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1. Introduction

Let N and Z be the sets of natural numbers and integers, respectively. For integers a, b, define
Z(a, b) := {a, a + 1, ..., b} with a ≤ b. Given the integers T1, T2 ≥ 2, we write Ω := Z(1,T1) ×
Z(1,T2). Consider the existence and multiplicity of nontrivial solutions to the following discrete elliptic
problem:

∆2
1u(i − 1, j) + ∆2

2u(i, j − 1) + f ((i, j), u(i, j)) = 0, (i, j) ∈ Ω, (1.1)

with Dirichlet boundary conditions

u(i, 0) = u(i,T2 + 1) = 0 i ∈ Z(1,T1), u(0, j) = u(T1 + 1, j) = 0 j ∈ Z(1,T2), (1.2)

where ∆1, ∆2 are the forward difference operators defined by ∆1u(i, j) = u(i + 1, j) − u(i, j), ∆2u(i, j) =

u(i, j + 1) − u(i, j), and ∆2u(i, j) = ∆(∆u(i, j)). Here, f ((i, j), u) is continuously differentiable with
respect to u and f ((i, j), 0) = 0.

Advances in modern computing devices have made it increasingly convenient to determine the
behavior of complex systems through simulations, contributing greatly to the increasing interest in
discrete problems. As a result [1–7], difference equations have been widely investigated and numerous
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results have been obtained [8–16]. With the development of science and technology in modern society
and the progress of mathematical research, the study of difference equations has gradually shifted to the
study of partial difference equations. For example, [17–19] deal with discrete Kirchhoff-type problems,
whereas [20–22] present several results on multiple solutions to partial difference equations.

Equation (1.1) is a partial difference equation involving bivariate sequences with two independent
integer variables over Ω. It is elementary, but illustrative of many problems that are of interest in
various branches of science, such as chemical reactions, population dynamics with spatial migration,
and even the computation and analysis of finite difference equations [23, 24]. Therefore, Eq (1.1) has
attracted considerable attention. For example, [24] shows that Eq (1.1) possesses at least two nontrivial
solutions, while Zhang [25] studied Eq (1.1) using the extremum principle. Moreover, Eq (1.1) is
regarded as a discrete analog of the partial differential equation

∂2u
∂x2 +

∂2u
∂y2 + f (x, y, u(x, y)) = 0, (x, y) ∈ Ω,

which has been extensively studied. Consequently, investigating problem (1.1)–(1.2) is of practical
significance.

Morse theory is a very powerful tool for studying the existence of multiple solutions to both dif-
ferential and difference equations having a variational structure [26–30]. Very recently, Long [18–20]
studied partial difference equations via Morse theory and obtained rich results on the existence and
multiplicity of nontrivial solutions. This encourages us to consider the existence and multiplicity of
nontrivial solutions for problem (1.1)–(1.2) using Morse theory.

The remainder of this paper is organized as follows. In Section 2, the variational structure and the
corresponding functional are established according to (1.1)–(1.2). Moreover, we recall some related
definitions and propositions that are beneficial to our results. Section 3 displays our main results and
the corresponding proofs. Finally, two examples and numerical simulations are provided to illustrate
our main results in Section 4.

2. Variational structure and some auxiliary results

Let E be a T1T2-dimensional Euclidean space equipped with the usual inner product (·, ·) and
norm | · |. Let

S ={u : Z(0,T1 + 1) × Z(0,T2 + 1)→ R such that u(i, 0) = u(i,T2 + 1) = 0,
i ∈ Z(0,T1 + 1) and u(0, j) = u(T1 + 1, j) = 0, j ∈ Z(0,T2 + 1)}.

Define the inner product 〈·, ·〉 on S as

〈u, v〉 =

T1+1∑
i=1

T2∑
j=1

41u(i − 1, j)41v(i − 1, j) +

T1∑
i=1

T2+1∑
j=1

42u(i, j − 1)42v(i, j − 1), ∀u, v ∈ S ,

and let the induced norm be

‖u‖ =
√
〈u, u〉 =

T1+1∑
i=1

T2∑
j=1

|41u(i − 1, j)|2 +

T1∑
i=1

T2+1∑
j=1

|42u(i, j − 1)|2


1
2

, ∀u ∈ S .
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Then, S is a Hilbert space and is isomorphic to E. Here and hereafter, we take u ∈ S as an extension
of u ∈ E when necessary.

Consider the functional I : S → R in the following form:

I(u) =
1
2

T1+1∑
i=1

T2∑
j=1

|∆1u(i − 1, j)|2 +
1
2

T1∑
i=1

T2+1∑
j=1

|∆2u(i, j − 1)|2 −
T1∑
i=1

T2∑
j=1

F((i, j), u(i, j))

=
1
2
‖u‖2 −

T1∑
i=1

T2∑
j=1

F((i, j), u(i, j)), ∀u ∈ S ,

(2.1)

where F((i, j), u) =
∫ u

0
f ((i, j), τ)dτ. Note that f ((i, j), u) is continuously differentiable with respect to

u. It is clear that I ∈ C2(S ,R) and solutions of the problem (1.1)–(1.2) are precisely the critical points
of I(u). Moreover, for any u, v ∈ S , using the Dirichlet boundary conditions gives

〈I′(u), v〉 =

T2∑
j=1

T1+1∑
i=1

(∆1u(i − 1, j) · ∆1v(i − 1, j)) +

T1∑
i=1

T2+1∑
j=1

(∆2u(i, j − 1) · ∆2v(i − 1, j))

−

T1∑
i=1

T2∑
j=1

( f ((i, j), u(i, j)) · v(i, j))

= −

T1∑
i=1

T2∑
j=1

{∆2
1u(i − 1, j) + ∆2

2u(i, j − 1) + f ((i, j), u(i, j))}v(i, j).

(2.2)

Let Ξ be the discrete Laplacian, which is defined by Ξu(i, j) = ∆2
1u(i − 1, j) + ∆2

2u(i, j − 1). Ac-
cording to the conclusion of [31], we know that −Ξ is invertible and the distinct Dirichlet eigen-
values of −Ξ on [1,T1] × [1,T2] can be denoted by 0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λT1T2 . Let
φk = (φk(1), φk(2), · · · , φk(T1T2))tr, k ∈ [1,T1T2], where each φk is an eigenvector corresponding to
the eigenvalue λk. Let W− = span{φ1, ..., φk−1}, W0 = span{φk}, W+ = (W− ⊕ W0)⊥. Then, S can be
expressed as

S = W− ⊕W+ ⊕W0.

For later use, we define another norm as ‖u‖2 =

(
T1∑
i=1

T2∑
j=1
|u(i, j)|2

) 1
2

. Then, for any u ∈ S , we have that

λ1‖u‖22 ≤ ‖u‖
2 ≤ λT1T2‖u‖

2
2.

Next, we recall some preliminaries with respect to Morse theory.
We say that the functional I satisfies the Cerami condition ((C) for short) if any sequence {un} ⊆ S

satisfying I(un)→ c, (1 + ‖un‖)‖I′(un)‖ → 0 as n→ ∞ has a convergent subsequence. Note that if (C)
is satisfied, then the deformation condition ((D) for short) is satisfied [32].

Definition 2.1. [28, 33] Let u0 be an isolated critical group of I with I(u0) = c ∈ R, and U be a
neighborhood of u0. The group

Cq(I, u0) := Hq(Ic ∩ U, Ic ∩ U\u0), q ∈ Z
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is called the q-th critical group of I at u0. Let κ = {u ∈ S |I′(u) = 0}. For all a ∈ R, each critical point
of I is greater than a and I ∈ C2(S ,R) satisfies (D). Then, the group

Cq(I,∞) := Hq(S , Ia), q ∈ Z

is called the q-th critical group of I at infinity.

To calculate the critical group at infinity, we need the following auxiliary proposition.

Proposition 2.1. [34] Suppose that S is a Hilbert space, {It ∈ C2(S ,R)|t ∈ [0, 1]}. I′t and ∂tIt are
locally continuous. If I0 and I1 satisfy (C), and there exist a ∈ R and δ > 0 such that

It(u) ≤ a⇒ (1 + ‖u‖)‖It(u)‖ ≥ δ, t ∈ [0, 1],

then
Cq(I0,∞) = Cq(I1,∞), q ∈ Z. (2.3)

In particular, if there is some R > 0 such that

inf
t∈[0,1],‖u‖>R

(1 + ‖u‖)‖I′t (u)‖ > 0 (2.4)

and
inf

t∈[0,1],‖u‖≤R
(1 + ‖u‖)‖I′t (u)‖ > −∞, (2.5)

then Eq (2.3) is satisfied.

The following three propositions are important in obtaining some nonzero critical points.

Proposition 2.2. [26] Let S be a real Hilbert space, I ∈ C2(S ,R). Suppose that u0 is the isolated
critical point of I with limited Morse index µ(u0) and null dimension ν(u0). I′′(u0) is a Fredholm
operator. Moreover, if u0 is the local minimizer of I, then

Cq(I, u0) � δq,0Z, q = 0, 1, 2, · · · .

Proposition 2.3. [34] Assume that I ∈ C2(S ,R) with S = S + ⊕ S − and 0 is the isolated critical point
of I. If I has a local linking structure at 0 with k = dim S − < ∞, then

Cq(I, 0) � δq,kZ, k = µ0 or k = µ0 + ν0.

Proposition 2.4. [35] Let I ∈ C2(S ,R) satisfy (D). Then,
(J1) if Cq(I,∞) � 0 holds for some q, then I possesses a critical point u such that Cq(I, u) � 0;
(J2) if 0 is the isolated critical point of I and there exists some q such that Cq(I,∞) � Cq(I, 0), then
I has a nonzero critical point.

In our proofs, we also require the following Mountain Pass Lemma.

Proposition 2.5. [33] Let S be a real Banach space and I ∈ C1(S ,R) satisfy the Palais–Smale condi-
tion ((PS ) for short). Further, if I(0) = 0 and
(J3) there exist constants ρ, a > 0 such that I|∂Bρ ≥ a,
(J4) there is some e ∈ S \Bρ such that I(e) ≤ 0.
Then, I possesses a critical value c ≥ a given by

c = inf
h∈Γ

sup
x∈[0,1]

I(h(x)),

where
Γ = {h ∈ C([0, 1], S )|h(0) = 0, h(1) = e}.
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3. Main results and proofs

In this section, we state our main results and provide detailed proofs. First, the following as-
sumptions are required:
(f1) There exists k ≥ 2 such that

λk ≤ lim inf
|u|→∞

f ((i, j), u)
u

≤ lim sup
|u|→∞

f ((i, j), u)
u

≤ λk+1, (i, j) ∈ Ω.

(f2) There exists a subsequence {u(1)
n,k} ⊆ span{φk} such that

‖u(1)
n,k‖

‖un‖
→ 1 as ‖un‖ → ∞. Then, there exist

δ1, N1 > 0 such that

T1∑
i=1

T2∑
j=1

(
f
(
(i, j), un(i, j)

)
− λkun(i, j)

)
u(1)

n,k(i, j) ≥ δ1, n ≥ N1, (i, j) ∈ Ω.

(f3) There exists a subsequence {u(1)
n,k+1} ⊆ span{φk+1} such that

‖u(1)
n,k+1‖

‖un‖
→ 1 as ‖un‖ → ∞. Then, there

exist δ2, N2 > 0 such that

T1∑
i=1

T2∑
j=1

(
λk+1un(i, j) − f

(
(i, j), un(i, j)

))
u(1)

n,k+1(i, j) ≥ δ2, n ≥ N2, (i, j) ∈ Ω.

We are now in a position to state our main results.

Theorem 3.1. Let (f1), (f2), (f3) hold. Moreover, for all (i, j) ∈ Ω,
(V1) F′′((i, j), 0) < λ1,
(V2) F′′((i, j), u) > 0 for all u ∈ R
are satisfied. Then, problem (1.1)–(1.2) possesses at least three nontrivial solutions, among which one
is positive and one is negative.

Consider the following sign condition:
(F±0 ) There exists δ > 0 such that

±(2F((i, j), u) − λmu2) ≥ 0, |u(i, j)| ≤ δ, (i, j) ∈ Ω.

Then, we can state the following theorem.

Theorem 3.2. Suppose (f1), (f2), (f3) are satisfied. For all (i, j) ∈ Ω, let
(V3) f ′((i, j), 0) = λm,
(V4) there exists u0 , 0 such that f ((i, j), u0) = 0.
Then, problem (1.1)–(1.2) possesses at least four nontrivial solutions if one of the following conditions
is met:
(i) (F+

0 ) with 2 ≤ m , k, (ii) (F−0 ) with 2 < m , k + 1.

Theorem 3.3. Assume (f1), (f2), (f3), and (V3) are true. Further, if k = 1 and either
(iii) (F+

0 ) with m , 1, (iv) (F−0 ) with m , 2,
then problem (1.1)–(1.2) admits at least two nontrivial solutions.
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To prove our results, (C) is necessary. First, we present a detailed proof to show that I satisfies (C).

Lemma 3.1. Let (f1), (f2), and (f3) hold. Then, I satisfies (C).

Proof. Suppose that {un} ⊆ S and there exists a constant c such that

I(un)→ c, (1 + ‖un‖)‖I′(un)‖ → 0, as n→ ∞.

Because S is a T1T2-dimensional space, it suffices to show that {un} is bounded. Otherwise, we can
assume that

‖un‖ → ∞, as n→ ∞.

Denote un = un
‖un‖

. Then, ‖un‖ = 1, which means that {un} has some subsequences. Without loss of
generality, we set the subsequence to be the sequence. Moreover, there exists u ∈ S with ‖u‖ = 1 such
that

un → u, as n→ ∞.

For any ϕ ∈ S , we obtain

〈I′(un), ϕ〉
‖un‖

= 〈un, ϕ〉 −

T1∑
i=1

T2∑
j=1

(
f ((i, j), un(i, j))

‖un‖
, ϕ(i, j)

)
.

From (f1), there exist b ≥ λk+1 and N > 0 such that

| f ((i, j), un(i, j))| ≤ b(1 + |un(i, j)|), u ∈ S , n > N, (i, j) ∈ Ω.

Set b1 = b
‖un‖

such that, for n > N, we have

| f ((i, j), un(i, j))|
‖un‖

≤ b1(1 + |un(i, j)|), u ∈ S , (i, j) ∈ Ω. (3.1)

If n ≤ N, then because f ((i, j), ·) is continuous in ·, we have

| f ((i, j), un(i, j))|
‖un‖

≤ max{
| f ((i, j), un(i, j))|

‖un‖
}, u ∈ S , (i, j) ∈ Ω. (3.2)

Therefore, Eqs (3.1) and (3.2) ensure that { f ((i, j),un)
‖un‖

} is bounded. Consequently, { f ((i, j),un)
‖un‖

} has a conver-
gent subsequence. We still denote this by { f ((i, j),un)

‖un‖
}. Using (f1) once more, we can assume that there

exists some p satisfying λk ≤ p ≤ λk+1 such that

f ((i, j), un)
‖un‖

→ pu, as n→ ∞.

Hence,
42

1u(i − 1, j) + 42
2u(i, j − 1) + pu = 0, (i, j) ∈ Ω,

which means that u is the nontrivial solution of

42
1u(i − 1, j) + 42

2u(i, j − 1) + pu = 0, (i, j) ∈ Ω
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with boundary conditions

u(i, 0) = u(i,T2 + 1) = 0, i ∈ Z(1,T1), u(0, j) = u(T1 + 1, j) = 0, j ∈ Z(1,T2).

Together with the maximum principle and unique continuation property, this implies that p ≡ λk or
p ≡ λk+1 for λk ≤ p ≤ λk+1.

If p ≡ λk, then u ∈ W0 and
‖u(1)

n,k‖

‖un‖
→ 1, n→ ∞.

In fact, if u < W0, then pu = 0, which leads to ‖u‖ = 0. In view of ‖u‖ = 1, this is a contradiction.
Therefore, as n→ ∞, we have that

T1∑
i=1

T2∑
j=1

( f ((i, j), un(i, j)) − λkun(i, j))u(1)
n,k(i, j) = −〈I′(un), u(1)

n,k〉 ≤ ‖un‖‖I′(un)‖ → 0. (3.3)

Obviously, Eq (3.3) is inconsistent with (f2).
If p ≡ λk+1, then u ∈ span{φk+1} and

‖u(1)
n,k+1‖

‖un‖
→ 1, n→ ∞.

Thus,

T1∑
i=1

T2∑
j=1

(λk+1un(i, j) − f ((i, j), un(i, j)))u(1)
n,k+1(i, j) = 〈I′(un), u(1)

n,k+1〉 ≤ ‖un‖‖I′(un)‖ → 0

as n→ ∞, which contradicts (f3). Therefore, {un} is bounded.

To calculate critical groups at infinity, we have the following lemma.

Lemma 3.2. Let µ∞ = dim(W0 ⊕W−). If (f1), (f2), and (f3) are satisfied, then Cq(I,∞) � δq,µ∞Z.

Proof. First, for t ∈ [0, 1], let It : S → R be given as

It(u) =
1
2

T1+1∑
i=1

T2∑
j=1

|41u(i − 1, j)|2 +
1
2

T1∑
i=1

T2+1∑
j=1

|42u(i, j − 1)|2 −
1 − t

4
λk

T1∑
i=1

T2∑
j=1

|u(i, j)|2

−
1 − t

4
λk+1

T1∑
i=1

T2∑
j=1

|u(i, j)|2 − t
T1∑
i=1

T2∑
j=1

F((i, j), u(i, j))

=
1
2
‖u‖2 −

1 − t
4

(λk + λk+1)‖u‖22 − t
T1∑
i=1

T2∑
j=1

F((i, j), u(i, j)).

In the following, we prove that Eq (2.4) in Proposition 2.1 is true. Otherwise, there exists {un} ⊆ S ,
tn ∈ [0, 1] such that

‖un‖ → ∞, (1 + ‖un‖)‖I′t (un)‖ → 0, n→ ∞.
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Denote un = un
‖un‖

. Then, ‖un‖ = 1 and there exists u ∈ S satisfying ‖u‖ = 1 such that un → u as n→ ∞.
From Lemma 3.1, we know that

f ((i, j), un)
‖un‖

→ pu, n→ ∞.

Suppose that tn → t0, whereby is easy to show that u is a solution subject to42
1u(i − 1, j) + 42

2u(i, j − 1) − ξ(t0)u = 0, (i, j) ∈ Ω,

u(i, 0) = u(i,T2 + 1) = 0 i ∈ Z(1,T1), u(0, j) = u(T1 + 1, j) = 0 j ∈ Z(1,T2),

where ξ(t0) = 1−t0
2 λk + 1−t0

2 λk+1 + t0 p and λk ≤ ξ(t0) ≤ λk+1. By the maximum principle and unique
continuation property, we find that

ξ(t0) ≡ λk or ξ(t0) ≡ λk+1.

Furthermore, t0 = 1 means that tn → 1 as n→ ∞. Therefore,

‖u(1)
n,k‖

‖un‖
→ 1 or

‖u(1)
n,k+1‖

‖un‖
→ 1.

Note that (f2) and (f3) are valid, and so

T1∑
i=1

T2∑
j=1

(
f ((i, j), un(i, j)) − λkun(i, j)

)
u(1)

n,k(i, j) ≥ δ1 > 0, n > N1

or
T1∑
i=1

T2∑
j=1

(
λk+1un(i, j) − f ((i, j), un(i, j))

)
u(1)

n,k+1(i, j) ≥ δ2 > 0, n > N2.

Considering λk ≤ λk+1, we have

−

T1∑
i=1

T2∑
j=1

(
f ((i, j), un) − λkun(i, j)

)
u(1)

n,k(i, j) +
1 − tn

2tn
(λk − λk+1)‖u(1)

n,k‖
2 → 0, n→ ∞,

which implies that

T1∑
i=1

T2∑
j=1

(
f ((i, j), un) − λkun(i, j)

)
u(1)

n,k(i, j) + o(1) =
1 − tn

2tn
(λk − λk+1)‖u(1)

n,k‖
2 ≤ 0, n→ ∞.

Therefore,

lim sup
n→∞

T1∑
i=1

T2∑
j=1

(
f ((i, j), un) − λkun(i, j)

)
u(1)

n,k(i, j) ≤ 0

or

lim sup
n→∞

T1∑
i=1

T2∑
j=1

(
λk+1un(i, j) − f ((i, j), un)

)
u(1)

n,k+1(i, j) ≤ 0,
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which guarantees that Eq (2.4) is satisfied.
It is easy to show that Eq (2.5) is satisfied and I0, I1 satisfy (C). In fact, because

I0(u) =
1
2
‖u‖2 −

1
4

(λk + λk+1)‖u‖22, u ∈ S ,

we have that
42

1u(i − 1, j) + 42
2u(i, j − 1) +

1
2

(λk + λk+1)‖u‖2 = 0, (i, j) ∈ Ω,

which is impossible for ‖u‖ = 1. Consequently, I0 satisfies (C). Moreover,

∂tIt =
1
4

(λk + λk+1)‖u‖2 −
T1∑
i=1

T2∑
j=1

F((i, j), u(i, j))

is continuous. According to Proposition 2.1, we have that

Cq(I,∞) = Cq(I1,∞) � Cq(I0,∞), q ∈ Z.

Note that u = 0 is a unique nondegenerate critical point of I0 with µ0 = dim(W0 ⊕W−). Thus,

Cq(I0,∞) � Cq(I0, 0) � δq,µ∞Z, µ∞ = µ0 = dim(W0 ⊕W−).

Further, we have that Cq(I,∞) � δq,µ∞Z.

To gain some mountain pass-type critical points by applying the cut-technique, we verify the fol-
lowing compactness conditions.

Lemma 3.3. Let

f +((i, j), u) =

 f ((i, j), u), u ≥ 0,
0, u < 0,

(3.4)

such that
λk ≤ lim inf

u→+∞

f +((i, j), u)
u

≤ lim sup
u→+∞

f +((i, j), u)
u

≤ λk+1.

Then, the functional I+ : S → R defined by

I+(u) =
1
2
‖u‖2 −

T1∑
i=1

T2∑
j=1

F+((i, j), u(i, j))

satisfies (PS ), where F+((i, j), u) =
∫ u

0
f +((i, j), τ)dτ.

Proof. Let {un} ⊆ S be a (PS )c sequence, that is,

I+(un)→ c, I′+(un)→ 0, n→ ∞.

Similar to Lemma 3.1, assume that {un} is unbounded. Then, we have

|un(i, j)| → ∞, n→ ∞, ∀(i, j) ∈ Ω. (3.5)
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Denote vn = un
‖un‖

, so that ‖vn‖ = 1. As S is a T1T2-dimensional Hilbert space, there exists v ∈ S
satisfying ‖v‖ = 1 such that vn → v as n→ ∞. Hence, for any ϕ ∈ S , it holds that

〈I′+(un), ϕ〉
‖un‖

= 〈vn, ϕ〉 −

T1∑
i=1

T2∑
j=1

(
f +((i, j), un(i, j))

‖un‖
, ϕ(i, j)

)
. (3.6)

For any (i, j) ∈ Ω, write v+(i, j) = max{v(i, j), 0}. Then, there exists α satisfying λk ≤ α ≤ λk+1 such
that

lim
n→∞

f +((i, j), un(i, j))
‖un‖

= lim
n→∞

f +((i, j), un(i, j))
un(i, j)

vn(i, j) = αv+(i, j).

Together with Eq (3.6), this yields

−

T1∑
i=1

T2∑
j=1

{∆2
1v(i − 1, j) + ∆2

2v(i, j − 1) + αv+(i, j)}ϕ(i, j) = 0, n→ ∞,

which implies that v is the nontrivial solution of

∆2
1v(i − 1, j) + ∆2

2v(i, j − 1) + αv+(i, j) = 0, (i, j) ∈ Ω (3.7)

with boundary conditions

v(i, 0) = v(i,T2 + 1) = 0, i ∈ Z(1,T1), v(0, j) = v(T1 + 1, j) = 0, j ∈ Z(1,T2). (3.8)

Denote v(i0, j0) := min{v(i, j)|(i, j) ∈ Ω}. We aim to show that v(i0, j0) > 0. Otherwise, αv+(i, j) = 0
and

∆2
1v(i0 − 1, j0) + ∆2

2v(i0, j0 − 1) = 0, (i, j) ∈ Ω,

which means that ∆1v(i0 − 1, j0) = ∆2v(i0, j0 − 1) = 0. Moreover, v(i0 − 1, j0) = v(i0, j0) = v(i0, j0 − 1).
Therefore, v ≡ 0 for all (i, j) ∈ Ω. Additionally, v is the nontrivial solution of Eqs (3.7)–(3.8), which
implies that v(i0, j0) > 0, and so v(i, j) > 0. Recall that λk ≤ α ≤ λk+1, we so we have that {un} is
bounded.

In the same manner as Lemma 3.3, we can state the following.

Lemma 3.4. If

λk ≤ lim inf
u→−∞

f −((i, j), u)
u

≤ lim sup
u→−∞

f −((i, j), u)
u

≤ λk+1,

where

f −((i, j), u) =

 f ((i, j), u), u ≤ 0,
0, u > 0,

(3.9)

then the functional I− : S → R defined by

I−(u) =
1
2
‖u‖2 −

T1∑
i=1

T2∑
j=1

F−((i, j), u(i, j))

satisfies (PS ), where F−((i, j), u) =
∫ u

0
f −((i, j), τ)dτ.
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Lemma 3.5. If all conditions of Theorem 3.1 are fulfilled, then I+ has a critical point u+ > 0 such that
Cq(I+, u+) � δq,1Z and I− has a critical point u− < 0 such that Cq(I−, u−) � δq,1Z.

Proof. We prove the case of I+; the proof of I− is similar and is omitted for brevity. With the aid of
Proposition 2.5, we need only prove that I+ satisfies (J3), (J4). According to (V1), there exist ρ, ρ1 > 0
such that F′′((i, j), 0) < ρ1 < λ1 and

F((i, j), u) ≤
1
2
ρu2, |u(i, j)| ≤ ρ.

Then, for any (i, j) ∈ Ω and u ∈ S with ‖u‖ ≤
√
λ1ρ1, we have

I+(u) =
1
2
‖u‖2 −

T1∑
i=1

T2∑
j=1

F+((i, j), u(i, j)) =
1
2
‖u‖2 −

∑
u∈U

F((i, j), u(i, j))

≥
1
2
‖u‖2 −

1
2
ρ1

∑
u∈U

|u(i, j)|2 ≥
1
2
‖u‖2 −

1
2
ρ1

T1∑
i=1

T2∑
j=1

|u(i, j)|2 ≥
1
2
‖u‖2 −

1
2
ρ1

λ1
‖u‖2

>0,

with U = {(i, j) ∈ Ω|u(i, j) ≥ 0}, which ensures (J3) is valid.
Using (f1), there exist γ > λk−1(≥ λ1), b2 ∈ R such that

F((i, j), u) ≥
γ

2
u2 + b2, ∀u ∈ R.

For t > ρ, choose e ∈ span{φ1}. Then, we have

I+(te) =
1
2
‖te‖2 −

T1∑
i=1

T2∑
j=1

F((i, j), te(i, j)) ≤
1
2
‖te‖2 −

γ‖te‖22
2
− b2T1T2

=
1
2
‖te‖2 −

γ‖te‖2

2λ1
− b2T1T2 =

t2

2
(1 −

γ

λ1
)‖e‖2 − b2T1T2

≤0.

Therefore, (J4) is satisfied.
By the Mountain Pass Lemma, I+ possesses a critical point u+ , 0. Moreover, there exists a

sequence {u+
n } such that I′+(u+

n )→ I′+(u+) as n→ ∞. For any ϕ ∈ S , we have

〈I′+(u+
n ), ϕ〉 = 〈u+

n , ϕ〉 −

T1∑
i=1

T2∑
j=1

(
f +((i, j), u+

n (i, j)), ϕ(i, j)
)
.

Letting n→ ∞,

lim
n→∞

f +((i, j), u+
n (i, j)) = lim

n→∞

f +((i, j), u+
n (i, j))

u+
n (i, j)

u+
n (i, j) = αu+(i, j), (i, j) ∈ Ω,

which leads to
∆2

1u+(i − 1, j) + ∆2
2u+(i, j − 1) + αu+(i, j) = 0
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with λk ≤ α ≤ λk+1 and u+(i, j) := max{u(i, j), 0}. Similar to the proof of Lemma 3.3, u+ is positive.
We now calculate Cq(I+, u+). Recalling Eq (2.1), we find that

〈I′′(u+)v, v〉 ≥ 0, ∀v ∈ S

and there exists some v0 , 0 such that

〈I′′(u+)v0, v〉 = 0, ∀v ∈ S ,

which implies that v0 is a solution of∆2
1v0(i − 1, j) + ∆2

2v0(i, j − 1) − F′′((i, j), u+)v0(i, j) = 0, (i, j) ∈ Ω,

v0(i, 0) = v0(i,T2 + 1) = 0, i ∈ Z(1,T1), v0(0, j) = v0(T1 + 1, j) = 0, j ∈ Z(1,T2).

Combining this with (V2), it follows that∆2
1v(i − 1, j) + ∆2

2v(i, j − 1) − λF′′((i, j), u+)v(i, j) = 0, (i, j) ∈ Ω,

v(i, 0) = v(i,T2 + 1) = 0, i ∈ Z(1,T1), v(0, j) = v(T1 + 1, j) = 0, j ∈ Z(1,T2)

admits an eigenvalue λ = 1 such that dim ker(I′′(u+)) = 1. Hence, we conclude that Cq(I, u+) �
Cq(I+, u+) � δq,1Z. This completes the proof.

It is time for us to give the detailed proof of Theorem 3.1 using Proposition 2.4.
Proof of Theorem 3.1 Given I′(0) = 0 and (V1), then

〈I′′(0)u, u〉 ≥
(
1 −

F′′((i, j), 0)
λ1

)
‖u‖2, (i, j) ∈ Ω,

which implies that 0 is the local minimizer of I. From Proposition 2.2, we have

Cq(I, 0) � δq,0Z, q ∈ Z. (3.10)

Furthermore, Lemma 3.2 ensures that

Cq(I,∞) � δq,µ∞Z, q ∈ Z.

Then, according to Proposition 2.4, there exists some critical point u1 , 0 of I such that

Cµ∞(I, u1) � 0. (3.11)

Consequently, we conclude that u+, u− and u1 are nontrivial critical points of I with u+ > 0 and u− < 0.
The proof of Theorem 3.1 is achieved.

Before verifying Theorem 3.2 using Proposition 2.3, we need the following lemma about local
linking.

Lemma 3.6. Let (V3) and (F+
0 ) (or (F−0 )) hold. Then, I has a local linking at 0 with respect to

S = S − ⊕ S +,

where S − = span{φ1, φ2, ..., φm} (or S − = span{φ1, φ2, ..., φm−1}).
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Proof. Suppose that (F+
0 ) is satisfied. Then, there exists δ > 0 such that |u(i, j)| ≤ δ, ‖u‖ ≤ δ

√
λT1T2 ,

and
F((i, j), u) ≥

1
2
λmu2.

For u ∈ S − with 0 < ‖u‖ ≤ δ
√
λT1T2 , we have

I(u) =
1
2
‖u‖2 −

T1∑
i=1

T2∑
j=1

F((i, j), u(i, j)) ≤
1
2
‖u‖2 −

1
2
λm‖u‖22 ≤

1
2

(1 −
λm

λm
)‖u‖2 = 0. (3.12)

For u ∈ S + with 0 < ‖u‖ < δ
√
λT1T2 , we obtain

I(u) ≥
1
2
‖u‖2 −

1
2
λm

λm+1
‖u‖2 =

1
2

(1 −
λm

λm+1
)‖u‖2 > 0. (3.13)

Obviously, I(0) = 0. Combining this with Eqs (3.12) and (3.13), it is clear that I has a local linking at
0.

Proof of Theorem 3.2 Denote µ0 = dim span{φ1, ..., φm−1}, ν0 = dim span{φm}. Let (V3) be true.
Then, 0 is degenerate. Taking account of Proposition 2.3, we find that

Cq(I, 0) � δq,µ0+ν0Z, q ∈ Z.

In contrast, Lemma 3.2 gives Cq(I,∞) � δq,µ∞Z. Therefore, Proposition 2.4 guarantees the existence
of u∗ such that

Cµ∞(I, u∗) � 0.

Moreover, m , k implies that µ0 + ν0 , µ∞. Thus, u∗ , 0.
From (V4), there exists u0 , 0 such that f ((i, j), u0) = 0. Without loss of generality, we can assume

that u0 > 0. In the sequence, we intend to obtain the local minimizer of I. Define

f̃ ((i, j), u) =


0, u < 0,

f ((i, j), u), u ∈ [0, u0],
0, u > u0,

(3.14)

and let

Ĩ(u) =
1
2
‖u‖2 −

T1∑
i=1

T2∑
j=1

F̃((i, j), u(i, j)), u ∈ S ,

where F̃((i, j), u) =
∫ u

0
f̃ ((i, j), τ)dτ. Then, Ĩ is coercive and continuous. Therefore, there exists a

minimizer ũ0 of Ĩ. From the maximum principle, we deduce that ũ0 = 0 or 0 < ũ0(i, j) < u0 for all
(i, j) ∈ Ω. Moreover, (V3) means that 0 is not a minimizer. Consequently, ũ0 , 0 is a local minimizer
of I and Cq(I, ũ0) � δq,0Z, q ∈ Z.

Denote F̂((i, j), u) =
∫ u

0
f̂ ((i, j), τ)dτ, where

f̂ ((i, j), v) = f ((i, j), v + ũ0) − f ((i, j), ũ0), (i, j) ∈ Ω, v ∈ S .
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The corresponding functional is then given by

Î(v) =
1
2
‖v‖2 −

T1∑
i=1

T2∑
j=1

F̂((i, j), v(i, j)), v ∈ S .

If v is a nonzero critical point of Î, then ũ0 + v is a critical point of I with

Cq(Î, v) = Cq(I, ũ0 + v).

Define

f̂ +((i, j), v) =

 f̂ ((i, j), v), v ≥ 0,
0, v < 0,

(3.15)

and construct the corresponding functional as

Î+(v) =
1
2
‖v‖2 −

T1∑
i=1

T2∑
j=1

F̂+((i, j), v(i, j)), v ∈ S ,

with F̂+((i, j), u) =
∫ u

0
f̂ +((i, j), τ)dτ. Then, ũ0 is a local minimizer of I for Î+ satisfying (PS ), which

leads to v = 0 being a local minimizer of Î+. Thus, (J3) is fulfilled. Applying (f1) yields

Î+(te) ≤ 0, t → +∞,

which ensures that (J4) is satisfied. By Lemma 2.5, Î+ possesses a critical point v+ > 0. Furthermore,
Î possesses a critical point v+ with Cq(Î, v+) � δq,1Z, q ∈ Z. As a result, u+ = ũ0 + v+ is a critical
point of I satisfying Cq(I, u+) � δq,1Z, q ∈ Z. Similarly, u− < ũ0 is a critical point of I satisfying
Cq(I, u−) � δq,1Z. Therefore, u∗, ũ0, u± are four nontrivial solutions of I and ũ0, u+ are positive.

For the case u0 < 0, repeating the above steps shows that I has four nontrivial solutions, among
which there are two negative solutions. Therefore, I admits four nontrivial solutions and the proof is
finished.

Proof of Theorem 3.3 Similar to the proof of Theorem 3.2, we find that Cq(I, 0) � δq,µ0+ν0Z,
q ∈ Z. Because k = 1, Cq(I,∞) � δq,1Z and there exists some critical point u∗ such that C1(I, u∗) � 0.
Moreover, u∗ is the critical point of I satisfying Cq(I, u∗) � δq,1Z. From m , 1, we conclude that u∗ , 0.
If κ = {0, u∗}, the Morse equality implies that

(−1)µ0+ν0 + (−1)1 = (−1)1. (3.16)

Of course, Eq (3.16) is impossible. Therefore, problem (1.1)–(1.2) possesses at least two nontrivial
solutions.

4. Examples

Finally, we present two examples to verify the feasibility of our results.
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Example 4.1. Take T1 = 3, T2 = 2, and consider

∆2
1u(i − 1, j) + ∆2

2u(i, j − 1) +
(λ1

2 −
λk+λk+1

2 )u(i, j)
1 + [u(i, j)]2 +

λk + λk+1

2
u(i, j) = 0 (4.1)

with the boundary value conditions of Eq (1.2).

Because f ((i, j), u) =
( λ1

2 −
λk+λk+1

2 )u(i, j)
1+[u(i, j)]2 + λk+λk+1

2 u(i, j), it follows that

F′′((i, j), u) =
λk + λk+1

2
u4 +

(3
2

(λk + λk+1) −
λ1

2

)
u2 +

λ1

2
> 0.

It is not difficult to verify that f ((i, j), 0) = 0, F′′((i, j), 0) = λ1
2 < λ1, and

λk ≤ lim
|u|→∞

f ((i, j), u)
u

=
λk + λk+1

2
≤ λk+1,

which means that (f1), (V1) and (V2) are satisfied. If
‖u(1)

n,k‖

‖un‖
→ 1 as ‖un‖ → ∞, then we obtain

3∑
i=1

2∑
j=1

(
(λ1

2 −
λk+λk+1

2 )un(i, j)
1 + [un(i, j)]2 +

λk + λk+1

2
un(i, j) − λkun(i, j)

)
u(1)

n,k(i, j)

=

3∑
i=1

2∑
j=1

(
(λ1

2 −
λk+λk+1

2 )un(i, j)
1 + [un(i, j)]2 +

λk+1 − λk

2
un(i, j)

)
u(1)

n,k(i, j)

=

3∑
i=1

2∑
j=1

[ λ1
2 −

λk+λk+1
2

1 + 1
[u(1)

n,k(i, j)]2

+
λk+1 − λk

2
[u(1)

n,k(i, j)]2
]
→ +∞.

Therefore, (f2) is satisfied. Similarly, (f3) is valid. Therefore, Theorem 3.1 guarantees that problem
(4.1)–(1.2) admits at least three nontrivial solutions, of which one is positive and one is negative.

Example 4.2. Take T1 = 3, T2 = 2, and consider

∆2
1u(i − 1, j) + ∆2

2u(i, j − 1) +
2(λm −

λk+λk+1
2 )u

2 − u2 +
λk + λk+1

2
u = 0 (4.2)

with the boundary value conditions of Eq (1.2).

Denote

f ((i, j), u) =
2(λm −

λk+λk+1
2 )u

2 − u2 +
λk + λk+1

2
u.

Then, f ((i, j), 0) = 0 and there exists u = ±

√
4λm

λk+λk+1
, 0 such that f ((i, j), u) = 0, which means that

(V4) is satisfied.
A direct computation yields

F((i, j), u) = (
λk + λk+1

2
− λm) ln(2 − u2) +

λk + λk+1

4
u2
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and

f ′((i, j), u) =
2(λm −

λk+λk+1
2 )(2 + u2)

(2 − u2)2 +
λk + λk+1

2
,

and so f ′((i, j), 0) = λm and (V3) is valid.

As ‖un‖ → ∞, if
‖u(1)

n,k‖

‖un‖
→ 1, then

3∑
i=1

2∑
j=1

(
2(λm −

λk+λk+1
2 )un(i, j)

2 − [un(i, j)]2 +
λk + λk+1

2
un(i, j) − λkun(i, j)

)
u(1)

n,k(i, j)

=

3∑
i=1

2∑
j=1

(
2(λm −

λk+λk+1
2 )un(i, j)

1 + [un(i, j)]2 +
λk+1 − λk

2
un(i, j)

)
u(1)

n,k(i, j)

=

3∑
i=1

2∑
j=1

[
2λm − (λk + λk+1)

1 + 1
[u(1)

n,k(i, j)]2

+
λk+1 − λk

2
[u(1)

n,k(i, j)]2
]
→ +∞.

Therefore, (f2) is satisfied. Similar to (f2), we can show that (f3) is satisfied.
In the following, we verify (f1) and (F+

0 ). If we write

A =



4 −1 0 −1 0 0
−1 4 −1 0 −1 0
0 −1 4 0 0 −1
−1 0 0 4 −1 0
0 −1 0 −1 4 −1
0 0 −1 0 −1 4


,

then A is positive-definite and the eigenvalues of A are

λ1 = 3 −
√

2, λ2 = 3, λ3 = 5 −
√

2, λ4 = 3 +
√

2, λ5 = 5, λ6 = 5 +
√

2.

Let m = 2, k = 3. Then, 5 −
√

2 ≤ lim inf
|u|→∞

f ((i, j),u)
u = lim sup

|u|→∞

f ((i, j),u)
u = 4 ≤ 3 +

√
2, which means that

(f1) is satisfied. Further, there exists δ > 0 such that, when |u(i, j)| ≤ δ, the following holds for any
(i, j) ∈ Z(1, 3) × Z(1, 2):

2F((i, j), u) − 3u2 = 2 ln(2 − u2) + u2 ≥ 0.

In fact, for any (i, j) ∈ Ω, we can choose δ = 1 > 0, and then 0 < [u(i, j)]2 ≤ 1 for 0 < |u(i, j)| ≤ 1. This
means that ln(2 − u2) ≥ 0 and 2F((i, j), u) − 3u2 ≥ 0. Thus, (F+

0 ) holds and all conditions of Theorem
3.2 are satisfied. Consequently, Theorem 3.2 ensures that (4.2)–(1.2) admits at least four nontrivial
solutions.

More clearly, using Matlab, we find that problem (4.2)–(1.2) has 36 nontrivial solutions.
Some examples of these solutions are as follows: (0.5061, 0.6548, 0.5061, 0.5061, 0.6548, 0.5061),
(−0.5061,−0.6548,−0.5061,−0.5061,−0.6548,−0.5061), (−1.9858, 2.1015, 0.6084, 1.9858,−2.1015,
− 0.6084), and (1.2137,−4.7492, 1.2137, 13.9612,−1.5032, 13.9612).
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