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Abstract: Image reconstruction represents an important technique applied in various fields such as
medicine, biology, materials science, nondestructive testing, and so forth. In this paper, we trans-
form the problem of image reconstruction into the problem of solving linear systems with multiple
right-hand sides. Based on the idea of K-means clustering, we propose the global randomized block
Kaczmarz method, so as to solve the problem of the linear systems with multiple right-hand sides ef-
fectively and use this method to image reconstruction. Theoretical analysis proves the convergence of
this method, and the simulation results demonstrate the performance of this method in image recon-
struction.

Keywords: linear systems with multiple right-hand sides; randomized iteration; block Kaczmarz
method; convergence property; image accuracy

1. Introduction

Image reconstruction plays a vital role in magnetic resonance imaging [1], X-ray computed tomog-
raphy [2] and radio astronomy imaging applications [3]. Reconstruction methods [4–7] are mainly
divided into analytical reconstruction and iterative reconstruction, which are based on the Radon trans-
form [8], the inverse Radon transform, and the projection slice theorem serving as mathematical foun-
dations. The most commonly used analytical reconstruction methods are all in the form of the filtered
back projection (FBP) method [9]. Iterative reconstruction methods formulate the final result as a
solution of linear systems [10].

For example, image reconstruction, as a mathematical process, generates tomographic images from
X-ray [11] projection data acquired at many different angles in computed tomography (CT). If there
has a test image with n × n pixels, p is the number of X-ray beams, and t is the scanning angle, which
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ranges from 0◦ to 179◦, with intervals of 1◦. The X-ray beam Xs passing through the test image is
shown in the following figure.

Figure 1. The X-ray beam Xs passing through the test image (n = 4).

In Figure 1, w(i, j)

X(t)
s

represents the length of the X-ray beam Xs(s = 1, 2, · · · , p) when it passes through

the pixel {i, j} along the line l(t)
Xs

(t = 0, 2, · · · , 179), and µ(i, j) is the average attenuation coefficient
for each pixel {i, j}. The data g(i, j)

X(t)
s

is measured when an X-ray beam X(t)
s crosses the pixel {i, j} and

intensity is absorbed. Thus, the image reconstruction problem amounts to solving the linear systems
with multiple right-hand sides of the form

AX = B, (1.1)
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.

The linear systems with multiple right-hand sides (1.1) can be written as

Ax(l) = b(l), (1.2)

where l = 1, 2, · · · , n. The numerical methods [12–15] for solving linear systems (1.2) have seen a
significant maturation. Among them the Kaczmarz method [16] is a classic and effective row-action

Electronic Research Archive Volume 30, Issue 4, 1442–1453.



1444

method. Out of its simplicity, the Kaczmarz method has been a preferable solution tool in many fields,
such as image reconstruction [15,17], computerized tomography [9,18] and signal processing [19,20].
Based on the Kaczmarz method, a series of row iteration methods are proposed [21–23].

In order to reduce the computational costs, Censor proposed the block Kaczmarz method [18], Niu
[24] presented the greedy block Kaczmarz method, Chen [25] declared the randomized double block
Kaczmarz method and raised the upper bound of the error estimate in expectation. The approximate
solution x(l)

k (l = 1, · · · , n) can be obtained by solving the linear systems (1.2) with one of the above-
mentioned solving methods, thereby getting the approximate solution Xk =

[
x(1)

k , · · · , x(n)
k

]
of the linear

systems with multiple right-hand sides. In the above solving process, the calculation and storage
requirements increase with the iteration.

Instead of solving each of the n linear systems independently by using some iterative methods, it
is more efficient to solve the linear systems with multiple right-hand sides globally. A great deal of
research has been finished, including the block conjugate gradient method [26], the block generalized
minimal residual method [27] and the GMRES seed projection method [28], see also [29–34] and the
references therein.

In regard to the problem of image reconstruction, we transform it into solving a linear systems with
multiple right-hand sides and propose the idea of global iteration. Based on the idea of K-means clus-
tering, we put forward the global randomized block Kaczmarz method, and use this method to solve
the linear systems with multiple right-hand sides effectively, so as to image reconstruction. Theoret-
ical analysis proves the convergence of the global randomized block Kaczmarz method. Simulation
results show that the reconstructed image quality of this method is superior to that of the filtered back
projection method.

In this paper, we adopt the following notations. Let A∗ be the conjugate transpose of matrix A, A†

the Moore-Penrose pseudoinverse, λmin (A) the smallest nonzero eigenvalue, ‖A‖2 the spectral norm
and ‖A‖F the Frobenius norm respectively. B(i) represents the ith column of matrix B. Let [m] :=
{1, 2, · · · ,m}, the index set J =

{
J1, J2, · · · , Jq

}
⊆ [m] satisfies Ji ∩ J j = ∅ and ∪q

i=1Ji = [m]. AJi is
the row submatrix indexed by Ji. X? = A†B denotes the least Euclidean-norm solution of the linear
systems with multiple right-hand sides (1.1). Ek indicates the expected value conditional on the first k
iterations, that is,

Ek [·] = E [ ·| Jo, J1, · · · , Jk−1] ,

where Jl (l = 0, 1, · · · , k − 1) is the Jlth submatrix chosen at the lth iteration, and then we can obtain
that E [Ek [·]] = E [·].

2. Global randomized block Kaczmarz method

K-means clustering [35] is the simplest unsupervised learning method as well as the most widely
used to solve clustering problems. Recently, several Kaczmarz-type methods that embed the clustering
methods appeared, see e.g., [36, 37], and the complete process of the K-means method is given in
Method 2.1.
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Method 2.1. The K-means method
Input: A date set X containing m data items, and the number of clusters q.
Output: ρi, Ci.

1: Randomly choose q items from X as the initial cluster centers;
2: Repeat Steps 3 and 4 until the termination;

3: Assign each data item to the cluster whose centroid is nearest in terms of
q∑

i=1

∑
xk∈Ci

∣∣∣∣1 − x>k ρi

‖xk‖2‖ρi‖2

∣∣∣∣;
4: Based on the mean value of the data objects in the cluster, update the cluster centers ρi;
5: Return ρi and Ci with ρi being the cluster center and Ci the clusters for i = 1, 2, · · · , q.

Using this method to divide the rows of coefficient matrix of linear systems with multiple right-hand
sides (1.1), we can obtain

A =


AJ1
...

AJq

 , B =


BJ1
...

BJq

 , (2.1)

where AJi ∈ C
mJi×n, BJi ∈ C

mJi and
q∑

i=1
mJi = m. Starting from an initial guess X0, the current iterate Xk

is orthogonally projected to the hyperplane AJik
Xk = BJik

under the probability criterion

Pr
(
row = Jik

)
=

∥∥∥AJik

∥∥∥2

F

‖A‖2F
.

The global randomized block Kaczmarz (MGRBK) method for solving linear systems with multiple
right-hand sides can be formulated as

Xk+1 = Xk + A†Jik

(
BJik
− AJik

Xk

)
, (2.2)

where the index of working submatrix Jik is chosen from the set J =
{
J1, J2, · · · , Jq

}
at random, with

probability proportional to
∥∥∥AJik

∥∥∥2

F
. The form of A†Jik

in our simulation experiments can be seen in the
reference [38]. Then the global randomized block Kaczmarz method can be described in the follow-
ing.

Method 2.2. The global randomized block Kaczmarz method
Input: A, B, l, q and X0.
Output: Xl.

1: The blocks AJi , BJi (i = 1, 2, · · · , q) are obtained by K-means method;

2: for k = 0, 1, 2, · · · , l − 1 do

3: Select Jik ∈ J with probability Pr
(
row = Jik

)
= 1

q ;

4: Compute Xk+1 = Xk + A†Jik

(
BJik
− AJik

Xk

)
;

5: end for
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Note that the index set J is nonempty for all iteration index k. According to a large number of
numerical experiments, we find that the number of blocks q fluctuates around m

2000 , where m is the
number of rows of coefficient matrix A. Hence, we have a rough estimate is that q ≈ m

2000 . For the
convergence property of the global randomized block Kaczmarz method, we establish the following
theorem.

Theorem 2.1. Let the linear systems with multiple right-hand sides (1.1), with the coefficient matrix
A ∈ Cm×n and the right-hand side B ∈ Cm×n, be consistent. The iteration sequence {Xk}

∞
k=0 generated

by the global randomized block Kaczmarz method starting from any initial approximation X0 ∈ R (A∗),
converges to the unique least-norm solution X? = A†B in expectation. Moreover, the solution error in
expectation for the iteration sequence {Xk}

∞
k=0 obeys

E ‖Xk − X?‖
2
F ≤

(
1 −

λmin (A∗A)
‖A‖2F

)k

‖X0 − X?‖
2
F . (2.3)

Proof. From the iteration scheme of the global randomized block Kaczmarz method, we can straight-
forwardly obtain

Xk+1 − Xk = A†Jik

(
BJik
− AJik

Xk

)
.

Since BJik
= AJik

X?, it holds that

Xk − Xk+1 = A†Jik
AJik

(Xk − X?) , (2.4)

Xk+1 − X? =

(
In − A†Jik

AJik

)
(Xk − X?) . (2.5)

From the properties of the Moore-Penrose pseudoinverse, we have

(Xk − X?)∗
(
A†Jik

AJik

)∗ (
In − A†Jik

AJik

)
(Xk − X?)

= (Xk − X?)∗
(
A†Jik

AJik
− A†Jik

AJik

)
(Xk − X?)

= 0.

Therefore, we know that matrix Xk − Xk+1 is orthogonal to Xk+1 − X? for any k ≥ 0, in other words,
(Xk − Xk+1)∗ (Xk+1 − X?) = 0. It follows that

‖Xk − X?‖
2
F = ‖Xk − Xk+1‖

2
F + ‖Xk+1 − X?‖

2
F . (2.6)

By Eq (2.4), Eq (2.6) can be rewritten as

‖Xk+1 − X?‖
2
F = ‖Xk − X?‖

2
F −

∥∥∥∥A†Jik
AJik

(Xk − X?)
∥∥∥∥2

F
. (2.7)

With this, we obtain

Ek ‖Xk+1 − X?‖
2
F = ‖Xk − X?‖

2
F − Ek

∥∥∥∥A†Jik
AJik

(Xk − X?)
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F
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q∑
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F

‖A‖2F

∥∥∥∥A†Jik
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∥∥∥∥2

F


= ‖Xk − X?‖

2
F −

1
‖A‖2F

q∑
i=1

∥∥∥AJik
(Xk − X?)

∥∥∥2

F

= ‖Xk − X?‖
2
F −

1
‖A‖2F
‖A (Xk − X?)‖2F

≤ ‖Xk − X?‖
2
F −

1
‖A‖2F

λmin (A∗A) ‖Xk − X?‖
2
F .
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Here the last inequality is achieved with the use of the estimate

‖AC‖2F = tr (C∗A∗AC) ≥ λmin (A∗A) tr (C∗C) = λmin (A∗A) ‖C‖2F ,

where C ∈ Cn×c. Thus, we can get the estimate

Ek ‖Xk+1 − X?‖
2
F ≤

(
1 −

1
‖A‖2F

λmin (A∗A)
)
‖Xk − X?‖

2
F , k = 0, 1, 2, · · · . (2.8)

Finally, by taking the full expectation on both sides of (2.8), we obtain

E ‖Xk+1 − X?‖
2
F ≤

(
1 −

1
‖A‖2F

λmin (A∗A)
)
E ‖Xk − X?‖

2
F , k = 0, 1, 2, · · · .

By induction on the iteration index k, we have

E ‖Xk − X?‖
2
F ≤

(
1 −

1
‖A‖2F

λmin (A∗A)
)k

‖X0 − X?‖
2
F .

Consequently, the convergence property of the global randomized block Kaczmarz method is proved.

3. Simulation results

In this section, we investigate the performance of the global randomized block Kaczmarz
(MGRBK) method in image reconstruction through practical experiments. We also compare the image
reconstruction results of the MGRBK method and filtered back projection (FBP) method, in which the
FBP method is realized by using the MATLAB function iradon. All computations are started from
the initial matrix X0 = 0, and the row vectors of coefficient matrix A are divided into q blocks.

Example 3.1. The MGRBK method is used to solve the linear systems with multiple right-
hand sides to reconstruct the test image. The test image is obtained through the image processing
toolbox function phantom in MATLAB. The Shepp-Logan phantom is shown in the following Figure.

(a) Shepp-Logan phantom (b) Radon transform

Figure 2. Shepp-Logan phantom and its Radon transform.

For the Shepp-Logan phantom with 100 × 100 pixels, p = 4, the corresponding linear systems with
multiple right-hand sides is AX = B, where the dimension of coefficient matrix A is 72000×100. Then
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we solve this linear systems with multiple right-hand sides by using the MGRBK method, q = 60 and
the number of iterations is 30. The computational process of image reconstruction is shown in the
following figure.

Figure 3. The process of image reconstruction.

In Figure 3, we can see that at the 18th iteration, the test image can be reconstructed with the global
randomized block Kaczmarz method. Through observation, the reconstructed image can retain the
details of the original image.

(a) The FBP method (b) The MGRBK method

Figure 4. Comparison of reconstructed images.

In Figure 4, the image reconstruction is realized by using the global randomized block Kaczmarz
method and the filtered back-projection method respectively, and the reconstruction results are com-
pared. From the visual inspection of the reconstructed image, the MGRBK method outperforms the
FBP method.
Example 3.2. Select the test image from the photo gallery in MATLAB, and then solve the linear
systems with multiple right-hand sides through the MGRBK method to reconstruct the test image. The
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test image is shown in the following figure.

(a) Cameraman image (b) Radon transform

Figure 5. Cameraman image and its Radon transform.

For the cameraman image with 200 × 200 pixels, p = 5, the corresponding linear systems with
multiple right-hand sides is AX = B, where the dimension of coefficient matrix A is 180000 × 200.
Then we solve this linear systems with multiple right-hand sides by using the MGRBK method. Let
q = 70 and the number of iterations is 40. The computational process of image reconstruction is shown
in the following figure.

Figure 6. The process of image reconstruction.

In Figure 6, we can see that test image can be reconstructed with the global randomized block
Kaczmarz method as reach the 38th iteration. Through observation, the reconstructed image can retain
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the details of the original image.

(a) The FBP method (b) The MGRBK method

Figure 7. Comparison of reconstructed images.

In Figure 7, the reconstruction results of the MGRBK method and the FBP method are compared.
From the visual inspection of the reconstructed image, the former method is superior to the latter
method.
Example 3.3. The test image is obtained through the image processing toolbox function phantom
in MATLAB, which is the same as that in Example 3.1. We compare the reconstructed image of the
global randomized block Kaczmarz (MGRBK) method with that of a typical iterative method, that is
Kaczmarz method. The reconstructed images of these two iterative methods are shown in the following
figure.

(a) The Kaczmarz method (b) The MGRBK method

Figure 8. Comparison of reconstructed images.

From the visual inspection, the reconstructed image obtained by using the MGRBK method has
higher resolution. In the MGRBK method, the relative residual (Rres) is defined by

Rres =
‖B − AXk‖

2
F

‖B‖2F
,

and Rres of the MGRBK method is 1.6049e-04. In [39], the relative residual of Kaczmarz method is
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0.0015. This means that the approximate solution of MGRBK method is approach to exact solution.
Hence, the reconstructed image quality of the MGRBK method is much better.

4. Conclusions

Iterative reconstruction refers to iterative methods used to reconstruct 2D and 3D images in certain
imaging techniques. A variety of reconstruction methods have been investigated to improve the quality
of reconstructed images. In this paper, we transform the problem of image reconstruction into solving
a linear systems with multiple right-hand sides. In order to solve the linear systems with multiple
right-hand sides effectively, we propose the global randomized block Kaczmarz method based on the
idea of K-means clustering, and use this method to image reconstruction. Theoretical analysis proves
the convergence of this method. Simulation results show that the reconstructed image quality of this
method is better than that of the FBP method.
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