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Abstract: In this paper we study the existence of multiple nontrivial solutions of the coupled
Schrödinger system with external sources terms as perturbations. This type of the system arises from
Bose-Einstein condensate. As these external sources terms are nonlinear functions and small in some
sense, we use fibre map to divide the Nehari manifold into threes parts, and then prove the existence of
a nontrivial ground state solution and a bound state solution.
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1. Introduction and main results

In this paper we consider solitary wave solutions of the time-dependent coupled nonlinear
Schrödinger system with perturbation

−i∂Φ1
∂t − ∆Φ1 = µ1|Φ1|

2Φ1 + β|Φ2|
2Φ1 + f1(x), x ∈ Ω, t > 0,

−i∂Φ2
∂t − ∆Φ2 = µ2|Φ2|

2Φ2 + β|Φ1|
2Φ2 + f2(x), x ∈ Ω, t > 0,

Φ1(t, x) = Φ2(t, x) = 0, x ∈ ∂Ω, t > 0, j = 1, 2,

(1.1)

where Ω ⊂ RN is a smooth bounded domain, i is the imaginary unit, µ1, µ2 > 0 and β , 0 is a coupling
constant. When N ≤ 3, the system (1.1) appears in many physical problems, especially in nonlinear
optics. Physically, the solution j denotes the j-th component of the beam in Kerr-like photorefractive
media (see [1]). The positive constant µ j is for self-focusing in the j th component of the beam. The
coupling constant β is the interaction between the two components of the beam. The problem (1.1) also
arises in the Hartree-Fock theory for a double condensate, that is, a binary mixture of Bose-Einstein
condensates in two different hyperfine states, for more information, see [2].
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If we looking for the stationary solution of the system (1.1), i.e., the solution is independent of time
t. Then the system (1.1) is reduced to the following elliptic system with perturbation

−∆u + λ1u = µ1|u|2u + βuv2 + f1(x), x ∈ Ω,

−∆v + λ2v = µ2|v|2v + βu2v + f2(x), x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

(1.2)

In the case where N ≤ 3 and f1 = f2 = 0, then the nonlinearity and the coupling terms in (1.2)
are subcritical, and the existence of solutions has recently received great interest, for instance, see
[3–11] for the existence of a (least energy) solution, and [12–16] for semiclassical states or singularly
perturbed settings, and [17–22] for the existence of multiple solutions.

In the present paper we consider the case when N = 4 and p = 2∗ = 4 is the Sobolev critical
exponent. If f1 = f2 = 0, the paper [23] proved the existence of positive least energy solution for
negative β, positive small β and positive large β.Furthermore, for the case λ1 = λ2, they obtained the
uniqueness of positive least energy solutions and they studied the limit behavior of the least energy
solutions in the repulsive case β→ −∞, and phase separation is obtained. Later, the paper [24] studied
the high dimensional case N ≥ 5. The paper [25] proved the existence of sign-changing solutions of
(1.2). Recently, the paper [26] considered the system (1.2) with perturbation in dimension N ≤ 3. By
using Nehari manifold methods, the authors proved the existence of a positive ground state solution
and a positive bound state solution. To the best of our knowledge, the existence of multiple nontrivial
solution to the system (1.2) with critical growth(N = 4) is still unknown. In the present paper we shall
fill this gap.

Another motivation to study the existence of multiple nontrivial solution of (1.2) is coming from
studying of the scalar critical equation. In fact, the second-order semilinear and quasilinear problems
have been object of intensive research in the last years. In the pioneering work [27], Brezis and Niren-
berg have studied the existence of positive solutions of the scalar equation−∆u = up + f , x ∈ Ω,

u > 0, x ∈ Ω, u = 0, x ∈ ∂Ω,
(1.3)

where Ω is a bounded smooth domain in RN , N ≥ 3, p = N+2
N−2 , f (x, u) is a lower order perturbation

of up. Particularly, when f = λu, where λ ∈ R is a constant, they have discovered the following
remarkable phenomenon: the qualitative behavior of the set of solutions of (1.7) is highly sensitive to
N, the dimension of the space. Precisely, the paper [27] has shown that, in dimension N ≥ 4, there
exists a positive solution of (1.3), if and only if λ ∈ (0, λ1); while, in dimension N = 3 and when
Ω = B1 is the unit ball, there exists a positive solution of (1.7), if and only if λ ∈ (λ1/4, λ1), where
λ1 > 0 is the first eigenvalue of −∆ in Ω. The paper [28] proved the existence of both radial and
nonradial solutions to the problem−∆u = b(r)up + f (r, u), x ∈ Ω, r = |x|,

u > 0, x ∈ Ω, u = 0, x ∈ ∂Ω
(1.4)

under some assumptions on b(r) and f (r, u), p = N+2
N−2 , where Ω = B(0, 1) is the unit ball in RN . In the

paper [29], G. Tarantello considered the critical case for (1.3). He proved that (1.3) has at least two
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solutions under some conditions of f : f , 0, f ∈ H−1 and

∥ f ∥H−1 < cNS
N
4 , cN =

4
N − 2

(
N − 2
N + 2

)
N+2

4 , (1.5)

and

S = inf
u∈H1

0 (Ω)\{0}

|∇u|22
|u|24

(1.6)

is the best Sobolev constant of the imbedding from H1
0(Ω) to Lp(Ω). For more results on this direction

we refer the readers to [30–35] and the references therein.
Motivated by the above works, in the present paper, we are interested in the critical coupled

Schrödinger equations in (1.2) with λ1 = λ2 = 0
−∆u = µ1u3 + βuv2 + f1, x ∈ Ω,

−∆v = µ2v3 + βu2v + f2, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

(1.7)

where Ω is a smooth bounded domain in R4, ∆ is the Laplace operator and p = 2∗ = 4 is the Sobolev
critical exponent, and µ1 > 0, µ2 > 0, 0 < β ≤ min{µ1, µ2}.

Obviously, the energy functional is denoted by

I(u, v) =
1
2

∫
Ω

(|∇u|2 + |∇v|2)dx −
1
4

∫
Ω

(µ1|u|4 + µ2|v|4 + 2βu2v2)dx −
∫
Ω

( f1u + f2v)dx (1.8)

for (u, v) ∈ H = H1
0(Ω) × H1

0(Ω). So, the critical point of I(u, v) is the solution of the system (1.7).
We shall fill the gap and generalize the results of [26] to the critical case. Our main tool here is the
Nehari manifold method which is similar to the fibering method of Pohozaev’s, which was first used
by Tarantello [29].

We define thee Nehari manifold

N = {(u, v) ∈ H| I′(u, v)(u, v) = 0}. (1.9)

It is clear that all critical points of I lie in the Nehari manifold, and it is usually effective to consider the
existence of critical points in this smaller subset of the Sobolev space. For fixed (u, v) ∈ H \ {(0, 0)},
we set

g(t) = I(tu, tv) =
A
2

t2 −
B
4

t4 − Dt, t > 0.

where

A =
∫
Ω

(|∇u|2 + |∇v|2)dx, B =
∫
Ω

(µ1|u|4 + µ2|v|4 + 2βu2v2)dx, D =
∫
Ω

( f1u + f2v)dx. (1.10)

The mapping g(t) is called fibering map. Such maps are often used to investigate Nehari manifold for
various semilinear problem. By using the relationship of I and g(t), we can divide N into three parts
as follow:

N + = {(u, v) ∈ N
∣∣∣ A − 3B > 0},

N 0 = {(u, v) ∈ N
∣∣∣ A − 3B = 0},

N − = {(u, v) ∈ N
∣∣∣ A − 3B < 0}.

Electronic Research Archive Volume 30, Issue 7, 2730–2747.



2733

In order to get our results, we assume that fi satisfies

fi , 0, fi ∈ L
4
3 (Ω), | fi| 4

3
<

S
3
2

3
√

3K
1
2

, i = 1, 2, (1.11)

where K = max{µ1, µ2}, S is defined in (1.6). Then we have the following main results.

Theorem 1.1. Assume that 0 < β ≤ min{µ1, µ2}, and f1, f2 satisfies (1.11). Then

inf
N

I = inf
N +

I = c0 (1.12)

is achieved at a point (u0, v0) ∈ N . Furthermore, (u0, v0) is a critical point of I.

Next we consider then following minimization problem

inf
N −

I = c1. (1.13)

Then we have the following result.

Theorem 1.2. Assume that 0 < β ≤ min{µ1, µ2}, and f1, f2 satisfies (1.11). Then c1 > c0 and the
infimum in (1.13) is achieved at a point (u1, v1) ∈ N −, which is the second critical point of I.

Remark 1.3. We point out that to the best of our knowledge, the existence of multiple nontrivial solu-
tion to the system (1.2) with critical growth(N = 4) is still unknown. In the present paper we shall fill
this gap and generalized the results of [26] to the critical case.

2. Variational setting and preliminary results

Throughout the paper, we shall use the following notation.

• Let (·, ·) be the inner product of the usual Sobolev space H1
0(Ω) defined by (u, v) =

∫
Ω
∇u∇vdx,

and the corresponding norm is ∥u∥ = (u, u)
1
2 .

• Let S = infu∈H1
0 (Ω)\{0}

(
|∇u|22/|u|

2
4

)
be the best Sobolev constant of the imbedding from H1

0(Ω) to
L4(Ω).
• |u|p is the norm of Lp(Ω) defined by |u|p = (

∫
Ω
|u|pdx)

1
p , for 0 < p < ∞.

• Let ∥(u, v)∥2 =
∫
Ω

(|∇u|2 + |∇v|2)dx be the norm in the space of H = H1
0(Ω) × H1

0(Ω).
• Let C or Ci(i = 1, 2, ...) denote the different positive constants.

We shall use the variational methods to prove the main results. In this section we shall prove some
basic results for the system (1.2). The next lemma states the purpose of the assuptions (1.11).

Lemma 2.1. Assume that the conditions of Theorem 1.1 hold. Then for every (u, v) ∈ H \ {(0, 0)}, there
exists a unique t1 > 0 such that (t1u, t1v) ∈ N −. In particular, we have

t1 > t0 :=
[ A
3B

] 1
2

(2.1)

and g(t1) = maxt≥t0 g(t), where A and B are given in (1.10). Moreover, if D > 0, then there exists a
unique t2 > 0, such that (t2u, t2v) ∈ N +, where D > 0 is given in (1.10). In particular, one has

t2 < t0 and I(t2u, t2v) ≤ I(tu, tv), ∀t ∈ [0, t1]. (2.2)
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Proof. We first define the fibering map by

g(t) =
A
2

t2 −
B
4

t4 − Dt, t > 0.

Then we have
g′(t) = At − Bt3 − D = Φ(t) − D.

We deduce from Φ′(t) = 0 that

t = t0 =

[ A
3B

] 1
2

.

If 0 < t < t0, we have g′′(t) = Φ′(t) > 0, and if t > t0, one sees g′′(t) = Φ′(t) < 0. A direct computation

shows that Φ(t) achieves its maximum at t0 and Φ(t0) = 2
3
√

3
A

3
2

B
1
2
.

From the assumption (1.11), Sobolev’s and Hölder’s inequalities, we infer that

D =
∫
Ω

( f1u + f2v)dx ≤ | f1| 4
3
|u|4 + | f2| 4

3
|v|4 ≤

√
(| f1|

2
4
3
+ | f2|

2
4
3
)(|u|24 + |v|

2
4)

≤
√

2 max{| f1| 4
3
, | f2| 4

3
}(|u|24 + |v|

2
4)

1
2 <

√
2S

3
2

3
√

3K
1
2

(|u|24 + |v|
2
4)

1
2 .

(2.3)

On the other hand, since 0 < β ≤ min{µ1, µ2}, it follows that

Φ(t0) =
2

3
√

3

A
3
2

B
1
2

=
2

3
√

3

(
∫
Ω

(|∇u|2 + |∇v|2)dx)
3
2

(
∫
Ω

(µ1|u|4 + µ2|v|4 + 2βu2v2)dx)
1
2

≥
2

3
√

3

S
3
2 (|u|24 + |v|

2
4)

3
2

K
1
2 (
∫
Ω

(|u|4 + |v|4 + 2βu2v2)dx)
1
2

≥
2S

3
2

3
√

3K
1
2

(|u|24 + |v|
2
4)

3
2

√
2(|u|44 + |v|

4
4)

1
2

≥

√
2S

3
2

3
√

3K
1
2

(|u|24 + |v|
2
4)

3
2

|u|24 + |v|
2
4

=

√
2S

3
2

3
√

3K
1
2

(|u|24 + |v|
2
4)

1
2 ,

where K = max{µ1, µ2}. Hence we get

g′(t0) = Φ(t0) − D > 0 and g′(t)→ −∞, as t → +∞. (2.4)

Thus, there exists an unique t1 > t0 such that g′(t1) = 0. We infer from the monotonicity of Φ(t) that
for t1 > t0

g′′(t1) = Φ′(t1) < 0, t2
1Φ
′(t1) = t2

1(A − 3Bt2
1) < 0.

This implies that (t1u, t1v) ∈ N −. If D > 0, then we have g′(0) = Φ(0) − D = −D < 0. Furthermore,
there exists an unique t2 ∈ [0, t0] such that g′(t2) = 0 and Φ(t2) = D. A direct computation shows that
(t2u, t2v) ∈ N + and I(t2u, t2v) ≤ I(tu, tv), ∀t ∈ [0, t1]. □

Next we study the structure of N 0.

Electronic Research Archive Volume 30, Issue 7, 2730–2747.
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Lemma 2.2. Let fi , 0(i = 1, 2) satisfy (1.11). Then for every (u, v) ∈ N \ {(0, 0)}, we have∫
Ω

(|∇u|2 + |∇v|2)dx − 3
∫
Ω

(µ1|u|4 + µ2|v|4 + 2βu2v2)dx , 0. (2.5)

Hence we can get the conclusion that N 0 = {(0, 0)}.

Proof. In order to prove that N 0 = {(0, 0)}, we only need to show that for (u, v) ∈ H \ {(0, 0)}, g(t)
has no critical point that is a turning point. We use contradiction argument. Assume that there exists
∃(u, v) , (0, 0) such that (t0u, t0v) ∈ N 0 and t0 > 0. Thus, we get

g′(t0) = At0 − Bt3
0 − D = 0 and g′′(t0) = A − 3Bt2

0 = 0.

Then we have t0 =
[

A
3B

] 1
2 . This contradicts (2.4). This finishes the proof. □

In the next lemma, we shall prove the properties of Nehari manifolds N .

Lemma 2.3. Let fi , 0(i = 1, 2) satisfy (1.11). For (u, v) ∈ N \ {(0, 0)}, then there exist ε > 0 and a
differentiable function t = t(w, z) > 0, (w, z) ∈ H, ∥(w, z)∥ < ε, and satisfying the following conditions

t(0, 0) = 1, t(w, z)((u, v) − (w, z)) ∈ N , ∀∥(w, z)∥ < ε,

and

< t′(0, 0), (w, z) >=

2
∫
Ω

(∇u∇w + ∇v∇z)dx − 4
∫
Ω

[µ1|u|2uw + µ2|v|2vz + β(uv2w + u2vz)]dx −
∫
Ω

( f1w + f2z)dx∫
Ω

(|∇u|2 + |∇v|2)dx − 3
∫
Ω

(µ1|u|4 + µ2|v|4 + 2βu2v2)dx
.

Proof. We define F : R × H → R by

F(t, (w, z)) = t∥∇(u − w)∥22 + t∥∇(v − z)∥22 − t3
∫
Ω

(µ1|u − w|4

+ µ2|v − z|4 + 2β(u − w)2(v − z)2)dx −
∫
Ω

( f1(u − w) + f2(v − z))dx.

We deduce from Lemma 2.2 and (u, v) ∈ N that F(1, (0, 0)) = 0. Moreover, one has

Ft(1, (0, 0)) =
∫
Ω

(|∇u|2 + |∇v|2)dx − 3
∫
Ω

(µ1|u|4 + µ2|v|4 + 2βu2v2)dx , 0.

By applying the implicit function theorem at point (1,(0,0)), we can obtain the results. □

3. The Proof of Theorem 1.1

In this section we are devoted to proving Theorem 1.1. We begin the following lemma for the
property of inf I.

Lemma 3.1. Let
c0 = inf

N
I = inf

N +
I.

Hence I is bounded from below in N and c0 < 0.
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Proof. For (u, v) ∈ N , we have ⟨I′(u, v), (u, v)⟩ = 0. We infer from (1.10) that A − B − D = 0. Thus,
one deduces from (2.3) and Hölder inequality that

D < C(|u|24 + |v|
2
4)

1
2 ≤ C1(|∇u|22 + |∇v|22)

1
2 = C1A

1
2 .

Hence, one deduces that

I(u, v) =
A
2
−

B
4
− D =

A
4
−

3D
4
>

A
4
−C2A

1
2 .

Thus, the infimum c0 in N + is bounded from below. Next we prove the upper bound for c0. Let
wi ∈ H1

0(Ω)(i = 1, 2) be the solution for −∆w = fi, (i = 1, 2). So, for fi , 0 one sees that∫
Ω

( f1w1 + f2w2)dx = |∇w1|
2
2 + |∇w2|

2
2 > 0.

We let t2 = t2(u, v) > 0 as defined by Lemma 2.1. Thus, we infer that (t2w1, t2w2) ∈ N + and

t2
2

∫
Ω

(|∇w1|
2 + |∇w2|

2)dx − t4
2

∫
Ω

(µ1|w1|
4 + µ2|w2|

4 + 2βw2
1w2

2)dx − t2

∫
Ω

( f1w1 + f2w2)dx = 0.

Furthermore, it follows from (2.2) that

c0 = inf
(u,v)∈N +

I(u, v) ≤ I(t2w1, t2w2)) < I(0, 0) = 0.

This completes the proof. □

The next lemma studies the properties of the infimum c0.

Lemma 3.2. (1) The level c0 can be attained. That is, there exists (u0, v0) ∈ N + such that I(u0, v0) =
c0.

(2) (u0, v0) is a local minimum for I in H.

Proof. From Lemma 3.1, we can apply Ekeland’s variational principle to the minimization problem,
which gives a minimizing sequence {(un, vn)} ⊂ N such that

(i) I(un, vn) < c0 +
1
n ,

(ii) I(w, z) ≥ I(un, vn) − 1
n (|∇(w − un)|2 + |∇(z − vn)|2), ∀(w, z) ∈ N .

For n large enough, by Lemma 3.1 and (i)-(ii) of the above, we can get

∃C1 > 0,C2 > 0, 0 < C1 ≤ |∇un|
2
2 + |∇vn|

2
2 ≤ C2.

In the following we shall prove that ∥I′(un, vn)∥ → 0 as n→ ∞. In fact, we can apply Lemma 2.3 with
(u, v) = (un, vn) and (w, z) = δ (Iu(un,vn),Iv(un,vn))

∥I′(un,vn)∥ (δ > 0). Then can find tn(δ) such that

(wδ, zδ) = tn(δ)
[
(un, vn) − δ

(Iu(un, vn), Iv(un, vn))
∥I′(un, vn)∥

]
∈ N .

Thus, we infer from the condition (ii) that

I(un, vn) − I(wδ, zδ) ≤
1
n

(|∇(wδ − un)|2 + |∇(zδ − vn)|2) . (3.1)

Electronic Research Archive Volume 30, Issue 7, 2730–2747.
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On the other hand, by using Taylor expansion we have that

I(un, vn) − I(wδ, zδ) = (1 − tn(δ))(I′(wδ, zδ), (un, vn)) + δtn(δ)
(
I′(wδ, zδ),

I′(un, vn)
∥I′(un, vn)∥

)
+ o(δ).

Dividing by δ > 0 and letting δ→ 0, we get

1
n

(
2 + t′n(0)(|∇un|2 + |∇vn|2)

)
≥ −t′n(0)(I′(un, vn), (un, vn)) + ∥I′(un, vn)∥ = ∥I′(un, vn)∥. (3.2)

Combining (3.1) and (3.2) we conclude that

∥I′(un, vn)∥ ≤
C
n

(2 + t′n(0)).

We infer from Lemma 2.3 and (un, vn) ⊂ N that t′n(0) is bounded. That is,

|t′n(0)| ≤ C.

Hence we obtain that
∥I′(un, vn)∥ → 0 as n→ ∞. (3.3)

Therefore, by choosing a subsequence if necessary, we have that

(un, vn)⇀ (u0, v0) in H and I′(u0, v0) = 0,

and
c0 ≤ I(u0, v0) =

1
4

(|∇u0|
2
2 + |∇v0|

2
2) −

∫
Ω

( f1u0 + f2v0)dx

≤ lim
n→∞

I(un, vn) = c0.

Consequently, we infer that

(un, vn)→ (u0, v0) in H, I(u0, v0) = c0 = inf
N

I.

From Lemma 2.1 and (3.3), we deduce that (u0, v0) ∈ N +.
(2) In order to get the conclusion, it suffices to prove that ∀(w, z) ∈ H,∃ε > 0, if ∥(w, z)∥ < ε, then

I(u0 − w, v0 − z) ≥ I(u0, v0). In fact, notice that for every (w, z) ∈ H with
∫
Ω

( f1u + f2v)dx > 0, we infer
from Lemma 2.1 that

I(su, sv) ≥ I(t1u, t1v), ∀ s ∈ [0, t0].

In particular, for (u0, v0) ∈ N +, we have

t2 = 1 < t0 =


∫
Ω

(|∇u0|
2 + |∇v0|

2)dx

3
∫
Ω

(µ1|u0|
4 + µ2|v0|

4 + 2βu2
0v2

0)dx


1
2

.

Let ε > 0 sufficiently small. Then we infer that for ∥(w, z)∥ < ε

1 <


∫
Ω

(|∇(u0 − w)|2 + |∇(v0 − z)|2)dx

3
∫
Ω

(µ1|u0 − w|4 + µ2|v0 − z|4 + 2β(u0 − w)2(v0 − z)2)dx


1
2

= t̃0. (3.4)
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From Lemma 2.3, let t(w, z) > 0 satisfy t(w, z)(u0 − w, v0 − z) ∈ N for every ∥(w, z)∥ < ε. Since
t(w, z)→ 1 as ∥(w, z)∥ → 0, we can assume that

t(w, z) < t̃0, ∀ ∥(w, z)∥ < ε.

Hence we obtain that t(w, z)(u0 − w, v0 − z) ∈ N + and

I(s(u0 − w), s(v0 − z)) ≥ I(t(w, z)(u0 − w), t(w, z)(v0 − z)) ≥ I(u0, v0), ∀ 0 < s < t̃0.

From (3.4) we can take s = 1 and conclude

I(u0 − w, v0 − z) ≥ I(u0, v0), ∀(w, z) ∈ H, ∥(w, z)∥ < ε.

This finishes the proof. □

Proof of Theorem 1.1. From Lemma 3.2, we know that (u0, v0) is the critical point of I. □

4. Proof of Theorem 1.2

In this section we focus on the proof of Theorem 1.2. The main difficulty here is the lack of
compactness(due to the embedding H ↪→ L4(Ω)×L4(Ω) is noncompact). Motivated by previous works
of [27,29,37], we shall seek the local compactness. Then by using the Mountain pass principle to find
the second nontrivial solution of equation (1.7). The pioneering paper [29] has used this methods to
find the second solution of the scalar Schrödinger equation. To this purpose, we first begin with the
following lemma to find the threshold to recover the compactness.

Lemma 4.1. For every sequence (un, vn) ∈ H satisfying

(i) I(un, vn) → c with c < c0 +
1
4 min

{
S 2

µ1
, S 2

µ2

}
, where c0 is defined in (1.12), S is the best Sobolev

constant of the imbedding from H1
0(Ω) to L4(Ω),

(ii) ∥I′(un, vn)∥ → 0 as n→ ∞.

Then {(un, vn)} has a convergent subsequence. This means that the (PS )c condition holds for all level
c < c0 +

1
4 min

{
S 2

µ1
, S 2

µ2

}
.

Proof. From condition (i) and (ii), it is easy to verify that ∥(un, vn)∥ is bounded. So, for the subsequence
{(un, vn)}(which we still call {(un, vn)}, we can find a (w0, z0) ∈ H such that (un, vn) ⇀ (w0, z0) in H.
Then from the condition (ii), we obtain that

(I′(w0, z0), (w, z)) = 0, ∀(w, z) ∈ H.

That is, (w0, z0) is a solution in H. Moreover, (w0, z0) ∈ N and I(w0, z0) ≥ c0. Let

(un, vn) = (w0 + wn, z0 + zn).

Then (wn, zn)⇀ (0, 0) in H. Then it suffices to prove that

(wn, zn)→ (0, 0) in H. (4.1)
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We use the indirect argument. Assume that (4.1) does not hold. Then we divide the following three
cases to find the contradiction.

Case 1: wn → 0 and zn ↛ 0 in H. Since ∥(un, vn)∥ is bounded, it follows that∫
Ω

w2
nz2

ndx = o(1).

by (1.7), we can get

c0 +
1
4

min
{

S 2

µ1
,

S 2

µ2

}
> I(un, vn) = I(w0 + wn, z0 + zn)

= I(w0, z0) +
1
2

∫
Ω

|∇zn|
2dx −

µ2

4

∫
Ω

|zn|
4dx + o(1)

≥ c0 +
1
2
|∇zn|

2
2 −
µ2

4
|zn|

4
4 + o(1),

and then
1
2
|∇zn|

2
2 −
µ2

4
|zn|

4
4 <

S 2

4µ2
. (4.2)

We infer from the condition (ii) that

o(1) = (I′(un, vn), (un, vn)) = (I′(w0, z0), (w0, z0)) + |∇zn|
2
2 − µ2|zn|

4
4 + o(1).

That is, we get
|∇zn|

2
2 = µ2|zn|

4
4 + o(1).

By using the embedding from H1
0(Ω) to L4(Ω), we get

µ2|zn|
4
4 = |∇zn|

2
2 ≥ S |zn|

2
4 + o(1).

Since zn ↛ 0, we infer that |zn|
2
4 ≥ S/µ2 + +o(1). That is,

|zn|
4
4 ≥

S 2

µ2
2

+ o(1).

Hence we get
1
2
|∇zn|

2
2 −
µ2

4
|zn|

4
4 =
µ2

4
|zn|

4
4 + o(1) ≥

1
4

S 2

µ2
. (4.3)

This contradicts with the fact (4.2).
Case 2: wn ↛ 0 and zn → 0 in H. This can be accomplished by using same argument as in the

proof of the Case 1.
Case 3: wn ↛ 0 and zn ↛ 0 in H. Similar to the Case 1, we infer from condition (ii) that

o(1) = (I′(un, vn), (un, 0)) = |∇un|
2 − µ1|un|

4
4 − β

∫
Ω

u2
nv2

ndx −
∫
Ω

f1undx

= (I′(w0, z0), (w0, 0)) + |∇wn|
2
2 − µ1|wn|

4
4 − β

∫
Ω

w2
nz2

ndx + o(1).
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Then we have
|∇wn|

2
2 = µ1|wn|

4
4 + β

∫
Ω

w2
nz2

ndx + o(1). (4.4)

One infers from Hölder and Sobolev inequality that

S |wn|
2
4 ≤ |∇wn|

2
2 = µ1|wn|

4
4 + β

∫
Ω

w2
nz2

ndx + o(1) ≤ µ1|wn|
4
4 + β|wn|

2
4|zn|

2
4 + o(1). (4.5)

Since wn ↛ 0, we have

S ≤ µ1|wn|
2
4 + β|zn|

2
4 + o(1) ≤ µ1(|wn|

2
4 + |zn|

2
4) + o(1). (4.6)

Similarly, we obtain that

S ≤ µ2|zn|
2
4 + β|wn|

2
4 + o(1) ≤ µ2(|wn|

2
4 + |zn|

2
4) + o(1). (4.7)

Thus, we conclude that

|wn|
2
4 + |zn|

2
4 ≥ max

{
S
µ1
,

S
µ2

}
+ o(1). (4.8)

On the other hand, we infer from the condition (ii) that

o(1) = (I′(un, vn), (un, vn))

= |∇un|
2 + |∇vn|

2 − µ1|un|
4
4 − µ2|vn|

4
4 − 2β

∫
Ω

u2
nv2

ndx −
∫
Ω

f1undx −
∫
Ω

f2vndx

= (I′(w0, z0), (w0, z0)) + |∇wn|
2
2 + |∇zn|

2
2 − µ1|wn|

4
4 − µ2|zn|

4
4 − 2β

∫
Ω

w2
nz2

ndx + o(1).

(4.9)

From (4.6)-(4.9), we deduce that

c0 +
1
4

min
{

S 2

µ1
,

S 2

µ2

}
> I(un, vn) = I(w0 + wn, z0 + zn)

= I(w0, z0) +
1
2
|∇wn|

2
2 +

1
2
|∇zn|

2
2 −

1
4

(µ1|wn|
4
4 + µ2|zn|

4
4

+ 2β
∫
Ω

w2
nz2

ndx) + o(1)

≥ c0 +
1
4

(µ1|wn|
4
4 + µ2|zn|

4
4 + 2β

∫
Ω

w2
nz2

ndx) + o(1)

≥ c0 +
S
4

(|wn|
2
4 + |zn|

2
4) + o(1)

≥ c0 +
1
4

max{
S 2

µ1
,

S 2

µ2
} + o(1).

This is a contradiction. □

In order to applying Lemma 4.1 to get the compactness, we need to prove the following inequality

c1 = inf
N −

I < c0 +
1
4

min{
S 2

µ1
,

S 2

µ2
}.
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Let
uε(x) =

ε

ε2 + |x|2
ε > 0, x ∈ R4

be an extremal function for the Sobolev inequality in R4. Let uε,a = u(x − a) for x ∈ Ω and the cut-off
function ξa ∈ C∞0 (Ω) with ξa ≥ 0 and ξa = 1 near a. We set

Uε,a(x) = ξa(x)uε,a(x), x ∈ R4.

Following [37], we let Ω1 ⊂ Ω be a positive measure set such that u0 > 0, v0 > 0, where c0 = I(u0, v0)
is given in Theorem 1.1. Then we have the following conclusion.

Lemma 4.2. For every R > 0, and a.e. a ∈ Ω1, there exists ε0 = ε0(R, a) > 0, such that

min{I(u0 + RUε,a, v0), I(u0, v0 + RUε,a)} < c0 +
1
4

min
{

S 2

µ1
,

S 2

µ2

}
(4.10)

for every 0 < ε < ε0.

Proof. As in [37], a direct computation shows that

I(u0 + RUε,a, v0) =
1
2
|∇u0|

2
2 + R

∫
Ω

∇u0∇Uε,adx +
R2

2
|∇Uε,a|22 +

1
2
|∇v0|

2
2

−
µ1

4
(|u0|

4
4 + R4|Uε,a|44 + 4R

∫
Ω

u3
0Uε,adx + 4R3

∫
Ω

U3
ε,au0dx)

−
µ2

4
|v0|

4
4 −
β

2

∫
Ω

(u2
0v2

0 + 2Ru0v2
0Uε,a + R2U2

ε,av2
0)dx

−

∫
Ω

( f1u0 + f2v0)dx − R
∫
Ω

f Uε,adx + o(ε).

(4.11)

We infer from [27] that

|∇Uε,a|22 = F + O(ε2) and |Uε,a|44 = G + O(ε4), (4.12)

where

F =
∫
R4
|∇u1(x)|2dx, G =

∫
R4

dx
(1 + |x|2)4 , S =

F

G
1
2

If we let u0 = 0 outside Ω, then∫
Ω

U3
ε,au0dx =

∫
R4

u0ξa(x)
ε3

(ε2 + |x − a|2)3 dx = ε
∫
R4

u0ξa(x)
1
ε4φ(

x
ε

)dx

where
φ(x) =

1
(1 + |x|2)3 ∈ L1(R4).

Set

E =
∫
R4

1
(1 + |x|2)3 dx.

Electronic Research Archive Volume 30, Issue 7, 2730–2747.



2742

Then we can derive ∫
R4

u0ξa(x)
1
ε4φ(

x
ε

)dx→ u0(a)E.

Since (u0, v0) is the critical point of I, it follows that∫
Ω

(|∇u0|
2 + |∇v0|

2)dx −
∫
Ω

(µ1u4
0 + µ2v4

0 + 2βu2
0v2

0)dx −
∫
Ω

( f1u0 + f2v0)dx = 0. (4.13)

We infer from (4.11)-(4.13) that

I(u0 + RUε,a, v0) = I(u0, v0) +
R2

2
F −

R4

4
µ1G − µ1R3

∫
Ω

U3
ε,au0dx −

βR2

2

∫
Ω

U2
ε,av2

0dx + o(ε)

≤ c0 +
R2

2
F −

R4

4
µ1G − µ1εR3Eu0(a) + o(ε).

(4.14)

In order to get the upper bound of (4.14), we define

q1(s) =
F
2

s2 −
µ1G

4
s4 − kεs3, k = µ1Eu0(a) > 0,

and
q2(s) =

F
2

s2 −
µ1G

4
s4.

It is easy to get the maximum of q2(s) is achieved at s0 = ( F
µ1G )

1
2 . Let the maximum of q1(s) is achieved

at sε, so we can let sε = (1 − δε)s0, and get δε → 0(ε→ 0). Substituting sε = (1 − δε)s0 into q′1(s) = 0,
we can get

F − F(1 − δε)2 = 3s0(1 − δε)kε.

As in [29], we infer that
δε ∼ ε, ε→ 0.

Then we can get the upper bound estimation of I(u0 + RUε,a, v0):

I(u0 + RUε,a, v0) ≤ c0 +
R2

2
F −

R4

4
µ1G − kεR3 + o(ε)

≤ c0 +
[(1 − δε)s0]2

2
F −

[(1 − δε)s0]4

4
µ1G − kε[(1 − δε)s0]3 + o(ε)

= c0 + (
s2

0

2
F −

s4
0

4
µ1G) + (s4

0µ1G − s2
0F)δε − kεs3

0 + o(ε)

< c0 +
S 2

4µ1
+ o(ε).

Thus, for ε0 > 0 small, we get

I(u0 + RUε,a, v0) < c0 +
S 2

4µ1
.

Similarly, we obtain that

I(u0, v0 + RUε,a) < c0 +
S 2

4µ2
.
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So, we prove

min {I(u0 + RUε,a, v0), I(u0, v0 + RUε,a)} < c0 +
1
4

min{
S 2

µ1
,

S 2

µ2
}, ∀ 0 < ε < ε0.

This finishes the proof. □

Without loss of generality, from above Lemma 4.2 we can assume

I(u0 + RUε,a, v0) < c0 +
S 2

4µ1
, R > 0, ∀ 0 < ε < ε0.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. It is clear that there exists an uniqueness of t1 > 0 such that

(t1u, t1v) ∈ N − and I(t1u, t1v) = max
t≥t0

I(t1u, t1v), ∀(u, v) ∈ H, ∥(u, v)∥ = 1.

Moreover, t1(u, v) is a continuous function of (u, v), and N − divides H into two components H1 and
H2, which are disconnect with each other. Let

H1 =

{
(u, v) = (0, 0) or (u, v) : ∥(u, v)∥ < t1

( (u, v)
∥(u, v)∥

)}
and

H2 =

{
(u, v) : ∥(u, v)∥ > t1

( (u, v)
∥(u, v)∥

)}
.

Obviously, we have H \N − = H1 ∪ H2. Furthermore, we obtain that N + ⊂ H1 for (u0, v0) ∈ H1. We
choose a constant C0 such that

0 < t1(u, v) ≤ C0, ∀∥(u, v)∥ = 1.

In the following we deduce that

(w, z) = (u0 + R0Uε,a, v0) ∈ H2, (4.15)

where R0 =

(
1
F |C

2
0 − ∥(u0, v0)∥2

) 1
2

+ 1. Since

∥(w, z)∥2 = ∥(u0, v0)∥2 + R2
0|∇Uε,a|2 + 2R0

∫
Ω

|∇u0||∇Uε,a|dx

= ∥(u0, v0)∥2 + R2
0F + o(1) > C2

0 ≥

[
t1

( (w, z)
∥(w, z)∥

)]2

for ε > 0 small enough. We fix ε > 0 small to make both (4.10) and (4.15) hold by the choice of R0

and a ∈ Ω1. Set

Γ1 = {γ ∈ C([0, 1],H) : γ(0) = (u0, v0), γ(1) = (u0 + R0Uε,a, v0)}.
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We take h(t) = (u0 + tR0Uε,a, v0). Then h(t) ∈ Γ1. From Lemma 4.1, we conclude that

c′ = inf
h∈Γ1

max
t∈[0,1]

I(h(t)) < c0 +
S 2

4µ1
.

Since the range of every h ∈ Γ1 intersect N −, we have

c1 = inf
N −

I ≤ c′ < c0 +
S 2

4µ1
. (4.16)

Set
Γ2 = {γ ∈ C([0, 1],H) : γ(0) = (u0, v0), γ(1) = (u0, v0 + R0Uε,a)}.

By using the same argument, we can get similar results

c′′ = inf
h∈Γ2

max
t∈[0,1]

I(h(t)) < c0 +
S 2

4µ2
.

Moreover, since the range of every h ∈ Γ2 intersect N −, we have

c1 = inf
N −

I ≤ c′′ < c0 +
S 2

4µ2
. (4.17)

Combining (4.16) and (4.17), we obtain that

c1 < c0 +
1
4

min
{

S 2

µ1
,

S 2

µ2

}
.

Next by using Mountain-Pass lemma(see [36]) to obtain that there exist {(un, vn)} ⊂ N − such that

I(un)→ c1, ∥I′((un, vn))∥ → 0.

From Lemma 4.1, we can obtain a subsequence (still denote {(un, vn)}) of {(un, vn)}, and (u1, v1) ∈ H
such that

(un, vn)→ (u1, v1) in H.

Hence, we get (u1, v1) is a critical point for I, (u1, v1) ∈ N − and I(u1, v1) = c1. □
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Electronic Research Archive Volume 30, Issue 7, 2730–2747.

http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.82.2661
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.78.3594
http://dx.doi.org/https://doi.org/10.1016/j.crma.2006.01.024
http://dx.doi.org/https://doi.org/10.1007/s11784-007-0033-6
http://dx.doi.org/https://doi.org/10.1007/s00526-012-0568-2
http://dx.doi.org/https://doi.org/10.1093/imrn/rnv016
http://dx.doi.org/https://doi.org/10.1016/j.jde.2006.07.002
http://dx.doi.org/https://doi.org/10.1016/j.jde.2005.09.002


2746

19. Z. Liu, Z.-Q. Wang, Multiple bound states of nonlinear Schrödinger systems, Commun. Math.
Phys., 282 (2008), 721–731. https://doi.org/10.1007/s00220-008-0546-x

20. B. Noris, M. Ramos, Existence and bounds of positive solutions for a nonlinear Schrödinger
system, Proc. Am. Math. Soc., 138 (2010), 1681–1692. https://doi.org/10.1090/S0002-9939-10-
10231-7

21. J. Wei, T. Weth, Nonradial symmetric bound states for a system of two coupled Schrödinger equa-
tions, Rend. Lincei Mat. Appl., 18 (2007), 279–293.

22. J. Wei, T. Weth, Radial solutions and phase separation in a system of two coupled Schrödinger
equations, Arch. Ration. Mech. Anal., 190 (2008), 83–106. https://doi.org/10.1007/s00205-008-
0121-9

23. Z.-J. Chen, W.-M. Zou, Positive Least Energy Solutions and Phase Separation for Coupled
Schrödinger Equations with Critical Exponent, Arch. Ration. Mech. Anal., 205 (2012), 515–551.
https://doi.org/10.1007/s00205-012-0513-8

24. Z.-J. Chen, W.-M. Zou, Positive least energy solutions and phase separation for coupled
Schrödinger equations with critical exponent: higher dimensional case, Calc. Var. Partial Differ.
Equ., 52 (2015), 423–467. https://doi.org/10.1007/s00526-014-0717-x

25. Z.-J. Chen, C-S. Lin, W. Zou, Sign-changing solutions and phase separation for an el-
liptic system with critical exponent, Commun. Partial Differ. Equ., 39 (2014), 1827–1859.
https://doi.org/10.1080/03605302.2014.908391

26. Z.-X. Qi, Z.-T. Zhang, Existence of multiple solutions to a class of nonlinear Schrödinger
system with external sources terms, J. Math. Anal. Appl., 420 (2014), 972–986.
https://doi.org/10.1016/j.jmaa.2014.06.038

27. H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involv-
ing critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), 437–477.
https://doi.org/10.1002/cpa.3160360405

28. X.-J. Wang, Existence of positive solutions to nonlinear elliptic equations involving critical
Sobolev exponents, Acta Math. Sin., 8 (1992), 273–291.

29. G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann.
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