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Abstract: The present study focuses on reconstructing the Young’s modulus for the elasticity imaging
inverse problem. It is a very interesting and challenging problem encountered in tumor detection where
the variation of the elastic properties of soft tissues allows to distinguish between normal and diseased
tissues. The Levenberg-Marquardt method is used to treat this ill-posed inverse problem and the non-
convex minimization is changed into a convex one. We get an explicit expression for computing the
descent direction. The proposed technique with a constant and space dependant coefficients and for
various real materials is examined. The obtained results of the 2D and 3D view for the reconstructed
Young’s modulus are agree with those of the exact coefficients. The proposed algorithm is implemented
for different levels of noise in the data.
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1. Introduction

The step-length-based techniques and the trust region methods are two types of optimization meth-

ods for the least-squares problem (LSP):
1
2
‖F(x)‖2, where F = { f1, f2, . . . , fN}

T is the vector of the
non-linear functions, M is the number of unknowns x, (M ≤ N).
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The Newton method and the Gauss-Newton (GN) method are frequently utilized for solving LSPs,
belong to the step-length-based category [1, 2]. The Newton approach calculates the least-squares
function’s optimum descent direction, resulting in a faster rate of convergence. However, for determin-
ing the descent direction, one needs to obtain the precise derivatives of the least-squares function and
the time consuming. On the other hand, the GN method approximates the derivatives using a simple
approach that is relatively straightforward to evaluate, however the solution may not converge owing
to the over-simplification of the derivatives, which may result in an incorrect descent direction. The
Levenberg-Marquardt method (LMM) was introduced by Levenberg [3] and Marquardt [4] for solving
the (LSP) using a trust region approach [5,6]. In the GN method, the simplified Hessian matrix HGN is
not always invertible, to avoid this problem a modified positive definite Hessian HLM = HGN + Sk, is
usually used. The LMM takes Sk = βkIN×M, where βk represents the Levenberg-Marquardt parameter
which is a scalar quantity that changes during optimization and IN×M is the identity matrix. The gradi-
ent descent method and the GN method are combined in the LM algorithm. When the parameters are
far from their ideal value (βk increases) the LM process conducts as a gradient-descent method, while it
works as the GN method when the parameters are close to their optimal value (βk decreases) [4,7–10].
Many researchers have expressed interest in Newton-type methods for solving inverse problems be-
cause of their rapid convergence for the well-posed problems. The LMM is known to have a quadratic
rate of convergence under non singularity conditions [6, 11–15]. Yamashita et al. [6], investigated the
solution of a nonlinear system of equations F(x) = 0 under the assumption ‖F(x)‖, which provides

a local error bound, where the convergence rate is still quadratic when βk =
∥∥∥∥F

(
xk

)∥∥∥∥2
. Khayat [12]

has established the quadratic convergence of the LMM for the inverse problem of identifying a Robin
coefficient R for the Stokes system in the case where R is a piecewise constant on some non-accessible
part of the boundaryand the velocity of a given reference solution does not vanish on the boundary. In

this case, the regularizing parameter is defined by βk =
∥∥∥∥U

(
Rk

)
− Zη

∥∥∥∥2
, where Zη is the noisy observed

data.

Elasticity imaging is a relatively new medical technique used to detect several pathologies and espe-
cially cancerous tumors. These pathologies are known to affect the elastic properties (elastic modulus,
Poisson’s ratio and stiffness,. . . , etc.) of soft tissues.

Many authors have dealt with the elasticity imaging inverse problem (EIIP). Mei et al. [16] have
estimated the elastic modulus from surface displacements during multiple observations. Raghavan
et al. [17] have solved the equilibrium equations using finite difference schemes to recover elastic
properties. Doyley et al. [18] applied a modified Newton-Raphson method. A variational method
based on error functional decomposition was applied by Constantinescu [19] for anisotropic elastic
body. Oberai et al. [20] reconstructed the identification parameter using a first-order adjoint method.
Jadamba et al. [21] have reconstructed the Lamé parameters using a conjugate gradient trust-region
technique. Arnold et al. [22] have utilized a numerical clustering procedure to identify the Young’s
modulus. Abdelhamid et al. [23] have investigated the identification problem of reconstructing the
modulus of elasticity using the nonlinear conjugate gradient method. Mohammadi et al. [24] have
used a statistical technique combined with a fixed-point algorithm. In this study we introduce an
interesting and rapid converging method (the LMM) for solving the inverse problem of the elasticity
imaging inverse problems. This method has the particularity to transform a nonlinear and a non-convex
optimization into a convex one. Recently, the LMM is used in a closely related problems in the field.
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Indeed, Raja et al. [25] have combined the LMM with artificial neural networks to study the thermal
radiation and Hall effect on boundary layer flow. Shoaib et al. [26] have used the same method to study
the influence of activation energy on the Third-Grade Nanofluid flow. In the following, a mathematical
treatment of the LMM method and an exhaustive numerical study are done. A realistic examples are
treated using the proposed procedure.

2. Mathematical formulation

Worldwide, about 19.3 million new cancer cases, where 18.1 million of them excluding non-
melanoma skin cancerand almost 10.0 million cancer deaths occurred in 2020 [27]. It has estimated
that about 18.1 million new cancer cases recorded and 9.6 million cancer deaths in 2018, across 20
world regions [28]. In the literature the soft tissue can be modeled as an incompressible, isotropicand
continuous elastic object. The linear elasticity system is introduced to simulate the external and trac-
tional forces on the soft tissue. In this study, the Young’s modulus E is defined as a function of the
position (x, y) and Poisson’s ratio is a given constant ν (ν ≈ 0.48). Reconstructing E of the elasticity
imaging inverse problem is important for characterizing the complex mechanical behaviour of the soft
tissue. We derive the basic equations for the theory of elasticity. A free body diagram (FBD) is a dia-
grammatic depiction of a single body or a subsystem of bodies that is separated from its surroundings
and depicts all the forces operating on it as shown in Figure 1.

ω

τyx +
∂τyx
∂y dy

τxy +
∂τxy

∂x dx

τxy

τyx

dy

dx

σy

σy +
∂σy

∂y dy

σx σx + ∂σx
∂x dx

Figure 1. A free body diagram of two-dimensional body.

Let ω be an infinitesimal element [29, 30], the FBD of ω is represented in Figure 1 and the stresses
components are shown as positive. Summation of the forces in the x and x + dx axes at equilibrium are
introduced as follows:∑

Fx =

(
σx +

∂σx

∂x

)
dxdy − σxdxdy +

(
τxy +

∂τxy

∂y

)
dxdy − τxydxdy + fxdxdy = 0, (2.1)
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we do the same to the y and y + dy axes:∑
Fy =

(
τxy +

∂τxy

∂x

)
dxdy − τxydxdy +

(
σy +

∂σy

∂y

)
dxdy − σydxdy + fydxdy = 0. (2.2)

We denote by fx and fy the body forces in x- and y-axes which are generally assumed to be positive
when acted along the positive axes, simplifying Eqs (2.1) and (2.2) we derive the basic equations of
the theory of elasticity bellow

∂σx

∂x
+
∂τxy

∂y
+ fx = 0, (2.3)

∂τxy

∂x
+
∂σy

∂y
+ fy = 0. (2.4)

The stresses-strains relationship (for an isotropic material) is defined by

(σ) = [D](ε), (2.5)

where (σ) = (σx, σy, τxy)T denotes the stress and (ε) = (εx, εy, γxy)T is called small strain tensor:

εi j(u) =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
.

εx = ε11(u) =
∂u
∂x
, εy = ε22(u) =

∂v
∂y
, γxy = 2ε12(u) = 2ε21(u) =

∂u
∂y

+
∂v
∂x
.

Where, u = (u, v) represents the displacement field. Here, Eq (2.5) equivalent to
σx

σy

τxy

 = E[D]


εx

εy

γxy

 . (2.6)

An approximation of the plane stress situation can be used to approximate the body’s deformation, for
this reason we take the material property matrix D as follow

Dσ = ρ1


1 v 0
v 1 0
0 0 ρ2

 , such that ρ1 =
1

1 − ν2 , ρ2 =
1 − ν

2
. (2.7)

Where, E and ν are the Young’s modulus and the Poisson’s ratio, ρ1 and ρ2, are given constants depend
on ν.

2.1. Direct problem

A tumor can be identified by investigating the elastic properties of the soft tissue such as Young’s
modulus and Poisson ratio from a given measurements. The following forward system of partial differ-
ential equations describes the response of an elastic object, when the external body forces and traction
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are applied to the boundary. Let Ω ⊂ Rd, for d = 2, 3, be an open bounded and connected domain
such that ∂Ω = Γi∪Γc. Consider the following elasticity problem with essential (Dirichlet) and natural
(Neumann) boundary conditions, governing the displacement u = (u, v) in x and y directions when the
body forces f = ( fx, fy) are applied to Ω:

(DP) :



∂σx
∂x +

∂τxy

∂y + fx = 0 in Ω,

∂τxy

∂x +
∂σy

∂y + fy = 0 in Ω,

σxnx + τxyny = qx on Γi,

τxynx + σyny = qy on Γi,

(u, v) = (u0, v0) on Γc.

(2.8)

On the section of the boundary designated by Γi (left, right and top), the traction vectors q = (qx, qy)
are specified as Neumann boundary conditions, n =

(
nx, ny

)
its unit outward normal, while Γc (bottom)

is taken as constant Dirichlet boundary condition. Young’s modulus E is considered as a function of
location E(x, y) and Poisson’s ratio is given as a constant (i.e., ν = 0.48). The test function space,
represented by W, is defined by

W =
{
w : (w1,w2) ∈ H1(Ω) : w = 0 on Γc

}
. (2.9)

To determine the weak formulation of the linear elasticity Eq (2.8), we apply the weighted residual
method by multiplying Eq (2.8) by a test function and integrate over Ω, such that:∫

Ω

 w1

(
∂σx
∂x +

∂τxy

∂y

)
w2

(
∂τxy

∂x +
∂σy

∂y

)  dΩ +

∫
Ω

(
w1 fx

w2 fy

)
dΩ = 0. (2.10)

By utilizing the Green’s identity, using the integration by parts for the first term of the Eq (2.10) and
using the boundary conditions we get:

−

∫
Ω

 ∂w1
∂x σx + ∂w1

∂y τxy
∂w2
∂x τxy + ∂w2

∂y σy

 dΩ +

∫
Ω

(
w1 fx

w2 fy

)
dΩ +

∫
Γi

(
w1qx

w2qy

)
dΓi = 0. (2.11)

The variational formulation of Eq (2.8) can be rewritten as follows:∫
Ω

 ∂w1
∂x 0 ∂w1

∂y

0 ∂w2
∂y

∂w2
∂x



σx

σy

τxy

 dΩ =

∫
Ω

(
w1 fx

w2 fy

)
dΩ +

∫
Γi

(
w1qx

w2qy

)
dΓi. (2.12)

Finally, using Eqs (2.6) and (2.7), the forward problem can be solved to find the displacement field
(u, v): ∫

Ω

 ∂w1
∂x 0 ∂w1

∂y

0 ∂w2
∂y

∂w2
∂x

EDσ


∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x

 dΩ =

∫
Ω

(
w1 fx

w2 fy

)
dΩ +

∫
Γi

(
w1qx

w2qy

)
dΓi. (2.13)

The body deformation represents the solution of the forward problem to find the displacement field
on the problem domain. This deformation helps in solving the elasticity imaging inverse problem of
identifying the elastic properties from the available measurements on subdomain of the problem.
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3. The Levenberg-Marquardt method

Let X and Y two Hilbert spaces, J : D(J) ⊂ X −→ Y. Consider the system of nonlinear equations
as a continuously differentiable function:

J(x) = 0. (3.1)

Assume that Eq (3.1) has a solution set K ∗ that is not empty. The system (3.1) may not have a so-
lution, i.e., J(x) is not necessarily invertible. To remedy this, we replace Eq (3.1) by the following
minimization problem:

min
x∈K
J(x) = min

x∈K
{
1
2
‖J(x)‖2}. (3.2)

The LMM is a Newton type technique for solving nonlinear least squares problems [4, 8–10]. Partic-

ularly, LMM is a kind of GN technique for reducing a least squares cost
1
2
‖J(x)‖2. In its purest form,

the GN technique effectively takes in each iteration:

xk+1 = xk + dk,

where the direction of descent dk is[
∇J

(
xk

)
∇J

(
xk

)′]
dk = ∇J

(
xk

)
J
(
xk

)
. (3.3)

As in the GN method, the operator ∇J
(
xk

)
∇J

(
xk

)′
is not always non-singular. So, the matrix is

substituted by the following positive definite matrix:

J
(
xk

)
∇J

(
xk

)′
+ Sk.

Here Sk is the identity matrix I multiplied by βk (Sk = βkI) which is selected as a positive multiple
and it is chosen so that the modified matrix is always non-singular. This method has been widely used
because of its simplicity. It is used also to have a quadratic convergence rate under some suitable
hypothesis.

Remark 1. This is equivalent to the problem of unconstrained minimization:

min
d∈X
Ok(d), (3.4)

where Ok : X −→ R is a strictly convex function defined by:

Ok(d) =
∥∥∥∥J ′

(
xk

)
d + J

(
xk

)∥∥∥∥2
+ βk‖d‖2.

3.1. Regularization approach of the elasticity imaging inverse problem

First we must define the set of admissible coefficients set for E:

K =
{
E ∈ H1(Ω) : E0 ≤ E(x, y) ≤ E1 < ∞, a.e. in Ω

}
, (3.5)
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where E0 and E1 are two positive constants.
We are concerned in this section with the inverse problem of identifying E on Ω from measurements
available on Γi :

(PI)
{

Find E(x, y) ∈ K s.t.
u = (u, v) ∈ H1(Ω) × H1(Ω) is the solution of Eq (2.8).

(3.6)

For analyzing inverse problems, the usual output least-squares approach is:

J(E) =
1
2
‖u(E) − zη‖2L2(Ω) . (3.7)

We assume the noise level in the observation data zη = (zu, zv) of the true solution u of the system (2.8)
is of order η. Hence ∥∥∥u(Ẽ) − zη

∥∥∥
L2(Ω)
≤ η, (3.8)

where Ẽ is the exact solution of Eq (3.6). We transform the linear elasticity imaging inverse problem
of identifying Young’s modulus E to the following stable minimization with Tikhonov regularization,

min
E∈K
J(E); and J(E) =

1
2
‖u(E) − zη‖2L2(Ω) + β‖E − Ẽ‖2L2(Ω). (3.9)

where ‖E−Ẽ‖2L2(Ω) is the Tikhonov regularization term and β is the regularization parameter. The LMM
iteration is obtained by following the formality as explained above.

Ek+1 = argmin
E∈K

J(E),

= argmin
E∈K

{∥∥∥∥u
(
Ek

)
− zη

∥∥∥∥2

L2(Γ0)
+ µk

∥∥∥E − Ek
∥∥∥2

L2(Γout)

}
.

(3.10)

3.2. Sensitivity problem

We assume that the identification parameter E(x, y) is perturbed by a small amount E + δE, where
δE can be any direction in L∞(Ω).

u(E + δE) ≈ u(E) + u′(E)δE + O
(
‖δE‖2L∞(Ω)

)
,

and

v(E + δE) ≈ v(E) + v′(E)δE + O
(
‖δE‖2L∞(Ω)

)
.

Let (u1, v1) ≡ (u′(E)δE, v′(E)δE) ∈ L2(Ω) × L2(Ω) the Fréchet derivative at direction δE of the forward
solution u(E) = (u(E), v(E)) in Eq (2.8). Abdelhamid et al. [23] obtained the sensitivity problem of
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elasticity as follows:

(SP) :



∂σ1
x

∂x +
∂τ1

xy

∂y = −
(
∂σ̃x
∂x +

∂τ̃xy

∂y

)
, in Ω

∂τ1
xy

∂x +
∂σ1

y

∂y = −
(
∂τ̃xy

∂x +
∂σ̃y

∂y

)
, in Ω

σ1
xnx + τ1

xyny = −
(
σ̃xnx + τ̃xyny

)
, on Γi

τ1
xynx + σ1

yny = −
(
τ̃xynx + σ̃yny

)
, on Γi

u1 = v1 = u0. on Γc

(3.11)

For the sensitivity Eq (3.11), we may describe the relationship between stresses and strains as
follows:


σ1

x

σ1
y

τ1
xy


= EDσ



∂u1

∂x

∂v1

∂x

∂u1

∂y
+
∂v1

∂x


. (3.12)

The right-hand side of Eq (3.11) can be rewritten similarly:


σ̃x

σ̃y

τ̃xy


= δEDσ



∂u
∂x

∂v
∂x

∂u
∂y

+
∂v
∂x


. (3.13)

Now, we’ll complete the sensitivity problem’s variational formulation:

−

∫
Ω

 σ1
x
∂w1
∂x + τ1

xy
∂w1
∂y

τ1
xy
∂w2
∂x + σ1

y
∂w2
∂y

 dΩ +

∫
Ω

 w1

(
∂σ̃x
∂x +

∂τ̃xy

∂y

)
w2

(
∂τ̃xy

∂x +
∂σ̃y

∂y

)  dΩ

−

∫
Γi

 w1

(
σ̃xnx + τ̃xyny

)
w2

(
τ̃xynx + σ̃yny

)  dΓi = 0.

(3.14)

We get the following result as we use the integration by parts for the second term of (3.14):

−

∫
Ω

 σ1
x
∂w1
∂x + τ1

xy
∂w1
∂y

τ1
xy
∂w2
∂x + σ1

y
∂w2
∂y

 dΩ −

∫
Ω

 σ̃x
∂w1
∂x + τ̃xy

∂w1
∂y

τ̃xy
∂w2
∂x + σ̃y

∂w2
∂y

 dΩ = 0. (3.15)

Electronic Research Archive Volume 30, Issue 4, 1532–1557.



1540

After that, ∫
Ω

 σ1
x
∂w1
∂x + | τ1

xy
∂w1
∂y

τ1
xy
∂w2
∂x + σ1

y
∂w2
∂y

 dΩ = −

∫
Ω

 σ̃x
∂w1
∂x + τ̃xy

∂w1
∂y

τ̃xy
∂w2
∂x + σ̃y

∂w2
∂y

 dΩ. (3.16)

Using Eqs (3.12) and (3.13), the Eq (3.16) can be rewritten in the following manner:

∫
Ω

 ∂w1
∂x 0 ∂w1

∂y

0 ∂w2
∂y

∂w2
∂x

EDσ


∂u1

∂x
∂v1

∂y
∂u1

∂y + ∂v1

∂x

 dΩ = −

∫
Ω

 ∂w1
∂x 0 ∂w1

∂y

0 ∂w2
∂y

∂w2
∂x

 δEDσ


∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x

 dΩ. (3.17)

where Dσ refers to the material property of the applied plane stress condition.

3.3. Adjoint problem

The Lagrangian multipliers L are introduced first in this section. Consider the following problem:

minE∈KJ(u, v,E),

subject to cx(u, v,E) = 0 in Ω,

cy(u, v,E) = 0 in Ω,

B ·Ccx = 0 on Γi,

B ·Ccy = 0 on Γi.

(3.18)

The state equations in the x and y directions are represented by cx and cy, respectively. Consequently,
the Neumann boundary conditions on Γi corresponding to cx and cy are defined by B.Ccx and B.Ccy,
respectively. The Lagrangian may be shown as:

L (u, v,E, λu, λv) = J(u, v,E) +

∫
Ω

λucx(u, v,E)dΩ +

∫
Ω

λvcy(u, v,E)dΩ

−

∫
Γi

(
λuB ·Ccx + λvB ·Ccy

)
dΓi.

(3.19)

The Lagrange multiplier is represented with (λu, λv). To find the adjoint equation, the differential of L
must be computed:

∂L

∂u
δu =

∂J

∂u
δu +

∫
Ω

λu
∂

∂u

(
∂σx

∂x
+
∂τxy

∂y
+ fx −

(
σxnx + τxyny

))
δu dΩ

+

∫
Ω

λv
∂

∂u

(
∂τxy

∂x
+
∂σy

∂y
+ fy −

(
τxynx + σyny

))
δu dΩ = 0,

(3.20)

and
∂L

∂v
δv =

∂J

∂v
δv +

∫
Ω

λu
∂

∂v

(
∂σx

∂x
+
∂τxy

∂y
+ fx −

(
σxnx + τxyny

))
δv dΩ

+

∫
Ω

λv
∂

∂v

(
∂τxy

∂x
+
∂σy

∂y
+ fy −

(
τxynx + σyny

))
δv dΩ = 0.

(3.21)

By subtracting Eq (3.21) from Eq (3.20) and two times utilizing integration par part we obtain the
adjoint problem:
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(AP) :



∂σ∗x
∂x +

∂τ∗xy

∂y = −ρ1

[
∂
∂x

(
E

(
∂(u−zu)
∂x + v∂(v−zv)

∂y

))
+ρ2

∂
∂y

(
E

(
∂(u−zu)
∂y +

∂(v−zv)
∂x

))]
in Ω,

∂τ∗xy

∂x +
∂σ∗y
∂y = −ρ1

[
ρ2

∂
∂x

(
E

(
∂(u−zu)
∂y +

∂(v−zv)
∂x

))
+ ∂
∂y

(
E

(
v∂(u−zu)

∂x +
∂(v−zv)
∂y

))]
in Ω,

σ∗xnx + τ∗xyny = 0 in Γi,

τ∗xynx + σ∗yny = 0 on Γi,

λu = λv = λ0 on Γc.

(3.22)

where (u, v) solves the original forward problem of elasticity (2.8) and λ0 is the initial condition. The
relationship between stresses σ∗ and the adjoint solution can be shown as follows:


σ∗x

σ∗y

τ∗xy


= EDσ



∂λu

∂x
∂λv

∂y
∂λu

∂y
+
∂λv

∂x


. (3.23)

Using the conditions to the limits in Eq (3.22) and the relation Eq (3.23), we obtain the variational
formulation of Eq (3.22):

∫
Ω

 ∂w1
∂x 0 ∂w1

∂y

0 ∂w2
∂y

∂w2
∂x

EDσ


∂λu
∂x
∂λv
∂y

∂λu
∂y + ∂λv

∂x

 dΩ

= −

∫
Ω

 ρ1E
(
∂(u−zu)
∂x + v∂(v−zv)

∂y

)
∂w1
∂x + ρ1ρ2E

(
∂(u−zu)
∂y +

∂(v−zv)
∂x

)
∂w1
∂y

ρ1ρ2E
(
∂(u−zu)
∂y +

∂(v−zv)
∂x

)
∂w2
∂x + ρ1E

(
v∂(u−zu)

∂x +
∂(v−zv)
∂y

)
∂w2
∂y

 dΩ. (3.24)

4. Numerical procedure

This section explains how to use the LMM to solve the proposed optimization inverse problem.
Table 1 introduces the specifications of different algorithms compared with the LMM in terms of the
convergence and computation complexity.

Table 1. Specifications of different algorithms.

Algorithms Convergence Computation Complexity
Gradient descent Stable, slow Gradient
Newton Unstable, fast Gradient and Hessian
Gauss-Newton Unstable, fast Jacobian
Levenberg-Marquardt Stable, fast Jacobian
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According to the study done above, the different steps for computing the Young’s modulus E(x, y)
are given by the following algorithm:

Algorithm 1:
1. Initialization
(1) Choose the initial value E0.

(2) Choose the observation data zη = (zu, zv) and its noise order η > 0.

(3) Choose a tolerance parameter ε > 0.

(4) Set k := 0.

2. Solve

(1) Forward problem (2.8) with E = Ek.

(2) Sensitivity problem (3.11) with E = Ek.

(3) Adjoint problem (3.22) with E = Ek.

3. Calculate: Using the current value of Ek

βk = ‖u(Ek) − zη‖2L2(Ω)

4. Compute the descent direction dk:[
u′

(
Ek

)?
u′

(
Ek

)
+ βkI

]
dk = −u′

(
Ek

)? [
u
(
Ek

)
− zη

]
5. Update the identification parameter Ek+1:

Ek+1 := Ek + dk.

6. if
‖ Ek+1 − Ek ‖2L2(Ω)

‖ Ek ‖2
L2(Ω)

≤ ε then

Stop the iteration and Return Ek;
else

Set k := k + 1 and return to step 2.
end

end

The Young’s modulus E(x, y) can be reconstructed using this process. For each iteration with
E(x, y) = E(x, y)k the algorithm necessitates the resolution of the forward problem, sensitivity problem
and the adjoint problem then calculate the regularization parameter βk and the descent direction dk, next
updating the identification parameter E, finally we verify the stopping criteria, the estimated parameter
must be accurate enough or satisfies the discrepancy principle.
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5. Numerical results

Let us consider a two dimensional square domain [0, 1]×[0, 1] with Γc = [0, 1]×{y = 0} and Γi is the
remaining part of the boundary ∂Ω. In order to identify a smooth E(x, y), we give numerical examples
to prove our study’s effectiveness. All calculations are made using Freefem++4.6 [31]. CPU: Intel(R)
Core(TM) i7-4510U CPU @ 2.00GHz, 2601 MHz, 2 cores, 4 processors, Memory: 8 GB. We generate
data zη = (zu, zv) ∈ L2(Ω) experimentally by:

zη = u(x, y)(1 + ηξ) on Ω, (5.1)

where η is the amount of noise and ξ is a uniformly distributed random variable in [−1, 1], then using
the FreeFem function Rand1(·) we generate this random variable. The exact solution is synthetically
generated using the fundamental of elasticity problem:

u(x, y) = (u, v) = (xy, xy). (5.2)

The body forces f = ( fx, fy) and the traction q = (qx, qy) applied on its boundaries can be derived
directly on borders Γi.

5.1. Reconstruction of the constant Young’s modulus

Due to changes in sample composition and test technique, Young’s modulus might vary somewhat.
The constant values presented here [32–35] are approximated and solely intended for relative compar-
ison.

Example 1. We consider a constant Young’s modulus for various materials such as Aluminum, Tita-
nium, . . . , etc.

Table 2 presents the reconstruction of E at a number of elements NE = 1800, η = 1% for different
materials at constant initial guesses. The obtained results show the rapid convergence and the precision
of the introduced procedure.

Table 2. The identification of Young’s modulus for various materials.

Material EExact E0 ECalculated k eE
Aluminium (13Al) 68 70.25 67.9904 25 0.0096133
Titanium (22Ti) 116 115 116.011 13 0.0109185
Bronze 112 113 112.250 13 0.0066388
Zinc (30Zn) 108 110.25 108.007 25 0.0074127
Nylon (66) 2.93 2.5 2.92746 6 0.0025417

Figure 2 shows the convergence speed of the proposed LMM at different levels of noise η in the
measurement data for the Titanium material with initial guess E0 = 115. Figure 3 introduces the
convergence speed at η = 1% and η = 2% for the Nylon material with initial guess E0 = 2.5. It
is observed that the best convergence speed is obtained for low level of noise in the data. At large
level of noise, the proposed algorithm takes more than 50 iterations to get the optimal solution of the
reconstructed parameter. Table 3 presents the decline of the relative error eE, until the convergence
occurs at the 13th iteration.
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Figure 2. Convergence speed for E0 = 115 (Titanium) with different noise order η.
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Figure 3. Convergence speed for E0 = 2.5 (Nylon) with η = 1% and η = 2%.

Table 3. The relative error with η = 0.01 and E0 = 115 for Example 1 (Titanium).
k eE k eE k eE
0 1 5 0.729589 10 0.311645
1 0.925356 6 0.662241 11 0.116378
2 0.857706 7 0.595521 12 0.042788
3 0.809445 8 0.553536 13 0.010918
4 0.768314 9 0.493262

5.2. Reconstruction of the variable Young’s modulus

Example 2. The exact identification of the Young’s modulus is defined by:

E(x, y) = 3 + 0.05e(x+y)2
in Ω. (5.3)

In this Example the initial guess is given by E0 = 3.3.
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Table 4 presents the variation of the relative error eE with respect to the noise level in the data. We
notice that as the amounts of noise η rises, eE rises as well at chosenNE = 1800. However, this relative
error remains interesting upto η = 1.5%. We also remark on this table that the solution of the inverse
problem fails for η > 2.75%. Figure 4 shows the variation of the residual error (left) and the relative
error (right) with respect to the number of iterations k. We remark that these errors suddenly decrease
upto k = 10 and then they remain almost constant and independent of k.

Table 4. The relative error with varying amounts of noise η in the data Example 2.
NE η(%) k eE NE η(%) k eE
1800 0.25 19 0.0012 1800 1.75 09 0.011
1800 0.50 10 0.0031 1800 2.00 05 0.019
1800 0.75 09 0.0044 1800 2.25 03 0.041
1800 1.00 07 0.0058 1800 2.50 06 0.053
1800 1.25 09 0.0070 1800 2.75 03 0.068
1800 1.50 09 0.0074 1800 >2.75 fail! fail!
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Figure 4. Residual (left) and relative error (right) corresponding to k for Example 2.

Figures 5(a),(b) and 6 show the exact (left) and reconstructed (middle) Ek for Example 2 in 2D and
3D at η = 0.5% and NE = 20, 000. The obtained results are satisfactory at k = 9, where the relative
error eE = 0.0032. Figures 5(c) and 6 (right) show the residual error of the coefficient Ek. It is observed
that the relative error grows at a part of the boundary of the problem domain. We have also examined
the procedure for different values of NE. Figures 7 and 8 show the exact (left) and reconstructed
(middle) Ekand residual error (right) at η = 0.5% for NE = 9800 and 1800 respectively. Figure 9
represents the variations and sensitivity of the measured data zη with respect to the noise level.
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(a) The exact E (b) The calculated Ek (c) The residual error

Figure 5. 2D view of the exact E (left), reconstructed Ek (middle) and the residual error
(right) for Example 2 at η = 0.5% andNE = 20, 000, the relative error eE = 0.0032 at k = 9.
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Figure 6. 3D view of the exact E (left), reconstructed Ek (middle)and the residual error
(right) for Example 2 at η = 0.5% andNE = 20, 000, the relative error eE = 0.0032 at k = 9.
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(right) for Example 2 at η = 0.5% and NE = 9800.
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Figure 8. 3D view of the exact E (left), reconstructed Ek (middle) and the residual error
(right) for Example 2 at η = 0.5% and NE = 1800.
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Figure 9. Measurement data at different η for Example 2.
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Example 3. The exact coefficient is given by:

E(x, y) = 1 +
0.5

1 + e50((0.6−x)2+(0.3−y)2)−3
+

0.3

1 + e100((0.4−x)2+(0.75−y)2)−3
in Ω, (5.4)

with initial guess E0 = 1.1.

Table 5 shows the numerical convergence for Ek with respect to the number of iterations k. We
observe that the relative and the residual errors drop rapidly until the 8th iteration. Then they decline
slowly as shown in Figure 10. Figure 11 depicts the exact (left), reconstructed (middle) Ek and residual
error (right) for η = 0.5% at iterations k = 1, 2, 4, 6 and 8.

Table 5. The relative error at η = 0.5% for Example 3.
k eE k eE k eE
1 0.103244 7 0.019356 13 0.003495
2 0.078826 8 0.010968 14 0.003495
3 0.050282 9 0.006122 15 0.003693
4 0.040450 10 0.004676 16 0.002940
5 0.031286 11 0.003857 17 0.002623
6 0.025083 12 0.002983 18 0.002521
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k for Example 3.
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(a) Step k = 1, Relative Error eE = 0.10.

(b) Step k = 2, Relative Error eE = 0.079.

(c) Step k = 4, Relative Error eE = 0.040.

(d) Step k = 6, Relative Error eE = 0.025.

(e) Step k = 8, Relative Error eE = 0.010.

Figure 11. The 2D view of the exact (left), reconstructed (middle) E and residual error (right)
at η = 0.5% for Example 3.
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(a) The exact E (b) The calculated Ek (c) The residual error

Figure 12. 2D view of the exact E (left), reconstructed Ek (middle) and the residual error
of the coefficient Ek (right) for Example 3 at η = 0.5% and NE = 20, 000, the relative error
eE = 0.0025 at k = 18.
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Figure 13. 3D view of the exact E (left), reconstructed Ek (middle) and the residual error
of the coefficient Ek (right) for Example 3 at η = 0.5% and NE = 20, 000, the relative error
eE = 0.0025 at k = 18.

Figures 12(a),(b) and 13 show the exact (left) and reconstructed (middle) Ek for Example 3 in 2D
and 3D at η = 0.5% and NE = 20, 000. It is observed that the reconstructed modulus of elasticity
Ek has a very satisfying relative error (eE = 0.0025) at k = 18. Figures 12(c) and 13 (right) show the
residual error of Ek for Example 3 in 2D and 3D. Jadamba et al. [36] have implemented both first and
second-order adjoint methods and the Newton method with a simple backtracking line search method
for solving Example 3. They found that it is possible to achieve a good precision at the 139th iteration
(for the first-order adjoint method) as well as at the 49th iteration (for the second-order adjoint method),
then decreased very slowly with increasing k. These results are in a good accord with the literature.
Furthermore, Abdelhamid et al. [23] implemented the nonlinear conjugate gradient method for solving
this example observing that at the first 25th iteration. The relative and residual errors are decreasing
rapidly with increasing k, after which they decrease very slow to reach the minimizer at k = 34 with
relative error eE = 0.0128. It is found that the LMM gives better results in less number of iterations k.
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Example 4. The modulus of elasticity coefficient E(x, y), body force function f (x, y) and boundary
conditions are as follows:

E(x, y) = 1 −
1
2

sinc
[
6π

(
x +

1
10

) (
y +

1
10

)]
, f (x, y) =

[
−1

5 x
cos(πx)

]
in Ω.

g(x, y) =
1

10

[
sin(πy)
sin(πx)

]
on Γ1 and h(x, y) =

1
10

[
1 + 10x
1 + 10y

]
on Γ2,

(5.5)

where ∂Ω = Γ1∪Γ2, Γ1 represents the bottom and left sides of the border and Γ2 represents the top and
the right edges.

Remark 2. The sinc function also called the “sampling function” defined as following:

sinc(x) =

 1 for x = 0,
sin x

x
Otherwise.

For this example, the suggested method is tested with η = 0.5% and NE = 20, 000. Table 6 shows
that the relative error eE slowly decreases with increasing k. We reach to the minimizer and the stopping
criteria is satisfied at k = 19. Figure 14 shows that the relative error eE reduces rapidly as the number
of iterations k increases for the first 10 iterations and then slowly approach to the minimizer.

Table 6. The relative error at η = 0.5% for Example 4.
k eE k eE k eE k eE
1 0.14524 6 0.06519 11 0.02621 16 0.00397
2 0.13081 7 0.05603 12 0.01979 17 0.00591
3 0.11370 8 0.04337 13 0.17039 18 0.00287
4 0.09535 9 0.03191 14 0.00910 19 0.00278
5 0.07731 10 0.02882 15 0.00701

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 10 20 30 40 50 60 70 80 90 100

Er
ro

r

Iteration k

Residual Error for E

Re

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 10 20 30 40 50 60 70 80 90 100

Er
ro

r

Iteration k

Relative Error for E

REe

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Figure 14. Variation of the residual (left) and the relative error (right) corresponding to k for
Example 4.
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(a) Exact E. (b) reconstructed Ek. (c) Residual Error.

Figure 15. 2D view of the exact, reconstructed Ek and residual error at k = 19 for η = 0.5%
and NE = 20, 000, eE = 0.0028 for Example 4.
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Figure 16. 3D view of the exact, reconstructed Ek and residual error at k = 19 for η = 0.5%
and NE = 20, 000, eE = 0.0028 for Example 4.
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Figure 17. 3D view of the exact E (left), reconstructed Ek (middle) and the residual error of
the coefficient Ek (right) at η = 0.5% and NE = 9800 for Example 4.
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(a) Exact, computed E and residual error at k = 5.
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(b) Exact, computed E and residual error at k = 12.
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(c) Exact, computed E and residual error at k = 15.
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(d) Exact, computed E and residual error at k = 17.

Figure 18. 3D view of the exact (left), reconstructed (middle) Ek and residual error (right) at
η = 0.5% for Example 4.
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Figures 15(a),(b) and 16 represent the exact (left) and the reconstructed (middle) Ek for Example 4
in 2D and 3D respectively for η = 0.5% and NE = 20, 000. Figure 17 shows the same representation
for NE = 9800. The proposed method represents a reasonable results at k = 19 for which the relative
error is eE = 0.0028. Figures 15(c) and 16 (right) introduces the residual error of eE for Example 4 in
2D and 3D. It is observed that the eE grows at the corners of the boundary due to the influence of the
gradient computations.

Figure 18 gives a graphical representation of the exact, the reconstructed Ek and the residual error
at k = 5, 12, 15 and 17, the method converges rapidly to the solution in the first 10th iterations, then
gives a good reconstruction Ek in the 19th iteration as shown in Figures 15–17 and Table 6. Table 7
introduces a comparison of the relative eE, residual error E and the number of iterations k using the
present work compared to that of Abdelhamid et al. [23].

Table 7. Comparison for Example 4.

k Relative error eE Residual error E
Abdelhamid et al. [23], NE =12,800 67 0.038095 0.036702
Present work, NE =9800 23 0.003532 0.005026

6. Conclusions

In this paper we develop a theoretical framework for the inverse problem of identifying the modulus
of elasticity E at some measurement data on the boundary. The inverse problem is discretized using
the finite element approach. The optimization problem of reconstructing the elastic modulus (Young’s
modulus) of elasticity imaging inverse problem is formulated. The identification parameter is defined
on the domain and can be identified from given measurement data at some parts of the boundaries.
The LMM method is used to treat this ill-posed inverse problem and the non-convex minimization is
changed into a convex one. The mathematical formulation for the forward problem of elasticity is
introduced in the 2D plane, where Ω ⊂ Rd, d = 2, 3. The descent direction dk is introduced from the
solution of the sensitivity and adjoint equations. The obtained results from the identification problem
of the constant and variable identification parameter for various real materials are satisfactory. The
obtained results show the accuracy and efficiency of the proposed algorithm. The obtained results of
the 2D and 3D view for the reconstruction of the Young’s modulus are compared with those obtained
from the exact one. At different levels of noise, the proposed algorithm is implemented and show
efficient and accurate results upto η = 2.75%.
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