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Abstract: In the current paper, we are concerned with the existence and uniqueness of mild solutions
to a Cauchy problem involving a time-space fractional diffusion equation with an exponential semilin-
ear source. By using the iteration method and some L? — L?-type estimates of fundamental solutions
associated with the Mittag-Leffler function, we study the well-posedness of the problem in two differ-
ent cases corresponding to two assumptions on the Cauchy data. On the one hand, when considering
initial data in L?(R") N L*(RY), the problem possesses a local-in-time solution. On the other hand, we
obtain a global existence result for a mild solution with small data in an Orlicz space.
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1. Introduction

In this paper, we consider the following initial value problem for a time-space fractional diffusion
equation

0fu(t, x) + (—A)%u(t, x) = F(u(t, x)), (t,x) € (0, 0) x R,
(1.1)
u(t, x) = h(x), (t,x) € {0} x RY,

where N > 1, 0 < o < 2, h is the initial data function, and the symbol 9" stands for the Caputo

derivative of fractional order @ € (0, 1) (Section 2). In Problem (1.1), we are mainly focus on the
semilinear case in which the function F satisfies the following assumptions

[P0 = F) < L (Juf " expur) + | exptin) [u =], wve R, (12)
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and
|Fao| < Lful expqur),  uer, (1.3)

where v, p > 1 and L is a positive constant. The reason why we study this source function comes from
the great interest of the PDEs community with a polynomial source of the form G,(u) = |ul’"'u or
G,(u) = u” and some similar forms. Many good papers about this topic have attracted our attention.
Wang-Xu [1] and Xu-Su [2] used the potential well method to investigate the well-posedness of a
pseudo-parabolic equation with nonlinear function G,. Lian et al. [3] studied a Schrodinger equation
with polynomial nonlinearity. They used infinite Nehari manifolds with geometric features to provide
infinite sharp conditions for global existence and blowup results of solutions. A modified form of G,
was considered by Chen et al. [4] in the Gierer—Meinhardt system. The authors applied a functional
method to obtain a bound of some ratios of the solution, and then, the existence of global and blowup
solutions were proved.

From strong interest of PDEs with polynomial non-linearity through the above mentioned papers
and related works, we consider the following heat equation

ou(t, x) — Au(t, x) = |u(t, x)l”_lu(t, X), (t,x) € (0, 0) x RV,
(1.4)
u(t, x) = up(x), (t,x) € {0} x RV,

where uy € LY(RY), 1 < g < oo, p > 1. Recall that (1.4) admits a scale solution

w(t, x) = A (2%, Ax), 1> 0.

N(p-1)
2

and the value g. = called the critical exponent plays an important role in investigating the
N

existence and uniqueness results. Considering the case when ¢ = p = g, = 55 in R2, the power
exponent is approximated co. Therefore, it seems reasonable to replace the source function in (1.4)
with the nonlinearity of the exponential type. As far as we know, the attention on nonlinear functions
satisfying the assumptions (1.2) and (1.3) is derived and developed by several works in the literature
[5-9]. Two groups in [5, 8] and [7, 9] studied, respectively, parabolic equations and the Schrodinger
equation (NLS) with exponential nonlinearities. More precisely, in [8], Ioku proved the global-in-time
existence of a mild solution to a semilinear heat equation with exponential nonlinearity under some
smallness assumptions on the initial data. Meanwhile, Furioli [5] showed that the notions of weak
and mild solutions are equivalent and investigated decay estimates and the asymptotic behavior of
small-data global solutions. Nakamura and Ozawa in [9] provided global-in-time results for solutions
in homogeneous Sobolev spaces and homogeneous Besov space to a NLS with a source function of
exponential type. A source function f(u) = (e*™" — 1 — 4x|u|?) was considered for a two-dimensional
NLS problem by Ibrahim et al. [7]. The authors showed that the solution to their problem tends to be
a free Schrodinger under certain conditions. Also, we refer to some other works by Nakamura and
Ozawa [10] and Ibrahim et al. [6] for wave equations with the nonlinearity of exponential growth.
During the past decades, fractional calculus has received increased attention due to its wide appli-
cations in diverse fields of science and engineering such as stochastic processes [11], fluid mechan-
ics [12, 13], chemotaxis in biology [14], viscoelasticity [15], etc. Apart from that, many interesting
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mathematical models and results on this topic have been done [16-25]. A strong inspiration for study-
ing Problem (1.1) with the presence of the operator 97 comes from the fact that many physical phe-
nomena carry the substance of diffusion processes, many studies about diffusion equations have been
done [26-30], and fractional calculus is very effective in modeling anomalous diffusion processes.
In fact, while a diffusive particle in the usual diffusion process possesses the mean square displace-
ment behaving like C;t for t — oo, such behavior of a particle in an anomalous diffusion process is
C,t* [31], Cy, C, are positive constants. Starting from the above characteristics of an anomalous diffu-
sion process, many good works about fractional diffusion equations have been done. Because it is very
difficult and lengthy to present all the related works, we would like to present only the works, which
motivated us. In [32], a general time-fractional diffusion equation subject to the Dirichlet boundary
condition was studied by Vergara and Zacher. By using energy estimates and a powerful inequality
for integrodifferential operators, the authors proved sharp estimates for the decay in time of solutions.
Andrade et al. [33] considered the following non-local initial boundary value problem associated with
a time-fractional heat equation

0fu(t, x) + (—A)%u(t, x) = f(t,u(t, x)), (t,x) € (0,0) X Q,
u(t,x)=0 (t, x) € {0} x 0Q),

k
u(t, x) = up(x) + Zﬁi(X)u(Ti, X), (t,x) € {0} x Q,

i=1

where Q c RY is a smooth bounded domain, & € (0,1), o € (0,2], T; € R, B : Q — R, and the
continuous function f : [0, ) X R — R satisfies, |f(¢, s)| < c(1 + |s|?) and

|t )= 6| < et + 157" + 17 Dls =11,

where p > 1 and c is a positive constant. The existence and regularity of mild solutions were estab-
lished with some sufficient conditions. In [34], Tuan et al. were concerned in a terminal value problem
for a time-space fractional diffusion equation. For the problem with linear source function, regularity
properties of solutions were studied. The existence, uniqueness and regularity to solution were proved
in the case of nonlinear source.

The main results of this paper are providing the existence and uniqueness of mild solutions to
Problem (1.1) with function F satisfying (1.2) and (1.3). Corresponding to two different cases of initial
data, we obtain a local-in-time solution and a global small-data solution. With usual initial data, by
the Picard iteration method and some L? — L4 or L” — L= estimates of fundamental solutions involving
the Mittag-Leffler function, we provide the existence and uniqueness of mild solutions to (1.1) on a
reasonable time interval (0, T']. Apart from that, we also show that solutions are continuous from (0, 7]
to L”(R"). Global-in-time results are obtained by making use of the norm (3.14). From the technical
point of view, we split the second term of the right-hand side of (2.1) into two parts, while the part
with small-time is easy to handle, the controlling of the large time part requires small assumptions on
the initial data in an Orlicz space to be achieved.

The structure of the paper is as follows. Firstly, we provided some preliminaries in section 2 in-
cluding some function spaces, fractional settings and formula, linear estimates for a mild solution. The
main results about the local and global well-posedness are stated in section 3.
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2. Preliminary

2.1. Some basic setups

We first introduce some function spaces. Let (B, ||-||z) be a Banach space. For T > 0, we denote by
C ([0, T]; B) the space of all continuous functions u from [0, 7] to B and define the following space

L”(0,T;B) := {u :[0,T] - B

u is bounded almost everywhere on [0, T]}.

Recall that L~ (0, T'; B) is a Banach space with respect to the norm
lll0.7: 1= ess sup |[u(t)||,, < 00, u € L¥(0,T;B).
1€(0,T)

Let Z(z) := €@ — 1. The Orlicz space LZ(R") is defined as the space of all functions satisfying the
following converging result for some « > 0

=(k! 0.
fRN ._(K |u(x)|)dx <

The space L=(R") is a Banach space with the Luxemburg norm given as follows

1] = v, = inf {K >0 ‘ f (7 fux)]) dx < 1} u € LFRY).

Note that the space C’ (RM) is not dense in LE(RY). In fact, we have the following embeddings
LPRY) N L(RY) — clyzen(CYRY)) — LFRMY).

For more details about Orlicz spaces, we refer the reader to [37, Chapter 8] and references given there.
Next, let us provide some fractional settings. For a,b > 0, the Beta function B and the Gamma
function I are defined respectively as follows

1
B(a, b) ::f(l—m)“_lmb_ldm,
0

I'(a) := f m* e "dm.
0

Let @ € (0, 1). By considering the following memory kernel

t(ll

ko (1) = @’ t>0,

for a smooth enough function u, we can define the Caputo derivative of order « by
N d
Fu(t) := ki-o() * Lu(o).

Also, for two real constants @; and @,, we define the Mittag-Leffler function E,, ,, : C — C in the
following way
0 k

Z
E,o@i=y — 2
(@) ;F(a1k+a2)
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2.2. Fundamental solutions

The fractional Laplace operator can be defined via the Fourier multiplier [5, Section 2]

(-0)u(x) = F 1 (PF (@) (),

where the Fourier transform is recalled as follows
F)E) = f u(x)e™ < dx,
]RN

and F~! is the inverse Fourier transform. From the above definitions, for any a € (0, 1) and o € (1, 2],
we define two functions <7 (a, o)(t) and % (a, o)(t) by

(e, ) Ou(x) 1= T (Eqp (—E717) )  u(x),
(e, ) Ou(x) 1= F(Ena (—IE7E7) ) * u(x).

From [35, Section 1.3] or [14, Section 2], we see that the mild solution to Problem (1.1) satisfies the
following Duhamel integral equality

u(t, x) = 2 (a, o)(h(x) + f (t — m)* ' (e, o)t — m)F (u(m, x))dm. 2.1)
0

It turns out that handling the operators 7| (@, 0)(f) and .@%(a, 0)(¢) plays an important role in control-
ling norms of the mild solution u. Therefore, we provide some linear estimates of <7 (a, 0)(f) and
ah(a, o)(t) in the following lemma.

Lemma 2.1. [14, Proposition 3.3] Let r € [1,0). Then, there exists a positive constant C such that
the following statements hold

(i) if N> roand s € [r, Ii’—:a), for any u € L'(RY), we have

aN(1_1

| @], ., < CorFC D ul (2.2)
(ii) If N > 2ro and s € [r, Nivz’m), for any u € L'(RY), we have
aN(1_1

| @], ., < Cor#C I ull (2.3)

Furthermore, (2.2) (resp. (2.3)) holds for any s € [r,00) if N = ro (resp. N = 2ro) and s € [r, ] if
N < ro (resp. N < 2ro).

Corollary 2.2. For any u € L=(R"), we have

| @ oo ..., = Collulzeny

[EAC IOV = e 7
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Proof of Corollary 2.2. First, for a positive real number a, we have the following observation

inf {K >0 ‘ f E[a|u(x)|de < 1} = inf {aK >0 ‘ f [|M(X)|)dx < 1}.
RN K RN K

Therefore, the following equality holds

oifeo| [ =t ors 1} amrfesof [ o[ ors
inf{xk >0 = dx<1;=ainf<k>0 = dx < 15p. 2.4
RV K RN K

Next, from the expansion of the exponential function, for any « > 0, we have

[1]

f E(|$Z71(a, 0')(z‘)u(x)|)dx _ Z H«Qfl(a a‘)(Z
= . jeN Jk

2J” ||L21(RN)
Z i K2k

JjeN

RN K

Combining this result and (2.4) yields the desired estimate. Similarly, we can find the estimate of the
norm for .@%(a, o)(f)u. The proof is completed. O

LZ/(RN)

3. Existence and uniqueness

This section is used to present the main results of this paper including the existence and uniqueness
of mild solutions satisfying Eq (2.1). We provide two different results about local well-posedness and
global well-posedness according to two cases of initial data.

e For uy € LP(RY) N L*(RY), Problem (1.1) possesses a unique mild solution u on [0, T'] where T
is small enough. In addition, this solution is also continuous on (0, T'].

¢ By making some small assumptions on the initial data in L*(R"), we can prove that the solution
u to Problem (1.1) exists globally in time.

Theorem 3.1 (Local-in-time solution). Let v, p > 1. Suppose that h belongs to L”(R¥)NL*(R"). Then,
we can find a reasonable number T such that Problem (1.1) possesses a unique mild solution

ue L7(0,T; LPRY) n L ®Y)) n €((0, T, L ®Y)),

where ”'”LP(RN)mL‘”(RN) = ”'”LP(RN) + ||'||L°°(RN)~

Proof. To begin, we consider the sequence {u;},ci as follows
ul(ta x) = M(a(, O')(t)]’l(.X),

w1 (1, %) == (@, o) Oh(x) + f (t = m)*~ (@, o)t = m)F (uy(m, x))dm.
0
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We aim to prove that {u;},e is a Cauchy sequence in L*(0, T; LP(RY) N L*(RY)). Then, the com-
pleteness of this space ensures the existence of a limit function u that can be shown to be the
unique mild solution to Problem (1.1). To this end, the first task is to check whether {u;};cy is in
L>(0,T; LP(RY) n L*(RM)) or not. Indeed, we apply Lemma 2.1 to get

| @ omo,.,

o = Ol
and

focronol,.., < ol
Since h € LP(RY) N L*(RY), we easily find that

< Co||n| 3.1

””1 ||L°°(O T:LP(RM)NL=(RN)) = LP(RN)NL=(RN)"

This result implies that u; € L¥(0, T; L?(RY) N L*(R")). Before moving to the second step, we provide
some nonlinear estimates of the source function. For functions w,v € LP(RY) N L*(RY), we find that

HF(W) -F@) LW(RN) L‘x’(RN) 2NY (||W||L°°(RN)) ”W - v“L""(RN)
Lm(RN) CXp (||v||L°°(RN)) ”W - V||L°°(RN) (3.2)
and
HF(W) Bl F(V)HLI’(RN) ;’I(RN) eXp (||W||L°°(RN)) ”W B V“LP(RN)

L”(RN) CXp (”V”L"O(RN)) ”W - v”LP(RN)' 3.3)

We are now ready to consider the remaining elements of {u;},cn. Let Ry = 2C0||h | L EN AL @)’ Suppose

that u; is in the open ball B(0,R,) ¢ L*(0,T; L’(RY) N L*(R")) for any / € N. From Lemma 2.1, the
following estimate is satisfied for any ¢ > 0

U (1) = ul(t)”m(RN) f(f m)*”! 'Q/z(a o)t - m)F(ul(m))H

<@jb—m“

Apply (3.2) and the assumption (1.3), we find that

L® (RN)

[, dm

!
umw—mﬂMRSC@fb—m“me%mwMWMN&mﬁm
CoLT

L°°(O T;L®(RY)) CXp (”W”Lw(o T; L”(RN))) (3.4)

By similar arguments, we also get a same result for the L”-norm as follows

Electronic Research Archive Volume 30, Issue 4, 1354—-1373.
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COLT |

L°°(0 T;L®(RN)) exXp (||Ml||lli°°(0,T;L"°(RN))) ’ (3.5)

where we have used (3.3) with w = u; and (1.3).
Combining the above two estimates and choosing

-1

LI'(RN)OL‘”(RN)
T< (2C0||h||LP RN)QL“(RN))] ’
we obtain the following result
R,
i1 (1) = w0 <= 3.6
[ERIOEG! S (3.6)

In view of (3.1) and (3.6), for any [ > 1, if u; € B(0, R;), we obtain the estimate below

ess su ‘u, 1() <esssu 'u; 1() — uy (¢ )H
1€(0, T)p ’ LP(RN)NL®(RN) 1€(0, T)p ’ LPRN)NL®RY)
+ esssu Hul( H 3.7
1€(0, T)p LP(RN)NL®(RN)

<R;.
From (3.1) and (3.7), the induction method can be applied to conclude that {u;};c;y € B(0, R;).

In addition, we can check that {u;},c 1s a Cauchy sequence in B(0, R,). In fact, presume for [ > 2
that u; and u;_; are elements of B(0, R;), the techniques as in (3.4) and (3.5) enable us to find for any

t € (0,7T) that
[RIOEG) -

<Cy f (t = m)” I'F(uz(m)) Flau(m)

Lw(RN)
SCOL §T(§N) (||uk(m)||L°°(RN)) ||u,(m) B ul—l(m)||L°°(RN)dm
ke{l=1,1)

CoLT* -

< Oa Z ””k ZNI(O,T;L‘X’(RN)) eXp (”ul”p""(O,T;L‘”(RN))) ””l - ”1—1||L°°(0,T;L°°(RN)) (3:8)
kell=1,1)
and
‘ U () — ui( )” )

'F(Mz(m)) Flu1(m)

<cof(t—m>“ !

ke{l Ll

LP(RN )

L= (RN )

)la

X ([ ||} ) [21m) = 11 (m)| g, A

Electronic Research Archive Volume 30, Issue 4, 1354—-1373.
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y—1

Lo(0.1:L®Ny) ©XP (||u1||p°°(0,T;L°°(RN))) ””l — Ui ||L°°(O,T;LP(RN))' (3.9)

CoLT*”
G S

ke{l-1,1}

Therefore, if we choose

-1

T <

a LP(RN)NL®(RY)

[8L||h i

V- 7
LP(RN)NL®(RN) exp (2C0||h||p )} ’

the following estimate can be drawn from (3.8) and (3.9)

< A4CyLT*
L®0,T;LPRVNL®(RN)) — a

1
< —Hbtl — Ui
2

Ui — U

R exp (Rf) Hu, — U

L=(0,T;LP(RN)NL®(RN))

Lo(0,T;LP(RVNL®(RV))

for any / > 2. Based on this result, for any /, > [; > 2, we have

-1

U, — uy U1 — U

y—

<]

L®(0,T;LPRN)NL®(RY)) = L=(0,T;LP(RM)NL®(RN))
=

-1

S

1=l
-1

DI I

1=

L®(0,T;LP(RV)NL®(RN))

L2(0,T;LP(RVYNL®(RN))

It means {u;},c 1s a Cauchy sequence in B(0, R;), provided that we have already shown that {4}y C
B(0, Ry). By the completeness of the space L™ (O, T; LP(RY) N L=(RN )) and the dominated convergence
theorem, there exists a unique limit function u satisfying

!
u= llim (a, o) (t)h(x) + f (t — m)* (e, o)t — m)F (uy(m, x))dm
— 00 0
!
= (@, o) (h(x) + f (t — m)* (@, o)t — m)F (u(m, x))dm.
0
In addition, we can also show that u € C ((O, Tl; LOE(RN )). For t,e > 0, it is easy to check that

|t ot + &) - @, YDA
],
0

a

Dt +eDu:=(+e)  dha,o)t+eu— 12" e, o)t — mu.

Hu(t +e,) —ult, )H

LP(RN) LP(RN)

2 +e—m,t —m)F(u(m,-))

dm (3.10)

LP(RN)

(t + & = m)* ' ab(a, o)t + & — m)F(u(m, '))”U,(RN)dm’

where we define

Electronic Research Archive Volume 30, Issue 4, 1354—-1373.
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By Theorem 3.2 and Remark 1.6 in [36], we deduce

lim||( @, )t + &) = A @ )OO, = 3.11)
and
hmHQ(t+ &= m.t—mFum)| =
Furthermore, by using Lemma 2.1, we obtain
_ _ a—1 .
HQ(I+8 m, 1 — m)F(u(m, ))HU(RN < 2Co(t — m) HF(u(m, ))Hmm
From the fact that u € B(0, R,) ¢ L* (0, T; LP(RY) 0 L¥(RY)), it follows immediately
_ _ . _ a—1pv ¥4
|26+ &—m,t = myFn, ))HU(RN) < 2CoL(t — m)"'R} exp (R?).
In sum, we have
lim f Hg(wrg m, t — m)F(u(m, ))HL 8 = 0. (3.12)
We next consider the third term on the right hand side of (3.10) as follows
/+&
f (t + & — m)* Al o)t + & — m)F(u(m, ))H i, 4
!
a—1
<Cy f (t+ & —m)! | Futm, ))HU(RN)
Coe
< RV R?),
S lexp( 1)
where we apply Lemma 2.1. Therefore, there holds
[+&
lim (t+&—m)" (e, o)t + & — m)F(u(m, ))HLP(RN) =0. (3.13)

t

Combining (3.10), (3.11), (3.12) and (3.13) yields the desired result. The theorem is thus proved. O

Theorem 3.2. [Global small-data solution] Let v > % and p > 2. Suppose that one of the following

3
assumptions is satisfied,

e v<2, 0<N < -Z, and there exists a constant q > 2 satisfying
v—1

N p . N N
max{ —, < g < min , >
o 3v—4 O-(I_V;l) oc—-Ny-1)

e v>2 0 <N, and there exists a constant q > 2 satisfying

N
q > max{—, B}.
o 2

Electronic Research Archive Volume 30, Issue 4, 1354—-1373.
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Let g = ( "") andn = “N . Then, if the data of h € LERN) N L"(RM) N L (RM) is small enough, then
Problem (1 1) possesses a unique mild solution in L= (0, co; L=(RM)).

Remark 3.1. It’s not too difficult to find a non-empty set of parameters meeting the assumptions of
Theorem 3.2. Indeed, it can be pointed out some examples as follows

(i) ifa =04, v=1.66, c=15and p=2and N = 2, we can choose q = 2.1;
(ii) ifa =0.7, v=2.5, c =2 and p =3 and N = 3, we can choose q = 4.

Remark 3.2. By the embedding L*(RY) — L'RN) for any n > p, the assumption of h becomes

h € LERN) N L= (RY) whenever n > p. For example, ifa = 0.7, v=25, p=N=3and g = 4, we
—_ pn

have n = 3.6 > p. Therefore, we only need h € L=(R") N Lr=1(RN).

Proof. We first introduce a function space for the existence of solutions as follows

Ly (0.T; L5RY)) := {u € L0, T5 LA | [lull 7.2 < oo},

where [I|zs0,7;12zvy) is defined by

||”||L°°(0TL @) T max{ess(os;l)p ””(t)”L (RN),etses(os;l)plﬁ||u(t)||LE(RN)}. (3.14)

Next, we consider the estimate of the source term. Suppose that w,v € LE(RN ), We can deduce from

Taylor’s expansion of the exponential function and Holder’s inequality with %1 =5ttt that
HF(W) F(V)HL 4(RN) <L Z (Z J! L*W ”(RN)”g| LW(RN)) ||w N V||L34(RN)‘ (3.15)
ge{w,v} \ jeN

Thanks to the definition of the Luxemburg norm and the monotone convergence theorem, for any
u € LE(RY) there holds

|u(t, x)|q ut) |P
7 dx < (e x —l)dxsl,
||u(t)||L (RN)F(Z +1) RY
provided that
q
< <e -1
I'g+1)

for any g > 1 and z > 0. Therefore, we obtain the following estimate

il = T+ 1l 310

Electronic Research Archive Volume 30, Issue 4, 1354—-1373.



1365

Applying (3.16) to (3.15), we get immediately that

o ) )

(FGgj+ 1)

(RN) ]! ||g| (]RN)HW - V”LE(RN)'
gefw,v} JEN

Using [5, Lemma 3.3], we derive

RN) (3allelly=m,) 11w = V]2 (3.17)

ge{w,v} JEN

HF(W) - F(V)H <

LIRN )

where we use the fact that for j € N, there holds I'(j + 1) = j! and denote

C(g) := clL(r(M + 1))W(r(3—q + 1))3
p P

where C; is a positive constant that is independent of w,v. Let R, be a sufficiently small constant.
Suppose that u; is in an open ball B(0,R,) C L[’;"(O, T; L*(RY)) for any [ € N, we can show that
u;1 € B(0,Ry). In fact, on the one hand, by applying Lemma 2.1, we derive

1%«1 )t = m)F ((m)

TRIORT0) . f (1= my!

”(RN)
<Gy fo (1= my U Faum|, - dm
Then, we use (3.17) with w = u; and (1.3) to find
< C,C t of1-75)-1 " ood ! 3.18
a0 = 0], < CoC( | = mrTE g T G19

where we presume that R, < (3q)_71’. On the other hand, repeat application of Lemma (2.1) with s = p

= PL i
andr = v yields
f—m) 1
o f (t—m)

i1 (6) = (1) | @, o)t = m)Fuom))

Ll’(RN)
< — me-%)-
<Gy fo (t =m0 | Faum]|,  am
where we note that if N < og < 20¢q, we deduce p < Nf’z’m. As a consequence, if R, < (3r)_%, it
follows from the above estimate and (3.17) that
1
-1
w10 = @], = CoC) ( f (t = my (=50 [uGm) - (RN)dm) e (319
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provided that max{3r(v—1), 3r} > p. Combining (3.18), (3.19) and the embedding L*(R¥)NLP(R") —

LE(RYN) gives
‘ U (1) — Ml(f)HLE(RN)

<COC2 (2 =3RP(C(r)r + qC(q))) ft(t 3
=T (1= 3qR")(1 = 3rRY)

! m)_lnul(m)”ZE(RN)dm), (3.20)

where C, is a positive constant coming from the embedding. According to the definition of the Beta
function, we have

! N N
# f (t — m)" =5 B dm = B(a(l - —), 1 —,BV). (3.21)
0 gq
In view of (3.20) and (3.21), for any ¢ > 0, the following estimate is satisfied
zﬂ| _— )H _ GG (2-3R(C(Ir + C(q)q))R ol M) ) a2
it IR <RN> (1 -3¢gR5)(1 - 3rRY) o - '

provided that

||u(t)||LE(RN) <rPess sup l’8||u(t)||

1€(0,T) LE®

forany > 0and u € Ly (0, T; LERN )). Then, if R, is small enough such that

(2-3RICOIr + C@)) vecnlali— MY g
(1-3gR0)(1-3rRY) 2 <( o ( ( __) _ﬁv)) ’

we get immediately

R
Al =@ ., <5 forall >0,

Next, we set

R2 CoC, (2 3R5(C(r)r + C(q)q)) . o(-2)
(1-3gR)(1 = 3rRar (1 - 2) 2 '

Then, for any < .7, (3.20) implies

| _ GoC2 (2= 3RUCHI + C@9) R ( f (¢ — myl-2)1 dm),
0

L7 (RN) (1- 3qR§’)(1 - 3rR§)
provided that u; € B(0, R,). Since N < ogq, we obtain
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U1 (1) — uy( )“

_ GC (2= 3RY(C()r + Clg)g))
ey S (1 - 3gR)(1 - 3rRpa (1 - )

R;y“(l‘%)

i1 (6) = ()|
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K
4

At the same time, if ¢ > .7, we deduce

(TOEG!
sﬂ‘ﬁtﬁ'

LE®RY)
U (1) = Ml(t)HLE(RN)

CoCs (2 = 3RUC(Hr + C
sl 2 (2= 3RY(C(r)r + (Q)q»R;B(a(l—ﬁ),l—ﬂv)
(1 - 3qR)(1 - 3rRY) 7q

1+ ﬁN
(6 (2 - 3RYCr + Cl@p)) (% RV(“H(u-ﬁaN[,))‘ﬁB (a ( N ) - m)
(1 —3¢R5)(1 - 3rR%) , ’

where we apply (3.22). If R, satisfies

_apP 1+<y(1f{rﬂq) V[l+a(l+%]_ﬁ_l N g 1
(2 - 3RY(C(Ir + Clg)9) R, (Ba(1-2),1-5v)

((1 - 3C]R§)(1 - 3rR§))l+a(170ﬂq)

there holds immediately

forallt > 7.

From the above results, whether 7 is greater than .7 or ¢ is less than .7, we always get the following
result

as long as u; € B(0,R,) and R, is small enough. For the purpose of proving {u;},cn is a subset of
B(0, R,), we also need to consider the initial data 4. On the one hand, by using Corollary 2.2, we get
easily that

2
-, <Rt
11 () — ui (1) e <4

R,
- <=
E(RN) 2

up1 (1) — Ml(f)”L

HMIHLE(RN) - HM(Q/’ O—)(t)h”LE(RN) = COHh”LE(RN)'
On the other hand, Lemma 2.1 shows that

HQ/I(Q’ a)(t)hHLw(RN) = Cot_%”h”L”(RN)’

|#@.oron, ., < o], g

LP¥1 (RN)’

where 7 = ¢% > 1. Then, we get

| Aoron|.., < coCl

LI(RNY
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Presume that the initial data is small enough, precisely,

R,

||h||L5(RN) = 2C,’
R

”h“Lﬂ(RN)ﬂL%(RN) = 4C02Cz.

Then, we can conclude that u; € B(0, R,). Hence, if u; € B(0, R,) for any [ > 2, we have u;,; € B(0, R;),
provided that R, and the initial data are sufficiently small. Summarily, we have {u;};cn € B(0, Ry).

To complete the Banach principle argument, we need also to show that {u;},y is a Cauchy sequence
in B(0, R,). Since the techniques are not too different from those in the results above, we only briefly
present the main estimates. For u; and u;_; in B(0, R,), [ > 2, Lemma 2.1 yields

up1 () — uy(1)

Le(RN)

<Cy f (= my =) HF(Ml(m)) Flua ()|, dm

CoC(g)
Sssr ) Py f (t = my ) )l o) = s o, am

and

' U (1) — MZ(I)HLP(RN)
<Cy f (1 = my U Fam) = Faaa@m)|,dm

C()C(}") _N
Sm f(f m)?(1=50)1 ||uk(m)”L_(RN) uy(m) — wy— (m )”L L

€{l-1,1}

provided that R, < min {(Sq)_%, (3r)_1%}. Therefore, since LP(RY) N L(R") embeds into LER"), we
have

_CoC2 (2= 3RY(C(r)r + qC(q)))
L= (RN) (1 - 3¢R5)(1 —3rRY)

—1
! ||uk(m)||ZE(RN)
x> | ——
ity Jo (¢ = my'—e-3)

i1 (1) = o)

w(m) = ()| dm. - (3.23)

It follows immediately that

2CoCz (2 - 3R§(C(r)r + qC(q))) R;—l

Pl = wo)| ., < T 3R 3R
B( (1 - O_ﬂ) 1 —ﬁv) ess sup tﬂuu,(t) —ur 1(1)” N
q 1€(0.T) LERY)
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Presume that R, is small enough such that

2-3RACOI+C@D) | (o N N
(1-3qR))(1-3rRY) 2 <( o (a( _;’)’ _ﬁv)) |

We then find that

1
@ = @) ., < 5 esssup o - o)

ess sup ¥ ‘

1€(0,T) ERY)

Set

-1

—_1[&C (2= 3R(C(Ir + Cg)g)) . (e
S 8la- 3gR))(1 — 3rR§)a,(1 _ %) 2

On the one hand, for any ¢ < 7 and [ > 2, we derive (3.23) that
o1 = | ...,

2CoC5 (2 = 3RE(C(r)r + C(q)q) y
< ( 2 = )Rg_lﬂ"(l_w) ess sup Hul(t) - Mz-1(f)”
(1= 3gR)(1 = 3rRY)er (1 - E) €(0,T) L

E(RN)

1
<—esssup Hul(f) - ul_l(t)HL

4 o) ERY)

On the other hand, if 7 > ?, the following estimate holds

[ERIOEO) .

2C0C (2 - 3RUC(H)r + C
0_2( P(C(rr + (Q)Q))R;—IB(Q(1 ) ﬁ)’ | _ﬁv)
7"(1 - 3gR))(1 - 3rRY) oq

B
_s[26C2 (2= 3RICWr + Clapg)) | O R(v—l)[l+a(1_ﬁN)]—/5
(1 - 3gRY)(1 - 3rRY) 2

% B (a(l - ﬁ), 1 —ﬁv) ess sup Hul(t) - ul_l(t)“
oq

1€(0,T) LE(RN)

1
<—esssup “ul(t) - u1—1(t)H 2o
1€(0.7) LERY)

as long as R, satisfies

(v—l)[l+ L ]—,3

N

- swticorrcw) TR I (Bla(1-2)0-p)"

<

1+ ﬂN +%
((1 = 3gRY)(1 = 3rRD) T2 ras

(3.24)

(3.25)

(3.26)
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Combining (3.25) and (3.26) yields

@ =@ <5 esssup w0 . (3.27)

€SS sup ‘
te(0,T)

for any T € (0,00) and [ > 2. As the result of (3.24) and (3.27), for u;,u;, € B(O,R;) and [ > 2, we
obtain

Then, by similar arguments of Theorem 3.1, we can show that {i},c is a Cauchy sequence. In addition,
since L;" (0, T; LE(RN )) is a complete space with the metric

Ui — U 1 — Ui

1
<3l |
Ly (0.T5LE®RY)) ~ 2 Ly (0.T:LE(RY))

d(u,v) := Hu -V

L5 (0.T;LERN))

there exists a unique limit function of {u}; in B(0, R,), which is the unique mild solution to Problem
(1.1). The proof is completed. O

4. Conclusions

This paper considers a Cauchy Problem for a time-space fractional diffusion equation with expo-
nential source term. By iteration method, a unique local mild solution is derived for initial data in
LP(RN) N L*(RY). The existence and uniqueness are extended to be global in time when we suppose
additionally that initial data in an Orlicz space are small enough. However, since the space C;°(R") is
not dense in L=(RY), the continuity of solutions in the term of time-variable is not considered for the
global case. This will be a potential approach to improve the results of this work in the future.
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