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Abstract: Let f : X → Y be a semistable non-isotrivial family of n-folds over a smooth projective
curve with discriminant locus S ⊆ Y and with general fiber F of general type. We show the strict
Arakelov inequality

deg f∗ων
X/Y

rank f∗ων
X/Y

<
nν
2
· degΩ1

Y(log S ),

for all ν ∈ N such that the ν-th pluricanonical linear system |ων
F | is birational. This answers a question

asked by Möller, Viehweg and the third named author [1].

Keywords: Arakelov inequality; family

1. Introduction

We always work over the complex number field C. Let Y be a non-singular projective curve, X a
projective manifold, and let f : X → Y be a proper surjective morphism with connected general fiber
F. Denote by S ⊆ Y the discriminant divisor of f , i.e., S is the smallest subset of points in Y such that
the restricted map

f : X \ f −1(S ) −→ Y \ S

is smooth. Recall that f is birationally isotrivial, if X×Y SpecC(Y) is birational to F×SpecC(Y). Putting
together results due to Parshin-Arakelov, Migliorini, Zhang, Kovacs, Bedulev-Viehweg, Oguiso-
Viehweg, Viehweg-Zuo, etc. (see [2] and the references given there), one has
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Theorem 1.1. Let f : X → Y be a non-birationally isotrivial family of n-folds, with general fiber F.
Assume either

• κ(F) = dim(F), or
• F has a minimal model F′ with ωF′ semi-ample.

Then (Y, S ) is logarithmic hyperbolic, i.e., degΩ1
Y(log S ) > 0.

Let us mention the following theorem by Bogomolov-Böhning-Graf von Bothmer [3] characterizing
birationally isotrivial families. Here we should also remark that in their paper the field C can be
replaced by an arbitrary algebraically closed field with infinite transcendence degree over the prime
field.

Theorem 1.2 (Bogomolov-Böhning-Graf von Bothmer). Let f : V → U be a family of algebraic
varieties over C such that all fibers are birational to each other and U is integral. Then f is birationally
isotrivial.

Let Mh denote the coarse moduli space of polarized manifolds with semi-ample canonical line
bundle and with fixed Hilbert polynomial h. Theorem 1.1 is equivalent to saying that the moduli stack
of Mh is algebraic hyperbolic, which can be followed from the existence of a big subsheaf A ↪→

S ℓΩ1
Y(log S ). As a complex analytic version, Viehweg-Zuo have constructed a complex Finsler metric

h f with strictly negative curvature and consequently, the various complex hyperbolicities; for example,
the Brody [4], Kobayashi [5] and big Picard hyperbolicities [6] have been proven for the moduli stack.
We remark also that when κ(F) = dim(F), i.e., the fiber is of general type, Theorem 1.1 is proved
in [7]. In the following, we briefly explain the construction of the big subsheaf in S ℓΩ1

Y(log S ) and the
Finsler metric h f . It relies on three main steps:

1. Kawamata-Viehweg’s positivity theorem: A := det f∗ων
X/Y is big.

2. The deformation Higgs bundle introduced by Viehweg-Zuo [7]: by taking a suitable m-th power
of the self-fiber product

f (m) : X(m) → Y

such that Am ⊂ f (m)
∗ ων

X(m)/Y and running the maximal non-zero iteration of the Kodaira-Spencer
map on the deformation Higgs bundle

(F, τ) ⊗ A = (
⊕

p+q=mn

F p,q,
⊕

p+q=mn

τp,q) ⊗ A

attached to the family f (m) twisted with A, one obtains the Griffiths-Yukawa coupling:

S ℓTY(− log S ) : A
τℓ

−→ Fmn−ℓ,ℓ ⊗ A,

which induces an inclusion of sheaves

A := A ⊗ P ↪→ S ℓΩ1
Y(log S ).

Here P is the dual of Im(τℓ), which is contained in the kernel of the Kodaira-Spencer map on the
next graded piece

τmn−ℓ−1,ℓ+1 : Fmn−ℓ,ℓ ⊗ A→ (Fmn−ℓ−1,ℓ+1 ⊗ A) ⊗Ω1
Y(log S ).

We will show P is semi-positive in the next step by applying Hodge theory. Hence,A is big.
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3. A comparison map: by taking the ν-th cyclic cover Z → X(m) defined by a section in the linear
system |ων

X(m)/Y ⊗ f (m)∗A−ν| and taking the graded Higgs bundle (E, θ) as the grading of the quasi-
canonical extension of the variation of the Hodge structure on the middle cohomology attached
to the induced family

g : Z → X(m) f
−→ Y,

one constructs a comparison map of Higgs bundles

ρ : (F, τ) ⊗ A→ (E, θ).

The semi-negativity of ker(θ) ( [8]) shows that ker(τ) is semi-negative. Hence, the sheaf P ap-
pearing in Griffiths-Yukawa coupling as the dual of Im(τℓ) contained in ker(τ) is semi-positive.

Given a complex manifold M with a Hermitian metric such that the holomorphic sectional curvature
is bounded above by a negative (1, 1)-form, Yau’s Schwarz lemma says that for any holomorphic map
γ from a hyperbolic curve Y into M, the pull-back metric to Y is bounded from above by the hyperbolic
metric on Y . In our situation, let (Y, S ) → (M, ∂M) be a logarithmic hyperbolic curve in the moduli
stack, which carries a complex Finsler metric with the holomorphic sectional curvature bounded from
above by a negative (1, 1)-form. Then the global form of Yau’s Schwarz lemma can be expressed as an
upper bound of the degree of the big subsheaf

A = A ⊗ P ↪→ S ℓΩ1
Y(log S )

in terms of degΩ1
Y(log S ). As P is a nef invertible sheaf, we obtain also an upper bound

deg f∗ων
X/Y = deg A|Y ≤ ℓ · degΩ1

Y(log S ),

the so-called Arakelov inequality for the direct image of relative pluri-dualizing sheaf.
We are more interested in this type of Arakelov inequality with an explicit and optimal upper bound.

It is well-known for ν = 1 since a long time. Faltings and Deligne have proved 1th Arakelov inequality
for families of abelian varieties. For a semistable family f : X → Y of abelian g-folds, Faltings [9]
(with an improvement by Deligne [10]) showed that

deg f∗ωX/Y ≤
g
2

degΩ1
Y(log S ).

As f∗ων
X/Y = ( f∗ωX/Y)ν for a semistable family of abelian varieties one obtains immediately the ν-th

Arakelov inequality by taking ν-th power of 1th Arakelov inequality

deg f∗ων
X/Y = deg( f∗ωX/Y)ν ≤

νg
2

degΩ1
Y(log S ).

Peters [11], Jost-Zuo [12], Viehweg-Zuo [13], Green-Griffiths-Kerr [14], and a very recent work by
Biquard-Collier-Garcia-Prada-Toledo [15] have studied Arakelov inequality for systems of Hodge bun-
dles over curves.

Tan [16] and Liu [17] have shown the strict Arakelov inequality for semistable families of curves of
genus g ≥ 2, namely

deg f∗ωX/Y <
g
2

degΩ1
Y(log S ).
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The proof of Tan relies on the strict logarithmic Miyaoka-Yau inequality on fibred algebraic surfaces
[18] and Xiao’s slope inequality [19], while Liu uses the explicit and optimal upper bound of the
holomorphic sectional curvature of the Weil-Peterson metric on the moduli space of curves.

In [20] it is shown that the ν-th Arakelov equality holds for a semistable family of abelian varieties
if and only if the family is a universal family over a Shimura curve of Mumford-Tate type.

Viehweg-Zuo and Möller-Viehweg-Zuo started to study the Arakelov inequality for the direct image
of pluri relative dualizing sheaf of a family of arbitrary fibers. For a vector bundle W over a smooth
projective curve Y the slope of W is defined as

µ(W) =
deg W
rank W

.

In [1, 21] one finds

Theorem 1.3. Assume that f : X → Y is a semistable family of n-folds over a smooth projective curve
Y with the discriminant locus S . If Y = P1 assume in addition that #S ≥ 2. Then for all ν ≥ 1 with
f∗ων

X/Y , 0 one has

µ( f∗ων
X/Y) ≤

nν
2
· degΩ1

Y(log S ).

More generally, for any non-zero subbundle W ⊂ f∗ων
X/Y it holds that

µ(W) ≤
nν
2
· degΩ1

Y(log S ). (1.1)

We remark that the above theorem recovers the Arakelov inequality for the case ν = 1 due to Faltings
and Deligne. Moreover, motivated by the Colemen-Oort conjecture (cf. [22]) that the Torelli locus of
curves of genus g ≫ 0 can not contain generically any Shimura subvariety of positive dimension and
the characterization of Shimura families using the Arakelov equality by Viehweg-Zuo [20], we pose

Conjecture 1.4. Let f : X → Y be a semistable non-birationally isotrivial family of n-folds over a
smooth projective curve Y with the discriminant locus S . Assume that the Arakelov equalities hold,
i.e.,

µ( f∗ων
X/Y) =

nν
2
· degΩ1

Y(log S ), ∀ ν ∈ N, with f∗ων
X/Y , 0.

Then the general fiber is of Kodaira dimension zero and the family is Shimura in the following sense:
Y parameterizes a compactified universal family of abelian varieties f ′ : X′ → Y with the given
Mumford-Tate group, and the variation of Hodge structure on the middle cohomology of f : X → Y is
a direct factor of a tensor product of the weight-1 variation of Hodge structure attached to the universal
family of abelian varieties f ′ : X′ → Y.

Viehweg-Zuo and Möller-Viehweg-Zuo [1, 21] have generalized the strict Arakelov inequality due
to Tan and Liu for the direct image of the relative dualizing sheaf on a semistable family of manifolds
of general type:

Theorem 1.5 (see [21]). Let f : X → Y be a semistable and non-birationally isotrivial family of
n-folds, and let W ⊆ f∗ωX/Y be a subbundle. Assume that either

a. f ∗W → ωX/Y defines a birational Y-morphism η : X → PY(A), or

Electronic Research Archive Volume 30, Issue 7, 2643–2662.
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b. n = 1 and rank W ≥ 2.

Then
µ(W) <

n
2

degΩ1
Y(log S ).

The assumption a. in Theorem 1.5 seems to be a little bit too strong, as the pluri-canonical linear
system |ων| on a variety of general type defines a non-constant, or birational map only after taking a
higher power. In this note we show the strict Arakelov inequality for a semistable family of n-folds of
general type in the following form, which answers a question asked by Möller, Viehweg and the third
named author; see the discussion after [1, Theorem 0.3].

Theorem 1.6. Let f : X → Y be a non-isotrivial semistable family of n-folds, and let W ⊆ f∗ων
X/Y be

a subbundle. Assume that f ∗W → ων
X/Y defines a birational Y-morphism η : X → PY(W), then

µ(W) <
nν
2
· degΩ1

Y(log S ).

The above theorem leads some direct consequences for families of manifolds of general type of
small dimensions.

1. For a semistable family f : X → Y of minimal surfaces of general type, which is non-isotrivial
(note that both notions birationally isotrivial and isotrivial are equivalent for a minimal surface) then it
is known that the ν-th pluricanonical linear system on a general fiber defines a birational map for ν ≥ 5
(cf. [23]). Hence we obtain the strictly Arakelov inequality

deg f∗ων
X/Y

rank f∗ων
X/Y

< ν · degΩ1
Y(log S ), ∀ ν ≥ 5.

2. M. Chen and J. Chen [24] have shown for any smooth three-fold F of general type there exists a
number m(3) between 27 and 57 and depending on certain classification classes on F such that ων

F
defines a birational map for any v ≥ m(3). So we obtain the strictly Arakelov inequality of a semistable
family of three-folds of general type

deg f∗ων
X/Y

rank f∗ων
X/Y

<
3ν
2
· degΩ1

Y(log S ), ∀ ν ≥ 57.

We would also like to point out that the Arakelov bound on the slope of subbundles W ⊂ f∗ων
X/Y is

asymptotically optimal in the following sense: there exist semistable families of n-folds and subbundles
Wν ⊆ f∗ων

X/Y such that f ∗Wν → ων
X/Y defines a birational Y-morphism η : X → PY(Wν), and that

lim
ν→∞

µ(Wν)
nν
2 · degΩ1

Y(log S )
= 1. (1.2)

Indeed, let f : X → Y be the universal family over a Teichmüller curve [25]. Then there is a line
bundle L ⊆ f∗ωX/Y such that

µ(L) = deg(L) =
1
2

degΩ1
Y(log S ).
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Clearly,
Wν := Lν−1 ⊗ f∗ωX/Y ⊆ f∗ων

X/Y , ∀ ν ≥ 2.

Note that f ∗Wν → ων
X/Y defines a birational Y-morphism η : X → PY(Wν) if f is non-hyperelliptic,

because the morphism defined by f ∗Wν → ων
X/Y is the same as the one defined f ∗ f∗ωX/Y → ωX/Y ,

which is birational when f is non-hyperelliptic. Moreover, by direct computation, one has µ(Wν) =
(ν−1)µ(L)+µ( f∗ωX/Y). Thus (1.2) holds. Taking the self-fiber product, one can get semistable families
of n-folds with subbundles Wν ⊆ f∗ων

X/Y satisfying (1.2).
The statement b. in Theorem 1.5 is a strong result. The proof relies on the theory on Teichmüller

theory due to Möller. At the moment we do not know how to prove this type of strict inequality for
semistable families of higher dimensional varieties. We leave this as a conjecture.

Conjecture 1.7. Let f : X → Y be a semistable family of n-folds of general type, then for any
subbundle W ⊆ f∗ων

X/Y of rank W ≥ 2 the following inequality holds

µ(W) <
nν
2
· degΩ1

Y(log S ).

The structure of the note is organized as follows. In Section 2 for readers’ convenience we recall the
notion of the deformation Higgs bundle attached to a family, in particular, over a 1-dimensional base
and we explain the comparison between the deformation Higgs bundle and the graded Higgs bundle
attached to a cyclic cover of the original family.

In Section 3 we first sketch the proof of Theorem 1.3. Given a subbundle W ⊂ f∗ων
X/Y , by taking

det W and a self-fiber product of f : X → Y of a suitable power we may reduce to an invertible subsheaf
L ⊆ f∗ων

X/Y . Furthermore, by taking a base change of Y we may raise the ν-power of L and obtain a
section

s : OX → ων
X/Y ⊗ f ∗L−ν.

Via the new family induced by the ν-cyclic cover h : W
τ
−→ X

f
−→ Y by taking the ν-th roots out of the

section s, we construct a comparison map between the deformation Higgs bundle twisted with L and
the logarithmic graded Higgs bundle of the variation of Hodge structure of the middle cohomology of
the new family h

ρ : (F, τ) ⊗ L→ (E, θ).

By applying Simpson’s Higgs semistability on the Higgs subbundle the deformation Higgs bundle
in (F, τ) ⊗ L generated by L = L ⊗ Fn,0 and τ via the comparison map we complete the proof of
Theorem 1.3.

Theorem 1.6 will be proved in Section 3.2. Simpson’s theorem [26] on the formality of the category
of semistable vector bundles on a smooth projective curve of degree zero plays a crucial role in the
proof. Given a subbundle W ⊆ f∗ων

X/Y and assuming that the sub-linear system f ∗W → ων
X/Y defines a

birational map
η : X → PY(W).

Then the family f ′ : X′ := η(X) → Y induced by the map η is non-birationally isotrivial. The
crucial observation in the proof of Theorem 1.6 is that if the Arakelov inequality for W becomes an

Electronic Research Archive Volume 30, Issue 7, 2643–2662.
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equality then the family f ′ : X′ → Y must be birationally isotrivial. More precisely, we consider the
d-multiplication map

S dW ⊆ S d f∗ων
X/Y

md
−−→ f∗ωνd

X/Y , for d ∈ N.

It is well-known by the definition of a map induced by a linear system the kernel Kd ⊆ S d(W) of the
multiplication map md restricted to S d(W) is just the sheaf of homogeneous polynomials of degree d
in the homogeneous ideal defining the fibers of f ′ : X′ → Y. If µ(W) achieves the maximal value

µ(W) =
nν
2
· degΩ1

Y(log S ),

then by applying Theorem 1.3 to subsheaves of W we know that W, and hence all powers S d(W)
are semistable. A simple semistability argument on the multiplication maps shows that all kernels
Kd ⊆ S d(W) remain semistable and have the same slope as S d(W)’s. So, after a base change and
twisting W with a line bundle, we may assume S d(W) is semistable of degree 0 and Kd ⊂ S d(W) is
of degree 0 for all d ∈ N. By solving the (approximate) Yang-Mills equation on the semistable vector
bundle W of degree zero on the smooth projective curve Y , one obtains integrable connections on W.
Thanks to Simpson’s theorem (cf. [26]) we find a canonical integrable connection (W,∇can) in the sense
that all Kd ⊆ S d(W) are preserved by the induced connection (S d(W), S d(∇can)). This means also that
for each point y ∈ Y we may find an analytic open neighborhood y ∈ U ⊂ Y and find a flat base
W of (W,∇can)(U) , such that the flat space Kd(U) of (Kd, S d(∇can))(U) is a subspace of S d(W). This
implies that under the flat baseW of (WU ,∇U) and for any d ∈ N the coefficients of all homogeneous
polynomials of degree d in the homogeneous ideal defining the fibers of f ′ : X′U → U are constant
up to a scalar multiplication. This shows that the family f ′ : X′U → U is constant. But, it leads to a
contradiction to η is a birational embedding and our original family is non-birationally isotrivial (cf.
Theorem 1.2).

2. Deformation Higgs Bundle and comparison with variation of Hodge structures

2.1. Graded Higgs bundle arising from variation of Hodge structures

Throughout this section, we will assume that U is a quasi-projective manifold and compactified by
a projective manifold Y with S = Y \U being a simple normal crossing divisor, and that there is smooth
family f : V → U of n-folds. Though in this note we only consider a family over a 1-dimensional
base, for reader’s convenience we recall some basic facts about Hodge theory attached to family of
n-folds over a base of arbitrary dimension.
Leaving out a codimension two subset of Y we find a good partial compactification f : X → Y in the
following sense

• X and Y are quasi-projective manifolds, f is flat, U ⊆ Y and codim(Y \ Y) ≥ 2.
• S = Y \U is smooth and ∆ = f ∗S is a relative simple normal crossing divisor over S (i.e., whose

components, and all their intersections are smooth over components of S ).

Following Griffiths and Simpson, one constructs the most natural graded Higgs bundle (or, system of
Hodge bundles called by Simpson) related to the geometry and topology on the family. Taking the
wedge product, one sees that the tautological sequence

0→ f ∗Ω1
Y(log S )→ Ω1

X(log∆)→ Ω1
X/Y(log∆)→ 0 (2.1)
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induces the short exact sequence of logarithmic forms of higher degrees

0→ f ∗(Ω1
Y(log S )) ⊗Ωp−1

X/Y(log∆)→ grΩp
X(log∆)→ Ωp

X/Y(log∆)→ 0, (2.2)

where
grΩp

X(log∆) = Ωp
X(log∆)/ f ∗Ω2

Y(log S ) ⊗Ωp−2
X (log∆).

The direct sum of the direct image sheaves

Ep,q = Rq f∗Ω
p
X/Y(log∆), p + q = k

endowed with the connecting maps in (2.2)

θp,q : Rq f∗Ω
p
X/Y(log∆)

∂
−→ Ω1

Y(log S ) ⊗ Rq+1 f∗Ω
p−1
X/Y(log∆)

forms a so-called system of Hodge bundles of weight-k by Simpson.

(E, θ) = (
⊕
p+q=k

Ep,q,
⊕
p+q=k

θp,q).

Take the dual of (2.1), one has an exact sequence

0→ TX/Y(− log∆)→ TX(− log∆)→ f ∗TY(− log S )→ 0.

The connecting map of the direct image defines the logarithmic Kodaira-Spencer map

τ : TY(− log S )→ R1 f∗TX/Y(− log∆).

The Higgs field θp,q can be also defined as the cup-product with τ

TY(− log S ) ⊗ Rq f∗Ω
p
X/Y(log∆) θp,q

//

τ◦id

��

Rq+1 f∗Ω
p−1
X/Y(log∆)

R1 f∗TX/Y(− log∆) ⊗ Rq f∗Ω
p
X/Y(log∆)

∪

55

Proposition 2.1. The Higgs bundle (E, θ) is the grading of Deligne’s quasi-canonical extension of
the variation of the polarized Hodge structure on k-th Betti cohomology Rk f∗ZV of the smooth family
f : V → U.

This result is well-known and due to Griffiths [27]. Katz-Oda [28] have an algebraic approach,
which works also over any characteristic satisfying E1-degeneration of Hodge to de Rham spectral
sequence. The Higgs field θ : E → E ⊗Ω1

Y(log S ) induces a natural map

ϑ : TY(− log S )→ End(E),

which coincides with the derivative of the period mapping attached to the variation of Hodge structure
on Rk f∗ZV over U. By Griffiths’ curvature formula it known the lass Hodge bundle E0,k and, in a slightly
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general form, the kernel of the Higgs field is semi-negative [8]. Assume that the period mapping is
locally injective (equivalently, θ is injective over U) for example, families of hypersurfaces in projective
space of high degrees. Then by Griffiths-Schmid’s theorem on the curvature of the Hodge metric along
the horizontal direction in the period domain we know that the holomorphic sectional curvature of the
pulled back Hodge metric on the base U = Y \S is bounded above by a negative (1, 1)-form. However,
we notice that the Torelli injectivity could fail for general varieties. For example, for surfaces of general
type with small Chern classes the period mapping can be constant.

In the joint work [2] Viehweg and the third named author have started looking for a replacement
of variation of Hodge structure in the case when the Torelli injectivity fails, the so-called deformation
Higgs bundle. We are going to briefly discuss the construction in the next section.

2.2. Deformation Higgs bundle attached to a family

Given a log smooth family f : (X,∆) → (Y, S ), we start with the classical logarithmic Kodaira-
Spencer map

TY(− log S )
τn,0

−−→ R1 f∗TX/Y(− log∆).

The Kodaira-Spencer map measures the variation of complex structure. The Kodaira-Spencer map
τn,0|U is zero if and only if the smooth family f : V → U is isotrivial, cf. [29].

In a similar way as we have done for the Higgs field on a system of Hodge bundles Viehweg-Zuo [2]
introduced the extended Kodaira-Spencer map τp,q as follows:

Put L := Ωn
X/Y(log∆) and consider the tautological exact sequence of logarithmic forms of higher

degree twisted by L−1

0→ f ∗(Ω1
Y) ⊗Ωp−1(log S ) ⊗ L−1 → grΩp

X(log S ) ⊗ L−1 → Ω
p
X/Y(log S ) ⊗ L−1 → 0. (2.3)

For p + q = n, we take

F p,q := Rq f∗(∧qTX/Y(− log∆))/torsion = Rq f∗(Ω
p
X/Y(log∆) ⊗ L−1)/torsion,

and define τp,q as the connecting map at the place q→ q + 1:

τp,q : F p,q → F p−1,q+1 ⊗Ω1
Y(log S ).

Putting all individual sheaves F p,q together and endowed with the maps τp,q we obtain the so-called
Deformation Higgs bundle (sheaf) attached to f : X → Y:

(F, τ) :=
(⊕

p+q=n

F p,q,
⊕
p+q=n

τp,q
)
.

We remark that the extended Kodaira-Spencer map can also be represented as the cup product in a
standard way

TY(− log S ) ⊗ Rq f∗T
q
X/Y(− log∆)

τn,0⊗Id

��

τp,q
// Rq+1 f∗T

q+1
X/Y(− log∆)

R1 f∗TX/Y(− log∆) ⊗ Rq f∗T
q
X/Y(− log∆).

∪

66
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The extended Kodaira-Spencer map τ satisfies the integrability condition τ ∧ τ = 0. Indeed, for
a 1-dimensional base Y considered in this note the integrability holds trivially true. In general, for
a higher dimensional base, using Dolbeault representative for Hq(Xy,T

q
Xy

) the cup product ∪ in the
above diagram is nothing but the usual wedge product of bundle-valued differential forms, and the
integrability just follows from the commutativity of the wedge product of differential forms of even
degrees.

2.3. Kawamata-Viehweg’s positivity of direct image sheaves

Let f : X → Y be a family of n-folds over a 1-dimensional base Y with semistable singular fibers ∆
over S and with the smooth part of the family

f : V = X \ ∆→ Y \ S =: U.

As the family is semistable Ωn
X/Y(log∆) = ωX/Y , we recall following positivity of f∗ων

X/Y

Theorem 2.2 (Kawamata and Viehweg, cf. [30, 31]). Assume that f : X → Y has the maximal varia-
tion, and ωV/U is semi-ample. Then f∗ων

X/Y is weakly positive for all ν > 1 with f∗ων
X/Y , 0.

2.4. Comparison between deformation Higgs bundle and system of Hodge bundles

The comparison map relies on the certain type of cyclic covers on the family f : X → Y . The
motivation of constructing cyclic covers goes back to the work by Esnault-Viehweg [32]. They gave a
more Hodge theoretical approach to the Kodaira-Akizuki-Nakano vanishing theorem.

2.4.1. Comparison map in the absolute case and Kodaira type vanishing theorem

Let X be a projective manifold, L an ample line bundle on X and s ∈ H0(X,Lν) with the simple
normal crossing zero divisor D := (s)0 ⊆ X. One takes the ν-th cyclic cover

γ : Z = X( ν
√

s)→ X

with

γ∗Ω
p
Z(log γ∗D) =

ν−1⊕
i=0

Ω
p
X(log D) ⊗ L−i.

Deligne has shown
Hk(Z \ γ∗D,C) =

⊕
p+q=k

Hq(Z,Ωp
Z(log γ∗D)).

Assume D is ample, then X \ D is affine, the same holds true for Z \ γ∗D and hence

Hk(Z \ γ∗D,C) = 0, ∀ k > dim X = n.

By the Hodge decomposition

0 = Hq(Z,Ωp
Z(log γ∗D) =

ν−1⊕
i=0

Hq(X,Ωp
X(log D) ⊗ L−i).
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for any p + q > n. In particular,

Hq(X,Ωp
X(log D) ⊗ L−1) = 0,∀ p + q > n.

Using the residue map as well as the Serre duality one also shows the Kodaira-Akizuki-Nakano van-
ishing theorem by induction on dim X:

a). Hq(X,Ωp
X ⊗ L) = 0, ∀ p + q > n

b). Hq(X,Ωp
X ⊗ L

−1) = 0, ∀ p + q < n.

2.4.2. Comparison map in the relative case

The middle dimensional cohomology
⊕

p+q=n
Hq(X,Ωp

X ⊗ L
−1) is usually non-zero, and used in the

construction of the comparison map connecting deformation Higgs bundle and Hodge theory. Consider
a semistable family f : X → Y over a 1-dimensional base curve Y and denoteL := ωX/Y = Ω

n
X/Y(log∆).

Given a line bundle A on Y (in the most cases we choose A to be ample) and assume that there is a
non-zero section s of Lν ⊗ f ∗A−ν for some ν. Indeed it is always the case if f : X → Y is a family of
n-folds with semi-ample canonical sheaf and with maximal Var( f ) and A is a given ample line bundle.
By Kawamata-Viehweg’s positivity theorem one finds a non-zero section s in Lν ⊗ f ∗A−1 for ν ≫ 0.
After replacing the original family by a suitable higher power of the self-fiber product f (r) : X(r) → Y
or by Kawamata base change Y ′ → Y we find a section of Lν ⊗ f ∗A−ν (see [32], 3.19 Lemma).

Remark 2.3. For a family f : X → Y of n-folds either with good minimal model or of general type.
Then Kawamata (for good minimal model) and Kollár (for general type) showed that f∗ων

X/Y is big for
ν ≫ 0. The main difference between the case of good minimal model and the case of semi-ample
is that the linear system of ων

X/Y in the first case could be not globally generated over f −1(U0) for
any open subset of U, while it is globally generated over f −1(U0) for some open subset of U in the
latter case. Popa-Schnell [33] applied the theory of Hodge module to get a comparison similar to what
Viehweg-Zuo have done. It has the advantage that one does not care too much about the complication
of the singularity appearing in the construction. Below, we propose an approach along the original
construction by Viehweg-Zuo for a family over a 1-dimensional base curve [2], which works for all
above cases and also over higher dimensional bases. We invite the readers to read the details there.

Proposition 2.4 (Viehweg-Zuo). The ν-th cyclic cover defined by a non-zero section s of Lν ⊗ f ∗A−ν

induces a family

g : Z
γ
−→ X

f
−→ Y

with the singular fibers Π over S + T, where T is the discriminant locus of the ”new” singular fibers
arising from the cyclic cover γ : Z → X. By blowing up of Π and we may assume that the reduced
singular fibers Πred is a simple normal crossing divisor.

Taking (E, θ) to be the graded Higgs bundle of Deligne’s quasi-canonical extension of VHS on the
middle cohomology Rng∗ZZ\Π on Y \ (S + T ), then there exists a Higgs map

ρ : (F, τ)→ (E, θ) ⊗ A−1;
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that is, the following diagram commutes

F p,q τp,q
//

ρp,q

��

F p−1,q+1 ⊗Ω1
Y(log S )

ρp−1,q+1⊗ι
��

A−1 ⊗ Ep,q id⊗θp,q
// A−1 ⊗ Ep−1,q+1 ⊗Ω1

Y(log(S + T )).

where ι : Ω1
Y(log S ) ↪→ Ω1

Y(log(S + T )) is the natural inclusion.

We would like to emphasize the crucial point in the comparison map: although the Higgs field θ on
E has singularity along S + T , its restriction to ρ(F) has only singularity on the original discriminant
locus S .

Sketched proof of Proposition 2.4. Let D denote the zero divisor of s. Note that D could be
singular and the intersection of D with the generic fibers could be singular.
Step 0. Resolve the singularities. By a suitable blowing up

f̂ : X̂
σ
−→ X → Y,

one may assume thatσ∗D is a normal crossing divisor. Let T ⊆ Y denote the closure of the discriminant
of the map

f̂ : σ∗D ∩ σ−1(V)→ U;

that is, the locus of y ∈ U where the simple normal crossing divisorσ∗D meets f̂ −1(y) non-transversally.
Let Σ = f̂ −1(T ), and we take a further blowing up

δ : X′
β
−→ X̂

σ
−→ X

such that D′ + ∆′ + Σ′ := δ∗(D + ∆) + β∗Σ is simple normal crossing and the family

f ′ : X′
δ
−→ X

f
−→ Y

is log smooth as a morphism between the log pairs

f ′ :
(
X′, (D′ + ∆′ + Σ′)

)
→ (Y, (S + T )).

Step 1. Cyclic cover defined by s. We writeM := δ∗(L⊗ f ∗A−1) and D′ := δ∗D, thenMν = OX′(D′).
One takes the ν-th cyclic cover for the section δ∗s ∈ H0(X′,Mν)

γ′ : Z′
normalization
−−−−−−−−−→ X′(

ν
√
δ∗s)

γ
−→ X′.

Z′ could be singular. By taking a resolution of singularity of Z′, and a blowing up at the centers in the
fibers over Y we obtain a non-singular variety Z and a birational map η : Z → Z′. We may assume the
induced map

g : Z
η
−→ Z′

γ′

−→ X′
f ′
−→ Y

is log smooth for the pairs
g : (Z, g−1(S + T ))→ (Y, (S + T )).
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We set Π := g−1(S + T )), Z0 = Z \ Π and γ := δ ◦ γ′ ◦ η.
Step 2. Differential forms on the cyclic cover. Recall that the local systemV = Rng∗Z0 over Y\(S+T )
gives rise to the filtered logarithmic de Rham bundle

∇ : V → V ⊗Ω1
Y(log(S + T )),

where ∇ is an integrable connection with logarithmic pole along (S + T ), as the quasi-canonical exten-
sion of V ⊗ OY\(S+T ). Let (E, θ) denote the induced system of Hodge bundles

GrF(V,∇) = (E, θ) =
(⊕

p+q=n

Ep,q,
⊕
p+q=n

θp,q
)

with
Ep,q = Rqg∗Ω

p
Z/Y(logΠ).

The Higgs map
θp,q : Ep,q → Ep−1,q+1 ⊗Ω1

Y(log(S + T ))

is the edge map of R•g∗ of the exact sequence

0→ g∗Ω1
Y(log(S + T )) ⊗Ωp−1

Z/Y (logΠ)→ Ωp
Z(logΠ)→ Ωp

Z/Y(logΠ)→ 0. (2.4)

We also consider the pulled back of the deformation Higgs bundle (F, τ) on Y via the blowing up
δ : X′ → X

δ∗(F, τ) = (
⊕

δ∗F p,q,
⊕

δ∗τp,q) = (
⊕

F′p,q,
⊕

τ′p,q),

with
F′p,q = Rq f ′∗ (δ

∗Ω
p
X/Y(log∆) ⊗ δ∗L−1)/torsion.

Note that the Kodaira-Spencer map

τ′p,q : F′p,q → F′p−1,q+1 ⊗Ω1
Y(log S )

is the edge map of R• f ′∗ of the exact sequence

0→ f ′∗Ω1
Y(log S ) ⊗ δ∗Ωp−1

X/Y(log∆) ⊗L′−1 → δ∗Ω
p
X(log∆) ⊗L′−1 → δ∗Ω

p
X/Y(log∆) ⊗L′−1 → 0. (2.5)

Step 3. Comparison between deformation Higgs bundle and system of Hodge bundles. Let • stand
either for Spec(C) or for Y . Then the Galois group Z/νZ of

ψ : Z
η
−→ Z′

γ′

−→ X′

acts on ψ∗Ω
p
Z/•(logΠ) with the eigenspace decomposition

ψ∗Ω
p
Z/•(logΠ) = Ωp

X′/•(log(∆′ + Σ′)) ⊕
ν−1⊕
i=1

(
Ω

p
X′/•(log(∆′ + Σ′ + D′) ⊗ L′−i ⊗ f ′∗Ai

)
, (2.6)
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which induces a natural inclusion ι

δ∗Ω
p
X/•(log∆) ⊗ L′−1 � � ι //

� _

��

ψ∗Ω
p
Z/•(logΠ) ⊗ f ′∗(A−1)

δ∗Ω
p
X/•(log∆ + Σ) ⊗ L′−1 � �

Hurwitz formula
// Ω

p
X′/•(log∆′ + Σ′ + D′) ⊗ L′−1 ⊗ f ′∗(A) ⊗ f ′∗(A−1)

?�

1-th eigen
space in (2-6)

OO

Via the pulled back ψ : Z → X′ the inclusion ι together with the natural inclusion

Ω1
Y(log S ) ↪→ Ω1

Y(log(S + T ))

induces an inclusion of the exact sequences

ψ∗(2.5) ⊆ (2.4) ⊗ g∗A−1,

i.e.,
0 // ψ∗ f ′∗Ω1

Y (log S ) ⊗ ψ∗δ∗Ωp−1
X/Y (log∆) ⊗ ψ∗L′−1 //
� _

��

ψ∗δ∗Ω
p
X (log∆) ⊗ ψ∗L′−1 //
� _

��

ψ∗δ∗Ω
p
X/Y (log∆) ⊗ ψ∗L′−1 //

� _

��

0.

0 // g∗Ω1
Y (log(S + T )) ⊗Ωp−1

Z/Y (logΠ) ⊗ g∗A−1 //
Ω

p
Z (logΠ) ⊗ g∗A−1 //

Ω
p
Z/Y (logΠ) ⊗ g∗A−1 // 0.

Finally taking the direct image of the inclusion of the above short exact sequences

g∗
(
ψ∗(2.5) ⊆ (2.4) ⊗ g∗A−1

)
,

it yields a map between the direct image sheaves

ρp,q : F p,q → Ep,q ⊗ A−1,

which commutes with τ and θ, as they are just the edge maps connecting the direct image sheaves. We
complete the sketch of the proof of Proposition 2.4.

3. Strict Arakelov Inequality for relative pluri dualizing sheaf of families of manifolds of
general type

3.1. Arakelov Inequality

In this section we first sketch the proof of the Arakelov inequality (1.1) in Theorem 1.3. The main
idea in the proof is an application of the general construction performed in Proposition 2.4 to a specific
situation and Simpson’s Higgs semistability for a system of Hodge bundles. For reader’s convenience
we sketch the proof, and the details can be found in [1]. The proof contains three main steps.
• Step I. Reduce the proof to the case where W is a line subbundle. Indeed, given any non-zero
subbundle W ⊆ f∗ων

X/Y of rank W = r, by taking the determinant and the r-power of self-fiber product
of f , we have

det W ⊆ ( f∗ων
X/Y)⊗r � f̃∗ων

X̃/Y
,
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where X̃ is the desingularization of the r-power of self-fiber product X ×Y · · · ×Y X and f̃ : X̃ → Y is
the induced fibration. Hence we may assume W is a line subbundle.
• Step II. As in Proposition 2.4, we take the cyclic cover defined by the invertible subsheaf A ⊂ f∗ων

X/Y
and construct a comparison between the deformation Higgs bundle twisted by A and the system of
Hodge bundles arising from the cyclic cover.

In order to make this cyclic cover to be possible we replace the original family by suitable base
change Y ′ → Y, which is unramified on U = Y \ S . Such a base change does exist since for Y = P1 we
assume #S ≥ 2. Hence, we may assume that A is ν-divisible; that is, there exists an invertible sheaf A′

on Y such that A = A′ν. In other words, we get an injection A′ν ↪→ f∗ων
X/Y and hence a non-zero map

f ∗A′ν ↪→ ων
X/Y . This is equivalent to a non-zero section s of ων

X/Y ⊗ f ∗A′−ν. Thus by Proposition 2.4,
we get a new fibration

g : (Z,Π)→ (Y, S + T ),

which is log smooth. Moreover, the graded Higgs bundle (E, θ) of Deligne’s quasi-canonical extension
of VHS on the middle cohomology Rng∗ZZ\Π admits a comparison with the original deformation Higgs
bundle (F, τ) attached to f : X → Y; that is, there exists a Higgs map

ρ : (F, τ)→ (E, θ) ⊗ A′−1.

It gives the following commutative diagram:

F p,q τp,q
//

ρp,q

��

F p−1,q+1 ⊗Ω1
Y(log S )

ρp−1,q+1⊗ι
��

A′−1 ⊗ Ep,q id⊗θp,q
// A′−1 ⊗ Ep−1,q+1 ⊗Ω1

Y(log(S + T )).

where ι : Ω1
Y(log S ) ↪→ Ω1

Y(log(S + T )) is the natural inclusion.
• Step III. The sheaf A′ via τ and ρ generates a Higgs subbundle(

H =
n⊕

q=0

Hn−q,q, θ|H
)
⊆ (E, θ),

where Hn,0 = A′, and

Hn−q−1,q+1 = Im
(
θ|Hn−q,q : Hn−q,q → En−q−1,q+1 ⊗Ω1

Y(log(S + T ))
)
⊗Ω1

Y(log S )−1.

Let q0 ≤ n be the largest number such that Hn−q,q , 0. Then

deg H =
q0∑

q=0

deg Hn−q,q =

q0∑
q=0

(
deg A′ − q degΩ1

Y(log S )
)
= (q0 + 1)

(
deg A′ −

q0

2
degΩ1

Y(log S )
)
.

As (H, θ) is a sub-Higgs bundle of the quasi-canonical extension (E, θ) of a system of Hodge bundles
of a polarized VHS on Y \ (S + T ) by Simpson’s semistability of the quasi-canonical extension of a
system of Hodge bundles one has deg H ≤ 0, i.e.,

deg A = ν · deg A′ ≤ ν ·
q0

2
degΩ1

Y(log S ).
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As q0 ≤ n and degΩ1
Y(log S ) ≥ 0, we find

deg A ≤ ν ·
q0

2
degΩ1

Y(log S ) ≤
nν
2

degΩ1
Y(log S ).

This completes the proof of Theorem 1.3.

3.2. Strict Arakelov Inequality of Families of Varieties of General Type

We have seen the Arakelov inequality can be an equality for semistable families of abelian varieties.
In contrast, in this section we shall show Theorem 1.6 claiming that the Arakelov inequality always
holds strictly for families of varieties of general type and for large power ν such that the relative ν-pluri
canonical map is birational.

Proof of Theorem 1.6. For simplicity, we prove this for the total direct image sheaf f∗ων
X/Y ; the proof

is similar for subbundles W ⊆ f∗ων
X/Y which defines a birational map as in the theorem.

Let f : X → Y be a family of varieties of general type over a 1-dimensional base Y with discriminant
locus S and assume it is non-birationally isotrivial. By Theorem 1.1 the log curve (Y, S ) is hyperbolic.
In particular, if Y = P1 then #S ≥ 2. Assume on the contrary that there exists such an ν ∈ N satisfying
the Arakelov equality

µ( f∗ων
X/Y) =

nν
2
· degΩ1

Y(log S ) =: µ0.

As for any subbundle W ⊆ f∗ων
X/Y by applying Theorem 1.3 to W we have

µ(W) ≤
nν
2
· degΩ1

Y(log S ) = µ0 = µ( f∗ων
X/Y),

i.e., f∗ων
X/Y is a semistable vector bundle over Y . Consider in the next step the d-th multiplication map

0→ Kmd → S d( f∗ων
X/Y)

md
−−→ f∗ωdν

X/Y ,

where Kmd is the kernel of the map md. Note that by the definition of the map induced by pluri-canonical
linear system the restriction of Kmd on a fiber is the subspace of all homogeneous polynomials of degree
d in the homogeneous ideal defining the birational embedding of that fiber.

Applying again Arakelov inequality in Theorem 1.3 for the image of the map md

Imd := md(S d( f∗ων
X/Y)) ⊆ f∗ωdν

X/Y

we show µ(Imd ) ≤ d · µ0. On the other hand, the symmetric product S d( f∗ων
X/Y) is again semistable of

slope d · µ0 and Imd is a quotient bundle we obtain

µ(Imd ) ≥ µ
(
S d( f∗ων

X/Y)
)
= d · µ0,

and hence µ(Imd ) = d · µ0. From the exact sequence

0→ Kmd → S d( f∗ων
X/Y)→ Imd → 0

we see µ(Kmd ) = d · µ0 = µ
(
S d( f∗ων

X/Y)
)

and hence Kmd is a semistable subbundle of S d( f∗ων
X/Y) of the

same slope.

Electronic Research Archive Volume 30, Issue 7, 2643–2662.



2659

After a base change of Y and twisting with a line bundle with a suitable degree we may assume
f∗ων

X/Y is semistable of degree zero and S d( f∗ων
X/Y) contains Kmd as a semistable subbundle of degree

zero.

Theorem 3.1 (Simpson, cf. [26]). Let CdR be the category of vector bundles over Y with integrable
connections and CDol be the category of semistable Higgs bundle of degree 0. Then there exists an
equivalent functor

F : CDol → CdR.

We just recall some properties about this functor. Let (E, 0) be a semistable Higgs bundle of degree
0 with the trivial Higgs field. Let (E′, 0) be a sub-Higgs bundle of (E, 0) of degree 0.

(1). The functor F preserves the tensor products. In particular it also preserves symmetric powers.
(2). The underlying bundle of the bundle F ((E, 0)) with the integrable connection is isomorphic to E.
We call the connection to be canonical and denote it by ∇can(E).
(3). The connection ∇can(E) preserves E′ and ∇can(E) |E′= ∇can(E′).
(4). For a semistable vector bundle V of degree 0 we may think it is a semistable Higgs bundle with
the zero Higgs field. Hence, (1)–(3) above imply that there exists an integrable connection ∇ on V
such that for any d ≥ 1 and any subbundle K ⊆ S d(V) of degree 0, the connection S d(∇) on S d(V)
preserves K.

Applying (4) for f∗ων
X/Y in our situation we find an integrable connection ( f∗ων

X/Y ,∇) such that
S d(∇) preserves Kmd ⊆ S d( f∗ων

X/Y) for any d ∈ N, i.e., for each point p ∈ U we find an analytic open
disc Up ⊆ U and a flat base V for the solutions of ( f∗ων

X/Y ,∇)Up and such that Kmd ⊆ S d( f∗ων
X/Y) is

spanned by a flat subspace Kmd ⊆ S d(V). This means that we find a basis of f∗ων
X/Y over Up such that

under this basis the coefficients of all homogeneous polynomials of degree d in the homogeneous ideal
defining the fibers of the family f ′ : X′ := η(X) → Y over Up are constant, where η : X d PN

Y with
N = rank f∗ων

X/Y − 1 is the relative birational embedding defined by f∗ων
X/Y . Hence, we show that the

family f ′ : X′ → Y is locally constant over an analytic open discs, and hence all smooth fibers of
f ′ : X′ → Y are isomorphic to each other. Since η : V → η(V) is U-birational by the assumption,
all fibers of f : V → U are birational. By applying Theorem 1.2 due to Bogomolov-Böhning-Graf
von Bothmer we show that f : V → U is birationally isotrivial. This gives a contradiction since f is
non-birationally isotrivial. □
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