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Abstract: For the p-Laplace Dirichlet problem (where ¢(f) = ##|"=2, p > 1)
o' (x)) + fu(x)) =0 for-1<x<1, u(-1)=u(1)=0

assume that f'(u) > (p - D2 > 0 for u > y > 0, while [” f(H)dt < O for all u € (0,7). Then
any positive solution, with max_; jy u(x) = u(0) > v, is non-singular, no matter how many times f(u)
changes sign on (0, y). The uniqueness of solution follows.
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We consider positive solutions of
e’ (x)) + fu(x)) =0 for-1<x<1, u(-1)=u(l)=0, (1)
where (1) = t|t|’~2, p > 1, so that ¢’(¢¥) = (p — 1)|¢f|’=2. The linearized problem is

(@' W ()W (x) + f(u(x)wx) =0 for—-1<x<1, 2)
w(=1)=w()=0.

Recall that any positive solution of (1) is an even function u(—x) = u(x), satisfying xu’(x) < O for x # 0
so that max_; ;) u(x) = u(0), and that any non-trivial solution of (2) is of one sign, so that we may
assume that w(x) > 0 for x € (-1, 1), see e.g., P. Korman [5], [6].

If f'(u) > (p— 1)% > ( for u > 0, it is well known that any positive solution of (1) is non-singular,
i.e., the problem (2) admits only the trivial solution w(x) = 0. Now suppose that f”(u) > (p — 1)@ >0
holds only for u > 7y, for some y > 0. It turns out that positive solutions of (1), with maximum value
greater than y are still non-singular, provided that j;y f()ydt < 0 for all u € (0,7y). The main result is
stated next. It is customary to denote F(u) = fou f()dt.
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Theorem 1. Assume that f(u) € C'(R,), and for some y > 0 it satisfies

=0, and ) >0on (y,) G
> p-0I2 forusy, @
F(y) - F(u) = f " F@ydi <0, forue0.). 5)

Then any positive solution of (1), satisfying
u(0) >y, and u'(1) <0, (6)

is non-singular, which means that the linearized problem (2) admits only the trivial solution.

In case p = 2 this result was proved in P. Korman [7], while for general p > 1 a weaker result,
requiring that f(u) < 0 on (0, y), was given in J. Cheng [3] (and before that by R. Schaaf [10] for p = 2
case), see also P. Korman [5], [6] for a different proof, and a more detailed description of the solution
curve. Other multiplicity results on p-Laplace equations include [1], [2], [4] and [9].

Proof:  Assume, on the contrary, that the problem (2) admits a non-trivial solution w(x) > 0. Let
X € (0, 1) denote the point where u(xy) = y. Define

q(x) = (p = DA = )’ (x)) + ¢" (W' (x))u(x) .
We claim that
q(xo) < 0. (7
Rewrite (using that (p — 1)¢(f) = 1¢'(1))

q(x) = ¢ (' (x)) [(1 = 0’ (x) + u(x)] .

Since ¢’(¢) > 0 for all ¢ # 0, it suffices to show that the function z(x) = (1 — x)u’(x) + u(x) < 0 satisfies
z2(xp) < 0. Indeed,
1
2(xo) = f [ (x0) —/(x)] dx < 0O,
X0

which implies the desired inequality (7), provided we can prove that
u'(xp) —u'(x) <0, forxe(xp1). )

The “energy” function E(x) = pT_llu’(x)V’ + F(u(x)) is seen by differentiation to be a constant, so that

E(x) = E(xgp), or . |
P @l + Fu) = 2=

[u'(x0)I” + F(y), forall x.
By the assumption (5), it follows that

-1
P W@l — 1w o)) = F(y) — Fu(x)) <0, for x € (xo, 1),
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justifying (8), and then giving (7).
Next, we claim that
(p — Dw(xo)p(u’ (x0)) — u(xo)w'(x0)¢’ (' (x0)) > 0, ©)

which implies, in particular, that
w'(xg) <O0. (10)
Indeed, by a direct computation, using (1) and (2),

J(w)
uw .

u

[(p = Dw(x)p’ (x)) = uCw' (0" ()] = | f'(w) = (p= 1)

The quantity on the right is positive on (0, xj), in view of our condition (4). Integration over (0, x),
gives (9).

We have for all x e [-1, 1]
o' W) (W'w —u"w) = constant = ¢’ (' (1))’ (1)w'(1) > 0, (11)
as follows by differentiation, and using the assumption u’(1) < 0. Hence
u' (W' (x) —u”(x)w(x) >0, forxe (x,1). (12)
Since f(u(xp)) = 0, it follows from Eq (1) that u”(x9) = 0. Then (11) implies

@' (' (D) (Hw'(1) = ¢" (' (xo0))u’ (xo)w' (Xo) (13)
= (p = De(u’ (xo))w' (xo) -

We need the following function, motivated by M. Tang [11] (which was introduced in P. Korman [5],
and used in Y. An et al. [2])

T(x) = x[(p — D@’ ()W (x) + fu(x)w(x)] = (p — D’ (x))w(x) .

One verifies that
T'(x) = pfu(x)w(x). (14)
Integrating (14) over (xy, 1), and using (5) and (12), obtain

1
(1) —=T(xo) = pf Ju(x)w(x) dx

1
=p f [Fu) - Fo)l 22 gy
% ' (x)
1 ’ ’ ”
=-p f [F(u(x)) — F(y)] W (x)z_ WU () dx <0,
X0 u (X)
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which implies that

L= (p— Do (1))w'(1) = (p = Dxop(u’ (x0))w'(x0) + (p — D(u’ (x0))w(x0) < 0.
On the other hand, using (13), then (9), followed by (10) and (7), we estimate the same quantity as
follows
L > (p = D' (x0))w'(x0) — (p — Dxow(u’ (x0))w'(x0) + u(xo)w’(x0)¢’ (1 (x0))
= w'(x0)q(x0) > 0,
a contradiction. o

We remark that in case f(0) < 0 it is possible to have a singular positive solution with #’(1) = 0, so
that the assumption «’(1) < 0 is necessary.

We now consider the problem (where ¢(t) = #t|/™2, p > 1)
e (x)) + Af(u(x)) =0 for—-1<x<1, u(-1)=u(l)=0, (15)

depending on a positive parameter A. The following result follows the same way as the Theorem 3.1
in [5].

Theorem 2. Assume that f(u) € C'(R,), and the conditions (3), (4) and (5) hold. Then there exists
0 < Ay < oo so that the problem (15) has a unique positive solution for 0 < A1 < Ay. All positive
solutions, satisfying u(0) > v, lie on a continuous solution curve that is decreasing in the (A, u(0))
plane (see Figure 1). In case f(0) < 0, one has 1y < oo, and at A = Ay a positive solution with
u'(£1) = 0 exists, and no positive solutions exist for A > Ay. In case f(0) = 0 and f'(0) < 0, we have
Ay = oo.
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Figure 1. The curve of positive solutions for the problem (15), in case p = 3 and f(u) =
u(u—1(u—-2)u—-4).

Example In Figure 1 we present the solution curve of the problem (15) in case p = 3 and f(u) =
u(u — 1)(u — 2)(u — 4). Here y = 4, and one verifies that the Theorem 2 applies. The Mathematica
program to perform numerical computations for this problem is explained in detail in [8] (it uses the
shoot-and-scale method). The solution curve in Figure 1 exhausts the set of all positive solutions (since

foz f(w)du < 0, there are no solutions with ©(0) = max_; 1 u(x) € (1, 2)).
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