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Abstract: This manuscript aims to analyze the well-known and massive idea of competition graph
(CG) in the presence of a new and dominant technique of complex g-rung orthopair fuzzy (CQROF)
setting. The mathematical form of the CQROF setting is more flexible and massive consistent for
demonstrating the beneficial option from the collection of objectives during the decision-making
process. Additionally, the major concept of in-neighbourhood and out-neighbourhood using CQROF
diagraph (CQROFDG) are also invented to enhance the quality of the diagnosed approach. The
fundamental theory of CQROF k-competition, CQROF p-competition, CQROF neighbourhood and
m-step CQROF neighbourhood graphs are also explored. In the availability of the above-described
theories, the basic and significant results for the presented work are obtained to show the compatibility
and worth of the invented approaches. To show the practicality of the developed approach, we try to
verify the proposed work with the help of various examples. Further, to describe the validity and
practicality of the invented work, we diagnosed an application using presented approaches based on
the CQROF setting is to enhance the major weakness of the existing approaches. Finally, in the
availability of the invented ideas, we discussed the sensitivity analysis of the described approaches.
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decision-making problems

1. Introduction

Strategic decision-making tools, clustering analysis, medical diagnosis, pattern recognition,
computer networking systems, and shortest path dilemmas are massive valuable fields of genuine
scenarios where awkward sort of situations are involved. In such sort situations, the mathematical
representation of the fuzzy set (FS) [1] has a massively valuable and beneficial tool as compared to
crisp sets. In these ways, where there is ambiguity, there is the class for an FS and their expansions to
address such dilemmas, to describe various genuine life troubles effectively, involved awkward data,
the main theory of intuitionistic FS (IFS), diagnosed by Atanassov [2] in 1983. An IFS plays a
beneficial role in the environment of different valuables fields. The fixed and basic tool of IFS is
described: 0 < u(t) +v(t) < 1. If someone from group of experts gives (0.6,0.5) for truth and
falsity grades, then using the tool of IFS, we get 0.6 + 0.5 = 1.1 > 1 has been unsuccessful. For this,
the major idea of Pythagorean FS (PyFS), invented by Yager [3] by putting the mathematical tool: 0 <
u?(t) + v2(t) < 1. Yet again situation are massive awkward, because various practical examples are
existing, if a person give (0.9,0.8) for duplet, then the principles of Atanassov-IFS and Yager-PyFS
have been neglected i.e., 0.9 +0.8 =1.7>1 and (0.9)? + (0.8)2 = 0.81 + 0.64 = 1.45 > 1. To
completely and accurately illustrated the above dilemmas, the major scenario of g-rung orthopair FS
(QROFS), exposed by Yager [4] suggested a new tool: 0 < u4(t) +vi(t) < 1,q = 1. In the presence
of its powerful and effective structure, different scholars have employed the principle of QROFS in
the environment of separated regions, for instance, Ali [5] diagnosed the well-known and dominant
technique of complex QROFSs, Liu and Wang [6] invented the aggregation operators for QROFSs
using t-norm and t-conorm, Wang et al. [7] stated the different from of measures using QROFSs, Wei
et al. [8] explored the Heronian mean operators, Riaz and Hashmi [9] proved linear Diophantine FS,
and the mathematical form of N-soft topology was invented by Riaz et al. [10]. QROF information is
also utilized in strategic decision-making tools [11,12].

The principle of FS has to deal with only one-dimension information in the form of [0, 1]. Ramot
et al. [13] invented the complex FS (CFS) is to modify the TG by including the two-dimension
information instead of one-dimension information in fuzzy TG to manage inconsistent information.
Further, Alkouri and Salleh [14] tried to modify the major form of CFS, to diagnose the fundamental
theory of complex IFS (CIFS) with 0 < puy(t) +vyp(t) <1 and 0 <6y (t)+I9p(t)<1.
Additionally, Ullah et al. [15] diagnosed the complex PyFS (CPyFS) with 0 < ud,(t) + v, (t) <1
and 0 < 0%,(t) + 9,(t) < 1. Still, there were certain troubles, if an experts give 0.9¢27(%9 for TG
and 0.8e'?™(%8) for FG, then the principle of CIFS and CPyFS have been neglected i.e., 0.9 + 0.8 =
1.7>1.09+408=17>1 and (0.9)%+ (0.8)> =0.81+0.64 = 1.45 > 1,(0.9)% + (0.8)* =
0.81 + 0.64 = 1.45 > 1. To completely and accurately illustrated the above dilemmas, the major
scenario of complex QROFS (CQROFS), elaborated by Liu et al. [16,17]. The prominent characteristic

of CQROFS is described: 0 < up,(6) + v, (£) <1 and 0 < 0,,(t) +9,(t) < 1. Due to its

structure, the different individual has employed the principle of CIFSs, CPyFSs, and CQROFS in the
environment of decision-making tool [18], aggregation operators [19], complex intuitionistic fuzzy
graph [20], complex interval-valued IFSs [21]. Further, [22] and [23] included the complex
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Pythagorean fuzzy planar graphs, [24] contained the competition graph for CPyFSs, [25] contained
operators for CQROFSs, [26] diagnosed the complex g-rung orthopair fuzzy 2-tuple linguistic sets,
and Maclaurin symmetric mean diagnosed in [27].

The mathematical shape of fuzzy graph (FG) [28] covers two basic terms, called nodes and edges
in the shape of TGs. There were a few situations where the FG should be utilized alongside TG and
the hypothesis of FG could not adapt to such issues. To manage such complicated sorts of troubles, the
principle of the intuitionistic FG (IFG) [29] are massively modified than the FG, which includes the
FG in the environment of FG. The hypothesis of IFGs is massively powerful and extensive flexible
than FGs to survive with awkward and inconsistent information in practical dilemmas. Various
implementations of the above existing work in the environment of decision-making are described in [30].
Davvaz et al. [31] utilized the idea of IFGs in n-type of IFGs and gave an application on the social
network. Additionally, Akram et al. [32] again modified the rule of IFG is to initiate the Pythagorean
FG (PyFG) with 0 < uy?(4,0) +v¢2(4,0) < 1,04(A,0),9v(4,0) € [0,2r] V, A, € U. Still, there
were certain troubles, if an expert give 0.9 for TG and 0.8 for FG, then the principle of IFG and
PyFG have been neglected i.e., 0.9 + 0.8 = 1.7 > 1 and (0.9)? + (0.8)?> = 0.81 + 0.64 = 1.45 > 1.
For this, the principle of g-rung orthopair FGs (QROFGs), initiated by Habib et al. [33], by improving
the rule: 0 < puy9(A, Q) +wi(A,0) <1,604(A,0),94(4,0) €[02r] V,A,{ €U. Due to its
structure, the different people has employed the principle of QROFG in the environment of
separated regions [34].

Complex FG (CFG), explored by Thirunavukarasu et al. [35], covers the degrees of truth
explained using complex numbers instead of real values from [0,1]. There were a few situations where
the FG should be utilized alongside TG and the hypothesis of CFG could not adapt to such issues. To
manage such complicated sorts of troubles, the principle of complex IFG (CIFG) was utilized by
Anwar and Chaudhry [36]. Moreover, Akram and Naz [37] initiated the complex PyFG (CPyFQG).
Sahoo and Pal [38] utilized the concepts of CG in the framework of intuitionistic fuzzy sets (IFSs).
Due to its structure, many researchers have employed the principle of CPyFG in the environment
of separated regions [37,39,40]. Keeping the beneficial and valuable terms and conditions of
prevailing theories, various scholars have diagnosed various theories, for instance, Samanta and
Pal [41] initiated fuzzy planer graph, Pramanik et al. [42] developed the interval-valued fuzzy graph,
Samanta et al. [43] proposed the new concept of fuzzy planer graph, Alshehri et al. [44] elaborated the
intuitionistic fuzzy graphs, and Akram et al. [45] proposed the planer graph for PyFSs. The idea of
planarity is likewise examined in a few different systems remembering CPyFGs for [46]. There are a
few issues that cannot be settled by utilizing CPyFG, for example, if a leader gives data that cannot be
taken care of by CPyFG because of its limitation the amount of the squares of the two grades can’t surpass
the unit span.

In the consideration of the above-cited data, we noticed that existing theories of FG, IFG, PyFS,
CIFG, and CPyFG have a lot of weaknesses and complexities. Therefore, the main concept of complex
QROFG (CQROFGQG) is more flexible and massive feasible for managing awkward data. The major
consideration of this script is prearranged here:

1) To analyze the well-known and massive idea of CG in the presence of a new and dominant
technique of CQROF setting. The mathematical form of the CQROF setting is more flexible and
massive consistent for demonstrating the beneficial option from the collection of objectives during the
decision-making process.

2) The major concept of in-neighbourhood and out-neighbourhood using CQROFDG are also
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invented to enhance the quality of the diagnosed approach.

3) The fundamental theory of CQROF k-competition, CQROF p-competition, CQROF
neighbourhood and m-step CQROF neighbourhood graphs are also explored. In the availability of the
above-described theories, the basic and significant results for the presented work are obtained to show
the compatibility and worth of the invented approaches.

4) To show the practicality of the developed approach, we try to verify the proposed work with
the help of various examples.

5) To describe the validity and practicality of the invented work, we diagnosed an application
using presented approaches based on the CQROF setting is to enhance the major weakness of the
existing approaches.

6) In the availability of the invented ideas, we discussed the sensitivity analysis of the described
approaches.

The manuscript is organized as follows; In Section 2, we briefly also discuss CG, FCDG, CPyFS,
CQROFS, CQROFR, CPyFG, CQROFG and CPyFDG. In Section 3, the CQROFCG and their
examples are elaborated. Section 4 is based on generalized the concept of CQROFG in the CQROF k-
competition graph (CQROF k-competition graph) and a few results which are related to the following
graphs. In Section 5, we will increase the radius of CQROFCG and discussed it for p-competition of
(CQROFPCQG). In Section 6, the complex g- rung orthopair fuzzy open and close neighbourhood of
nodes and explained with the help of examples. In Section 7, we define them-step (CQROFDG). So,
we explain CQROF m- step out-neighborhood CQROF m-step in- neighbourhood of the nodes and m-
step (CQROFCQG). In Section 8, to show the practicality of the developed approach, we try to verify
the proposed work with the help of various examples. To describe the validity and practicality of the
invented work, we diagnosed an application using presented approaches based on the CQROF setting
is to enhance the major weakness of the existing approaches. In the availability of the invented ideas,
we discussed the sensitivity analysis of the described approaches. Finally, the concluding remarks are
in Section 9.

2. Preliminaries

In this Section, we comprehensively discuss basic definitions and notations that are more useful
for further development.

A graph is apair G = (X,Y) in which X represent the vertices and ¥ represent the edges. In a
graph, every edge is incident with one or more vertices. A graph in which each edge has a specific

direction is known as a digraph 6 and a diagraph is denoted by 6 = (X,, ?) In which ¥ represent

the edges uv for allu,v € X. A sequence of nodes and edges in a graph G is called a walk such
asE = vy, eq,vq,6y,...,60, vy, for j = 1,2,...,n the nodes Vj_q and v are the endpoints of the
edge ej. A walk-in which edge e; is directed from v;_; to v; is called a directed walk.

A walk-in in which no edge occurs more than one time is called a trail. A trail in which no internal
vertex is occur more than one time is known as a path. A closed path of length at least one known as a

cycle. N*(u) ={veX—{uh:uve ?} and N"(u) ={veX—{uhuve ?} represents the out-

neighbourhood and in-neighbourhood [33] of anode u in E respectively.
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Definition 1: [47] The CG of a digraph G = (X, ?) is unidirectional graph G = (X,Y) which has
the same vertex set X and has an edge between two distinct vertices 4,{ € X if there exist a vertex
x € X and edges Ax,{x € Y in G, A, €.

Definition 2: [42] Let a fuzzy diagraph (FDG) is 6 = (X, ?) and a fuzzy competition graph (FCQG)
(C(E) of E is an undirected graph G = (X,Y) that contains be the family of similar fuzzy node in E;’
and an edge exists among two different vertices 4, € U in (C((E) if and only if (iff) N*(4) n
N*()# 0 in 6 and the TG of the edge (4,{) in (C(E) is in the form:

uy(4,0) = (ux (D) A pux (OYH(N*(A) N N* (D))
Definition 3: [23] A CPyFS on U is the form of:
W = {(t, up () e2™0w® vy, ()e2™w®): ¢ € U}

where i = V=1, ¥,t € U,0 < (uw(®))* + (vw(®)* < 1 and 0 < (8 (0)° + (9 ()" < 1
v,t € U.
Definition 4: [14] A CQROFS on U is the form of:

W = {(¢t, py (£)e2™0w® v, (£)e2mw®): ¢ € U}

wherei =+v—-1, V,t €U,0 < (,uw(t))q + (vw(t))q <1 and 0< (Bw(t))q + (19W(t))q <1
V,q€ Z*, teU.

Definition 5: [48] A CQROF relation R(A, B) is explained as the subset of A X B is characterized
by the TG and FG such as:

R(A,B) = {((4,9), ur(4,0)eZ™0rA), vy (4, 0)e2m9r(49) 1 (4,¢) € A x B}

Thatis i = V=1, uz(4,0),vg(4,0) € [0,1],0r(A,0),9:(A,0) € [0,27] and
0<puh(A,)+Vvi(A, ) <1V,q€Z",(4,() €AXB.
Definition 6: [47] A CPyFG G = (U,X,Y) in which X and ¥ are CQROFS and CQROFR on U
respectively such that:

py(4,4) < px(A) A ux Q)

vy(4,) < vx(4) v ()

Oy(A,{) < 0x(A) A 6x(Q)

0y (4, ) < Ix(A) v Ix ()

and

0 < uy?(A,0) +vw2(A,0) < 1,64(A,0),94(A,0) €[0,2n] V,4,{ € U.

Definition 7: [48] A CQROFG G = (U, X, Y) in which X and ¥ are CQROFS and CQROFR on
U respectively such that:

py(4,0) < ux (A) A px ()
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v¢(4,0) < vx(4) v g ()
0y (A,4) < 0x(A) A Ox()
9y (4, ) < Ix(A) v Ix ()

and

0 < uy?(4,0) +v$9(A,0) < 1,64(4,0),9¢(A, ) €[0,2m] V,A,{ € U,q € Z*.

Definition 8: [24] A complex Pythagorean fuzzy diagraph E = (Ij, X, ?) in which X and Y are
CQROFS and CQROFR on U respectively such that:

py(4,0) < ux (A) A px ()
vy(4,0) < vx(A) Vv (D)
Oy(A,{) < 0x(A) A 6x(Q)

Uy (4,0) < 9x(A) v ()
and 0 < 24,0 + w24, Q) < 1, 04(A,0), 94(A,{) € [0,27] ¥, 4,{ € U.

Definition 9: A CQROFDG G = (U,X,¥) in which X and ¥ are CQROFS and CQROFR on U
respectively such that:

py(4,4) < px(A) A px ()
vy(4,0) < vx(4) v vx(()
0y (4, ¢) < 0x(A) A Ox({)

Uy (4,0) < 9x(A) v ()
and 0 < pgd (4, 0) + w4, Q) < 1, 0y(4 ), 9(A, O) € [0,21] V,A,¢ € U,q € Z*.

3. Materials and methods

First of all, we define CQROF-out-neighborhood of the node, CQROF-in-neighborhood of the
node, intersection of two CQROFSs, height and cardinality of CQROFS which will be biased for the
further devolvement. After this, we will discuss CQROFCGs.

Definition 10: A CQROF out-neighbourhood of a nodes A of a CQROFDG (_f = (ﬁ, X, ?) 1S a
CQROFS explained by:

Z'(s) = (59, u%ei?’ vaet¥")

That is SS9 = {C:uym > 0 or Vy(T()) > O} s.t_,u‘j:Sq — [0,1] explained by u%{) =
ux(A,0),9%: 5% - [0,2m] explained by ¢9({) = 05(4,),v9:59 - [0,1] explained by vI({) =
vsf(T()) and Y% 5% - [0,2m] defined by Y9({) = ﬁym.

Definition 11: A CQROF in-neighbourhood of a nodes A of a CQROFDG ﬁ = (lj, X, ?) is a
CQROFS explained by:

Electronic Research Archive Volume 30, Issue 4, 1558-1605.



1564

E(s) = (Sn,#nei@'vrleiw“)

Thﬁ) Sh= {(,,uym > 0or VYW > O} Suchﬂ’ u:S" - [0,1] explained by u"({) =
ux(¢, A), d": SN - [0,2m] explained by ¢1({) = 04(¢,A),v": 8" - [0,1] explained by v1({) =
Vym and Y": 51 — [0,21] defined by Y1({) = 19’1‘@-

Example 1: Consider E’ = (Ij, X, ?) be a CQROFDG for q = 3 shown in following Figure 1.

a b c d e
X _ (0_4961'1.3971 ’ 0_7961'1.5911 ’ 0_6961'1.79” ’ 0_3961'1.19” ’ 0.79ei1-79”)

a b c d e
(0.6lei°-81” "0.31ei1:21m7 () 411061’ () 31¢il01n’ (5 1ei0-61">

(a,b) (b,c) (c,d) (e,d)
0_496i1.197t ’ 0_596i0.797t ’ 0_396i0.59n ’ 0_396i1.19n ’
(a,e) (b, e) (e,c)
0.69¢10-597 (0.59¢11.597* (),29¢10-997
(a,b) (b, c) (c,d) (e,d)
k0_6161'1.0171 ’ 0_21ei1.01n ’ 0.2 1ei0.811r ’ 0_6161'0.4111 ’

il
I

(a,e) (b, e) (e,c)
0.41¢i1-01m’ () 4110611’ () 41¢i081m

Following Table 1 shows that CQROF out-neighborhood of the vertex and CQROF in-neighbourhood
of the vertex.
Definition 12: Suppose that W, and W, are both CQROSs on Z that is:

w; = {(t, ’uwl(t)eiewl(t),vwl (O ©).¢ € 7)

W, = {(t, pw, (72O, vy, (D)t € 7}
W, N W,, be the intersection of W, and W,of CQROF in the following specific way:
Wy N Wy, = {(& tw, o, (D020 vy, 1y (£)ePwinw0): ¢ € 7}
where:

Lo, o, (8) 0w ow, () = min (/th1 (©), thw, (t)) g imin Bw, (£),6w, (1))

YV, nw, (t)e Wwynw, () — max (Vw1 (v), Vi, (t)) elmax (dw, (), 9w, (1)
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(0.49¢1-397 61 gi08in)
(o ¥

(0.7961'1/79"‘ 0_5181'0.611()

Figure 1. The complex g-rung orthopair fuzzy diagraph.

Table 1. The CQROF out-neighborhood of the vertex and CQROF in-neighborhood of the vertex.

{b, (0.496i1.197'[’ 0.616i1'01n)}
{e‘ (0.696i0'59n, 0.416i1'01n)}
{C, (0_596i0.79n’, 0.2 leil.Oln)}
{e’ (0_596i1.59n" O_4lei0.61n’)}

?

{b, (0.4961'1.1911:’ 0.616i1'01”)}

{e’ (0.69€i0'59n, 0_4161'1.0171')}
{b, (0_4961'1.1971', 0_6161'1.0171')}
{C, (0.596':0'79”, 0'2161'1.0171')}

{d, (0_3961'0.5911" 0.216i0'81ﬂ)}

2 {e, (0.596i1.597t’ 0_4lei0.61n)}
{c, (0_296i0.99n” O_4lei0.8111:)} {e, (0.696i0.597t’ 0_4lei1.01n)}
{d, (0.39ei°'59", 0.6lei°'41")} {e, (0.596i1.597t’ 0_4lei0.61n)}

Definition 13: Suppose that a CQROFS W = {(t, py ()ew®, vy, ()e®w®: ¢t € Z)} and the
cardinality of CQROFS W is represented by |W| = (|W|,e™le, [ W|,e!Wls) is the sum of TG
and FG value of objects of Z in the form of:

lw| = <Z o (£ eiZtiEZBW(ti),Z v (t;) eiZtiezﬂw(ti)>
ti€Z ] ] ti€Z
= (W] ,elWle, W], e™lo), v, t € Z

Definition 14: Suppose that a CQROFS W = (¢, uyyy ()% ®, vy, (£)e®w®: ¢ € Z) and the height
of CQROFS W is represented by h(W) = (fl# (W)etheM f (W)eihﬁ(w)) is explained:

H(W) = (max(,uw (t)) el max9w(t), min (vyy (t))ei minﬁw(t))
= (ﬁﬂ (W) e iBG (W), HV (W)e l'fllg (W))
A (CQROFCQG) is defined below.
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Definition 15: Suppose that G = (U,X,¥) be a CQROFDG. Then CQROFCG C(G) of a
CQROFDG G is an undirected CQROFG G = (U,X,¥) in which set of nodes of C€(G) is similar
in E and a CQROF edge exists between two different vertices A4,{ € X in (C(E) iff the
CQROFS E9(A)NEY(A) =0 in 6 The values of TG and FG of edges (4,{) in «:(6) are
explained in the form:

1r(4,0) = (1 (A) A () x B (89(4) 0 29(0)
vy(4,0) = (vx () Vv () x by (F9(A) N E9(S)

Ox(A) 6x(@D)\ ho(E9() N 29(D))]
2T 2T 2T

0v(A,{) =2m (

2T 2T 2T

9(4,0) =21 (MA) v ﬁx({)) BCIORENO)]

Example 2: Consider G= (U,X,,?) be a CQROFDG for g = 3in the following Figure 2,
explained as:

a b c d e f
(0_7961'1.19” ’ 0.49ei1-39" ’ 0.39ei°-79" ’ 0_3961'0.8911 ’ O.99€i0'99” ’ 0.796i1'09")

a b c d e f
(0.316i1'01” "0.61€101m°(,71¢i0-1m" 0,31 ¢1.017" 0, 81¢i11177 (.5 1ei1-°1">

X:

(b,a) (b,c) (b,e) (b, 1) (c,e)
0_4961'0.9911 ’ 0_296i0.69rr ’ 0_496i1.091n ’ 0_4961'0.9911 ’ 0_3gei0.79rr ’
(d,c) (e,d) (e, (f,a) (f, o)
0_2961'0.69” ’ 0.39ei°-79" ’ 0_3961'0.8911 ’ 0_7961'0.9911 ’ 0.396i0'79"

(b,a) (b, c) (b,e) (b, 1) (c,e)
0_51ei0.91n ’ 0.616i0'91” ’ 0_7161'1.0111 ’ 0.5 161'0.9111 ’ 0_8161'1.0111 ’
(d,c) (e,d) (e, f) (f, @) (f,c)

0.5 1ei1.01n ’ 0.5 1ei1.01n ’ 0_616i1.11n ’ 0_416i1.01n ’ 0_616i0.91n

!
Il

(0.490‘1'397, 0.61¢' 1") ) (0.39‘:1'0.7‘)71"0.71‘;[0 111)
b (0.29¢10697 0 611091y c
)
& @y,
) e ¢
~ o el
4 O ~ Zn -~
=) D«\ . L] 0> = =]
% o E & w v
= SRN 3 ) © §
o™ < n 3 3
o o 3 @©
Lt 3 ] $
& 8 ~9 = .
- S © ® o
= (0 é’ b\e N S S
R cu > * ot B 3 e
o “, e » 2 & =
S : 29¢ N oS °
~ : \J S 5
N
© o ~
5
Q
S
£ (0.39¢10897 0. 61111 - gge 451
. . »10.99mT >t1. ™
(0.7951109#' 0.516'1'01") (0_990 ,0.819 )

Figure 2. The complex g-rung orthopair fuzzy diagraph.
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Table 2. The out neighborhood of the vertices.

?

{a, (0_4961'0.9911" 0_5161'0.9111')}
{C, (0.296i0'69n, 0_6lei0.91n)}
{e, (0.496111.09171" 0.7161'1.0111')}
{f, (0_4961'0.9911" 0.5 1ei0.91n)}

{e, (03910797, 0.81¢101m)}
{C, (0_296i0.69n’, 0_5161'1.0171')}
{d,(0.39¢10797,0.51¢1-01m)}
{f; (0_396i0.8971" 0_6lei1.11n’)}

{Cl, (0_796i0.9977:’ 0_4_16i1.0177:)}
{C, (0_396i0.79n" 0_616i0.9171’)}
Table 3. The N°(8) n K9(#) and h (N9(3) n No(w)).

swo o BEWnEQ EWns@)
b

QU

(9]
S 8 8 8

Q

S 8 8 8 8

a

a

a s 0

BB ¢ {e (039610797, 0.8161101m)}  {(0.39¢1079, 0.81¢i101m)}

BBl d  {c (0296067, 0.616i101m)}  {(0.29¢1069, 0.61¢i101m)}

. e {f’ (0_396i0.89n'0.6161'1.1111:)} {(0'396i0.89rr’ 0.616i1'11n)}

. f {C, (0'2961'0.6977:’ 0.616i0'91”)} {(0_296i0.6971:’0_6lei0.917r)}

. o ) )

. e ) )

. f ) )

. e ) )

= f {c, (0.29¢%%°™,0.611017)}  {(0.29¢10-°™, 0.61e1-017)}
f ) )

The CQROF out-neighbourhood of the vertices are shown in Table 2. The CQROFS Z9(A) N
Z9(¢) and h(E9(A) N E9(Q) evaluated in Table 3. We observe the edges b and c,b and f,b and
a,b and f,b and e by using Table 3, which is an illustration of Figure 3 for the CQROFG.

Definition 16: Suppose that G = (U,X,¥) be a CQROFG. So, an edge (4,{) in a CQROFG be

strong if it satisfies the following conditions:

1
ue(4,9) > = (1x(D) A (©)
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1
v (4,9) < 5 (W@ V(@)

6+(4,¢) > % o <M A 9x_(5)>'

21 21
1 x(4)  9x(0)
(A, < =|2m| —=—V——
2 21 21
v,A,{ €U.
(0.496"1'39",0,596‘0‘89”) (0.176’10'33", 0.57€i°'46”) (0.396“0'79",0.696"0'89")
b ° .

~ ’.a (0'166’ io‘317
* o 0'21 0 .37¢i05 =
'\3 %8 J qj"’s : l”) 3
£ 8 2 ®
a :3 ;l, 19(:’ 0 g
o 2 "
3 g 4 S
Y X RS
s S {0567 Y
;\g a {03877 ,0.316 3
3 N (0.13¢ 3

i e
f (0.516,11.01711 0.81("1‘11")

(0.81¢'1117,0.51¢'1:01)

Figure 3. The complex g-rung orthopair fuzzy competition graph.

Theorem 1: Suppose that a CQROFDG G = (0,%, ?) A CQROFS having one element Z9(A) N
Z9(¢) and the edge (A,{) of (C(G) is strong if satisfy the following conditions:

Lo 1Z39A) N E9(Q), > 5, and [29(A) N E9QIy < 3.

I |Z29A) N EYJ)|g > 1m and |Z9(A) N Z9(()|y < 1m.
The proof of this Theorem 1, discussed in Appendix.

4. Complex g-rung orthopair fuzzy k-competition graphs

In this section, we generalized the concept of (CQROFQG) in the CQROF k-competition graph
(CQROF k-competition graph) and a few results which are related to the following graphs.
Definition 17: Suppose that a complex number represented by k = ae® and £9(A) N £9(¢) =
(a'e®¥',b'e") . The CQROFKCG C(G) of G = (U,X,¥) is an undirected CQROFG G =
(0,X,Y) ie., CQRO the CQROF family of nodes is Ck(G) iff a’ >a,y >y for TG and b’ >
a,n’ >y for the FG. The TG and FG values of the edges (4,{) in C k(é’) in the following form:

al

(4,9 = = (1 (4) A (@) X B (B7(A) 0 593)

Vy (/1, O =

b" — .
2 () V(@) X By (B9 N E9(0)
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!

[V =y 6k 6D\ he(E(A) N EUD))]
9y(/1,()—27r_ 7 (27‘[ A= >>< o=

=y (9x(A)  9x(D)  hy(E9(A) nEUD)]
ﬁy(/l,f)—Zﬂ_ ; ( SV )x o=

!

Example 3: Consider E = (f], X, ?) be a CQROFDG for q = 3 as in Figure 4 and explained as:

a b c d e f
(0_3961'1.597: ’0.29¢1139m’ () 49,1197’ () §9i1.39m’ () 79 4i1.39m’ 0_596i1.59n>

X‘:< a b c d e f )

0.716i1'21" ’ O.81ei1-01" ’ 0.616i0'61" ’ 0.2 1ei0.211r ’ 0.3 1ei1.011r ’ 0_51ei1.21n

(a,b) (a,c) (b,d) (d, ) (e,a)
0_196i1.29n ’ 0_2961'1.1911 ’ 0_296i0.099n ’ 0_396i0.99n ’ 0_3961'0.9911 ’
(e, b) (e,f) (f,0) (f, d)
0_296i0.99n ’ 0_496i1.19n ’ 0_396i1.097t ’ 0_296i1.1971'

(a,b) (a,c) (b, d) d,c) (e,a)
0.816i1'21” ’ 0.616i1'01” ’ 0_51ei0.1n ’ 0_51ei0.71n ’ 0_51ei1.11n ’
(e, b) (e.f) (f,0) (f,d)

0_7161'1.0111 ’ 0_4161'1.0111 ’ 0_6161'1.0111 ’ 0_4161'1.0111

il
I

The CQROF out-neighbourhood of the nodes are shown in Table 4.

(0.196“1':9”,0.816"1'215)

(0.79e13°7,0.31¢201™)

i101m)

e iog9m (.71e

(0.29¢

0.39(5‘”-"9”,0_51611_1171)

(urmgIS'O 'xeeo-m;ez'())

(0 29¢ 1197 0616”01")
(0.496“1'19”,0.416“1'01")

AT (0‘29e g
cd

e‘\,\ 29
{1097 '().b\ ‘047,
(6392 f e /.(,,”)
(0.596"1'59",0.516‘11'21") ,\(\<~7\
0 bl
%ir,, © @ d o
7
)

> £
<z,

) 0.39¢10997 (. 511071 %Q
( , ) S

Figure 4. Complex g-rung orthopair fuzzy diagraph.
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Table 4. Complex g-rung orthopair fuzzy out neighborhoods of the family of nodes.

{b, (0.198i1'29”, 0.81ei1.217t)}
{c,(0.29¢i1197 0.61¢11:017)}

{d, (0.296i0'099”, 0.516i0'1”)}

1)
{C, (0_3961'0.9971', 0_516i0.71n)}
{a‘ (0.3961'0.997'[’ 0.5161'1.117'[)}

{b, (0_2961'0.9917:’ 0_7161'1.0111:)}
{f, (049611197, 0 41 ¢11.01m))

{C, (0_3961'1.0971" 0_6lei1.01n')}
{d, (0_296i1.19n’, 0_4lei1.01n')}

Table 5. The N9(8) n N°(w), h (Nq () NN (W)) and cardinality of CQROFS.

AN » 0 ? ?

- 0 0 0

- d {C, (0.296i0.9971" 0.616“'017[)} (0.296':0'99”, 0_616i1.01n’) (0'2961'0.9911" 0.616i1'01n)

- e {b, (0'1961'0.9917:, 0.816i1'21ﬂ)} (0_1961'0.9911', 0.8lei1'21”) (0.196i0.99n’, 0.8161'1.2111')

- f {C, (0.296i1'09ﬂ, 0.616i1'01n)} (0.296i1'09n, 0.616i1.01ﬂ:) (0.296i1.09n” 0.616i1'01”)

K 0 0 ?

K 0 0 0

BN E 0 0 ?

- f {d, (0.296i0.991r’ 0.5 161’1.0111:)} (0_2961'0.9971’ 0_5161'1.0171) (0_296i0.99n:, 0_516i1.01n')

BEN « 0 0 0

- 0 0 0

e s 0 0 0

N - 0 0 0

- f {C, (0_396i0.9971', 0_6lei1.01n’)} (0'396i0.9911" 0.616i1'01n) (0'3961'0.9911" 0.616i1'01n)

N 0 0 0

The CQROFSs Z9(4) N £9(¢) and h(E9(A) N £9({)) calculated in Table 5.
Let k = 0.25¢'%797 then CQROFCG 0.25¢'°797 has edges.

29(a) N E9(d)], = 0.29 > 0.25 129(a) N E9(d)], = 0.61 > 0.25
129(a) N E9(d)|g = 0.99 > 070  |Z9a) N E(d)]y = 1.01 > 0.70
29(a) N E9(f)], = 0.29 > 0.25 129(a) N E9(f)], = 0.61 > 0.25
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I29(a) NE(F)ly = 099 > 0.70  |E9(a) N EI(f)]g = 1.01 > 0.70
I29(d) N E9(f)], = 0.39 > 025  |29(d) NE(f)], = 0.61 > 0.25
I29(d) NEI(F)lg = 0.99 > 070  |E9(d) NEI(f)]y = 1.01 > 0.70
I29(b) N E9(f)|, = 0.29 > 0.25 129(b) N E9(f)], = 0.51 > 0.25
129(b) N E9(F)]y = 0.99 > 0.70  |E9%(H) NEI(f)|y =1 > 0.70

The Complex g-rung orthopair fuzzy k = 0.25e%7°7_competition graph is displayed in Figure 5.

Theorem 2: Consider 6 = (Ij, X, ?) be a CQROFDG. If H(Eq(/l) N Eq(()) = (1ei2ﬂ, 1ei2") and
a' > 2a,y > 2y, b’ <2a and n’ < 2y. Then edges (4,{) is strong in (Ck((_,})) such that:
(29 N E9Q)| = (@e, bleim).

The proof of this Theorem 2, discussed in Appendix.

(039&,{1.517{'0'71€_i1.21n] (0.?‘%‘”_39“ 031611-01#) (0'29(1’1.39;.0'81(.1'1,01:':]
e

Figure 5. The Complex g-rung orthopair fuzzy k-competition graph.

5. p-competition complex q-rung orthopair fuzzy graphs

Now we will increase the radius of CQROFCG and discussed it for p-competition of
(CQROFPCQ). Firstly, we will explain the support of CQROFS in the following form:

Definition 18: Considered that W = {(¢, uyy (£)e¥w®, vy, (£)e®w®:t € Z)} be a CQROFS. So,
support of CQROFS of W € W, of Z.
W, ={t € Z: uy,(t) # 0,vy(t) # 0}
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Definition 19: Consider that G’ = (lj, X, ?) a CQROFDG. The p- competition of CQROFG C? (6)
of the CQROFDG G is an undirected CQROFG G = (U, X, ¥)that is the CQROF family of nodes
cP (ﬁ) is equal to ﬁ and CQROF edges exist between two different vertices (4,¢) € Uin (Cpff iff
|supp(E9(A) N £9({))| = p. The TG and FG values of the edges (A, {) are in the following form:

(u—-p)+1

uy(4, Q) = ————[ux (D) A px (O] x 0 (E9(4) N E9(D))
- 1 A
ve(4,0) = % [vx () v vx (O] x by, (89(4) 0 29(D)
o [u=p)+1(6x(A) 65D\ _ he(E(A) N EUD))]
0y(4,0) = 2m i u ( 2m A 21 >>< 21
o Ju=p) +1(95(A) 95D _ hy(E9(A) N E9(D))]
0.0 = 2| ( Ay 2n>>< o

Since u = [Aupp(E9(A) N £9(]))|.

Theorem 3: Consider G = (T, Xﬁ‘)) be a CQROFDG. If h(29(4) nE9(])) = (1?7, 0e'") in
(Clzil(f})) then the edges (4, () is strong, in which t = |Aupp(£9(A) N Z9(]))|.

The proof of this Theorem 3, discussed in Appendix.

Example 4: Consider 6 = (ﬁ, X, ?) be a CQROFDG for g = 3 in the following Figure 6, explained as:

U1 Uy U3
0_8161'1.6111 ’ 0_416i1.41rr ’ 0_716i1.81n ’
Vy Vs Vg
x| \0.61et6IT 0716t T 0,516t 0Mm
B U1 Uz U3
0_296i1.197t ’ 0_796i1.097t ’ 0_596i0.59n ’
Uy Us Vg

0.79¢10797° 0,69¢10-87 (790997

(v1,v4) (v1,vs5) (v1,Vs) (v2,v4)
0_6161'1.6111 ’ 0_7161'1.4111 ’ 0_416i0.91n ’ 0_416i1.21rc ’

(v2,vs5) (v2, v6) (v3,v4) (v3, vs)
? 0.3 161'1.0111 ’ 0_4161'1.0111 ’ 0_51ei1.21n ’ 0_51ei1.21n

(v1,v4) (v1,v5) (v1, ) (v3,v4)
0_496i0.99n ’ 0_496i0.99n ’ 0_59ei1.09n ’ 0_5961'1.0911 ’

(v2,vs) (v, v6) (v3,v4) (v3, vs)

0_6gei0.99rr ’ 0_7gei0.89rr ’ 0_696i0.897t ’ 0.69ei0'89”

The CQROF out-neighbourhood of the nodes which are shown in Table 6. Table 7 shows that the
height, support, and carnality of support of CQROFS (5 WA NEI( )),V A, €U. For p =2 the
correspondence C2(G) shown in Figure 7.
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Table 6. The CQROF out-neighborhood of the nodes.

{174, (0.616i1'61n, 0.496i0'99”)}
{175; (0.716i1'41”, 0.496i0'99”)}
{176, (0.416i0'91”, 0‘596i1.09n)}

{174, (0.4161'1.2111:’ 0.5961'1.0917:)}
Ve, 0.316i1'01”, 0.696i0'99”
5
{176' (0.4161'1.0111:’ 0.7961'0.8917:)}

(v, (051611217, 0,69¢10.8%))
{vs, (0.51e"217,0.69¢'0897)}

?

(0.616 r'l.G].:n." 0.49650'99"]

3

(0.41¢™417,0.79¢11097m)

Va
(0.?18 i1.81mw 0_5961'0.5911)

=
(601?690 urp1 @ 1£0)

Ve

(© 512:‘1.011T,0.798i0'99ﬁ)

Figure 6. The complex g-rung orthopair fuzzy diagraph.
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Table 7. The height, support and carnality of CQROFS.

v,  {vs,(0.39¢1217,0.61¢1117)} (0.39¢17,0.61017)  {(vy, vs, v6)} 3
{vs, (0.29e0°7,0.71¢'1-017) }
I {vs, (0.39¢10897 0 81¢i111m)}
v; {4, (0.59¢11°7,0.71¢1-017)} (0.59¢1197,0.71e091™)  {(v,, vs, 6)} 2
l {vs’ (0.4961'1.1911:’ 0.7161'1.9111)}
o v ) o ) ®
Bl ? 1) 1) 1)
N v ) ) ) )
vs  {v,,(0.39¢1197,0.71¢1117)} (0.39¢11197,0.71017)  {(v,,v5)} 2
l {vs, (0.29¢1097, 0.71¢1-017) }
2 v ) ) ) )
2 v, ) ) ) )
o v ) ) ) )
o v, ) ) ) )
- Vs ? ? 1) 1)
o v ) ) ) )
(0.81e%%, 0-392"1“"”) (0.61¢%617, o‘9ve“°v7"")

<6601 2TE°0 2,601 2L0T0) S

(0.716’“'41", 0.696,1'0.897!)
(0.419‘1'41”,0.796’“'09”) [ AA

(15012LT0 " 259:0:262°0)

- —®
< ucog01?CLE D 1,0 2L0T0) S

0.5 1€i1.01ﬂ‘ .7981'049971
s ( o )
(0.716"1'81" 0.59¢ i0.591r)

Figure 7. The 2-competition complex q-rung orthopair fuzzy graph.

6. Complex q-rung orthopair fuzzy neighborhood graphs

Now, will discuss the complex g- rung orthopair fuzzy open and close neighbourhood of nodes.
After that CQROF open and close neighbourhood graph is explained in the following form:

Definition 20: CQROF open neighbourhood ofanode v ofa CQROFG G = (U, X, Y) isa CQROFS

in the form:
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Z(A) = (SA’tAei(pA: #Aeiw/‘)

where S, = {{: uy(A,7) > 0,0r v¢(A4,{) > 0}, Such that: #,:S, - [0,1] explain in the form

£4(0) = uy(A,0), pp: Sy = [0,2] explain in the form  ¢@,({) = 0%(A, ), $4:S4 — [0,1] explain
by #4(0) = v¢(4,{) and w,:S, = [0,21] explain by w, = 94(4, {).
v,A €. CQROF singleton set in the form:

Ay = ({43, g0, v} ePn)

Such that: u/s: {A} - [0,1] explain in the form u;(A) = pu,(A),0:{A} - [0,21] explain
in the form 6,(A) = 64,v,: {A} - [0,1] explain by v;(A) =v4(A) and 9;: {A} - [0,27]
explain in the form 9/;(A) = 94(A). The complex fuzzy closed neighbourhood of a node A in the
following form:

Z[A] = E(A) U A,

Definition 21: Consider that G = (U,X,¥) the CQROFG. The CQROFONG of G is a CQROFG
N(G) = (U,X,D) in which family of nodes of CQROF is equal in G and a CQROF edge exist
between two different vertices 4, € U in N(G) iff the CQROFS Z(A) N EZ(() # @ in G. The TG
and FG values of the edge (4,¢) in NG in the following form:

1o (4, Q) = (ux(A) A (D)) x B (E() N 2(D))

vp(4,0) = (v () Vix (@) x b, (E(4) N 2(D))

o [(ex()  6x(D) hy(E() NnED)]
0p(4,0) = 2m ( 21 A 2 ) % 27

_ o [(5x)  9x(@) b (E(A) nE()]
Ip(A,0) =21 ( o \Y o )X e _

Definition 22: Consider that G = (lj, X, Y) the CQROFG. The CQROFCNG of G is a CQROFG
N[G] = (U,X,D) in which family of nodes of CQROF is equal in G and a CQROF edge exist
between two different vertices A,{ € U in N[G] iff the CQROFS EZ[s] N Z[w] # @ in G. The TG
and FG values of the edges (4,¢) in N[G] in the following form:

1p(4,0) = (ux(A) A () x By, (E[s] N E[T])

vp(4,9) = (vg() Vix (@) x b, (3[s] N Z[7])
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Ox() (D) ho(Els] 0 E[7))
2m 2m 21

0p(A,{) =2m <

[ 9N he(E[s] n E[GD)]
9p(4,¢) = 2m ( 21 v 2m >X 2m

Theorem 4: Each edge of CQROFG G in which there exists just one edge in N[G].

The proof of this Theorem 4, discussed in Appendix.

Example 5: Consider G = (lj, X, Y) be a CQROFG for g =3 in the following Figure 8,
explained as:

X1 X2 X3
0_8161'1.6111 ’ 0_716i1.41rr ’ 0_51ei1.11n ’
X4 X5 X6
x| \0BletoIm 071t 0.61et oM
B X1 X2 X3
0_596i1.197t ’ 0_596i1.197t ’ 0.69ei1'39” ’
X4 X5 Xe

0_2961'0.7911 ’ 0_6961'0.89” ’ 0_7961'1.19”

(x1,x2) (x4, x3) (x4, x5) (%1, x6)
0.616i1'21” ’ 0_416i1.01n ’ 0.616i1'21" ’ 0.5 1ei1.21n ’

(x5, x3) (x3,x4) (x4, Xs5) (x5, x6)
F=| ‘041110177 (.41¢i1017’ 0,51l 41’ (,61¢i191m

(%1, %2) (%1, x3) (x4, x5) (x1,x6)
0_596i1.19n ’ 0.696“'29” ’ 0_6961'1.0911 ’ 0_6961'1.0911 ’

(x5, x3) (x3,x4) (x4, X5) (x5, x6)

0.49¢10:997’ () 39¢i1.29’ () 5Qi0.89T’ () 7Qi0.997
Table 8 contains the family of open and close vertex of CQROF. Table 9 contained the CQROFS
(E)NEQ)) and A(E(A) NE()), VA, €U and Figure 9 illustrates CQROFONG. Table 10

contains the CQROFS (Z[A] N Z[¢]) and h(E[A] N E[{]),V A, €U and Figure 10 show the
CQROFCNG.
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i1.197 {x .
{x (0.71e*7 0.59¢73 3(0.51¢0144,
2 ~69¢ {139
(0.418’:1'0171, 0_49950.99?1) ”
3
::u
[on]
L
S
s -
:to
—
o]
=
)
Ies : : )
e 1.5117’_ 0 (0_61610.91:7’ 0.79¢ LO.D'JT{) (1AL 0.696108%:“)‘3
799 {TJ {_xs(o,'?le

Figure 8. The complex g-rung orthopair fuzzy digraph.

Table 8. The CQROF open and close neighborhood.

{x2' (0.616i1'21n, 0.5961'1.197'[)}
{.X'3, (0_4_161'1.0171', 0.696i1'29n)}
{(0.61€i1'21n, 0.696i1'09n)}
{x6' (0_5161'1.2171', 0.696i1'09n)}

{x1,(0.61¢'1217 0.59¢1197)}
{X3, (0_416i1.01n” 0.516i1.01n’)}

{x1,(0.41€"1:017 0.69¢1-2°7)}
X2, 0 1. , U. e' ’
{ (0 4111017 () 49,10 9977:)}
%4, (0.4111017 0 39401
{ (0 4111017 () 39,11 291‘[)}

{x3, (0.41€11017, 0,39¢i1297)}
{x5, (0.51¢141™,0,59¢1089m)}

{x1, (0.6111217,0,69¢i1.09m)}
{x4, (0.5111417, 0.59¢10897)}
{x6, (0.61£10917, 0,79¢109°7)}

{1, (05161217, 0,69¢i1057)}
{x5, (O.6lei°~917f, 0_7961'0.9971')}

Electronic Research Archive

{xz, (0_6lei1.21n" 0_596i1.19n)}
X3, (0.416i1.01n’ 0_696i1.29n)
{xs,(0.6le"1'21”, 0.696i1'09n)

{xé’ (0_516i1.21n’ 0_6961'1.0911:)}

U {xp (0_8161'1.611:’ 0_596i1.19n’)}

{x1' (0_6lei1.21n’ 0.59ei1'19”)}

{x?” (0_416i1.01n’ 0_516i1.01rc)}
U {le (0.7lei1'41”, 0.59ei1'19”)}

{x1' (0_416i1.01n’ 0.69ei1'29”)}
{xz, (0_416i1.01n’ 0.49ei0'99”)}
{X4, (0.416i1.01n’ 0_396i1.29n)}

U {x3, (0.51ei1'11”, 0.69ei1'39”)}

{x3, (041611017, 39¢i1297)}

{xs, (0.51ei1:417,0,59¢10897)}
U {x4, (0.81¢12617,0,29¢10797)}

{x1, (0.6lei1'21", 0.69ei1'°9”)}
{x4, (051611417, 0 59¢10897)}
{x6, (06110917, 0,79¢1099m)}

U {xs, (0.71¢12417,0,69¢10897)}

{xs,(0.6110917,0,79¢10997)}

{x1, (0.51ei1'21", 0.69ei1'°9”)}
U {xe, (0.61¢12617,0.79¢i1-197)}
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Table 9. The CQROFSs N9(3) N N(W) and h (Nq(g) n Nq(W)).

= =
w N

=
S

= =
o a1

=
w

= = =
IS o w1

=
vl

x = =
o w1 o

=
o

=
S

{x3,(0.41€%1017,0.69¢12°7)}
{x5,(0.41€%1:017,0,59¢i1197)}
{x3,(0.41€"1:017,0.69¢1129™)}
{xs,(0.51™-217,0.59¢17)}
{x6,(0.51€10917, 0.79¢1-097)}
{xs,(0.61€%0917, 0.79¢11:097)}
{x1,(0.41€1:017, 0,69¢11-2°7)}
{x3,(0.41e"1:017,0.49¢1129™)}
{x1,(0.61™-217 0.69¢1197)}
{x1,(0.51€i1217, 0.69¢11-1°7)}
)
{x,,(0.41€1:017, 0.69¢11-2°7)}
{(0.41'-017,0.59¢11-297)}
{x1, (0.41e:017,0,69¢1-2°7) }
)
{xs,(0.51€1091%, 0.79¢10-9°m)}
{x1, (0.51e'1-217,0.69¢11-097)}

(0.416“'01”, 0_696i1.2971')
(O_4lei1.0171" 0_596i1.19n’)
(0.5161'1.2171’ 0.5961'1.1911)

(05 161'0.9111" 0'7961'1.0911')
(0_6161'0.9171" 0_7961'1.0971')
(O_4lei1.0171" 0_696i1.29n’)
(0.4161'1.0171’ 0.4961'1.2911)
(0.616“'217[, 0.696“"19”)
(0.51ei1.21n” 0.696i1'19n)
@
(O.41€i1'01n, 0_593i1.297r)

(0.416i1.01n” 0.696i1.2971:)
)
(0_Slei0.91n” 0_796i0.9971')
(0.5161'1.2171’ 0.696i1'09n)

7. m-step complex q-rung orthopair fuzzy fompetition graphs

If prey is assailed by the predator ¢ then the association between them can be represented by an
edge m in a CQROFDG. But if the predator needs the support of numerous mediators
(¢1,€5,C3, ey Cp—1) then the connection among them is represented by CQROFDP 13)('2(1) in a
CQROFDG. In this segment, first, we define the m- step (CQROFDG). So, we explain CQROF m-
step out-neighbourhood CQROF m-step in- neighbourhood of the nodes and m-step (CQROFCQG).
Definition 23: Consider that G = (U,X,¥) the CQROFDG. The m- step CQROFDG of G is
represented by Gm = (f], X, ?) which has an equal family of nodes Gmof CQROF and a CQROF
edges among two different vertices A and ¢ in ﬁm if there happen a CQROF directed path
(CQROFDP) of interval m from A to { so 13)(%0 in 6
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Table 10. The CQROFSs N[3] n N[W] and h(N[$8] n N[W]).

=
N

X3

X4

X5

X6

X3

R OR R
o)} (&3] S

= R
= £

R OR R
o)} (431 o

=
o

Electronic Research Archive

{x1, (0.61¢i1217,0.59¢1-19m)}
{x,, (0.6111217, 0.59¢11197)}
{x, (0416101, 0,69¢11-2°7))}

{x1, (0.416i1017, 0. 69¢i1.297)}
(x5, (0.41¢101m,0.59¢i1-19m)}
{x3, (0.41¢1L017, 0,69¢1-397)}

{x5,(0.61e%1217,0,59¢i1.097)}
{x3,(0.41€%1017,0.69¢i12°7)}
{xs,(0.51€%1217,0.69¢1-0°7)}

{x1, (0.61i2217, 0.69¢1197)}
{xs,(0.61e%1217,0.69¢i1-0°7)}
{x6,(0.51€1091%, 0.79¢11:097)}

{x1, (05111217, 0,69¢i1197)}
{x5, (0.61£10917, 0,79¢i1.097)}
{x6,(0.51€%1217,0.69¢i11°7)}

{x1,(0.41€11017 0,69¢11297))
(x5, (0.41¢101m 0. 59¢i1-19m)}
{x3,(0.41¢1017, 0,69¢i1-397)}

{x3, (0.41¢i101m 0 49¢i129m)}
{x1,(0.6111217,0.69¢i1197))}
{x1,(0.516i1217,0,69¢11197))
{x3, (0.41¢11017, 0,69¢i1-397)}
{x4, (0.41¢11017, 0,39¢i1.297)}

{x1,(0.41¢101m,0.69¢1-29m)}
{x4,(0.41¢1017, 0,59¢i1.297)}
{x1,(0.41¢i101m,0.69¢1-29m)}
{xs, (0.51€1091m, 0,7910.99m) )
{xs, (0.51e10917, 0,7910.99m))

{x1, (05111217, 0 69¢i1.097)}
{x5, (0.61£10917, 0,79¢10997)}
{x6, (0.6lei°~917f, 0_7gei1.19n)}

(0_616i1.21rt' O.59ei1'19”)

(0_413i1.01n' 0_596i1.197t)

(0_6131'1.2111' 0.596i1.o9n)

(0616 i1.2 17'[’ 0.69¢ i1.0911:)

(0_5131'1.2111' 0.696i1.19n)

(0_413i1.01n' 0_596i1.197t)

(0_416i1.01n, 0l496i1.29n)
(0.613“-21”, 0_696i1.19n)
(0_5 1eit21m O.69ei1'19”)
(0.413“'01”, 0_396i1.29n)

(0_416i1.01n' 0.596i1.29n)

(0_413i1.01n' 0_696i1.297t)
(0.51ei°'91”, 0.796i0.99n)
(0.5 1gi091m 0_796i0.99n)
(0.6164217, 0,69¢1055m)
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(0.31e i0.85n' O.SSei0»7ln)
{x,(0.81¢1417,0.59¢1177)}
(0.21'0-%67,0.41¢'090m)

Figure 9. The complex g-rung orthopair fuzzy open neighborhood graph.

Definition 24: Consider 6 = (Ij, X, ?) be CQROFDG. The CQROFDG (m-step out neighbourhood)
of anode A4 ofa CQROFDG 6 = (Ij, X, ?) be a CQROFS:

Eg(A) = (S5, t]e'%h, gielwn)

Such that: {S] = {:3 is a CQROFDP of distance m from A to{ 13)(;1’})}.

So, t1:S7 - [0,1] explain in the form () =
{min ux(d,9),(d, ¢) iA an edge of P_’)(T'O, @5:S; > [0,2n]} explain in the form  @,({) =
{min 6x(d, 9), (d,g) iA an edge of ﬁ(%()} £1:S4 = [0,1] explain F4(0) =

{maxvx(d, @), (d,g) iA an edge of ﬁ(%i)"‘)/q: Sy - [0,2r]} explain in the form  wj({) =

{maxﬁx(d, g),(d,g)iA an ec_i)ge 0]5 13(%)}.
Definition 25: Consider that G = (U, X, Y) be CQROFDG. Then CQROF m-step in- neighbourhood

of anode A4 ofa CQROFDG 6 = (Ij, X, ?) is CQROFS:
ER(A) = (S}, t)elea, flelwn)

Such that: S} = {:3 is a CQROFDP of length m from ¢ to A 13)(?,‘5).

So, Sy —[0,1] explain in the form () =
{min uz(d, ¢),(d,g) id an edge of ﬁ(%()' oSy - [0,27t]} explain in the form i) =
{minbg(d, ), (4, ) iA an edge of 1_5(;1’})} #1: Sy - [0,1] explain F1(0) =

{maxvx(d, g),(d,g)id an edge of 13)&})} and wj3(¢):S} = [0,2m] explain in the form

Electronic Research Archive Volume 30, Issue 4, 1558-1605.
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wi(Q) = {maxﬁx(d, g),(d,¢)id anedge of 1_5(2?{)}.

10771

10797
i\.o\n'0.298'°

(0_31€i0.85n 0.55€i0.71n)
Q)

~
=
3
)
-
=
o
(=N
wm
=
E
-
°
=
o
-
©
o
=
—
)

206017 10 19507120

Figure 10. The complex g-rung orthopair fuzzy close neighborhood graph.

Example 6: Suppose 6 = (U, X, ?) be a CQROFDG for g = 3 in Figure 11, explained as:

tl t2 t3 t4_
_ (0_8161'1.2111 ’ 0.5 161'1.4111 ’ 0_4161'1.5111 ’ 0_6161'1.4111)
X - tl tz t3 t4
(0.516i1-01”'0.6lei-1"'0.7lei°-1"'0.316i1-01")

(t1, t2) (t1,t3) (t1,tq) (ts, ty) (ta t3)
04621117’ () 4110311’ () 561311’ () 36¢iL.01n’ () 51071

(t1, t2) (t1,t3) (t1,ts) (t3,t4) (tg, t3)
0.56¢10817' 0 6110917’ ) 46¢iL01T" () 67¢i01n' ( 51¢i017

il
I

Table 11 shows that out and in the neighbourhood of the nodes of CQROF.

Electronic Research Archive Volume 30, Issue 4, 1558-1605.



1582

(0.81e1217, (.51 ¢i1-.01m) (0_516i1.4in' 0.61ei17)

b (0.46ei1-11" 056610.811{) >0 t,

[~ 3

= ol

& [UEN

o Iy

% s

e ~

A 5

> o

2 tn

a8 N

o =

= =

5 3

0.36¢!1:017 o 67017

. G o— : ) —>0t,

(0.41e™517, 0.71e10-1m) (0.61e141m 0,31 ¢i1.01m)

Figure 11. The complex g-rung orthopair fuzzy diagraph.

Table 11. The CQROF 2-steps neighborhood.

{t4, (0 41610 31m ,0. 61610 9171’)}
{t, (0.36e11:017,0.67¢10-17)}

- ¢ (0.368i1'01n, 0.676i0'1n)
N {t.. (0.36¢i1017,0.67¢101m)} )
[0) (0.516i0'71n, O_Sleio.ln)

Definition 26: Consider that G = (U,X,¥) be CQROFDG. Then m-step CQROFCG of G is
represented by (Cm(a) = (f], X,,D) i.e., The CQROF family of nodes of (Cm(a) equal to 6 and a
CQRAOF edge exists between two different vertices 4 and ¢ in (Cm(a) iff (£,,°(A)NE(Q)+0
in CQROFDG. The TG and FG values of (4, ) in the following form:

1p (4,0 = (ix(A) A () X By (8,,7(4) 0 5,,°(D)

vp(4,0) = (v (M) Vv () X by (5,7 (4) 1 E,,°(D))

(@) 6 (@Y he(En(AD) N EL (D))
Op(4,¢) = 21 ( 2m A 2m )X 2m

_ o (@) 5D | h(En ) 0 E, ()]
9p(4,8) = 2m < 21 v 21 )X 2

Example 7: Consider G= (U, X,?) be a CQROFDG for g =3 in the following Figure 12,
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explained as:

a; a; as 7}
0.816i1'21” ’ 0_716i1.017r ’ 0.5 1ei1.41n ’ 0_416i1.41n ’
as Qg asz
0.51e!1817’(.81¢!1-317’ .81 1217
a; a; as Qay
0_6161'1.1111' ’ 0_7161'1.3111' ’ 0_616i1.21n ’ 0_716i0.91n ’
as Qg a;
0.71e0-517’ 0.41¢11.017" 0,61 g1-117

(as,a3) (ay,a3) (az, az) (ay, ay) (a4, as3)
0_7lei1.01n ’ 0_416i1.01n ’ 0_51ei0.9177: ’ 0_316i0.9177: ’ 0_416i1.21rf
(as,a,) (as, ag) (as, ay) (a;,a,)
’ 0.3 1ei1.21n ’ 0_416i1.21n ’ 0_316i1.21n ’ 0_316i1.01n
(as,a;) (as,as3) (az asz) (ay, az) (ay, az)
0_716i1.217t ’ 0.616i1'21” ’ 0_716i1.117r ’ 0_716i1.21n ’ 0.616i1'91” ’

(as, aq) (as, aq) (as, ay) (a;,a4)
0.71i0917’ () 4111017’ () 51 gil.01T’ () 1 gi1.01T

4l
I

Table 12 contains the family of out- neighbourhood of nodes of CQROF 2-step.

i1.01m il31m
(071017, 0.71¢%31m)

S
31
.
:
. ai . - &)
IR () e o Py a3 ©
(0.81€l1'21n, 0.61eil11m S
mv-
S5
(0.(316”'41”, 0.716’i0'91")
(0
.518,_1 A 0)
%1, s A A 36 ..x 05
7[ ‘ (0.416"1'21", 0.416"1'01”) a3\
e/QSI;, &0 .%\6

Figure 12. The complex g-rung orthopair fuzzy diagraph.
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Table 12. The family of out-neighborhood of nodes for CQROF 2-steps.

{a3, (0.5 1ei001m 0.7lei1'11")}

?
?

{as, (0.31€10917,0.71¢i1217)}
{a, (031611217, 0,51¢1101m)}
{a,, (0.31€10917,0.71¢i1217)}
{a,, (0.31€10917,0.71¢i1217)}

{(13: (0.31ei1'01”, 0_6161'1.011:)}

Now

23(ay) N &5 (a;) = {a3(0.31e17,0.71¢1-217)}

23(ay) N Ej(ay) = {a3(0.31¢0917,0.71¢1-217)}

25(ay) N E;(a;) = {a3(0.31e7917,0.71¢1-217)}
and

£3(as) N E3(ag) = {a,(0.31£10917,0.71£i1:217)}.
Therefore

h(25(ar) 0 £5(ay)) = {(0.31€0917,0.71¢11217)}

h(55(as) N 55(a) = (8(a) 0 (a7)) = {(0.310°17,0.71¢7:217))

and

Pl (5;((15) N E;(az)) — {(0.316“)'91”, 0_7131'1.2117:)}.

By using this draw Figure 13. for 2-step CQROFCG.
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(07 161’1017! 0.716,i1.31ﬁ)

® a
, _ 'S
(0.816’11'21”,O.61€ll'11n) :i'l
a > Y
=) = =
h >
e I~ oy
o ) =
% N °
=} ars .
H (o)}
a ) a3 =
A ) © S
o ) =
-~ i~ =
w ) E]
H 2
w
& Z
-

(0.816’”"21" 0.616’”"11")

(05 1€i1.81n 0‘716,1'0.5171) (08 1€,i1.31n’ 0.5 1€,i1.0ITI)

0.16¢10-5907 () 5010657 as
.5‘ ( e € ) 4.

Figure 13. The 2-step complex g-rung orthopair fuzzy competition graph.

Theorem 5: Consider 6 = (Ij, X, ?) be CQROFDG and if m > |Ij| then family of the edge of
Ch (6) is empty.

The proof of this Theorem 5, discussed in Appendix.

Definition 27: Consider that G = (U, X, Y) be CQROFG. Then CQROF m-step neighbourhood of
nodes 4 ofa CQROFG G = (U,X,¥) is CQROFS:

Em = (Sata ei(pA#AeiwA)

Such that: S, = ¢:3 is a CQROFDP of interval m from A to { ﬁ(%é’)'

So, £,:S, - [0,1] explain in the form NOES

{min ux(d,g),(d,¢) iA an edge of 13(%0,(/),1:5,1 - [0,21]} explain in the form 0,0 =
{min 0x(d,¢),(d,g) iA an edge of 13(%0} Fa: S, — [0,1] explain F4(0) =
{max vx(d,9),(d, ) id an edge of P/, ws: Sy > [0,2m]} explain in the form of w,({) =
{max 9x(d, ¢), (d,¢) iA an edge of 13(%0}.
Definition 28: Consider that G = (U,X,¥) be CQROFG. Then m-step CQROFNG of G is
represented by N,(G) = (Ij, X, D) i.e., The CQROF family of nodes of N,(G) isequalto G anda
CQROF edge exist between two different nodes A and ¢ in N, (G) iff (£,,(A)NE,({) #0 in
CQROFG. We calculate the TG and FG values of the edges (4, {) in the following way:

ip(4,0) = (i (M) A () X By (8, (4) 0 5, (9))

vp(4,0) = (v(A) V15 () X by (5, (4) 1 5, (D))
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B 0x(4) ex(z) ho(E,, (D NE,L(D)]
Op(4,¢) = 2m < 21 21 ) % 2m

@) 9D hy(E,,(A) N E,,(D)]
9p(4,0) = 2m ( 21 v 21 )x 21

Example 8: Consider G = (fJ,X,,Y) be a CQROFG for g =3 in the following Figure 14,
explained as:

ty t3 ty ts
0566112111 067611017t 0716113171' Oglellslﬂ 0516110171 0716109111

X =

(tlr t2) (tz, t3) (t3! t4) (t4! tS) (t4r t6) (tﬁr tl)
0 51611 01m’ 0. 66610 81m’ 0. 66611 11w’ 0. 46611 01m’ 0. 61610 81m’ 0. 41610 olm

(ty, t2) (ta, t3) (ts, tq) (ty ts) (ty, ts) (te t1)
0.6lei1'21" ’ 0_716i0.91n ’ 0_516i1.01n ’ 0_46ei0.81n ’ 0_6161'1.2111 ’ 0_8161'1.3111

ty i3 [ ts
(0 816113111 0516109111 0716109111 0316110171' 06161101" 07161131n>

'-411

The CQROF 2-step neighbourhood of the family of nodes which are shown in Table 13. The
CQROFS (.5'2(/1) nEz(()) and ﬁ(Ez(/l) nEZ(Z)) are shown in Table 14 and their graphical
representation is shown in Figure 15.

(0.676’“'01” 0 516,1'0.91")
{2

(0_566,1'1.217r 0.81611'31")

Figure 14. The complex g-rung orthopair fuzzy graph.
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Table 13. The CQROF 2-step neighborhood of family of nodes.

{ts, (0.51£10817, 0,71 ¢11-217)}
{t4, (04110817 0.81¢1-317)}

{t4: (0.66ei0'81n, 0.7161'1.0111:)}
{t6' (0.4161'0.9111', 0.816i1'31”)}

{t1' (0_5161'0.8111" 0_7161'1.2111)}
{tS: (0.466“'01”, 0.5 1ei1.01n:)}
{t6' (0.616i0.81n’ 0.616i1.21n:)}

{tl' (0.516i0'81n, 0.616i1'21n)}
{t5, (0_6661'0.8171" 0_7161'1.0111')}

{t3, (0_46ei1.01n’ 0.5 1ei1.011r)}
{t6, (0_46ei0.81n’ 0.6lei1'21”)}

{tz' (0_416i0.91n', 0_8lei1.3111:)}
{t3, (0_6161'0.8171" 0.616i1'21n)}
{t5, (0_4661'0.8171" 0.616i1'21n)}

Table 14. The (N,(s) N N,(w)) and H(N,(s) N No(w)) of CQROFSs.

ty {t4, (0.41£10817 0.81¢!1317)} {(0.41€10817 0.81¢11:317)}
t3 ) )
ty )] )

{ts, (0.4610817, 0.71¢11-217)}

{(0.4‘66i0'81n, 0_7lei1.21n’)}

s {t5,(0.51€'0817, 0.71¢i1:217)} {(0.51¢081m 0.71¢i121m)}
ts {ts, (0.41£0817,0.81¢1-317)} {(0.41¢10817, 0 81 ¢i131m)}
ty 0] )
ts {t6, (0.41€70817, 0.81¢1317)} {(0.4170817, 0 8111317}
te ) )

{tl, (0.51ei°-81”’ 0_716i1.2111:)}

{t5,(0.46€0817,0.6111:217)}

{t6, (0.46ei°-81", 0.616“-21”)}
(0}

(£, (0.41¢0817, 0,81 011317

{ts,(0.46£10817, 0.61¢11217)}

Electronic Research Archive

{(0.51€i0'81”, 0.716i1'21n)}
{(0_46ei0.81n" 0_616i1.21n)}
{(0.46€i0'81ﬂ, 0.616i1'21n)}
)]
{(0_4161'0.8171', 0_81ei1.31n’)}
{(0.466i0'81”, O_6lei1.21n)}
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i0.91m i1.31m
(0.71e ,0.71e )
,0.57¢ i0.79,,) ts

@
(0.28410.375

Figure 15. The 2-step complex g-rung orthopair fuzzy neighborhood graph.

Definition 29: Consider that 6 = (Ij, X, ?) be CQROFDG. Suppose that joint node of m-step out-
neighbourhoods of nodes t4, t,, t3, ..., t, ET.
Consider MX(‘ll» (1)8119)(.((’1'1'(1)’ 'ux‘(‘lzl Zz)eiGX(‘ZZ'CZ)’ HX‘(%3, §3)ei9)((q)31(3), . AU'X‘(%TL’ Zn)ewx(%n:zn)
show the lower TG values of the edge of a path 3_5(}’”1 ,r)'ﬁ(ﬁ 'r),ﬁ(t"; oy ,7_5(4;’; - and
Vx (41, 31)e X018, vy (g5, 7,)e 59282, vy (g5, 33)ePx(93%5), | vy (g, T ) e X nin) show that the
high TG values of the edge of a path f’)(t””;r), 3_5(}”; ) 3_’)&’; ) ﬁ& ) respectively.

The m -step nodes r € U is heavy if vx (G G) > % and 0x(g,(;) > 1 for TG and
Vx Gk Qi) <% and 9x(g,,Cz) < 1m for FG values V, k = 1,2,3, ..., n.
(ST(r), S« (r)), represent the strength of prey 7, st Sp(r): U-{y:yeC:|y|<1} and
S(r):U— {y":y' € C:|y’| <1} in the following form:

S iy (@ o) Zhema Oxlan 8
e n

St (r) = n

)

S¢(r) = n

)

Example 9: Consider E = (f], X, ?) be a CQROFDG for g =3 as shown in Figure 16 and

explained as:
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4l
I

d, d, ds d,
0.81€i1'21” ! 0_716i1.117r ! O_6lei1.21n ’ O_7lei1.61n ’
ds de dy
0.81ei1417’ (6611117 0,81 gi1:217
dy d, ds dy
0.41ei111m’ () 51¢il31n’ () 5] gil.51m’ () 5] gil.01m’
ds de dy
0.56€(1.017’ (0,36¢11:317 " 0 41 gi1-117

(dll d3) (dZI d4) (dZI dS) (d3, dZ)
0.616i1'11” ’ 0_516i1.017r ’ 0.5 1ei1.11n ’ O_6lei1.11n ’
(d4-1 dl) (d51 d7) (d6l dZ) (d7r d6)
0_51ei0.91n ’ 0_616i0.817t ’ 0.616i1'11” ’ 0.5 1ei1.01n
(dll d3) (le d4—) (dz, dS) (d3! dZ)
0.3 1ei0.71n ’ 0.3 1ei1.01n ’ 0_316i1.21rc ’ 0_316i0.91n ’
(d4, dl) (ds, d7) (d6l dZ) (d7) d6)
0_2 1ei0.91n’ ’ 0_2 1ei0.91n’ ’ 03 1ei0.81n' ’ 0_2 1ei0.71n

Now we discuss the strength of the node dz from Figure 16.

0.61 +0.51 ;L11m+1.01m

ST(dZ) = Te 2 = (0.56eil06m
0.31 + 0.31 .0.91m+0.81 )
S¢(d,) = TQLT — 0.31el0867

So, thenode d, isheavy for 2- stepsif 0.56 >% and 1.06 > 1 forTGand 0.31 <% and 0.86 <

1 for FG values.

Theorem 6: If all the nodes in CQROFDG 6 are heavy. Then in (Cm(a):

Lo p(4,0) > 2 (1x() Apx(©) and 6,(4,8) >3 (85(4) A 65(D))

L vy(4,0) < %(vx(/l) v vx({)) and 9p(4,0) < %(ﬁx(/l) v 19x(z))

v,A,{ € U.

The proof of this Theorem 6, discussed in Appendix.
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(0‘616’1.1'21” 0.5 lé,il.Slrr)

ds

(0-719"1‘6171
(0516071702121

+0.51¢i1.0
'4 e 177)
—9.

dy 6
(0.81¢1217,0.41€1)

A

(0.816’“'21’1 0.416’“'11")

o
~l .
2150t

(ure™

(0.666’“'11’[, 0.366’“'31")

Figure 16. The Complex g-rung orthopair fuzzy diagraph

Theorem 7: Let r be the strong node of 6 then in strength of r:

n -_—D n

I'M>%’ d M> 1m, V,T,F,e(r)

I M
: n

SRR S NS
2

" <l1lm, V,T,F,€e ()
The proof of this Theorem 7, discussed in Appendix.

8. Application

The FCGs have become considerable as they may be relevant to many regions in which there may

be competition between different real global units. However, there are some competitions of actual
international which can't be characterized through those graphs.

To characterize all the competitions, we endorse CPyFCGs that have the higher capability to show

all of the competitions of real global. To fully appreciate the idea of CQROFCGs. We construct claim
of competition graphs of CQROF surroundings with an algorithm underneath.

Now we explain through an example consider that eight candidates competing for designations
in public institute School education department. Suppose that family of employees {Jasper, Lewis,

Luca, Rex, Trevor, Edward, Giles, Harvey} and post filled according to a few certain designations in
the education department {CEO, DEO, Dy-DEO, AEO, HD}. The real part of the TG and FG values

of each person shows the value of honesty and dishonesty according to his designation. The imaginary

part of the TG and FG values of each employee shows the value of satisfying and being unsatisfied
with the work assigned from the higher authority and fulfilling their goals.

In the same way, the TG
and FG values for each post show the value of how much designation is appropriate and inappropriate
for the employee. The imaginary part of the TG and FG values for each post shows the value for

available and unavailable. So, the TG and FG values for employee and designation are shown in the
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following Table 15.

Table 15. The TG and NG values of the nodes.

(0.81¢%1217 0.61e1-117) CEO (0.91¢11217, 0,31 ¢11017)
(0.51¢10817 0.71¢!1-317) DEO (0.51¢11217, 0,61£0917)
(0.41¢'1217 0.81¢10-917) Dy-DEO (0.71¢i1317, 0.3110817)
(0.51e1117,0.71¢!1:017) AEO (0.71611017, 0,51¢10917)
(0_316i1.21rt' 0.81¢iL01m) HD (0_81ei1.81n' 0.41¢i021m)

(0_4161'1.3171" 0_616i0.91n') _ _
(0.716':1'51”, 0_416i0.71n’) _ _
(0'916i1.8111:' 0.416“'317[) _ _

The real part of the TG function of each direct edge between employee and designation shows
the verified and un-verified degrees of the employee for a certain post. In the same way, the imaginary
part of the TG and FG of each direct edge between employee and designation shows the values of
experience of his previous work and unexperienced having no past work according to his present post.
The CQROFDG is shown in Figure 17. In this figure, we take employees and their designation as
nodes and the relation between them show as a direct edge which is seen in Figure 17 and the CQROF

out- neighbourhood of the nodes shown in Table 16. CQROFSs (Nq (s) nN¢ (W)) and b((Nq(s) N

Nq(w)) are shown in Table 17.

Jasper

(0.81¢217,0.61e'1117) (0.41¢70917, 0.56¢14117)

(0.71e“'°1" 0.5181'1.01!?)

(0.368“"01",0.566“0'”") Lewis

0.41e il.31m 0.6 16.!'0.9117

(0.366“'01" 0.566,(0.31")

DEO

~ CEO —
0‘91211.21;:' 0.31¢iL0% A
(0.51e™217 0.61¢°%17)

(0.416“‘01", 0.715‘“'01")

(0.3667081% 0.6601-317)
|' (0.31611217 0 61¢071m) Luca

! 1517 .71
Rex P.71e! ,0.41e

(0.46€0717, 0.61¢091™)
i . Y- ) (0.61e317 0 31 ¢10117)
0.71e"317, 0,31 0817)) ==
AEO
0.712“‘01", 0_516.“7-91") 0'2181'0.11:1' 0.216‘0'81”
X Edward

0.318“'21", 0.818“.011{)
HD
(0.818“'81”, 0.41€i°‘21”

51 “Rfe:t;; o1 (036777, 0.66¢01T)
.51e1117, 0,71

0.9 151'1.81" 0.418”‘31”

(210112 9L°0 21122 TE0)

(21g0:2 90 “2y1-1:29%°0)

Giles
0.4161217,0.81¢0917)|

2150:% T¥°0 “w1g1:29L°0)

Harvey

olsleio.ﬂlﬂ‘ 0.718“'31”

Figure 17. The Complex g-rung orthopair fuzzy competition graph.
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Table 16. The CQROF out-neighborhood of nodes.

{CEO0,(0.71e!1017,0,51¢11017)}
{DEO, (0.41¢10917,0,56¢11117)}

{DE0, (0.36610817,0.66¢11-317)}
{HD, (0.460717,0.61¢0917)}

{CE0, (0361017, 0.56¢10917)}

{CEO0, (0.41¢1017, 0.71¢i1017)}
{AEo0, (0.466"1-11", 0_46ei0.81n)}
{HD, (0.36¢10917,0.66¢11-017)}

{Dy — DEO, (0.76€1517,0.41¢10517)}

{DE0, (0.366i1:017,0,56¢10817)}
{Dy — DEO, (0.31¢%1217,0.61¢'0717)}

{AE0, (0.21€11017,0.21¢i0-81m)}

{DE0,(0.31¢12017,0.76¢11.017)}
{AE0, (0.21€11:017,0.21¢10-81™)}

(0.15¢0-617, 0 45,10-36m)

Jasper
0.816“":”{, 0.61eit11m (0_15350.5511" U_quiﬂ.slr{)
—_
o : Lewis
= i0.56m 051 iLz i
I~ (0.15¢ ,0.57e ) 41gil21m (g gi0oLn
= ssaseaan .'—\ . e -
& G
.4 : o b
(== I i — = b=y
: - CEO - 2 ] o ——— . .
=y - A N , - - DEO ~
= iLaim iL.01m, S 2 - . . ~
m,_l (9916 . 0.31e /i) b -g (0.516”"21", 0_61910.9111']. R
= e =7 S . -
3 T |5 S Luca :
q 8 |8 ] . -]
Rex B E  (01500%7,046¢0%5T) gy usim ogipoo
e S .
[.51gi081m ) 7] giLa1m] i0.33m 0,846 o :
( € € (0.1e »0.61e 50T : PR Dy-DEOD (0 110617 612i051m): |~
————— - iLeL iLzamy - e T =4
- - AED _ ~. . (3.816' T, 041t :"]) . : a
.-8 (Q:?lell'al", 0.318“"91’? T - - : l:um
— ~ - vaed . s : =
] — e =
) Edward g
s (0.0710567 (37 i0-41m) - . e
g‘ - A AN - { .316”‘"“’, 0_81811.01!1 . Eﬂ
- b LY
5 > WD 5
%__ (‘Q\.?le""um, 0.516’“"51“} §
= . =" —
E — Trevor _ ) Giles
(E.51€“"11", 0.71gtteim (0-0?810'56“; 0-3?3!‘].“1,?) . . Il .316“"311[, 0.816‘“"01’7
Harvey (0.07e0617 0,17'041m)

0.9111817, 041070517

Figure 18. Complex g-rung orthopair fuzzy competition graph.

Electronic Research Archive Volume 30, Issue 4, 1558-1605.



1593

Table 17. CQROFSs (NQ(S) N NQ(W)) and b((Nq(s) N NQ(W)).

Jasper {DE0, (0.36¢'0817,0.66¢'151™)} {DE0, (0.36¢1817,0.66¢1:817)}
Waspery Lewis {CEO0,(0.36e'-017,0.56¢-017)} {CE0,(0.36¢™-017,0.56¢"-017)}
Waspery| Trevor {CEO0,(0.41e'017,0.71¢'-017)} {CEO0, (041017, 0.71¢"-01m)}
- Harvey (0] )

WEsper  Luca {DE0, (0.36¢'091™,0.56¢'117)} {DE0, (0.36¢'09™,0.56¢'117)}
- Edward 1) o

- Giles {DEO, (0_316i0.91n' 0.76ei1'11”)} {DEO, (O.31ei°'91”, 0_76ei1_11n)}
BRe Lewis 0 ;

RRREEN Trevor {HD, (0.36e"7'7,0.66¢"117)} {HD, (0.36e7'7,0.66¢'>117)}
RRE rarvey 0 )

EE luca (DE0, (0.36¢0817, 0.66¢11317)} (DE0, (0.36¢0817, 0.66¢11317)}
- Edward 1) o

DR  Giles {DEO, (0310817, 0.76¢1-317)} {DE0,(0.31€!0817,0.76¢-317)}
- Trevor {CEO0,(0.36€101™,0.71¢1-017)} (CE0, (0.36e11017, 0.71¢i1017))
- Harvey [0) &

WG Lo 0 0

- Edward 1) o

REewiss  Giles 0 .

- Harvey [0) )

- Luca [0) )

Nirevor) Edward  {AE0,(0.21¢12017,0.46¢1081m)} {AEO0, (0.21e017 0.46¢081™)}
Nirevory  Giles {AEO, (0.21¢917, 0.46¢70817)} s

BHGFUEYN Luca (DY - DEO,(0.31e2217,0.61¢1071™)} (DY — DEO, (0.31¢1%17,0.61¢0717)}
- Edward 1) o

WHGEGEH  Giles 0 -

- Edward [0) o

DREaN  Giles {DEO, (0311017, 0.76¢1-017)} {DE0, (0311017, 0.76¢-017)}
- Giles {DE0, (0.31€1017,0.76¢1-017)} {DEO, (0.31¢11017,0.76¢i1.017)}

Figure 18 shows two sets of dotted and solid lines. Solid lines represent the competition between
the person who has applied for a particular post and dotted lines represent competition between
candidates and a particular post. We observe from the previous Figure in which seen that competition
of 5-persons with Jasper, namely, Rex, Lewis, Trevor, Luca, and Giles. In the same way, competition
four candidates have with Rex, namely, Trevor, Luca, Giles and Jasper, and Lewis having a competition
with Trevor. Similarly, competition has between Trevor and Edward, Trevor and Giles, Harvey and
Luca, Harvey and Giles, Luca and Giles and the last one are Edward with Giles. For this, we use Table 18.
For explaining our application.
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Table 18. Algorithm steps.

Allocation for the TG s and FGs of the set of candidates and designations.

If a; and a; be any vertices, uY(al, a]) >0, vy(al, a]) > 0,

Then (aj,uxf(al, a])eieY(al'al),Vy(al, a])eiﬁy(aua})) € ZP(a;).

Calculate the CQROF out- neighbourhoods ZP(a;) for all nodes of a;,a; by using the above
Step 2.

Calculate the CQROF £P(a;) N £P(a;)

Calculate the CQROF B(E P(a;) N EP (ai))

If ZP(a;) N EP(a;) # @ then draw an edge (ai, a]-).

All the above steps are repeated for the different nodes of the CQROFDG.

Allocate the TG and FG by satisfying the following axioms:

.uY(ai;aj) = (ux(ai) /\“X(ai)) X HM(E“(A) N E29(Q)

vy(a; ) = (Vx(ai) v vx(al-)) x h, (E9(4) n £9(Q)

and

0y(a; a;) = 21 [<0X(ai) A 9x(“1)> Do (5“(/12); E9(¢ ))]

21 2m
Ux(a;)  Ux(a; hy(E9(A) n E9
(e ap) = 2] (220, @) , S 0 EO)

9. Comparative analysis

Competition graphs are more effective in the field of competition in which different objects are
compared with the different real-world objects. Sahoo and Pal [38] utilized the concepts of CG in the
framework of intuitionistic fuzzy sets (IFSs). But some competitions have two-dimensional or periodic
information for the objects. In 2019, Habib et al. [33] proposed work on QROFCGs which discuss
how we deal with the uncertain and incomplete information about the nodes and edges. After this
Akram et al. [47] worked on CG in the environment of complex PyF (CPyF) information. All
previously existing research works have a large ability to deal with uncertain and vague information
of a graph. To increase the ability to deal with uncertain data of graphs, we used the CG under the
CQROF information and its several numerical examples in different fields of life. We also discussed
an application of CQROFSs under CGs with the help of numerical example for g = 3. Suppose that a
family of employees {Jasper, Lewis, Luca, Rex, Trevor, Edward, Giles, Harvey} competing for a few
certain designations in the public education department {CEO, DEO, Dy-DEO, AEO, HD}. Consider
TG and FG of candidates denote the value of loyalty and disloyalty of candidates for particular
designations while the TG and FG of designations show the availability and non-availability of
designations. A lot of public and private offices may change our selection policy to fulfil their vacant
posts based on experience according to the designations. So, the given information about the
candidates and designations is not enough. In the same way, candidates are unable to know by using
the given information that how much the job is suitable. We utilized a new model of CQROFCG to
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deal with two-dimensional data. CQROFCGs have larger potential and play an important role to deal
with two-dimensional information. The capability of these graphs for addressing two-dimensional
phenomena makes it better than handling vague and uncertain data. Finally, the statistical comparison
of the invented work is described in the shape of Table 19.

Table 19. Comparative analysis of the proposed and existing theories.

Methods Membership Membership One- Two- Power q Contains
and Non- dimension dimension relations
membership information information
y . y . < x
J J J . o
v v v g <
q-rung orthopair fuzzy v v v v X
y . y J
Complex intuitionistic v v v v
fuzzy sets
Complex Pythagorean i i N i X X
Complex g-rung i i N i N X

orthopair fuzzy sets

Fuzzy graph i N X X N

Intuitionistic ~ fuzzy v v v X X v
graph
Pythagorean fuzzy i N4 N4 X X N4
graph

q-rung orthopair fuzzy i N4 N4 X N4 N4
graph

Complex fuzzy graph v v v X v

Complex intuitionistic i N4 N4 NS X NI
fuzzy graph
Complex Pythagorean v v v v X N
fuzzy graph

Complex q-rung v N N i v N

orthopair fuzzy graph

In Table 19, the notation V. , is used for hold and the symbol X, is used for not holding. From the
above table, it is clear that the suggested work based on CQROFG is more powerful than the existing
approaches.

10. Conclusions

This manuscript aims summarized below:
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1) We analyzed the well-known and massive idea of CG in the presence of a new and dominant
technique of CQROF setting. The mathematical from of CQROF setting is more flexible and massive
consistent for demonstrating the beneficial option form the collection of objectives during decision-
making process.

2) The major concept of in-neighbourhood and out-neighbourhood using CQROFDG are also
invented to enhance the quality of the diagnosed approach.

3) The fundamental theory of CQROF k-competition, CQROF p-competition, CQROF
neighbourhood and m-step CQROF neighbourhood graphs are also explored.

4) In the availability of the above-described theories, the basic and significant results for presented
work are obtained to show the compatibility and worth of the invented approaches. To show the practicality
of the developed approach, we try to verify the proposed work with the help of various examples.

5) We described the validity and practicality of the invented work; we diagnosed an application
using presented approaches based on CQROF setting is to enhance the major weakness of the existing
approaches. Finally, in the availability of the invented ideas, we discussed the sensitivity analysis of
the described approaches.

10.1. Limitations of the proposed works

In the presence of various issues occurred in genuine life troubles, some limitations of the
invented approaches are described below.

1) When expert suggested information (0.4e27(0-3),0.3¢i27(0-2), 0.2¢27(0-1)) for support,
abstinence, and support against, then the scenario of CQROFG has been unreliable, for this, we have
required to investigate the complex picture fuzzy graph.

2) When expert suggested information (0.6e27(°3),0.5¢12(07) 0.2¢127(0-D) for support,
abstinence, and support against, then the scenario of CQROFG has been unreliable, for this, we have
required to investigate the complex spherical fuzzy graph.

3) When expert suggested information (0.9¢/27(0®),0.8¢12m(07) ,7¢i27(00)) for support,
abstinence, and support against, then the scenario of CQROFG has been unreliable, for this, we have
required to investigate the complex T-spherical fuzzy graph.

10.2.  Future works

In future we will extend our proposed in the environment of complex picture fuzzy graphs [49]
and generalized our proposed work in the framework of interval valued fuzzy graph, neutrosophic
graph [50] and decision-making techniques [51-53].
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Appendix

Proof of Theorem 1: Since G = (0,%, ?) be a CQROFDG. Let £9(A) N 29() = (c,re'®, se'f)
i.e., re! and se” are TG and FG values (4,c¢) or ({,¢). So h(Z9(A) N E9(Q) = (re's, Aef) =
E1(A) N EUD).

So:

129() N E9(DI, =7 =h, (9 N 29(D))
129(A) N E9(DI, = s =h, (59 N 29(]))
129(A) NE9(Dlg = a = he(E9(A) N E9()))

129(A) N E9(Dly = B = hy(29(A) N E9(D))

By using the previous definition 16. The TG and FG values of the edges (4,{) in CQROFCG in the
following form:

1(4,0) = (i () A () X B (B9(A) 0 29()) = (ux(A) A px (D)) x 7

v (4,0) = (v (D) V() x by (F9(4) N Z9(D) = (vy () V(D)) x5

64(4,0) = 21 I(Qx(/l) A HX(O> « he(29(A) n gq(c))l

2T 2T 2T

_ Hx(/l) ex({) a
_ZnK 21 A 21 )Xﬁl

AN AW hy(E9() nE9(D)
2T 2T 2T

Iy(A,0) =2n [(

L[ K@\ B
_ZnK 21 v 21 >Xﬁl

So, (4,{) is a strong edge if satisfy { > %,5 < %,a >m and B < .

Proof of Theorem 2: Suppose that 6 = (lj, X, ?) be a CQROFDG. Consider (Ck@) be the
correlative k- competition graph. By the given condition if ﬁ“ (Z9() nE9( )) =1 for real terms
and hy (E A NEIQ )) = 2m for the imaginary terms of the TG values. Now if we see definition 17,
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then TG values of the edge (4, {) in correspondence CQROFKCG C,, (6)

2 (ax () A k(@) x B (29(4) N 59(D))

,Lly(A, () = :

a —a

= —— (W A (@)

Y v 6k he(E°() N END))
QY(A'{)_ZE[ Y (27‘[ A 21 >X 2 l

_ Yy —y[(0x(A) 0x()\ 2m
=am l y' <2T[ A 2n>xﬂl

So. y(4,0) > 2[2m (i) Apx(D)] as sl and 644, > HEACROING)]

,_
asY Y

Similarly, if ﬁv(:”,q(/l) n Eq(()) =1 for real terms and hy (Eq(/l) N Eq(()) = 2m for the
imaginary terms of the TG values. Now if we see the definition 17, then TG values of the edge (4, ()
in correspondence CQROFKCG C,, (6)

v(4,) = (vx(/l) va(()) x h (:q(/l) N "'q(())
b
b’ (VX(A) VVx(O)
9 (A) 9 ha(59(A) N EN
o= (L1290, 50) e 000

. n -y 19x(/1) ﬁx(o 2n
= am [ n' (271 v 2n>xﬁl

So, 1(4,0) < (M) V(@) as 222 <2 and 9y(4,0) <2 (85 (M) v () as ";jY <l

Since the edges (4, {) is strong

Proof of Theorem 3: Suppose that E = (Ij X, ?) be a CQROFDG and G = (U X, Y) be the

corresponding g -competltlon CQROFG. By the given if hﬂ(.:' WA NEI( )) =1 and
[t]

hg("q(/l) N "q({)) =21 in (Cz (G) then the TG values of the edge (A,{) in Cz (G) in the

following form:
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- 1 -
uy(4,0) = % [ () Ay (D] > By (89(4) N 29()

- 1
- WP ) au@] x 1

2T 2T eln

04(A,0) = 2 [(u —Z) +1 <9x(/1) A HX(()> y g (59(4) N 5 Hq(c))l

B (u—p)+1/6x) 6x() 2T
_an u < 2n A 21 )Xﬂl

1 1 Ox(4)  0x() (u-p)+1 _ 1
So uy(4A, ) > E(HX(A) /\,ux(()), Oy(A,{) > 5[27‘[ ();—n/\x—)] and % >~ In the same

21
~ ~ It
way if h,(29(A) N E9({)) =0 and hy(E9(A) NEY() =0 in in Cz(G) then FG values of the

[t —s
edge (4,0) in C2(G) in the following form:

— 1 R
ve(4,9) = % [vx () v vx (] x by (29(a) N 29(D)

- 1
= —(u Z) * [vx(/l) va(()] x 0

vy(4,0) = [vx(A) Vg (D] x 0

94(A,Q) = 2 [(u —p)+1 (ﬁx(/l) Vﬁx(()> hﬁ(:q(A) nE ”q(())l
u 2m 2m

_ (u—p)+1 (9% () 0
—271[ u ( 21 v 2n )Xﬁl

=27

(u—p)+1 <79x(/1) v 19)((()) 9 Ol

u 2T 2T

v(4,0) <= [vx(/l)vvx(()] and 9y(A,{) < = [2 (19x(/1) ﬁx(i))] 0 <

Proof of Theorem 4: Consider that G = (U X, Y) the CQROFG and N[G (U X, Y) be the
CQROFCNG. Suppose (A4,{) be an edge of CQROFG G. Then A,{ € Z [ ] and A, € Z[(] .
Thus A,{ € E[A]NE[Y] . So, h,(E[s]NZ[]]) #0 and he(Z[s]NE[(]) #0. By using the
definition 22, the TG value of the edges (A,{) in N[G] in the following form:

(4,9 = (ux(A) A () x By (E[A] N E[3]) # 0
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0

_ 0x(4) Ox()\ _he(E[A] N E[T])
Oy (4,0) = 2m [( 2m A 21 )X 21

In the same way h,(Z[4] N Z[q]) # 0 and hy(E[A] N E[q]) # O for the height of FG value of
functions:

vy (4,0) = (vg() v vx(©)) x by (E[A] N E[3)) # 0

0

_ % (4) 9D\  hy(E[A]1nE[T))
Oy (4,0) = 27 I( 21 v 2n >>< 21

So, V,(A,0) in G therefore an edge (4,{) in N[G].

Proof of Theorem 5: Consider G = (U,X,¥) be CQROFDG and Cp(G) = (U,X,D) be the
corresponding m-step CQROFCG. By using definition 26, the TG and FG grades of the edge (4, {)
in Cp, (6) form as:

1p (4, O) = (1x(A) A (D)) X By (8,,7(4) 0 £,°(D)
vp(4,0) = (vy(A) V5 () X by (E,,°(4) 0 £,°()

o [(0x() 65D\ he(Ent (M) N ELN(D)]
Op(4,¢) = 21 ( 21 A 21 >X 2m

KA M{)) y hy (2,9 N E,5(D)]

9p(4,8) = 2m < 21 21 21

v,(4,0) € U. If the m > |Ij| then there does not exist any CQROFDP of interval m in E So the
CQROFS (&,,%(A) N E,,9(0)) = @. Therefore, up(A4,{) =0, 6y(A4,{) =0 for the TG value and
vp(4,0) = 0,95(A,0) = 0 for the FG value. So (Cm(a) having without edge.

Proof of Theorem 6: Consider that 6 = (ﬁ, X, ?) be CQROFDG and let all vertices of 6 be the
strong and Cm(G) = (U, X,D) be the corresponding m-step CQROFCG. We explain it in two
different steps.

Step 1: Consider (£,,9(4) N Z,,9({)) # 0 So that having no edge between two A and ¢ in (Cm(a).
Step 2: Let a non-empty set (Z,,°(A)NE,,%{)) . All the nodes are strong if there is
ﬁM(E‘mq(/l) nZ,0) > ; and hy(Z,, () NE,°(Q) > % . So, the TG values of the edges (4, {)
in Cp(G) in the following form:

1o (4, O) = (ix(A) A (D)) X By (8,,7(4) 0 5,°(D)

1
1o (4,9) > (x () A px(©)) x 5
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0p(A,0) = 2 KQX(/‘) A 9x(6)> M CAOLENRS)

21 21 o

So, up(4,0) > %(,ux(/l) A ux(()) and 65(A,0) > %[211 (6);—(7:)/\ 92—5))] as ﬁﬂ(qu(A) n
En'(©) > and hig(5,, ') NE, () > . In the same way h,(5,°(4) N5, () <3
andhy(Z,,°(A) N E,9() < % Therefore, FG values of the edge (4, ) in the following form:

vp(4,9) = (vx (M) V(D)) x by (5,,°(4) 1 5, °(D))
1
vp(4,8) < (v (M) V(@) x 5

AR (A hy (2,7 N E,° (D)
2T 2T 2T

Ip(A,0) =2m K

1-9D (/1, () <

19x(/1) 19);({) 1n
27r< 2n v 21 >x§l

So, vp(4,0) <3 (WM V(@) and 9,40 <:[an(B2VED) a5 fy(E,.0@) N

En’(Q) <5 and hy (2, ° () N 5,° (D)) < 5.

Proof of Theorem 7: Consider that 6 = (Ij, X, ?) be CQROFDG. Suppose that joint node of m-step

out- neighbourhood of nodes t;, t,, t3, ..., t, €ET.

COHSider MX(%I’ Zl)eiex(%l:ﬁ), MX(%Z’ Zz)eiex(ﬂlz&)’ ‘ux‘(%3' <3)ei9x(q3,<3)’ . ”X(%n' cn)eie){(%n’(n)

show the lower TG values of the edge of a path ﬁ&lﬂ,ﬁ(ﬁﬂ,ﬁ&ﬂ,...,3_5&';@ and
VX.(%P Zl)ewx‘(ﬂh'(ﬂ’ VX(%Z' Cz)eiﬁx(%2,<2)’ VX‘(@& §3)ei‘9x(%3:<3), . VX‘(‘%nl <n)eil9x(%n'(n) show that the

high TG values of the edge of a path 3_5(}”1 ) 3_50”2 ) 3_5{[; ) 73)(”2’; ) respectively.

If node r € U is heavy if ux(qy, §) >% and 6x(g, () > 1 for TG and vy (g, Cx) <§

and 9x(g32,Cz) < 1m for FG values V, k = 1,2,3, ..., n.

Sy b (G ) Ehem OxCanc
e n
n

St (r) =
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1 . 1
. i ( ) 11 ., (n—time)+=
ie., k=1 Hx (31 Ck >2 oty 2 S,

n n

N |-

~

Yi=19x(G@k, G) S 1n +1n + 1m, ..., (n — time) + 1n
n n

>1m

In the same way,

o e G ke i)

Sz(r) =
7 (1) -
1.1
i.e., Zk 11,)((% ) < > 2+2 , (n—time) +— 2 o 1
n n 2

Yi=19% (G Cx) < 1n +1n + 1m, ..., (n — time) + 1m
n n

< 1m.
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