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Abstract: A second order alternating direction implicit scheme for time-dependent Riesz space
distributed-order advection-dispersion equations is applied to higher dimensions with the Tensor-Train
decomposition technique. The solutions are solved in compressed format, the Tensor-Train format,
and the errors accumulated due to compressions are analyzed to ensure convergence. Problems with
low-rank data are tested, the results illustrated a steeper growth in the ranks of the numerical solutions
than that in related works.
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1. Introduction

In recent decades, fractional differential equations (FDEs) have been widely considered in
modelling anomalous diffusion. A class of FDEs, the distributed-order FDEs (DO-FDEs), have been
applied in modelling ultraslow diffusion [1, 2], mixture of delay sources [3], and dielectric induction
and diffusion [4].

To solve DO-FDEs with numerical method, one may discretize the integral with certain quadrature
rule, followed by applying an approximation for ordinary fractional derivative [5–7]. In particular,
in [8], a form of DO-FDE called Riesz space distributed-order advection-diffusion equations (RSDO-
ADE) is studied, with second order schemes proposed for one-dimensional and two-dimensional cases.

On the other hand, a data compression format called the Tensor-Train format (TT-format) [9] has
been employed in various high dimensional problems. In particular, a TT-format iterative method
called the TT-GMRES method is widely used in solving FDE related problems, especially for those
which discretized linear systems possess low-rank structure [10–12]. Benefiting from the Toeplitz-
like structure of the linear systems, many studies have been made to explore the underlying properties
and to the development of preconditioners [13, 14]. Another TT-format approach for solving FDE
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problems is the application of the alternating direction implicit (ADI) method [15, 16], which reduces
the linear systems into one-dimensional systems. Although this approach probably limits the classes of
problems to be solved, the convergence analysis is relatively simple to perform. These results provide
practical ground for the implementation of RSDO-ADE with higher dimensions, and suggest that the
implementation is a trial for the latter approach.

In this work, the RSDO-ADE from [8] is considered in high dimensional form. As the concerning
fractional orders are distributed over (0, 1) ∪ (1, 2) instead of subintervals of (1, 2), and the derivatives
are of Riesz type instead of weighted two-sided type, we consider the finite volume approximation
in [16] not more suitable here than the approximation in [8]. Following the proposed discretization,
we adopt the midpoint quadrature rule for the integrals, a second order approximation for the Riesz
space fractional derivatives, and the Crank-Nicolson method, thus obtaining a second order scheme.
Further, similar to [15] and [16], we apply the ADI method for the reduction of the dimensionality, and
TT-format is adopted so that the resulting scheme can be solved in compressed form, provided that the
given data possess low TT-ranks.

As compression format introduces perturbations, error analysis is performed to estimate and
maintain the overall convergence order. For efficiency, consider a d-dimensional case, discretized as
linear systems of size N with N time steps, and suppose the numerical solutions possess TT-ranks
around r, then the proposed method requires storage of O(2N2 + dr2N) and operation cost of
O(dr2N3 + dr3N2), provided that the Gaussian Elimination (GE) method is adopted for solving the
linear systems. The analysis is testified by some numerical examples with d ≤ 20.

The content is briefly described as follows. The d-dimensional RSDO-ADE problem is first
presented in Section 2, then the implementation of the TT-format method is described in Section 3,
and some numerical results are presented in Section 4.

2. The d-dimensional RSDO-ADE

2.1. The problem

For x = [x(1), . . . , x(d)]ᵀ and Ω =
d∏

k=1
[x(k)

a , x
(k)
b ], we consider the d-dimensional RSDO-ADE of the

following form.

∂u(x, t)
∂t

=

d∑
k=1

(∫ 1

0
P(α)

∂αu(x, t)
∂|x(k)|α

dα +

∫ 2

1
Q(β)

∂βu(x, t)
∂|x(k)|β

dβ
)

+ f (x, t),

(x, t) ∈ Ω × [0,T ],
u(x, t) = 0, (x, t) ∈ (Rd \Ω) × [0,T ],
u(x, 0) = u0(x), x ∈ Ω,

(2.1)

where

P(α) ≥ 0, P(α) . 0, α ∈ [0, 1], 0 <
∫ 1

0
P(α)dα < ∞,

Q(β) ≥ 0, Q(β) . 0, β ∈ [1, 2], 0 <
∫ 2

1
Q(β)dβ < ∞.
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Here, ∂αu/∂|x(k)|α and ∂βu/∂|x(k)|β denote the α-order and β-order Riesz space fractional derivatives of
u(x, t) respectively, with the forms:

∂αu(x, t)
∂|x(k)|α

= −cα
(

x(k)
a

Dα
x(k)u(x, t) + x(k) Dα

x(k)
b

u(x, t)
)
,

∂βu(x, t)
∂|x(k)|β

= −cβ
(

x(k)
a

Dβ

x(k)u(x, t) + x(k) Dβ

x(k)
b

u(x, t)
)
,

where

cα =
1

2 cos(πα/2)
, 0 < α < 1,

cβ =
1

2 cos(πβ/2)
, 1 < β < 2,

x(k)
a

Dα
x(k) =

1
Γ(1 − α)

∂

∂x(k)

∫ x(k)

x(k)
a

(x(k) − ξ)−αu(x, t)|x(k)=ξdξ,

x(k) Dα

x(k)
b

=
−1

Γ(1 − α)
∂

∂x(k)

∫ x(k)
b

x(k)
(ξ − x(k))−αu(x, t)|x(k)=ξdξ,

x(k)
a

Dβ

x(k) =
1

Γ(2 − β)
∂2

∂(x(k))2

∫ x(k)

x(k)
a

(x(k) − ξ)1−βu(x, t)|x(k)=ξdξ,

x(k) Dβ

x(k)
b

=
1

Γ(2 − β)
∂2

∂(x(k))2

∫ x(k)
b

x(k)
(ξ − x(k))1−βu(x, t)|x(k)=ξdξ,

where Γ(·) denotes the gamma function.
We remark that in this problem form, the boundary condition is modified as described in [17].

2.2. Discretization

The discretization of Problem 2.1 is described below.
For the integrals, by taking a positive integer S , we define σ = 1/S , grid points ξ j = jσ for

0 ≤ j ≤ S , α j = (ξ j + ξ j−1)/2 = ( j− 0.5)σ for 1 ≤ j ≤ S , β j = ((1 + ξ j) + (1 + ξ j−1))/2 = 1 + ( j− 0.5)σ
for 1 ≤ j ≤ S . Then we define the midpoint quadrature operators

IP
S (v(α)) , σ

S∑
j=1

P(α j)v(α j), and IQ
S (v(β)) , σ

S∑
j=1

Q(β j)v(β j),

where v can be a function or a matrix. Like the integrals, the operators are linear.
With the operators, we have ∫ 1

0
P(α)

∂αu(x, t)
∂|x(k)|α

dα ≈ IP
S

(
∂αu(x, t)
∂|x(k)|α

)
,∫ 2

1
Q(β)

∂βu(x, t)
∂|x(k)|β

dβ ≈ IQ
S

(
∂βu(x, t)
∂|x(k)|β

)
.
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For the derivatives, take positive integers N,M, and grid points x(k)
i = x(k)

a + ihk and tm = mτ, where
hk = (x(k)

b − x(k)
a )/(N + 1), τ = T/M, 0 ≤ ik ≤ N + 1, 1 ≤ k ≤ d, and 0 ≤ m ≤ M. Then, denote

u(m)
i1,...,id

= u(x(1)
i1
, . . . , x(d)

id
, tm), f (m)

i1,...,id
= f (x(1)

i1
, . . . , x(d)

id
, tm).

As presented in [8, 18], the second-order approximations for the Riesz space fractional derivatives
have the forms

∂αu(x(1)
i1
, . . . , x(k)

ik
, . . . , x(d)

id
, tm)

∂|x(k)|α
≈ −

1
hαk

N∑
j=1

g(α)
ik− ju

(m)
i1,..., j,...,id

,

∂βu(x(1)
i1
, . . . , x(k)

ik
, . . . , x(d)

id
, tm)

∂|x(k)|β
≈ −

1

hβk

N∑
j=1

g(β)
ik− ju

(m)
i1,..., j,...,id

,

where

g(α)
0 =

Γ(1 + α)
(Γ(α/2 + 1))2 , g(α)

k = g(α)
−k =

(−1)kΓ(1 + α)
Γ(α/2 − k + 1)Γ(α/2 + k + 1)

=

(
1 −

1 + α

α/2 + k

)
g(α)

k−1 for k ≥ 1,

g(β)
0 =

Γ(1 + β)
(Γ(β/2 + 1))2 , g(β)

k = g(β)
−k =

(−1)kΓ(1 + β)
Γ(β/2 − k + 1)Γ(β/2 + k + 1)

=

(
1 −

1 + β

β/2 + k

)
g(β)

k−1 for k ≥ 1.

With the notations, for k = 1, . . . , d, define the operators

δkvi1,...,ik ,...,id = IP
S

 1
hαk

N∑
j=1

g(α)
ik− jvi1,..., j,...,id

 + IQ
S

 1

hβk

N∑
j=1

g(β)
ik− jvi1,..., j,...,id


=

N∑
j=1

IP
S

(
1
hαk

g(α)
ik− j

)
vi1,..., j,...,id +

N∑
j=1

IQ
S

 1

hβk
g(β)

ik− j

 vi1,..., j,...,id .

With the approximations and operators, the Crank-Nicolson method is applied to obtain the second-
order implicit finite difference scheme1 +

τ

2

d∑
k=1

δk

 u(m)
i1,...,id

=

1 − τ2
d∑

k=1

δk

 u(m−1)
i1,...,id

+ τ f m− 1
2

i1,...,id
, (2.2)

1 ≤ ik ≤ N, 1 ≤ k ≤ d, 1 ≤ m ≤ M.

By complementing appropriate cross terms of O(τ2), we obtain the ADI scheme(
1 +

τ

2
δ1

)
· · ·

(
1 +

τ

2
δd

)
u(m)

i1,...,id
=

(
1 −

τ

2
δ1

)
· · ·

(
1 −

τ

2
δd

)
u(m−1)

i1,...,id
+ τ f m− 1

2
i1,...,id

, (2.3)

1 ≤ ik ≤ N, 1 ≤ k ≤ d, 1 ≤ m ≤ M.
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2.3. Matrix form

Denote

u(m) = [u(m)
1,1,...,1, . . . , u

(m)
N,1,...,1, . . . . . . , u

(m)
1,N,...,N , . . . , u

(m)
N,N,...,N]ᵀ,

f(m) = [ f (m)
1,1,...,1, . . . , f (m)

N,1,...,1, . . . . . . , f (m)
1,N,...,N , . . . , f (m)

N,N,...,N]ᵀ,

I as the N × N identity matrix, and Â as the Toeplitz matrix

Â =



g̃0 g̃−1 · · · · · · g̃−N+2 g̃−N+1

g̃1 g̃0 g̃−1
. . .

. . . g̃−N+2
... g̃1 g̃0

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...

g̃N−2
. . .

. . .
. . . g̃0 g̃−1

g̃N−1 g̃N−2 · · · · · · g̃1 g̃0


,

where g̃k = IP
S

(
1
hα

g(α)
k

)
+ IQ

S

(
1
hβ

g(β)
k

)
= g̃−k, so Â is symmetric.

Also, denote

Ĩ := IN ⊗ · · · ⊗ IN︸         ︷︷         ︸
d

and Ãk := IN ⊗ · · · ⊗ IN︸         ︷︷         ︸
d−k

⊗Â ⊗ IN ⊗ · · · ⊗ IN︸         ︷︷         ︸
k−1

.

Together with the extended zero boundary condition, the scheme (2.2) can be rewritten as the matrix
form Ĩ +

τ

2

d∑
k=1

Ãk

 u(m) =

Ĩ −
τ

2

d∑
k=1

Ãk

 u(m−1) + τf(m− 1
2 ), 1 ≤ m ≤ M.

while the ADI scheme (2.3) can be rewritten as(
Ĩ +

τ

2
Ã1

)
· · ·

(
Ĩ +

τ

2
Ãd

)
u(m) =

(
Ĩ −

τ

2
Ã1

)
· · ·

(
Ĩ −

τ

2
Ãd

)
u(m−1) + τf(m− 1

2 ), 1 ≤ m ≤ M,

or equivalently,
Åu(m) = Å′u(m−1) + τf(m− 1

2 ), 1 ≤ m ≤ M, (2.4)

where Å = A ⊗ · · · ⊗ A︸       ︷︷       ︸
d

and Å′ = A′ ⊗ · · · ⊗ A′︸         ︷︷         ︸
d

, with A = I + (τ/2)Â and A′ = I − (τ/2)Â.

In [8], it is proved that ρ(A−1A′) = ‖A−1A′‖2 < 1. With this property, we have

‖Å−1Å′‖2 = ‖(A−1 ⊗ · · · ⊗ A−1)(A′ ⊗ · · · ⊗ A′)‖2

= ‖A−1A′ ⊗ · · · ⊗ A−1A′‖2 =

d∏
k=1

‖A−1A′‖2 < 1,

such that

‖Å−1Å′x‖2 < ‖x‖2, ∀x. (2.5)
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3. Solving process

3.1. TT-format method

Following [15] and [16], the linear system (2.4) can be solved in compressed form if u(0) and f(m−1/2)

are in TT-format, or u0(x) and f (x, tm−1/2) possess functional TT-format (FTT-format).
Suppose u0(x) and f (x, tm−1/2) have FTT-formats

u0(x) = G1(x(1)) · · ·Gd(x(d)) and f (x, tm− 1
2
) = H(m− 1

2 )
1 (x(1)) · · ·H(m− 1

2 )
d (x(d)),

where Gk and Hk are of sizes rk−1 × rk and r′k−1 × r′k respectively for 1 ≤ k ≤ d, then u(0) and f(m−1/2) can
be reshaped to tensors U (0) and F (m−1/2) with TT-formats

U (0)(i1, . . . , id) = u0(x(1)
i1
, . . . , x(d)

id
)

= G1(x(1)
i1

) · · ·Gd(x(d)
id

) := U (0)
1 (i1) · · ·U (0)

d (id) and

F (m− 1
2 )(i1, . . . , id) = f (x(1)

i1
, . . . , x(d)

id
, tm− 1

2
)

= H(m− 1
2 )

1 (x(1)
i1

) · · ·H(m− 1
2 )

d (x(d)
id

) := F(m− 1
2 )

1 (i1) · · · F(m− 1
2 )

d (id),

where U (0)
k and F(m−1/2)

k are of sizes rk−1 × N × rk and r′k−1 × N × r′k respectively for 1 ≤ k ≤ d.
After this, the numerical solutions can be obtained in TT-format through the following algorithm.

Algorithm 1

Input: Matrix Â, TT-cores U (0)
1 , . . . ,U (0)

d of U (0), TT-cores F(m−1/2)
1 , . . . , F(m−1/2)

d of F (m−1/2)

for m = 1, 2, . . . ,M, and relative error ε.
Output: TT-cores Ú (m)

1 , . . . , Ú (m)
d of Ú (m) for m = 0, 1, 2, . . . ,M.

1: Compute S =

(
I +

τ

2
Â
)−1

and S′ = S

(
I −

τ

2
Â
)

2: for k = 1 : d do
3: Ú (0)

k = U (0)
k

4: end for
5: for m = 1 : M do
6: Ũ (m)

1 =
(
Ú (m−1)

1 ×2 S
′ F(m− 1

2 )
1 ×2 S

)
7: for k = 2 : d − 1 do

8: Ũ (m)
k =

Ú (m−1)
k ×2 S

′ 0

0 F(m− 1
2 )

k ×2 S


9: end for

10: Ũ (m)
d =

 Ú (m−1)
d ×2 S

′

τF(m− 1
2 )

d ×2 S


11: Round Ũ (m) to Ú (m) with relative error ε by rounding process.
12: end for

In the algorithm, the notation U ×2 A denotes the multiplication of the matrix A with U along the
second dimension, or with the mode-2 fibers of U; while “Round” denotes a recompression process
called rounding for TT-format, expecting to reduce TT-ranks by introducing relative error.
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3.2. Computational efficiency

Here, we discuss the efficiency of Algorithm 3.1.
Suppose the GE method is adopted in line 1 to compute S, and the numerical solutions possess

TT-ranks ≈ r.
For storage, as the major components are the matrices and TT-cores of the numerical solutions, the

GE method requires storage of O(N2 + dr2N).
For operation cost, there are three major parts as shown in Algorithm 3.1. The first part is line 1, the

matrix inversion; the second part is line 6 to line 10, matrix-vector multiplications in single time step;
and the third part is line 11, rounding process in single time step. Thus the GE method requires totally
O(N3 + M(dr2N2 + dr3N)) operations.

We can see that the TT-ranks r is a crucial factor affecting the efficiency. Theoretically, r may range
from small numbers to powers of N, so that compressed format method may be less efficient than full
storage method. With rough estimation, if the problem data possess TT-ranks ≈ r′, then the numerical
solutions can be computed with TT-ranks of at most O(Mr′), which is attained when rounding process
does not compress at all. Numerical examples indicate a tentative form of growth that r ≈ O(logk N)
for some k > 0, which implies a possible dominance of the rounding process over the whole solving
process. Further studies about the possible forms of growth of TT-ranks are to be made.

Remark 1. By virtue of the Toeplitz structure of Â, hence I +(τ/2)Â, the operation cost may be reduced
to O(N log N + M(dr2N log N + dr3N)) in the optimal case. This may be accomplished by adopting
the circulant-and-skew-circulant representation method [19], equipped with preconditioned conjugate
gradient method and the Fast Fourier Transform [20].

3.3. Error analysis

For the overall convergence of the proposed method, we have the following proposition.

Proposition 1. Suppose P(α), Q(β), and the exact solution u(x, t) of Problem 2.1 satisfy the following
conditions.

i.
∂2P(α)
∂α2 ,

∂2

∂α2

∂αu(x, t)
∂|x(k)|α

∈ C(Ω × [0,T ] × [0, 1]) with respect to (x, t, α), and

∂2Q(β)
∂β2 ,

∂2

∂β2

∂βu(x, t)
∂|x(k)|β

∈ C(Ω × [0,T ] × [1, 2]) with respect to (x, t, β).

ii. For some ρ > 0, for 1 ≤ k ≤ d, the mixed partial derivatives

∂γ1

∂|x(1)|γ1
· · ·

∂γd

∂|x(d)|γd

∂γ∗

∂tγ∗
u(x, t)

are in C(Ω × [0,T ]) ∩ L1(Ω × [0,T ]) for all γk ∈ [0, 5 + ρ], γ∗ ∈ [0, 3 + ρ], and
vanish at infinity for all γk ∈ [0, 4 + ρ], γ∗ ∈ [0, 2 + ρ].

Then for rounding relative error ε, we have

Em ≤ K(1 + ε)M(τ2 + ĥ2 + σ2 + Mε).

where Em is the discrete 2-norm error between the exact solution in Eq (2.4) and the perturbed
numerical solution at tm due to rounding, K > 0 is a constant independent of m, τ, hk, σ, and
ĥ = max

1≤k≤d
hk.
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Proof. Denote u(m) as the exact solution in Problem 2.1, û(m) as the scheme solution in Eq (2.4), ũ(m) as
an intermediate solution, and ú(m) as the perturbed numerical solution. Then they have the following
relations.

• By similar arguments in [8] and [16], from the given conditions, we have (h1 · · · hd)1/2‖u(m)‖2 ≤ B,
and

Åu(m) = Å′u(m−1) + τf(m− 1
2 ) + R(m− 1

2 ), with (h1 · · · hd)1/2‖R(m− 1
2 )‖2 ≤ K0τ(τ2 + ĥ2 + σ2)

for some constants B,K0 > 0 independent of m, τ, hk, σ.

• û(0) = ú(0).

• Åû(m) = Å′û(m−1) + τf(m− 1
2 ).

• ũ(m) = Å−1Å′ú(m−1) + τÅ−1f(m− 1
2 ).

• ‖ũ(m) − ú(m)‖F ≤ ε‖ũ(m)‖F .

By similar arguments in [15], combining the relations with the norm property in inequality (Eq 2.5),
we have

Em = (h1 · · · hd)1/2‖u(m) − ú(m)‖2

≤ (h1 · · · hd)1/2
(
‖u(m) − û(m)‖2 + ‖û(m) − ũ(m)‖2 + ‖ũ(m) − ú(m)‖2

)
≤ (h1 · · · hd)1/2

(
(1 + ε)‖u(m) − û(m)‖2 + (1 + ε)‖û(m) − ũ(m)‖2

)
+ Bε

≤ 2(1 + ε)K0τ(τ2 + ĥ2 + σ2) + (1 + ε)Em−1 + Bε

≤ · · ·

≤ 2M(1 + ε)MK0τ(τ2 + ĥ2 + σ2) + (1 + ε)ME0 + M(1 + ε)MBε

≤ K(1 + ε)M(τ2 + ĥ2 + σ2 + Mε),

where K = max{2K0T, B} > 0 is independent of m, τ, hk, σ.

This allows us to take ε = 1/M3 such that the overall convergence is of second order.

Remark 2. In [15], the rounding perturbation analysis for a non-Crank-Nicolson scheme is
demonstrated; while in [16], the ADI perturbation for a Crank-Nicolson scheme is analyzed, with the
corresponding rounding perturbation analysis omitted. The above proof is supplemented for the
rounding perturbation analysis for a Crank-Nicolson scheme.

4. Results and discussion

In this section, some numerical examples are presented to test the methods described above. For
simplicity, we set [x(k)

a , x
(k)
b ] = [0, 1] for 1 ≤ k ≤ d, [0,T ] = [0, 1], and S = M = N. We will show

the numerical errors (Error), corresponding convergence rates (Rate), CPU times in the whole process
(CPU(s)), CPU times in rounding process (rCPU(s)), and (mean, mode, maximum) of the involving
TT-ranks (Mr).

The numerical examples are tested in MATLAB R2014b with the configuration: Intel(R) Core(TM)
i5-8300H CPU 2.30 GHz and 8 GB RAM.
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Example 1. This example is tested with a TT-ranks 1 exact solution, with

u(x, t) = e−t
d∏

k=1

20(x(k))2(1 − x(k))2,

P(α) = 2Γ(5 − α) cos
(
πα

2

)
, Q(β) = −2Γ(5 − β) cos

(
πβ

2

)
,

f (x, t) = e−t
d∑

k=1

20g(x(k))
∏
`,k

20(x(`))2(1 − x(`))2 − e−t
d∏

k=1

20(x(k))2(1 − x(k))2,

u0(x) =

d∏
k=1

20(x(k))2(1 − x(k))2,

where

g(x) =2
[

2x2 − 2x
ln3(1 − x)

+
−6x3 + 5x2 + 3x − 2

ln2(1 − x)
+

6x(2x3 − 2x2 − x + 1)
ln(1 − x)

+
2x(x − 1)

ln3 x
+

x(6x2 − 13x + 5)
ln2 x

+
6x(x − 1)(2x2 − 4x + 1)

ln x

]
− 2

[
−2x

ln3(1 − x)
+

6x2 − x − 2
ln2(1 − x)

+
2(−6x3 + 3x2 + 3x − 1)

ln(1 − x)

+
2(x − 1)

ln3 x
+

6x2 − 11x + 3
ln2 x

+
2(6x3 − 15x2 + 9x − 1)

ln x

]
The performance is summarized in Table 1, with “Error” column showing EM at tM = 1.

Example 2. This example is tested with an exact solution of TT-ranks 3, with

u(x, t) = e−tG1(x(1))G2(x(2)) · · ·Gd−1(x(d−1))Gd(x(d)),

P(α) =
2Γ(9 − α)

Γ(9)
cos

(
πα

2

)
, Q(β) = −

2Γ(9 − β)
Γ(8)

cos
(
πβ

2

)
f (x, t) = −e−t

[
G′1(x(1)) G1(x(1))

] [G2(x(2)) 0
G′2(x(2)) G2(x(2))

]
· · ·

· · ·

[
Gd−1(x(d−1)) 0
G′d−1(x(d−1)) Gd−1(x(d−1))

] [
Gd(x(d))

G′d(x(d)) + Gd(x(d))

]
u0(x) = G1(x(1))G2(x(2)) · · ·Gd−1(x(d−1))Gd(x(d)),

where

G1(x(1))=
[
y[1,2] y[1,3] y[1,4]

]
,Gk(x(k))=


y[k,2] y[k,3] y[k,4]

y[k,3] y[k,2] y[k,3]

y[k,4] y[k,3] y[k,2]

 ,Gd(x(d))=


y[d,2]

y[d,3]

y[d,4]

 ,
for 2 ≤ k ≤ d − 1, y[k,`] = 10(x(k))`(1 − x(k))` for 1 ≤ k ≤ d, 3 ≤ ` ≤ 5, and

G′k(x(k)) =

∫ 1

0
P(α)

∂αGk(x(k))
∂|x(k)|α

dα +

∫ 2

1
Q(β)

∂βGk(x(k))
∂|x(k)|β

dβ
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which is defined entrywisely.
As the closed form of G′k(x(k)) is numerically unstable, each entry of G′k(x(k)) is first reduced to the

following form, then the remaining integrals are approximated by the midpoint quadrature rule.∫ 1

0
P(α)

∂αy[k,`]

∂|x(k)|α
dα +

∫ 2

1
Q(β)

∂βy[k,`]

∂|x(k)|β
dβ

= −10
∑̀
r=0

(−1)r

(
`

r

)
Γ(` + r + 1)

Γ(9)

8−`−r∑
r′=0

c`+r+1,r′

∫ 1

0
αr′

(
(x(k))`+r−α + (1 − x(k))`+r−α

)
dα

+ 10
∑̀
r=0

(−1)r

(
`

r

)
Γ(` + r + 1)

Γ(8)

8−`−r∑
r′=0

c`+r+1,r′

∫ 2

1
βr′

(
(x(k))`+r−β + (1 − x(k))`+r−β

)
dβ

with Γ(9 − γ)/Γ(`′ − γ) =
∑9−`′

r′=0 c`′,r′γr′ , γ = α, β.
The performance is summarized in Table 2, with “Error” column showing EM at tM = 1.

Example 3. This example is tested with uncertain exact solution, and the same u0(x) and f (x, t) of
TT-ranks 3 as in Example 3 in [15], with

P(α) = 2Γ(5 − α) cos
(
πα

2

)
, Q(β) = −2Γ(5 − β) cos

(
πβ

2

)
.

The performance is summarized in Table 3, with “Error” column showing EM at tM = 1, assuming
the numerical solution of the finest grid as the exact solution.

Table 1. Performance in Example 1.

d = 5 d = 10
N Error Rate CPU(s) rCPU(s) Mr Error Rate CPU(s) rCPU(s) Mr

25 1.67E-05 - 0.37 0.04 (3.48, 3, 4) 6.21E-06 - 0.45 0.12 (3.75, 4, 4)
26 4.16E-06 2.00 0.17 0.10 (3.49, 3, 4) 1.60E-06 1.96 0.49 0.32 (5.29, 6, 6)
27 1.04E-06 2.01 0.60 0.36 (4.97, 4, 6) 4.02E-07 1.99 1.28 0.88 (5.75, 6, 6)
28 2.58E-07 2.00 2.09 1.25 (5.48, 5, 6) 1.01E-07 2.00 5.17 3.24 (6.52, 7, 7)
29 6.45E-08 2.00 9.31 3.99 (5.49, 5, 6) 2.52E-08 2.00 23.53 11.12 (6.76, 7, 7)
210 1.61E-08 2.00 64.06 23.14 (5.49, 5, 6) 6.30E-09 2.00 172.49 75.74 (7.42, 8, 8)
211 4.05E-09 2.00 441.25 109.79 (5.98, 5, 7) 1.57E-09 2.00 1209.30 405.57 (8.28, 9, 9)
212 1.02E-09 1.98 2964.89 446.61 (5.99, 5, 7) 3.93E-10 2.00 7329.04 1678.53 (8.42, 9, 9)

d = 15 d = 20
N Error Rate CPU(s) rCPU(s) Mr Error Rate CPU(s) rCPU(s) Mr

25 6.99E-07 - 0.24 0.13 (3.83, 4, 4) 5.69E-08 - 0.32 0.18 (3.87, 4, 4)
26 1.86E-07 1.91 0.76 0.53 (5.52, 6, 6) 1.58E-08 1.85 1.05 0.75 (5.53, 6, 6)
27 4.72E-08 1.98 2.16 1.52 (5.83, 6, 6) 4.06E-09 1.96 3.35 2.35 (6.63, 7, 7)
28 1.19E-08 1.99 8.13 5.30 (6.83, 7, 7) 1.02E-09 1.99 11.08 7.21 (6.87, 7, 7)
29 2.97E-09 2.00 43.12 21.69 (7.61, 8, 8) 2.56E-10 2.00 68.53 36.76 (8.48, 9, 9)
210 7.42E-10 2.00 345.27 167.96 (8.53, 9, 9) 6.40E-11 2.00 449.05 220.34 (8.71, 9, 9)
211 1.86E-10 2.00 1964.05 686.63 (8.69, 9, 9) 1.60E-11 2.00 2598.83 924.04 (8.77, 9, 9)
212 4.64E-11 2.00 11496.46 2760.87 (8.70, 9, 9) 4.00E-12 2.00 17432.30 4701.29 (9.71, 10, 10)
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Table 2. Performance in Example 2.

d = 5 d = 10
N Error Rate CPU(s) rCPU(s) Mr Error Rate CPU(s) rCPU(s) Mr

25 6.25E-02 - 0.34 0.03 (1.98, 2, 3) 3.57E-02 - 0.07 0.04 (1.97, 2, 2)
26 2.60E-02 1.26 0.15 0.08 (3.45, 3, 4) 2.60E-02 0.46 0.29 0.17 (2.97, 3, 3)
27 7.98E-03 1.71 0.36 0.20 (4.45, 4, 5) 1.21E-02 1.11 0.67 0.38 (3.97, 4, 4)
28 2.13E-03 1.91 1.39 0.77 (5.96, 5, 7) 3.88E-03 1.64 2.85 1.70 (5.74, 6, 6)
29 5.42E-04 1.97 8.96 3.49 (7.47, 9, 9) 1.05E-03 1.89 21.86 9.67 (8.30, 9, 9)
210 1.36E-04 1.99 72.06 24.44 (9.34, 11, 11) 2.68E-04 1.97 195.19 77.67 (10.30, 11, 11)
211 3.40E-05 2.00 543.10 139.50 (10.48, 8, 13) 6.74E-05 1.99 1606.92 511.30 (12.86, 14, 14)
212 8.51E-06 2.00 3724.36 687.59 (11.49, 9, 14) 1.69E-05 2.00 11369.61 2906.70 (14.42, 16, 16)

d = 15 d = 20
N Error Rate CPU(s) rCPU(s) Mr Error Rate CPU(s) rCPU(s) Mr

25 1.21E-02 - 0.09 0.05 (1.97, 2, 2) 3.91E-03 - 0.33 0.08 (1.97, 2, 2)
26 1.10E-02 0.14 0.30 0.18 (2.00, 2, 3) 3.81E-03 0.04 0.44 0.26 (1.98, 2, 2)
27 7.03E-03 0.64 0.94 0.55 (3.83, 4, 4) 2.99E-03 0.35 1.08 0.62 (2.98, 3, 3)
28 2.81E-03 1.32 4.52 2.72 (5.68, 6, 6) 1.46E-03 1.03 5.63 3.38 (4.82, 5, 5)
29 8.29E-04 1.76 31.15 13.69 (7.61, 8, 8) 4.79E-04 1.61 38.31 15.51 (6.76, 7, 7)
210 2.17E-04 1.93 301.84 121.85 (10.26, 11, 11) 1.30E-04 1.88 379.80 153.41 (9.66, 10, 10)
211 5.50E-05 1.98 2312.51 728.29 (12.34, 13, 13) 3.32E-05 1.97 3315.56 1066.01 (12.24, 13, 13)
212 1.38E-05 2.00 19495.91 5279.55 (14.91, 16, 16) 8.36E-06 1.99 24377.55 6392.04 (14.46, 15, 15)

Table 3. Performance in Example 3.

d = 5 d = 10
N Error Rate CPU(s) rCPU(s) Mr Error Rate CPU(s) rCPU(s) Mr

25 4.85E-03 - 0.29 0.10 (4.18, 4, 7) 7.92E-03 - 0.21 0.05 (3.00, 3, 4)
26 2.34E-03 1.05 0.24 0.11 (5.45, 6, 7) 6.15E-03 0.36 0.32 0.17 (3.97, 4, 5)
27 8.35E-04 1.49 0.78 0.51 (9.31, 8, 12) 3.16E-03 0.96 1.35 0.89 (6.85,7,8)
28 2.47E-04 1.76 5.02 3.08 (13.72, 12, 17) 1.12E-03 1.50 8.30 5.25 (12.21, 13, 14)
29 6.71E-05 1.88 67.28 38.93 (19.57, 17, 24) 3.18E-04 1.82 121.94 69.83 (18.16, 20, 20)
210 1.77E-05 1.92 473.79 242.42 (25.96, 31, 32) 7.58E-05 2.07 1140.53 613.71 (25.61, 28, 29)
211 - - 3887.31 1901.15 (33.29, 28, 40) - - 10220.83 5018.83 (34.22, 38, 38)

d = 15 d = 20
N Error Rate CPU(s) rCPU(s) Mr Error Rate CPU(s) rCPU(s) Mr

25 1.21E-02 - 1.19 0.23 (2.97, 3, 4) 2.05E-02 - 0.70 0.14 (2.97, 3, 4)
26 1.14E-02 0.09 0.64 0.35 (3.64, 4, 4) 2.03E-02 0.01 0.48 0.31 (2.95, 3, 4)
27 7.95E-03 0.52 2.00 1.34 (6.45, 7, 7) 1.70E-02 0.25 1.61 1.05 (3.93, 4, 5)
28 3.53E-03 1.17 8.59 5.34 (9.45, 10, 11) 9.41E-03 0.86 9.31 5.98 (7.78, 8, 9)
29 1.09E-03 1.69 154.03 90.33 (15.94, 17, 17) 3.31E-03 1.51 121.22 73.28 (13.39, 14, 15)
210 2.58E-04 2.08 1591.50 845.58 (23.85, 26, 26) 8.08E-04 2.03 1682.07 863.74 (21.49, 23, 24)
211 - - 14325.51 6792.25 (32.46, 35, 35) - - 16035.60 7337.32 (29.86, 32, 32)
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In the tables, second order convergence is observed, agreeing with the perturbation analysis. In
Tables 1 and 2, the Mr illustrate that the problems with low TT-ranks exact solutions may have
numerical solutions of higher TT-ranks, yet the ranks still grow steadily of about O(log N), and the
rounding process occupy about one-fourth of the whole solving process. While in Table 3, there
seems to be a nonlinear growth of O(log N) in the TT-ranks, and the rounding process occupy about
half of the whole solving process. These agree with the discussion about the effect of the TT-ranks in
operation cost. Besides, the deviations of TT-ranks of the numerical solutions from the exact solutions
also happen in the related works [15] and [16] where the ADI method is applied, implicating that the
ADI treatment is a potential factor for this phenomenon. The growth of TT-ranks is to be furthered
studied.

5. Conclusions

In this paper, high dimensional RSDO-ADEs are discretized with a second order ADI scheme,
and TT-format method is introduced to solve the scheme in compressed form. The perturbation error
analysis is performed, and it is claimed that under certain conditions, with rounding relative error ε =

1/N3, Algorithm 3.1 can maintain the second order convergence of the scheme. Numerical experiments
with low TT-ranks data are conducted, the results agree with the claim. Meanwhile, the TT-ranks
appear to be indicating a growth of power of log N or other nonlinear function of log N, hence implying
a possible dominance of the rounding process over the whole solving process. Further studies about
the TT-ranks of the numerical solutions are to be made.

Acknowledgments

This work was supported by University of Macau [MYRG2020-00208-FST, MYRG2018-
00025-FST], the Science and Technology Development Fund, Macau SAR under Funding Scheme for
Postdoctoral Researchers of Higher Education Institutions 2021 (File No. 0032/APD/2021).

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. A. V. Chechkin, J. Klafter, I. M. Sokolov, Fractional Fokker-Planck equation for ultraslow kinetics,
Europhys. Lett., 63 (2003), 326–332. https://doi.org/10.1209/epl/i2003-00539-0

2. Y. G. Sinai, The limiting behavior of a one-dimensional random walk in a random medium, Theory
Probab. Appl., 27 (1983), 256–268. https://doi.org/10.1137/1127028

3. M. M. Meerschaert, E. Nane, P. Vellaisamy, Distributed-order fractional diffusions on bounded
domains, J. Math. Anal. Appl., 379 (2011), 216–228. https://doi.org/10.1016/j.jmaa.2010.12.056

4. M. Caputo, Distributed order differential equations modelling dielectric induction and diffusion,
Fract. Calc. Appl. Anal., 4 (2001), 421–442.

Electronic Research Archive Volume 30, Issue 4, 1463–1476.

http://dx.doi.org/https://doi.org/10.1209/epl/i2003-00539-0
http://dx.doi.org/https://doi.org/10.1137/1127028
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2010.12.056


1475

5. X. Hu, F. Liu, V. Anh, I. Turner, A numerical investigation of the time distributed-order diffusion
model, Anziam J., 5 (2014), C464–C478. https://doi.org/10.21914/anziamj.v55i0.7888

6. J. Jia, H. Wang, A fast finite difference method for distributed-order space-fractional partial
differential equations on convex domains, Comput. Math. Appl., 75 (2018), 2031–2043.
https://doi.org/10.1016/j.camwa.2017.09.003

7. W. Fan, F. Liu, A numerical method for solving the two-dimensional distributed order space-
fractional diffusion equation on an irregular convex domain, Appl. Math. Lett., 77 (2018), 114–
121. https://doi.org/10.1016/j.aml.2017.10.005

8. X. Wang, F. Liu, X. Chen, Novel second-order accurate implicit numerical methods for the Riesz
space distributed-order advection-dispersion equations, Adv. Math. Phys., 2015 (2015), 1–14.
https://doi.org/10.1155/2015/590435

9. I. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput., 33 (2011), 2295–2317.
https://doi.org/10.1137/090752286

10. D. Bertaccini, F. Durastante, Block structured preconditioners in tensor form for the all-at-once
solution of a finite volume fractional diffusion equation, Appl. Math. Lett., 95 (2019), 92–97.
https://doi.org/10.1016/j.aml.2019.03.028

11. T. Breiten, V. Simoncini, M. Stoll, Low-rank solvers for fractional differential equations, Electron.
Trans. Numer. Anal., 45 (2016), 107–132. https://doi.org/10.17617/2.2270973

12. S. Dolgov, J. Pearson, D. Savostyanov, M. Stoll, Fast tensor product solvers for optimization
problems with fractional differential equations as constraints, Appl. Math. Comput., 273 (2016),
604–623. https://doi.org/10.1016/j.amc.2015.09.042

13. I. Oseledets, E. Tyrtyshnikov, N. Zamarashkin, Tensor-train ranks for matrices and their inverses,
Comput. Methods Appl. Math., 11 (2011), 394–403. https://doi.org/10.2478/cmam-2011-0022

14. V. Kazeev, B. Khoromskij, E. Tyrtyshnikov, Multilevel Toeplitz matrices generated by tensor-
structured vectors and convolution with logarithmic complexity, SIAM J. Sci. Comput., 35 (2013),
A1511–A1536. https://doi.org/10.1137/110844830

15. L. Chou, S. Lei, Tensor-train format solution with preconditioned iterative method for high
dimensional time-dependent space-fractional diffusion equations with error analysis, J. Sci.
Comput., 80 (2019), 1731–1763. https://doi.org/10.1007/s10915-019-00994-3

16. L. Chou, S. Lei, Finite volume approximation with ADI scheme and low-rank solver for high
dimensional spatial distributed-order fractional diffusion equations, Comput. Math. Appl., 89
(2021), 116–126. https://doi.org/10.1016/j.camwa.2021.02.014

17. W. Deng, B. Li, W. Tian, P. Zhang, Boundary problems for the fractional and tempered fractional
operators, Multiscale Model. Simul., 16 (2018), 125–149. https://doi.org/10.1137/17M1116222
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