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Abstract: Reservoir computing has emerged as a powerful and efficient machine learning tool
especially in the reconstruction of many complex systems even for chaotic systems only based on
the observational data. Though fruitful advances have been extensively studied, how to capture the art
of hyper-parameter settings to construct efficient RC is still a long-standing and urgent problem. In
contrast to the local manner of many works which aim to optimize one hyper-parameter while keeping
others constant, in this work, we propose a global optimization framework using simulated annealing
technique to find the optimal architecture of the randomly generated networks for a successful
RC. Based on the optimized results, we further study several important properties of some hyper-
parameters. Particularly, we find that the globally optimized reservoir network has a largest singular
value significantly larger than one, which is contrary to the sufficient condition reported in the literature
to guarantee the echo state property. We further reveal the mechanism of this phenomenon with a
simplified model and the theory of nonlinear dynamical systems.

Keywords: reservoir computing; global optimization; simulated annealing; spectral radius; largest
singular value

1. Introduction

Recently, reservoir computing (RC) [1], also known as a generalization of echo-state network (ESN)
[2] or liquid state machine (LSM) [3], has emerged as a powerful and efficient machine learning tool
in reconstruction or/and prediction of many complex physical systems even for chaotic systems only
based on the observational data of time series data [4–6]. In sharp contrast to its great efficacy, as
a special variant of a recurrent neural network (RNN), RC has a surprisingly contracted architecture,
where only three weight matrices are involved: the input weight matrix and a reservoir network matrix
are randomly generated and fixed, leaving only one output weight matrix for training, as shown in
Figure 1. As such, simple and efficient least squares optimization methods rather than the resource-
consuming back propagation algorithm are good enough for the training process [7]. Thus, a question

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2022139


2720

arises naturally: how to capture the art of hyper-parameter settings for RC’s networks? As a matter
of fact, this is a long-standing and urgent problem and great attentions have been attracted to carry
out various discussions, i.e., from the topology and distribution of the random connections [8, 9] to
the spectral radius and singular value of the random network [10, 11]. Generally, the existing studies
are mainly based on a variable control experimentation manner, i.e., optimizing one hyper-parameter
while leaving all the other hyper-parameters constant. In such a way, the obtained results are mainly
local with specific settings but sometimes cannot be generalized to global hyper-parameters space.

In this work, we propose a global optimization framework using simulated annealing technique to
find the optimal architecture of the randomly generated networks for a successful RC. With the
optimized results, we further study several important properties of some hyper-parameters, i.e., the
sparsity and distribution of the networks, the spectral radius and the largest singular value of the
reservoir networks. Interestingly, we find that the globally optimized reservoir network has a spectral
radius near one and a largest singular value significantly larger than one, which is contrary to the
sufficient condition reported in the literature to guarantee the echo state property. We further study the
mechanism of this phenomenon with a simplified model and the theory of nonlinear dynamical
systems.
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Figure 1. Reservoir computing framework. The three layers included in the RC framework
are sketched and three weight matrices Win, Wres, and Wout are highlighted.

2. Materials and methods

2.1. Reservoir computing

For the job of nonlinear dynamics reconstruction based on time series data, a general framework of
RC could be sketched in Figure 1. Here, the input data xk ∈ R

n represents the observation vector of a
dynamical system sampled at time step k with a specific smooth observe function such that xk = h(zk)
where zk is the state vector. The underlying dynamical system is assumed to be evolving on a compact
manifold M with the evolution operator ϕ ∈ Diff2(M) : zk+1 = ϕ(zk). The reservoir network is
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composed of m reservoir neurons whose connections are represented by the reservoir network matrix
Wres and the vector rk ∈ R

m represents the state of reservoir neurons at time step k. The input layer
weight matrix Win and the reservoir network matrix Wres are, respectively, m × n and m × m random
matrices generated according to certain distribution laws.

The dynamical evolution of the reservoir neurons is governed by:

rk = (1 − α)rk−1 + α tanh(Wresrk−1 + Winxk), (2.1)

where α is the leakage factor, and tanh ∈ C2(R, (−1, 1)) is a sigmoid function. The reservoir vector and
the output vector yk ∈ R

l is connected by the output weight matrix Wout ∈ R
l×m such that yk = Woutrk.

Given the time series, denoted by xk, k = 1, · · · ,N, as training data, the target is to train the output
weight matrix Wout so as to approximate the one-step dynamics prediction, i.e., yk ≈ xk+1. To this, a
loss function is designed as

L =

N∑
k=1

‖xk+1 −Woutrk‖
2 + β‖Wout‖

2, (2.2)

where β > 0, the L2-regularization coefficient, is introduced to make optimization robust. The output
weight matrix Wout is thus generally obtained by minimizing the loss function (2.2) over the training
data set. After training, one can fix the output weight matrix Wout and redirect the output yk = Woutrk

as an approximation of xk+1 into the input layer of the network and thus the autonomous dynamics for
xk with k > N could be generated.

2.2. Key hyper-parameters

The RC framework is distinguished from usual RNNs due to the fact that the input weight matrix
Win and the reservoir network matrix Wres are randomly generated rather than being trained. Therefore
several properties e.g., the sparsity, the distribution, the spectral radius, and the largest singular value of
the randomly generated weight matrices will undoubtedly affect the performance and careful choice a
priori is required, i.e., they are hyper-parameters in a RC framework. Among all the hyper-parameters,
the spectral radius ρ, defined as the largest absolute eigenvalue, of Wres, is generally believed as a
key to the success of reservoir computing. The seminal works [1] and [10] conclude that spectral
radius is related to the echo state property(ESP), a necessary condition for a RC to work properly, and
the memory capacity, a capacity evaluating time series reconstruction ability, and therefore spectral
radius is suggested to be less than 1. However, several other works [8, 11, 12] also imply that the
optimal spectral radius varies case from case and spectral radius larger than 1 sometimes shows best
performance. To further theoretically study the echo state property, the largest singular value σ is
introduced in [2] and σ(Wres) < 1 is adopted as a sufficient condition to ensure ESN. Besides ρ and σ,
the sparsity, topology, and distribution of the randomly generated matrices are also usually considered
as key hyper-parameters of a RC. It is suggested in the seminal work [7] that in order to generate rich
variety of dynamics, the reservoir network should be sparse and recent works also confirms that low
connectivity is beneficial for forecasting chaotic systems [9]. As for the topology and distribution of the
randomly generated matrices, besides the commonly used Erdös-Rényi random network, both small-
world and scale free networks have been discussed in [13], and analogously, other than the commonly
adopted uniform distribution, both Gaussian and even Bernoulli distribution have been studied in [14].

Electronic Research Archive Volume 30, Issue 7, 2719–2729.



2722

Though many efforts have been made to understand and reveal the optimal choice of these hyper-
parameters, the existing studies are mainly reported in a variable control experimentation manner, i.e.,
optimizing one hyper-parameter while leaving all the other hyper-parameters constant. In such a way,
the obtained optimal results may be local with specific settings. As a matter of fact, in [8, 13], it is
reported that different topologies of reservoir networks may yield significantly different conclusions
for optimal spectral radiuses. Therefore, a global optimization study is urgent and necessary.

2.3. Global optimization using simulated annealing

Simulated annealing (SA) is a probabilistic technique for approximating global optimization in a
large search space for a given function L. The basic idea of SA is that, in each iteration step, the SA
heuristically considers some neighboring state s∗ of the current state s and probabilistically decides
whether moving the system to the new state s∗ or staying in the current state s. Such probability is
decided by both the improvement L(s∗)− L(s) and a decaying temperature T , and typically the iterated
step is repeated until the system reaches a state good enough for the application.

In this work, we take the chaotic Lorenz system as a benchmark:

ẋ = a(y − x),
ẏ = −xz + bx − y,
ż = xy − cz,

(2.3)

where a = 10, b = 28, and c = 8/3. We consider the job of dynamics reconstruction using RC, i.e.,
after training period, the autonomous dynamics xt = [x(t), y(t), z(t)]T is generated by the trained RC
and the reconstruction is evaluated by the forecasting horizon (the length of precise predictions with
error less than a threshold). To find the global optimization for the key hyper-parameters of RC, we take
all the weights in the two matrices Win and Wres as state variables s = [Win,Wres] in the SA framework
and design the target function as L = h − α‖Wres‖1 where h is the forecasting horizon expressed in
Lyapunov times and α > 0 is a regularization coefficient to make Wres sparse as generally required for
RC [7,9]. Thus the SA algorithm adopted in this work could be summarized in Algorithm 1 as follow.
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Figure 2. Dynamics reconstruction using RC. (a) The original dynamics of chaotic Lorenz
system and the predicted dynamics by optimized RC, where the forecasting horizon is
highlighted and the time unit is in Lyapunov times Λmaxt. (b) The convergence of forecasting
horizon h in SA algorithm.
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Algorithm 1. Generate an initial state s0, train the RC, and evaluate the target function L = L(s0).

Repeat the iteration until k > kMAX or forecasting horizon h keeps unchanged for RMAX iterations:

1) Generate a random neighboring state s∗ based on the current s, train the RC and evaluate the target
function L∗ = L(s∗).

2) IF L∗ > L, Pt = 1.

ELSE Pt = exp
(
−(L − L∗)

T (k)

)
3) IF Pt > Random(0, 1), accept the new state, i.e., let s = s∗ and L = L∗.

Here k stands for the kth iteration, kMAX is the largest number of iterations.

In this work, we set the size of Win and Wres as 100×3 and 100×100 respectively and thus there are
in total 100, 300 parameters in the SA state s. To accelerate the optimization, inspired by the drop out
strategy in deep learning, we only update a set of randomly picked 1000 parameters in each iteration
and update the decaying temperature T after each 100 iterations, i.e., T (k) = 1 ∗ 0.95k|100.

In order to avoid unbounded states, inspired by the work [15], we also restrict the update of states
in the following way

s∗i =


β ∗ ub + (1 − β)si, si > ub,
si, si ∈ [lb, ub],
β ∗ lb + (1 − β)si, si < lb,

(2.4)

where the upper bound and lower bound are ub = 0.8, lb = −0.8 and β is a uniformly random number
between 0 and 1.

A typical process of SA and the optimized results are illustrated in Figure 2, and in order to
guarantee convergence, we set kMAX = 20, 000 and RMAX = 5000 empirically.

3. Results

To make the results robust, we carry out the SA global optimization algorithm 50 independent
times to find the optimal hyper-parameters for the RC and obtain 50 sets of optimized Win and Wres

respectively. Based on such a result we discuss the choice of several key hyper-parameters, i.e., the
topology of the reservoir matrix, the distribution of the weight, the spectral radius ρ, and the largest
singular value σ.

3.1. Topology and weight distribution

Before we discuss the topology of the optimized random network, we note that though the L1
regulation has been introduced into the SA algorithm, there are still several very small non-zeros
weights which will contaminate the topology analysis. Therefore, we run the sparsity test as
illustrated in Figure 3(a) and set 10−3.5 as the threshold for non-zero weight in the random network.
The degree distributions of such pre-trimmed Wres are shown in Figure 3(b), where the majority shows
a symmetric style, and this character implies that the optimized networks Wres in this job are generally
Erdös-Rényi random networks since the degree distribution of an ER random network obeys Poisson
distribution while Poisson distribution with high mean values appears in a symmetric style [16].
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Additionally, we also carry out a test to study whether there is any small-world property in the
optimized Wres. In Figure 4(a), we show the clustering coefficients for the 50 independent optimized
Wres as well as the ones for the corresponding random networks. Here the corresponding random
network refers to the random network that has the same numbers of nodes and same number of edges
per node as this network. It is clear that the clustering coefficients of Wres are not significantly larger
than the ones for the corresponding random networks, implying that the optimized Wres does not have
small-world property.
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Figure 3. Topology and weight distribution. (a) The sparsity test for different non-zero
threshold choice, where both sparsity and forecasting horizon for the trimmed Wres are shown.
(b) Degree distributions for the optimized Wres set. (c)(d) Two typical QQ plots passed normal
distribution test for both Win and Wres respectively.

When generating random matrices, the weight distribution is another essential hyper-parameter.
To test whether the weight distribution obeys normal distribution for the optimized networks, we use
the Quantile-Quantile Plots (QQ Plots) as a test. To be concrete, we first linearly scale the weight
distribution into zero mean and one deviation, and then plot the quantile against the standard normal
distribution. If more than 80% points falls in the confident interval, i.e., ± 0.3 of the fitted line, we
regard the weight distribution as normal, and two typical QQ Plots are illustrated in Figure 3(c),(d).
In order to avoid the affection of initial conditions and the random neighborhood used in the SA
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optimization algorithm, we have tried both normal distribution and uniform distribution to generate
initial states as well as the random neighborhood, and we come to the conclusion that the weights
of all the optimized Wres obey normal distribution while the weights of Win highly depends on the
choice of initial state distribution, as shown in Table 1. Actually, this observation coincides with the
existing results where many works prefer normal distribution for Wres while both normal distribution
and uniform distribution are adopted for Win [5, 9, 12, 17–19].

Table 1. Percentage of weight distributions passed through Normal distribution test under
different settings.

Random Initial
Random Neighbor

Uniform Normal

Uniform Win: 0/50, Wres: 50/50 Win: 0/50, Wres: 50/50
Normal Win: 39/50, Wres: 50/50 Win: 36/50, Wres: 50/50

3.2. Spectral radius and largest singular value
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Figure 4. Cluster coefficient, spectral radius, largest singular value, and echo state property.
(a) The clustering coefficients for both the optimized Wres as well as the corresponding
random networks ER based on 50 independent trials. (b) The optimized results for spectral
radius ρ and largest singular value σ based on 50 independent trials. (c) Illustration of
the echo state property with σ = 1.67, where the differences between 100 independent
trajectories and the first trajectory are depicted in log scale. Here starting with 100 sets
of random initial values in standard normal distribution, 100 trajectories are generated.

Based on the 50 independent runs for optimized Wres, the respective values for spectral radius ρ
and the largest singular value σ are illustrated in Figure 4(b). It is clear that the optimized values of
ρ are all less than one and clustered around the mean value 0.87, which coincides with the conclusion
suggested by the seminal works [1, 10] that a spectral radius less than one but close to one is a good
choice for both echo state property and the memory capacity.

While for the largest singular values, we find that the optimized values of σ are all larger than one
with a mean value as large as 1.71. Since the theoretical analysis in [2] shows σ < 1 is a rigorous
sufficient condition to ensure echo state property, we further check that whether the echo state property
holds for the RC using our optimizedσwhich is larger than one. The echo state property means that the
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effect of initial conditions should vanish as time passes, i.e., starting from different initial values, the
dynamics of internal neurons should synchronize with each other rapidly [10]. In Figure 4(c), a typical
result is shown that no matter what the neurons’ initial values are, their dynamics quickly synchronize
with each other under the same input, i.e., the echo state property still holds.
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Figure 5. The nonlinear map rk+1 = tanh(σrk) when σ = 1.5. Two attractive fixed points
c+ and c− as well as one repelling fixed points c0 are depicted. The attractive basins are
depicted with arrows. The contraction and expansion regions are highlighted in pink and
yellow respectively.

In order to study the mechanism of this phenomenon, we first carry out a simple analysis analogous
to the work in [2]. Starting with arbitrary two different initial conditions r1

0 and r2
0, consider two

trajectories r1
k and r2

k of RC neurons generated by Eq (2.1) under the same input xk. The evolution of
difference between two trajectories ∆rk = r1

k − r2
k could be estimated as

‖∆rk‖ = ‖(1 − α)∆rk−1 + α
(

tanh(Wresr1
k−1 + Winxk) − tanh(Wresr2

k−1 + Winxk)
)
‖

6 (1 − α)‖∆rk−1‖ + α‖Wres∆rk−1‖

6 (1 − α + ασ)‖∆rk−1‖,

(3.1)

thus as long as σ < 1 we have ‖∆rk‖ 6 β‖∆rk−1‖ where β = 1 − (1 − σ)α < 1, and consequently
∆rk tends to zero exponentially, i.e., r1

k and r2
k synchronizes with each other quickly. However when

σ > 1, the above estimation no longer holds. To further reveal the mechanism why echo state property
still generally holds when σ > 1, we consider a simple model as an illustration. We consider the 1-D
situation, i.e., there is only one neuron in the reservoir, and let the leaky coefficient α = 1 which is also
adopted in many works [5]. Then the dynamics of the single neuron could be described by

rk+1 = tanh(σrk + Winxk+1).

The map rk+1 = tanh(σrk) has three fixed points when σ > 1, as illustrated in Figure 5, where c0 = 0
is repelling while c+ > 0 and c− < 0 are attractive. It is clear from Figure 5 that (0,+∞) is the attractive
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basin for c+ while (−∞, 0) is the attractive basin for c−. Thus, as long as the initial values r1
0 and r2

0 fall
in the same attractive basin, two trajectories r1

k and r2
k under map rk+1 = tanh(σrk) will soon converge

to the same fixed point c+ or c−. Note the fact ‖Winxk‖ � 1 and it could be noted as a perturbation γk.
Thus the two trajectories r1

k and r2
k under map rk+1 = tanh(σrk + γk) will generically oscillate around

the same fixed point c+ or c−. Further note that the derivative of the map around c+ or c− is less than
one, i.e., the map is contractive around c+ or c− as highlighted in the pink region of Figure 5, thus the
two trajectories will synchronize with each other soon, and therefore the echo state property still holds.

4. Discussion and conclusions

In this paper, we carry out an optimization schema using simulated annealing (SA) technique to
find the globally optimized hyper-parameters for reservoir computing in the job of chaotic dynamics
reconstruction. Specifically, we discuss the choice of random network topology for the reservoir
network Wres, the type of weight distribution for both the input layer network Win and Wres, and we
further study the spectral radius and largest singular value of the reservoir network Wres which are
closely related to the echo state property and memory capacity of the RC. Most of the globally
optimized hyper-parameters coincide with the main stream of the existing results, i.e., the topology of
the random network Wres satisfy ER random network, the weight distributions for Wres and Win are
mainly normal distribution, and the spectral radius ρ is less than one but close to one. On one side,
such results confirm the effectiveness of our proposed SA schema as a global optimization method,
and on the other side, these results also provide a way to choose/initialize Win and Wres when
considering these hyper-parameters.

However, we also find the optimized largest singular value σ is significantly larger than one, which
does not satisfy the theoretical sufficient condition to ensure the echo state property. To study this
phenomenon, we further confirm that the echo state property still holds even with σ > 1 and RC works
well. With a simple illustrative model, we reveal the mechanism of RC with σ > 1 using the theory
of nonlinear dynamical systems. Indeed, such analysis is simple and heuristic, it is a challenging work
to consider more complicated situations, e.g., if the initial values r1

0 and r2
0 fall in different attractive

basins, or even high-dimensional cases with saddles. Some tools in nonlinear dynamical systems such
as noise induced synchronization may be introduced to understand the mechanism and some recently
developed methods [20, 21] may be helpful for further applications. However this is beyond the topic
in this paper and the quantitative analysis for these problems is still open and forms the direction for
the future works.
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