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Abstract: For the p-Laplace Dirichlet problem (where φ(t) = t|t|p−2, p > 1)

φ(u′(x))′ + f (u(x)) = 0 for −1 < x < 1, u(−1) = u(1) = 0

assume that f ′(u) > (p − 1) f (u)
u > 0 for u > γ > 0, while

∫ γ
u

f (t) dt < 0 for all u ∈ (0, γ). Then
any positive solution, with max(−1,1) u(x) = u(0) > γ, is non-singular, no matter how many times f (u)
changes sign on (0, γ). The uniqueness of solution follows.
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We consider positive solutions of

φ(u′(x))′ + f (u(x)) = 0 for −1 < x < 1, u(−1) = u(1) = 0 , (1)

where φ(t) = t|t|p−2, p > 1, so that φ′(t) = (p − 1)|t|p−2. The linearized problem is

(φ′(u′(x))w′(x))′ + f ′(u(x))w(x) = 0 for −1 < x < 1, (2)
w(−1) = w(1) = 0 .

Recall that any positive solution of (1) is an even function u(−x) = u(x), satisfying xu′(x) < 0 for x , 0
so that max(−1,1) u(x) = u(0), and that any non-trivial solution of (2) is of one sign, so that we may
assume that w(x) > 0 for x ∈ (−1, 1), see e.g., P. Korman [5], [6].

If f ′(u) > (p−1) f (u)
u > 0 for u > 0, it is well known that any positive solution of (1) is non-singular,

i.e., the problem (2) admits only the trivial solution w(x) ≡ 0. Now suppose that f ′(u) > (p−1) f (u)
u > 0

holds only for u > γ, for some γ > 0. It turns out that positive solutions of (1), with maximum value
greater than γ are still non-singular, provided that

∫ γ
u

f (t) dt < 0 for all u ∈ (0, γ). The main result is
stated next. It is customary to denote F(u) =

∫ u

0
f (t) dt.
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Theorem 1. Assume that f (u) ∈ C1(R̄+), and for some γ > 0 it satisfies

f (γ) = 0, and f (u) > 0 on (γ,∞), (3)

f ′(u) > (p − 1)
f (u)
u
, for u > γ , (4)

F(γ) − F(u) =
∫ γ

u
f (t) dt < 0, for u ∈ (0, γ) . (5)

Then any positive solution of (1), satisfying

u(0) > γ, and u′(1) < 0 , (6)

is non-singular, which means that the linearized problem (2) admits only the trivial solution.

In case p = 2 this result was proved in P. Korman [7], while for general p > 1 a weaker result,
requiring that f (u) < 0 on (0, γ), was given in J. Cheng [3] (and before that by R. Schaaf [10] for p = 2
case), see also P. Korman [5], [6] for a different proof, and a more detailed description of the solution
curve. Other multiplicity results on p-Laplace equations include [1], [2], [4] and [9].

Proof: Assume, on the contrary, that the problem (2) admits a non-trivial solution w(x) > 0. Let
x0 ∈ (0, 1) denote the point where u(x0) = γ. Define

q(x) = (p − 1)(1 − x)φ(u′(x)) + φ′(u′(x))u(x) .

We claim that
q(x0) < 0 . (7)

Rewrite (using that (p − 1)φ(t) = tφ′(t))

q(x) = φ′(u′(x))
[
(1 − x)u′(x) + u(x)

]
.

Since φ′(t) > 0 for all t , 0, it suffices to show that the function z(x) ≡ (1 − x)u′(x) + u(x) < 0 satisfies
z(x0) < 0. Indeed,

z(x0) =
∫ 1

x0

[
u′(x0) − u′(x)

]
dx < 0 ,

which implies the desired inequality (7), provided we can prove that

u′(x0) − u′(x) < 0 , for x ∈ (x0, 1) . (8)

The “energy” function E(x) = p−1
p |u

′(x)|p + F(u(x)) is seen by differentiation to be a constant, so that
E(x) = E(x0), or

p − 1
p
|u′(x)|p + F(u(x)) =

p − 1
p
|u′(x0)|p + F(γ) , for all x .

By the assumption (5), it follows that

p − 1
p
[
|u′(x)|p − |u′(x0)|p

]
= F(γ) − F(u(x)) < 0 , for x ∈ (x0, 1) ,
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justifying (8), and then giving (7).

Next, we claim that

(p − 1)w(x0)φ(u′(x0)) − u(x0)w′(x0)φ′(u′(x0)) > 0 , (9)

which implies, in particular, that
w′(x0) < 0 . (10)

Indeed, by a direct computation, using (1) and (2),

[
(p − 1)w(x)φ(u′(x)) − u(x)w′(x)φ′(u′(x))

]′
=

[
f ′(u) − (p − 1)

f (u)
u

]
uw .

The quantity on the right is positive on (0, x0), in view of our condition (4). Integration over (0, x0),
gives (9).

We have for all x ∈ [−1, 1]

φ′(u′)
(
u′w′ − u′′w

)
= constant = φ′(u′(1))u′(1)w′(1) > 0 , (11)

as follows by differentiation, and using the assumption u′(1) < 0. Hence

u′(x)w′(x) − u′′(x)w(x) > 0 , for x ∈ (x0, 1) . (12)

Since f (u(x0)) = 0, it follows from Eq (1) that u′′(x0) = 0. Then (11) implies

φ′(u′(1))u′(1)w′(1) = φ′(u′(x0))u′(x0)w′(x0) (13)
= (p − 1)φ(u′(x0))w′(x0) .

We need the following function, motivated by M. Tang [11] (which was introduced in P. Korman [5],
and used in Y. An et al. [2])

T (x) = x
[
(p − 1)φ(u′(x))w′(x) + f (u(x))w(x)

]
− (p − 1)φ(u′(x))w(x) .

One verifies that
T ′(x) = p f (u(x))w(x) . (14)

Integrating (14) over (x0, 1), and using (5) and (12), obtain

T (1) − T (x0) = p
∫ 1

x0

f (u(x))w(x) dx

= p
∫ 1

x0

[
F(u(x)) − F(γ)

]′ w(x)
u′(x)

dx

= −p
∫ 1

x0

[
F(u(x)) − F(γ)

] w′(x)u′(x) − w(x)u′′(x)
u′2(x)

dx < 0 ,
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which implies that

L ≡ (p − 1)φ(u′(1))w′(1) − (p − 1)x0φ(u′(x0))w′(x0) + (p − 1)φ(u′(x0))w(x0) < 0 .

On the other hand, using (13), then (9), followed by (10) and (7), we estimate the same quantity as
follows

L > (p − 1)φ(u′(x0))w′(x0) − (p − 1)x0φ(u′(x0))w′(x0) + u(x0)w′(x0)φ′(u′(x0))
= w′(x0)q(x0) > 0 ,

a contradiction. ♢

We remark that in case f (0) < 0 it is possible to have a singular positive solution with u′(1) = 0, so
that the assumption u′(1) < 0 is necessary.

We now consider the problem (where φ(t) = t|t|p−2, p > 1)

φ(u′(x))′ + λ f (u(x)) = 0 for −1 < x < 1, u(−1) = u(1) = 0 , (15)

depending on a positive parameter λ. The following result follows the same way as the Theorem 3.1
in [5].

Theorem 2. Assume that f (u) ∈ C1(R̄+), and the conditions (3), (4) and (5) hold. Then there exists
0 < λ0 ≤ ∞ so that the problem (15) has a unique positive solution for 0 < λ < λ0. All positive
solutions, satisfying u(0) > γ, lie on a continuous solution curve that is decreasing in the (λ, u(0))
plane (see Figure 1). In case f (0) < 0, one has λ0 < ∞, and at λ = λ0 a positive solution with
u′(±1) = 0 exists, and no positive solutions exist for λ > λ0. In case f (0) = 0 and f ′(0) < 0, we have
λ0 = ∞.
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Figure 1. The curve of positive solutions for the problem (15), in case p = 3 and f (u) =
u(u − 1)(u − 2)(u − 4).

Example In Figure 1 we present the solution curve of the problem (15) in case p = 3 and f (u) =
u(u − 1)(u − 2)(u − 4). Here γ = 4, and one verifies that the Theorem 2 applies. The Mathematica
program to perform numerical computations for this problem is explained in detail in [8] (it uses the
shoot-and-scale method). The solution curve in Figure 1 exhausts the set of all positive solutions (since∫ 2

0
f (u) du < 0, there are no solutions with u(0) = max(−1,1) u(x) ∈ (1, 2)).
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