] + (=D [£, [m, g]1.
Then the proposition follows by the graded Jacobi identity. O
Lemma 4.7. Let f,g € C*(A, A), then we have that

6f5g = 6(f3g) + (=)™ f56¢ = m{f, g} + (=DHVIVEDm{g, £},
Proof. Using Eq (4.2), we have that

LHS = [m, f15g — [m, f5g] + (=1 f5[m, g]

= (mdf)5g — (- (fom)sg — md(f5g)
+ (=1l (fag)om — (=1 fa(mag) — (—1)/1! f5(g5m)

= [(m5£)5g — md(f3g)] + (~1)'[(fom)sg — fa(mdg)]
+ (=D)VE[(fog)em — fa(gom)]

= m{f, g} + (=DVIFDED e £} + (~D flm, g} + (18! fig, m}]
+ (=DM flg, m} + (=DE*! f{m, g}]

= RHS.

Hence we have the lemma. O

Corollary 4.8. Let f,g € C*(A, A), then we have that
5f3g = 6(f3g) + (-1 fasg = (- (fUg - (-1 ¥g U f).
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Proof. By the Lemma 4.7, we have that
LHS = (_1)|f|(|g|+1)g Uf- (_1)|f|f Ug
= RHS
and thus we have the corollary. m|

Proposition 4.9. Let (A,m) be an A-algebra, then (C*(A,A),U,0) is a differential graded algebra
which is commutative up to homotopy.

Proof. By Eq (4.3), we have that
s(fug =cfug+(-=Dfudsg,
for any f, g € C*(A,A). According to Eq (4.4), we can obtain that
(fUQUR—fU(gUh) = (=1)*(8(mih, g, f}) +miSh, g, f} + (="' mih, 6g, f} + (=1 mih, g, 5},

where @ = (—1)/s=D+(gl+#)0/1=D By the Corollary 4.8, the cup product is commutative up to homotopy
and hence we have the proposition. O

In [14], Gerstenhaber proved that there is a Gerstenhaber algebra on Hochschid cohomology of an
associative algebra. Analogously, there is a similar Gerstenhaber algebra on Hochschid cohomology
of an A, algebra, which was first observed by Getzler-Jones in [24].

Lemma 4.10. Let (A, m) be an A-algebra, then we have that

FUfL AYf = flfi b 5} + (CDWREDUSED 06 D ) 4 (—)WRIEDAIED g £ £ 6

4.5
+ (DDA 5, )+ fU 56 )
(foflfos 5} = flfis fo o) + (CDIDEED £ £ fo} 4+ (= DWEHRNAED £, i) 4.6)
+ fihsh i)+ CDYEYEED RS, fi5f) + fa(Ailfe £5)) '
for any f$fbf2sf3 € C.(A’A)
Proof. It follows by straight-forward computation. O

Theorem 4.11 ( [24], [21]). Let (A, m) be an A.-algebra, then (HH®*(A, A), [, 1,V) is a Gerstenhaber
algebra.

Now let us recall the definition of Hochschild homology of an A.-algebra and the Connes differen-
tial; for more details, we refer to Getzler-Jones [23].

Definition 4.12. Let (A, m) be an A-algebra, and set C,(A,A) := A ® B(A). Then the Hochschild
homology HH.(A, A) of A is the homology of the Hochschild chain complex (C,(A, A), b) where the
differential b is given by

b(ao[a]’ Tt an]) = Z (_1)77i(77n_77[)m[ai+]’ T, 0p, Ao, 7aj][aj+l7 T ai]
0<j<i<n
+ Z (_1)77ia0[a1’ c o, i, m[ai+1’ e ’aj]aaj+1, e aan]a
0<i<j<n

where 7; = Y _q(las| + 1),
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An element e € Ay is called a strict unit if m,[a;,--- ,a;,e,ai41,-++ ,a,-1] = 0, forn # 2; and
myle,al = (=1)“'my[a, e] = a.

Definition 4.13. Suppose that (A, m) is an A,-algebra with a strict unit. Then the Connes differential

B:C.(A,A) — C.(A,A),

is given by

n
B(aglay, - ,a,]) = Z(—l)m(n"_m)e[am, R e SPRE B
i=0

for any aglay, - - ,a,] € Co(A,A), where n; = 3\ (la,| + 1).

It is not difficult to see B> = 0 up to homotopy and Bb + bB = 0.

Remark 4.14. If we define

and

t(aO[al9 ) an]) = (_1)770(77n_770)a1[a2’ cet L, Ay, aO]’

T(elag, ** ,an e, e]) = (=1)P"e[q, ... a, e, e, a],

then B> = 0 up to homotopy, that is,

where

B,.1B, = bn+3sn + sn—lbna

Sn(aO[ala T an])

n+1 n

=), Tle ) fel@)ea. - .ae.el)
j=0 i=0
n+1 n

= Y T ()" Ve[a, - ay,ap, -+ ,aiy, e, e])
=0 i=0

n
= Z(—l)m*l(n"_m’l){e[ai, ey, Ao, ,0i-, €, €]
i=0

n—i
D i =115

+ Z(—l)("" Wtivs1 = l)e[ai+j,"'anaa0,"' 2 Ain1,€,8, 05, Aiyj1]

=1

—1(jan|+1
+ (_l)nn 1 )e[ao’ s ,4ai1,6,¢e,d; 00 7an]
n+l

+ Z (= 1Yl On=icin e[ @y i1y @iy, €, €, G4+ 3y gy 5 Qi jn—1 ]}

j=n—i+2
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5. Proof of the main theorem

5.1. Differential calculus operators

In the last part of previous section, we recalled the definition of the Connes differential. Now we
give another two differential calculus operators: the contraction (or cap product) and the Lie derivative.

Given an A-algebra (A,m). For any homogeneous elements x = aglay,...,a;] € C.(A,A) and
fi,.-., fr € C*(A, A), the contraction {fi,- - , fi} N x is defined by

k
Nt =n0)+ 2 =145, — D fr[+1)
Z(_l) r=l mld1,: 0 54y, Ay, A1, 0

fl[ai1+17”' ’ajl]"" aﬁ[aik+l"" ’ajk]a"' 7as][as+la"' 9at]’

where the sumrunsoverall 0 < s <t<nand0<i; < j; <--- < < jy <n.

Definition 5.1. Assume that (A, m) is an A,-algebra. For any homogeneous element f € C*(A, A), the
cap product t is given by

tp(x) = fNx,
for any homogeneous elements x € C,(A, A).

In fact, the cap product is well-defined in homology level by the following lemma.

Lemma 5.2. Assume that (A, m) is an Aw-algebra. Then we have
tsf = [b,tflgr :=boty— (—l)lflLf ob,
for any homogenous element f € C*(A, A).

Proof. Denote

0 = (mc —non, + (e — me + i, — DISLL
&= —ndne + (e — e + 1, — DAS+ D).
Let x := ap[a; x]. Then we have that
LofX = tim.f1%
= > D'mlagipag, -+, Im, fllai ) asllag ]
= Y (=D D ma g, mlag s flae )@l adla]

9 PN
# D i g ag, - flag e mlasa )o@l agdlag .

We also have that

bryx = by (=D mlag i @0, flain i)+ agllagen.))
= Z(_1)§+77n_77t+77i2+|f|m[at+1’k, ap, - af[ai1+l,j1]a e ,as][as+l$ e 9m[ai2+l,j2]’ ) at]

+ Z(_1)§+(77n_77t+77i2+|f|)(ﬂt"7i2)m[ai2+1’t’ m[al+l,k’ ap, -, f[ai|+1,j1]’ Tt as]’ ) ajz][aj2+l,i2]
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and

Lf(Z(_l)(nk_ml)mlm[ai1+l,k»aO,jl][ajlﬂ,il] + Z(—l)""l aolay i, mlai 15,1, aj4141)

_ Z(_l)(nk_ml )’7i1 +(7h-1—7],)7]”+(r]k—r],+T]i2)(|f|—1)m[at+1’ sl

tebx

m[ai1+1,k, ap, -, ajl]’ e 9f[ai2+1,j2]9 ) as][as+l,t]

+ Z(_1)’]:‘1+(7Ik—7h)(7h—1)+(7Ik—7lt+7h‘2—1)(|f|—1)m[at+1’k’ o, -

ir+1,j , s+1,
f[al +1 ]2]’ e ,m[ai1+1 j|]’ e ’as][aY+1 t]

+ Z(_l Y+ Dt ety =DUf=Drg g

f[ai2+19 RS m[ai1+1,j1]’ T, ajz]a T, as][as+1,t]

+ Z(_l)m]+(m—m)(m—1)+(rlk—m+m2)(Ifl—l)m[aH Lk oy

m[ai1+1,j1],'" ,f[aizﬂ,jz]a e agllage ]

+Z(_l)ﬂil+(?7k—71t)(7h—1)+(?7k—77t+71i2—1)(|f|—1)m[at+1 Aoy

f[ai2+1,j2]a e 7as][as+1’ e ’m[ai1+1,j1]a R at]

+ Z(_l)nil+(77k_7h—1)7]z+(77k_77t+77i2)(|f|—1)m[at+1’ -

m[ai1+1,j1]9 cor L, Ak, Ag, t 9f[ai2+l,j2]9 T, as][as+l,t]'

Then we can obtain that

tsp — bty + (=DVb = (=1 (mom)[ a1 x> o, -+ flai 1], s asllage]
=0.

Hence we prove this lemma. O

Proposition 5.3. Let (A,m) be an A.-algebra, then the (HH.(A,A),N) is a graded module over
(HH®(A, A),V), that is to say, there exists a linear map

N :HH"(A,A) ® HH,(A,A) — HH,_,(A,A)
PRx P @Nx:i=1,x),

satisfies
Louy = Lply,

for o e HH*(A, A), y € HH*(A, A) and x := apla; ,] € HH.(A, A).

Proof. It suffices to verify the identity
touw = Loty = (=D 1y 50 — (DY 50) + (D) b + (1) )], (5.1

We first compute the terms in Eq (5.1) one by one. Denote
&= (=) + (e — me + 15, — DAl + o] + D).
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Let x := ap[a; x]. Then we first have

louy X = Z(—l)‘fm[am’k, ag, -+, U lﬁ[ailﬂ,jl], e ag)lage ]

— Z(_1)~f+(m2—ml L e L P P I TR
m[ai1+l, Tt w[ai2+l,j2]’ R l/’[ai3+1,j3], Tt aj|]7 R as][as+1,l‘]'

Meanwhile, let
0 := (M —nn: + (e — 0+ 175, — Dl = 1).
Then we have that

Lply X = LLp(Z(_l)em[aHl,k»aO, T, lﬁ[ailﬂ,jl], e agllage )

= Z(_1)9+(Tlt_fli2)(T]k_ﬂt+77i2+|¢|)+(flk_77f2+77f3+W|_1)(|¢|_1)m[ai2+l’t’ mla x> ao, -
w[ai1+l,j1]9 ) as]’ ) (P[ai3+1,j3], ) ajz][aj2+l,i2]'

Furthermore, we take

$ = (e =nne + (e = 1+ 15 — DAY = D) + G = 0 + 11, = Dlepl,
and we have that
Ly.oetX = (Y, 0} N x
= > D mlagip ao, -+ Wlag ) 6¢lanapl e s allag,)
= Z(—1)“("’3_"iz)(l‘pl_l)m[am,k,610, e ylagag
mlaj,1,- - a(p[ai3+l,j3], tee ,ajz]’ R | [
+ Z(—1)§+"i3_"i2+|‘plm[ar+1,k, aop, -+ s Ylaier gl

lai1,+ ,mlai1,j,1, -+, a,l - agllaged.
J. J

Now we denote

7= (M = o0 + (k= 1+ 13y — DWW+ (e = 17 + 171, — Dl = 1),
and we have that
Usp.p)X = {0Y, 0} N x
= Y (Dm0, Wlai ) @lan ) s allag,]
= > (D)W g, ag, - mlag e
¢[ai3+1, T ’aj3]7 T ,aj]], T ,90[ai2+1,jz], o ag][age ]
+ Z(_I)T+ni3_ni]+|W|m[at+l,kaaO, eyl

m[ai3+la ) aj3]’ e ’aj1]9 ) ‘)D[ai2+1,j2]a ) as][as+l,t]-
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We also have that

L{W}(Z(_ DM mla; g, ao @, 41,1

+ Z(—l)m‘ aolay i, mla; 15,1, aj 1))
Z(_l)(nk—ml)ml 1 =) ) W=D i) Ue=D pyry

Ly.pbx

2

m[ai1+1,ka ap, -, aj1]9 ) w[ai2+l,j2]s ) ¢[ai3+l,j3]9 ) as][as+1,t]
" Z(_l)ml =) =Dty = DA D ey =Dleb=Dyrg g
K ’ s

w[ai2+l,j2]’ ) (to[ai3+l,j3]’ ) m[ai1+1,j1]’ R as] [as+1,t]
1 Z(_l)ml =)= D Ope=netniy =D =D+t =D0el=Dyorg g
Ko ) s

w[ai2+l,j2]’ R (P[ai3+l, Tt m[ai1+l,j1]’ e 7aj3], Tt as][as+1,t]

¥ Z(_l)m' ) =D+ W=D netms XDy rg g

b

m[ai1+l,j]]’ Y w[ai2+1,j2], RS ¢[ai3+1,j3]a T, as][as+1,t]
* Z(— 1) OO+ = DD DA Dty g

Ulaierjpls - s @laine sl s agdlaser, -+ smlag gl 5 aql
n Z(_l)ml == Dt Ot i) W=Dk et Jigh=D o

9

m[ai1+l,j1]a"' > A, Aoy~ ,lﬁ[aizﬂ,]’z],”' ,(P[ai3+1,j3]»"' sagllagei,l.

+ Z(_l)ml =)= Gty =DUW=D+ Ot )=V pyr g g

olai i1, smlai 1,1, a0 @laiej ], s agllage]

+ Z(_l)ml )= DOty = DW= D+t ms =D oqo e
Ulaic1)s - smlai i1 s @laien s s asllage .
Finally, we denote
p = (e =0 + (e = 1+ 1, = DAL= D) + G = 1 + 11, — Dllpl = 1),
and we can also compute that
Blgx = bOY (<1 mlagp ao, -+ Ylain i) @lan )+ agdlag,))
= Z(_1)p+nk—m+m3+|<p|+|¢|—1m[at+1’k, ap, -,

l//[ai1+1,j1]7 T, ¢[ai2+1,j2]’ e »as][as+1’ R m[ai3+1,j3]7 T at]

" -1
i Z(_l)p+<nk M+ +lel Y] )(le+\<ﬁ|+|¢|)m[ai3+l’t’m[aHl’k’ o,
Ulai il s elai - sadl, - ajllaj il

Hence we can obtain that

touy = ety = (=DM 1y 60 = (DY s) + (DY 0b + (1))

" Z(—1)('7k—77,)77x+(77k—771+m1—1)(IWI—1)+(r]k—m+mz—1)(Itpl—l)+|l//|(|<p|—1)+1m5m[at+ Ly 0y

2
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'/’[ai|+l,j1]7 ) Qo[ai2+l,j2]’ R as][as+1,t]
= (D160 — (D upspy + (DY b + (1)),

This finishes the proof of the proposition. O
Next, we give the definition of Lie derivative acting on Hochschild chain complex of A-algebras.

Definition 5.4. Let (A, m) be an A, -algebra. The Lie derivative is given by

. i—1 1
Lf(aO[al"" 9an]) = Z (_1)(77 W )aO[ab"' aaiaf[ai+l9"' ’aj]9"' aan]
0<i<j<n
n Z (= 1= =Y el g, allaj, - »ail,
0<j<i<n

for any homogenous elements f € C*(A,A) and x = qglay,...,a,] € C.(A,A). In particular, taking
f=m,then L; = —b.

Proposition 5.5. Let (A, m) be an A-algebra, then we have that
L, = [B,1,]g = By, — (-1)¥,B,
for any ¢ € HH*(A, A).
Proof. We only need to prove that
L,x — Buyx + (=1)¥,Bx = bS ,x — S 5,x — (=1)IS ,bx, (5.2)

for x := apla; ] € HH.(A, A), where

Sex = Z(—l)ge[am,k,ao, s elai gl al,

the sum runs over 0 < i; < j; <t <k, and

&= (= nme + (e = 10 + 15, — DIl = 1.
We compute the terms in Eq (5.2) one by one. Firstly,
Buyx = B(Z(—l)fm[af+1,k,ao, s glaiag e agdlasad)

+(Mk=1+7i, + -1
— Z(_l)f (T—ne+7iy +lD (e mz)e[ai2+l,t’m[at+1,k7aO,'" ,

So[ai1+l,j1]’ Tt as]’ ) aiz][ai2+1,j2]'
Secondly,
pBx = 1, (=)™ a1, a0,])
= Z(— D= ol g gy ao @ il
+ Z(— D=l ag,y 1la ek, do)-
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Thirdly, denote

¢ = (= + i)l = 1).

Then we have that

Sebx = Sw(Z(_l)(nk_ml)mlm[ai|+1,ka aop, -+ ,ajllaj 1l
+ (_l)nil ao[al,il’ m[ai1+1,j1]a R ak])

_2‘ 1 iy + i, = D, i)+
=y (=D D o[, mldg, g dg, aj ],

elai 41,1, 5 al

4 Z(_l)ml Dl g

So[ai2+l,j2]a Tt ,m[ai1+l,j|]’ R at]
+ Z(_l)ml Hn) =D+l o g g
¢[ai2+l, Tt m[ai1+l,j1]’ e ajz], Tt at]
+ Z(_l)ml Hem= DD g o
m[ai|+1,j|]’ ) ()D[ai2+1,j2]’ T at]
+ Z(_l)ml +(nk—m—1)m+(e[at+l ..
b b

m[ai1+l,j1]9 N 7 P 7/ I ()D[ai2+l,j2]9 T, at]'

We set

7= —non + M — 0+ i, — D(lel = 1),

and then we have that

bS,x = Y (1) blelagip o »elai il al)
= Z(—l)ﬂ(nkﬂwl_l)(n"_m‘+m‘_1)m[<ﬁ[ai1+1,j1], ella;, 14 ao,,]
+ > (=Dmleaollar, - @lairjl -+
+ Z(_l)ﬂmz—m—le[am, ceumaiyg ],
Qs G0, 5 Pl jils oo ail
+ Z(—l)””"f”"le[am, sk, Go gl
olai 1,1, ail
+ Z(—l)””"f”"le[am,--- »M@iys1p0 G055 Pl 1o s apd e al
+ Z(—1)”"k"”+”"2‘1e[a[+1,k,ao, cesmlaie gl laie gl al
+ Z(—1)””k‘”’+”"2‘1e[af+1,k,ao,--~ Gy @l g agl L al

# DT e, ag, - @lai g mldn e al
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Lastly, we take

0= M —nIm; + (e — 1+ My — Dlegl,
and we have that
S5pr = Z(_l)pm[at+l,k’a0’ ) 6¢[ai1+1,j1]’ e 9at]

= Z(—l)"m[am,k,ao,--- smipdai - al
+ 1 ¥mlag a0, plmlas e a)

R —1
= Z(_])P"’(’hz 7]11)(|90| )m[at+l,k9 ap, " ’m[ai1+l’ ) So[ai2+l,j2]’ ) aj1]9 ot

+ Z(_l)p+”i2_nil +|¢|m[at+l,k’ ap, -, QD[ai1+la e ’m[ai2+l,j2]9 ) ajl]a e

It is not difficult to check Eq (5.2) according to the above computation.

5.2. Proof of Theorem 1.1

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. By Theorem 4.11, Proposition 5.3 and Proposition 5.5, it is sufficient to show

that the identity
[an, sz]gr = (_ l)|¢|_lt[¢,zp] ,

holds for any ¢, € HH*(A, A).
We only need to prove that

L‘prx _ (_ 1)(|‘p|_1)|¢"L¢L¢x _ (_ 1)|40|—1 U]
= bH,yx — (~DY"WH, bx — Hs,yx — (~D¥H, 5,

for x := apla; x] € HH.(A, A), where
Hyyx = Y (<1 lan a0, ¥lai ) apllaj,).
Here the sum runs over 0 < i; < j; < j, < i, <k, and
&= e = 1i)Miy + (M = iy, + 13, = D(] = 1).
We compute the terms in Eq (5.4) one by one. Firstly, denote
6 := (= 1) + (= 1+ 13, — DY = 1),
and then we have that

Lytyx
= (p(Z(_l)Hm[al‘+1,k9 ap, -, lr//[ai1+1,j1]’ T as][as+l,t])

(5.3)

(5.4)

O+(nr— ;i -1 -1
= Z(_l) +(7]/\ 771+772+|W| )(l‘Pl )m[al+1,k7 aO’ T, l/’[ai|+1,j1]a T, as][as+1’ R (p[ai2+1,j2]7 ) al]
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Gy i) +gl~1
+ (=D O A g mlag g o Wi L s asd e @ ane )
Secondly, we have that

i —1 -1
Lw(Z(—l)(nl i )aO[al,il’ Qp[ai1+l,j1]’ e ,Clk]

—7i )iy +Heel—1
+ (=D mmom AT org. o ag, o, ag1lag w10

Z (= 1) =Dl D) e+ Oy = DW= 1

tyL,x

+Lks 405 """
¢[ai2+1,j2], e ag][ager, ,<P[Cli1+1,j]], e, ay]

+ Z(_l)(ﬂil—1)(|¢’|—1)+(’7k"7t>(’7t+|‘/’|—1)+(’7k—77t+77i2_1)(|W|—1)m[at+l’k, ap, -,
Ulair, - s elairngl, - sapl, - asllagd

+ Z(_l)(m] _1)(l‘Pl_1)+(77k_77t)(77t+|90|_1)+(77k_77t+77i2+|<ﬁ|)(|¢’|_l)m[at+l’k’ ao, -,
‘P[ail+l,j1], tee ,Qlf[aizn,jz]’ e agllage ]

+ Z(—l)(m‘_1)(|¢|_1)+("k_"’)("’+|‘pl_1)+(’7k_"’+m2_l)qw'_l)m[am,k, ap, -,
W[aizﬂ,jz], T a¢[ai1+1,j1], e agllage ]

+ Z(_l)(ml71)<I¢|71)+(nrm+lsolf1)(m+|<plfl)+(nrm+m2+I¢I)(It//|fl)m[at+1’ ..

Qo[ai1+1,j1]’ AR 77 PN T PR w[ai2+l,j2]’ ) as][as+1,t]

=i, Wiy Heol=1+—ni, +n:+ol=1) @i, =) +e—n:+1:, + -1
n Z(_])(’Ik iy iy +Heel= 1+ Gue—ni, +ne+el= D, =10 +Gre—n+17i, + D (] Mg,

olai vix a0, 1, s¥lai ) agdlage,].
Thirdly, denote
& 1= (e = none + (e — 1+ 15, — Dl + WD,
and then we have that
L)X = Z(—l)fm[am,k,ao, L levlla gl s agdlag ]
= Z(—1)§+("i2_m‘)(Wl_l)m[am,k,ao,'" solaicr, - Wlaine ) ag ) agllage ]
+ Z(_1)§+(m2—m1)(|¢|—1)+(|¢|—1)(|¢|—1)+1 Mgz dos -
Ylai e, ,90[61i2+1,jz],"' ,Clj.],"' L as][ager ]
Next, we have that
bHyyx = ) (=)0 s WD, o a1y, o,
Ylajijl - sapl - aillagg,l
4 Z(_1)§+Uk—ni2+ni3+|<P|+|l//|90[ai2+]’k, ap, -
lﬂ[ailﬂ,jl],“' ,ajz][ajzﬂ ,m[aj3+l,i3]a"' ,aiz]-

Continually, we have that

Hg,bx = Hw,w(Z(—l)("k_ml)mlm[ai1+1,k,aoa eagllag el
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+ (=D"aglay;,, mlai 41,1, -, axl)
_ Z(_l)(’]k"lil iy + iy =) 4y =D+ i) WD ol g mlag g, g, -+ ca s

Ylair1 il - s apllag, 1,1

+ Z(_l)m, +(77k_77i2)(77i2—1)+(77k—77i2+77i3—1)(|l//|_1)(p[ai2+1’k’ ag, -,
Ylaisi ;] s apllaj s, smlaig, L, ai]

4 Z(_l)m, +(77k—7712)(7h2—1)+(77k—77i2+77i3—1)(|W|—1)¢[ai2+1’k’ ap, -,
¢[ai3+1,j3], T, m[ai1+1,j1], T, ajz][ajzﬂ,iz]

+ Z(_l)ml +(nrm2)(m271)+(nrm2+m371)(lefl)¢[ai2+1’k’ ap, -,
Ulager, - s, m[ai1+1,j1]a T, aj3], T, ajg][ajgﬂ,iz]

" Z(_l)ml )y =D+ iy ) WD g g
mla; 15,1, s ¥laie ) s apllag, el

4 Z(_l)ml +(77k—77i2_1)77i2+(77k_77i2+77i3)(|’p|—1)g0[ai2+1’ m[ai1+1,j1]a cee LA, dy e,

l/’[ai3+1,j3]a Tt ajz][aj2+1,i2]'

We can also obtain that

Hspyx = Z(_l){(sQ"[aizH,k,aOa celagagg ) s apllag el
- - ir+1,ks 405" " » i+l " U Jat+1,ix
= > (-Dm{¢}a, 14 a Ulaia gl s apllag )
+ Z(_1)§+I‘pl¢{m}[ai2+l,k’ ap, -, l«//[ai|+1,j1]’ Tt ajz][aj2+1,i2]
i3 T -1
= Z(_1)§+(n3 772)(|90| )m[ai2+]7 ) (P[ai3+l,j3], RPN 77 S 2 [ P
Ulaivi il s apllaj,e,l
+ Z(—1)§+(m3_niz)(|¢|_1)m[ai2+1, L @laiegeao, e L agl, e,
tp[ai1+1,j1]a e 7aj2][aj2+l,i2]
+ Z(—1)’“(n’g_"iz)(|¢|_l)m[ai2+1, R (P[ai3+1,k’ dp,: -,
l//[ai1+l,j1]a et 761‘/’3 P ajz][aj2+1,l'2]
+ Z(—1)‘(+(""_"i2+”i3+|¢|_1)(|‘p|_1)m[ai2+1,k, ap, -, lﬁ[ailﬂ,jl], e
‘)D[ai3+1,j3]7 ) aj2][aj2+1,i2]
# ) DO D g, glaga )
w[ai1+1,j1]’ ot 7aj2][aj2+1,i2]
n Z(—1)“(”"_"1’2*”"3)("”"‘)M[aizu,k,ao, N LI
Ulai il sapl, - anllaj el
+ Z(_1)§+|‘P|+7713_77i2"0[ai2+1’ R m[ai3+1,j3]a R 77 N 7T\ PR

Ulaivi il apllaj,e,l
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+ Z(—1)‘(+|‘pl+ni3_ni2¢[ai2+1,'" N [/ PR A T RERN
'ﬁ[aml,j]],"' ,ajz][aj2+l,i2]

# =D g e may g o,
%[’[ailn,jl], T ,Clj3], T ’ajz][aj2+1,i2]

+ Z(—1)§+|¢+n"_"i2+m3+lwl_l90[ai2+1,k,Clo,‘" Wlaie gl
m[ai3+l,j3]» s ’an][aj2+l,i2]

+ Z(_1)§+nk—m2+m3¢[ai2+1’k’ao,,_, smlap gl
lﬁ[ailﬂ,jl],"' ’ajz][ajzﬂ,ig]

+ Z(—l)’“nk_mzmg30[ai2+1,k’ao, ceumldig,
l/’[ai1+1,j1],"' s Ajsls e ,ajz][ajzﬂ,iz]-

Lastly, denote

é/, = (nk - 77i2)77i2 + (77k - i, + ni, — 1)|l/l|,
we compute that

Hygyx = ) (=D @laii a0, 00lai 1o+ 5 aplaj,05]
= Z(—I)CH%_""‘(le_l)w[aml,k,610, ceamfag g,
W[ai3+1,j3], e ,ajl], T aajz][ajgﬂ,iz]
+ Z(—1)(”7"3_""1+W/|90[ai2+1,k, ap, -+ s Ylai e, -,
m[ai3+1,j3]’ cee ,ajl], T ’ajz][aj2+1,i2]~
Through comparing the two sides in Eq (5.4) according the above computations, we have done. O

Corollary 5.6. For any homogenous elements ¢, € HH*(A, A), [B, Lyl = 0 and [Ly, Lylgr = Lig ).

Proof. By Proposition 5.5, we obtain Bo L, = (-1)¥*"'B o, 0 B = (-1)¥"*'L, o B, and then by Eq
(53)’ we get [L(,m L:p]gr = [[B, L(p]gra Lw]gr = (_1)|<P|(|l//|+1)[[B, Lw]gr, Lgo]gr +[B, [ch’ Lw]gr]gr = [B, L[go,zp]]gr =
Ligy)- O

6. Hochschild cohomology of cyclic A..-algebras

We start with the definition of cyclic A -algebras.

Definition 6.1. Let (A, m) be a finite dimensional A -algebra with strict unit. An A, -cyclic structure
of degree d on A is a non-degenerate bilinear form

(-, =) A[1]®A[1] - K
of degree —d (i.e., |a| + |b| = d — 2, if (sa, sb) # 0), such that

(sa, sby = —(=D)* VP (sh. sa),
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and

n+l
G+ )Y, (arl+1)
(smlay, - -+, a,l, say1) = (=1) = smlaz, - -+, aps1], sar)
for any homogenous elements a; € A and integer n > 0.

Remark 6.2. There exists a non-shifted version of cyclic A.-algebra, see [12, Section 11]. An A.-
cyclic structure of degree d on A is a non-degenerate bilinear form

(- -Y :A®A > K
of degree —d, such that
(@, by = (=1)""b, ay’,
and

n+l
nHarl: 3, i)
i=

<m[a1’ e 7al’l]’ al’l+1>, = (_1) <m[aZa T an+1], a1>,

for any homogenous elements a; € A and integer n > 0. In fact, in the Definition 6.1, if we take
{(a,b)’ := (—1)"(sa, sb), then we can obtain the non-shifted version. In this note, we adopt the shifted
version since the sign rules in this case are just the Koszul sign convention.

Proposition 6.3. Let A be a cyclic A.-algebra of degree d. Then the Hochschild data
(HH.(A’ A)7 HH.(Aa A,)’ Ua m,’ [_’ _]a Bla Q)

is a differential calculus with duality, where HH®(A, A”) is the Hochschild cohomology of A with value
in Aw-bimodule A’, and Q € HHY(A,A") is a volume form.

Proof. By Theorem 1.1 and Proposition 2.4, we obtain that (HH®*(A, A), HH*(A,A"), U, ', [-, -], B")
is a differential calculus. The only thing left is to show the existence of the duality. That is:

Claim 6.4. There exists an element Q € HHY(A, A), such that
HH*(A,A) — HH* (4, A)), f — x;(Q)

is an isomorphism.

In fact, the cyclic structure of A induces an isomorphism @ : A — A’ given by
®(a)(b) = (~1)“sa, sb),

and an isomorphism of complexes ¢ : C*(A,A) — C*(A,A’) given by ¢(f) := ® o f, and a duality
C*(A,A") = (C,(A, A)) given by ¢(f)(x) := (=1)@l D (sqy, sflay, -+ ,a,]). Now we show that

@(gU f) = (DD £ 7 (g).
Given any x = agla; - -+ ,a,] € C.(A4,A) and f, g € C*(A, A), we have

(g U fx)
— Z(_1)Iaol(lfl+lgl+1)+|f|(|g|—1)+n§(|f|+1)+n§(lgl+1)<sa0, sm[al, . ,f[ai+1, . aj], . ,g[am, . ,at], .
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: ,an]>
—1)+n; D)+ny 1
_ Z(_l)lgl(lfl D Dol g amlay, -, Fldi, - cajly-e o sgldses e aad,- - ag)
_ Z(_1)Igl(lfl—1)+m(|f|+1)+m(lgl+1)+(laol+1)(nn+|f|+lgl)< smlar, - flait, - ajl,  glase, -+ ),

: bl an]’ Sa0>
where . = >\(la;| + 1), and
i=1

’ d
(f N @(@)(x) = (=DM Dp(g)(11x)
_ (_1)|f|(|g|+d)+(77n_771)771+(7I/1_77t+77i_1)(|f|+1) .
()D(g)(z m[at+la e L, Ap,doy e ’f[ai+l’ et 9aj]’ et ’as][as+l’ tee ’at])
_ Z(_ 1 )|f|(|g|+d)+(nn—m)nt+(nn—nr+m—1)(|f|+1)+(|gl+1)(n,1—m+ns+|fl+1) .

<Sm[at+l’ T, Ap, Ao, af[ai+1a e 7aj]’ e ’as]a Sg[as+la e ’at]>
— Z(_1)|f|(|g|+d)+(77n—771)77t+(77n—77r+77i—1)(|f|+1)+(|g|+1)(Un—m+7]s+|f|+1)+(|ar+l|+1)(77n+|f|+|g|+1) .

<Sm[al" T, A, Aoyttt 7f[ai+]a e aaj]’ e 7g[as+1’ e 7al‘]]’ Sat+1>
- Z(—1)|f|(|g|+d)+(77n—Tlr)fh+(77n—771+77i—1)(|f|+1)+(|g|+1)(Tln—77t+77s+|f|+1)+(77n—TIt+|ao|+1)(77n+|f|+|g|+1)_

<Sm[a1, e ’f[ai+la Tt ’aj]5 e ’g[as+l9 e aat]a e ’an]7 Sa0>
= (DU ().

Picking the map id : k — ke lying in C°(A, A), where e is the strict unit, then we have
e(f) = DMf o Q= (DMK,

where Q denotes the element ¢(id) lying in C%(A, A’). This proves the claim, and Proposition 6.3
follows. O

Theorem 6.5 (Tradler [9]). If A is a cyclic A.-algebra, that is, A is a finite dimensional A-algebra
with a cyclically invariant non-degenerate pairing, then the Hochschild cohomology HH®*(A, A) has a
Batalin-Vilkovisky algebra structure.

Proof. This theorem is direct from Theorem 3.3 and Proposition 6.3. m|
Acknowledgments

During the preparation of this paper, the first author was partially supported by the Natural Science
Foundation of Chongqing (grant No. CSTC2020JCYJ-MSXMXO0160), the second author was sup-
ported by NSFC (No.11301186) and by STCSM (No. 13dz2260400) and the Fundamental Research
Funds for the Central Universities and the third author was partially supported by the Natural Science
Foundation of Tianjin (Grant No. 20JCQNJC02000). The second author thanks his Ph.D. supervisor
Guodong Zhou for his valuable suggestions and a variety of assistances in this note. We thanks to the
anonymous referees for reading the manuscript carefully. Based on their comments, we added Remark
4.4 and 6.2 and modified some signs in Section 6 to make the note more rigorous and readable.

Electronic Research Archive Volume 30, Issue 9, 3211-3237.



3236

Contflict of interest

The authors declare there is no conflicts of interest.

References

1.

S. Kobayashi, K. Nomizu, Foundations of differential geometry, 1. Interscience Publishers, a Di-
vision of John Wiley & Sons, New York-London, 1963.

. Y. L. Daletskii, I. M. Gelfand, B. L. Tsygan, On a variant of noncommutative differential geometry,

Soviet Math. Dokl., 40 (1990), 422-426.

. D. Tamarkin, B. Tsygan, The ring of differential operators on forms in noncommutative calculus,

Graphs and patterns in mathematics and theoretical physics, Proc. Sympos. Pure Math., Amer.
Math. Soc., Providence, RI, 73 (2005), 105-131. https://doi.org/10.1090/pspum/073/2131013

. V. A. Dolgushev, D. E. Tamarkin, B. L. Tsygan, Noncommutative calculus and the Gauss-Manin

connection, Higher structures in geometry and physics, Progr. Math., 287, Birkhduser/Springer,
New York, (2011), 139-158. https://doi.org/10.1007/978-0-8176-4735-3 7

. M. Kontsevich, Y. Soibelman, Notes on A..-algebras, A-categories and non-commutative geom-

etry. I, Homological mirror symmetry, 153-219, Lecture Notes in Phys., 757, Springer, Berlin,
20009. https://doi.org/10.1007/978-3-540-68030-7_6

V. Ginzburg, Calabi-Yau algebras, arXiv preprint math/0612139, 2006.

7. L. de Thanhoffer de Volcsey, M. Van den Bergh, Calabi-Yau deformations and negative cyclic

10.

11.

12.

13.

14.

15.

homology, J. Noncommut. Geom., 12 (2018), 1255-1291. https://doi.org/10.4171/INCG/304

S. B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc., 152 (1970), 39-60.
https://doi.org/10.1090/S0002-9947-1970-0265437-8

. T. Tradler, The Batalin-Vilkovisky algebra on Hochschild cohomology induced by infinity inner

products, Ann. Inst. Fourier (Grenoble), 58 (2008), 2351-2379. https://doi.org/10.5802/aif.2417

X. Chen, S. Yang, G. Zhou, Batalin-Vilkovisky algebras and the noncommutative Poincaré
duality of Koszul Calabi-Yau algebras, J. Pure Appl. Algebra, 220 (2016), 2500-2532.
https://doi.org/10.1016/j.jpaa.2015.11.016

R. Berger, Koszulity for nonquadratic algebras, J. Algebra, 239 (2001), 705-734.
https://doi.org/10.1006/jabr.2000.8703

M. Van den Bergh, Calabi-Yau algebras and superpotentials, Sel. Math. New Ser., 21 (2015),
555-603. https://doi.org/10.1007/s00029-014-0166-6

L. Menichi, Batalin-Vilkovisky algebras and cyclic cohomology of Hopf algebras, K-Theory, 3
(2004), 231-251. https://doi.org/10.1007/s10977-004-0480-4

M. Gerstenhaber, The cohomology structure of an associative ring, Ann. Math., 78 (1963), 267—
288. https://doi.org/10.2307/1970343

G. Hochschild, On the cohomology groups of an associative algebra, Ann. Math., 46 (1945), 58—
67. https://doi.org/10.2307/1969145

Electronic Research Archive Volume 30, Issue 9, 3211-3237.


http://dx.doi.org/https://doi.org/10.1090/pspum/073/2131013
http://dx.doi.org/https://doi.org/10.1007/978-0-8176-4735-3_7
http://dx.doi.org/https://doi.org/10.1007/978-3-540-68030-7_6
http://dx.doi.org/https://doi.org/10.4171/JNCG/304
http://dx.doi.org/https://doi.org/10.1090/S0002-9947-1970-0265437-8
http://dx.doi.org/https://doi.org/10.5802/aif.2417
http://dx.doi.org/https://doi.org/10.1016/j.jpaa.2015.11.016
http://dx.doi.org/https://doi.org/10.1006/jabr.2000.8703
http://dx.doi.org/https://doi.org/10.1007/s00029-014-0166-6
http://dx.doi.org/https://doi.org/10.1007/s10977-004-0480-4
http://dx.doi.org/https://doi.org/10.2307/1970343
http://dx.doi.org/https://doi.org/10.2307/1969145

3237

16. L. Menichi, Batalin-Vilkovisky algebra structures on Hochschild cohomology, Bull. Soc. Math.

17.

18.

19.

20.

21.

22.

23.

24.

25.

AR

France, 137 (2009), 277-295. https://doi.org/10.24033/bsmf.2576

T. Lambre, Dualité de Van den Bergh et Structure de Batalin-Vilkovisky sur les algebres de Calabi-
Yau, J. Noncommut. Geom., 4 (2010), 441-457. https://doi.org/10.4171/INCG/62

N. Kowalzig, U. Kriahmer, Batalin-Vilkovisky structures on Ext and Tor, J. Reine Angew. Math.,
697 (2014), 159-219. https://doi.org/10.1515/crelle-2012-0086

T. Lambre, G. Zhou, A. Zimmermann, The Hochschild cohomology ring of a Frobenius algebra
with semisimple Nakayama automorphism is a Batalin-Vilkovisky algebra, J. Algebra, 446 (2016),
103-131. https://doi.org/10.1016/j.jalgebra.2015.09.018

J. D. Stasheff, Homotopy associativity of H-spaces, II, Trans. Amer. Math. Soc., 108 (1963), 293—
312. https://doi.org/10.1090/S0002-9947-1963-0158400-5

M. Gerstenhaber, A. A. Voronov, Homotopy G-Algebras and Moduli Space Operad, Int. Math.
Res. Not., 3 (1995), 141-153. https://doi.org/10.1155/S1073792895000110

E. Getzler, Cartan homotopy formulas and the Gauss-Manin connection in cyclic homology, Israel
Math. Conf. Proc.,7 (1993), 65-78.

E. Getzler, J. D. S. Jones, A -algebras and the cyclic bar complex, lllinois J. Math., 34 (1990),
256-283. https://doi.org/ 10.1215/ijm/1255988267

E. Getzler, J. D. S. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces,
arXiv preprint, hep-th/9403055, 1994.

B. L. Tsygan, Noncommutative Calculus and Operads, Topics in Noncommutative Geometry, 16
(2012), 19-66.

©2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

s AIMS Press

Electronic Research Archive Volume 30, Issue 9, 3211-3237.


http://dx.doi.org/https://doi.org/10.24033/bsmf.2576
http://dx.doi.org/https://doi.org/10.4171/JNCG/62
http://dx.doi.org/https://doi.org/10.1515/crelle-2012-0086
http://dx.doi.org/https://doi.org/10.1016/j.jalgebra.2015.09.018
http://dx.doi.org/https://doi.org/10.1090/S0002-9947-1963-0158400-5
http://dx.doi.org/https://doi.org/10.1155/S1073792895000110
http://dx.doi.org/https://doi.org/ 10.1215/ijm/1255988267
http://creativecommons.org/licenses/by/4.0

	Introduction
	Convention

	Gerstenhaber algebras and differential calculi
	Differential calculi with duality and Batalin-Vilkovisky algebras
	Hochschild (co)homology of A-algebras
	Proof of the main theorem
	Differential calculus operators
	Proof of Theorem 1.1

	Hochschild cohomology of cyclic A-algebras

