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Abstract: In this paper, the transition from anti-phase spike synchronization to in-phase spike syn-
chronization within mixed bursters is investigated in a two-coupled pre-Bözinger complex (pre-BötC)
network. In this two-coupled neuronal network, the communication between two pre-BötC networks
is based on electrical and synaptic coupling. The results show that the electrical coupling accelerates
in-phase spike synchronization within mixed bursters, but synaptic coupling postpones this kind of
synchronization. Synaptic coupling promotes anti-phase spike synchronization when electrical cou-
pling is weak. At the same time, the in-phase spike synchronization within dendritic bursters occurs
earlier than that within somatic bursters. Asymmetric periodic somatic bursters appear in the transition
state from anti-phase spikes to in-phase spikes. We also use fast/slow decomposition and bifurcation
analysis to clarify the dynamic mechanism for the two types of synchronization.

Keywords: in-phase spikes; anti-phase spikes; pre-Bözinger complex; mixed bursters;
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1. Introduction

Neuronal communication is based on synapses, including both chemical and electrical synapses
[1, 2]. Electrical synapses are widespread in mammalian brain neural circuits and regulate the firing
pattern of interconnected neurons [2, 3]. Electrical synapses can increase neuronal excitability and
accelerate the synchronization of neuronal firing [4–6]. Neuronal synchronization makes a valuable
contribution toward maintaining some physiological functions of the brain [7]. The synchronization of
neuronal networks has been widely studied, mainly focusing on complete, phase, and lag synchroniza-
tion [8–11]. As for the issues of synchronization transitions between in-phase and anti-phase spikes,
some studies have focused on the firing of normal bursters in a neural system [12]. However, the firing
of mixed bursters is global in a neural network, and their synchronization seems to be consequential.

There has been considerable research on normal bursters in coupled neurons. Sherman et al. stud-
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ied a simplified model for a pair of pancreatic beta cells coupled by electrical synapses, and they
analyzed the fast subsystem to illuminate how electrical coupling affects bifurcation behavior. When
the coupling is weak, the spikes within bursters are not in-phase, but rather anti-phase, asymmetric,
and quasi-periodic [13]. De Vries et al. used a general weakly coupled nonlinear oscillator model to
understand the burster mechanism of pancreatic beta cells, and obtained similar results using a more
simplified model [14]. Yang et al. analyzed a relatively simple model consisting of two identical
coupled layers. The coupling induced new bifurcations, leading to multi-stability. A pair of distinct,
unstable, asymmetric steady states were observed [15]. Toporikova et al. showed the effect of synaptic
and electrical coupling on burst dynamics and spike synchronization within bursters via the coupled
neuronal model pre-Bözinger complex (pre-BötC). Electrical coupling promotes spikes of in-phase
synchronization within a burster, and synaptic coupling promotes the transition of anti-phase spikes
within bursters [12]. Duan et al. studied the relationship between the in-phase and anti-phase spikes
within a mixed burster and the following initial values: the in-phase spike synchronization within a
mixed burster corresponded to the same initial values, and the anti-phase spike synchronization cor-
responded to different initial values [16–18]. The local and global stability of the coupled networks
were analyzed and there are also many studies on the stable regions and bifurcation curves of the cou-
pled networks in parameter planes [19]. The codimension-2 bifurcation analysis of neuronal system
for mixed-mode oscillations shown more details of bifurcation [20, 21]. However, the transition of the
in-phase and anti-phase spike synchronization within the mixed burster was not revealed.

This paper is organized as follows. A modified neuronal model, the coupled pre-BötC model, is
introduced in Section 2. In Section 3, we explore how the mixed burster pattern of the system depends
on the parameters of both electrical (ggap) and synaptic (gsyn−e) coupling. We study how the param-
eters ggap and gsyn−e affect the anti-phase and in-phase spike synchronization of mixed bursters. By
fast/slow decomposition and bifurcation analysis, we investigate the dynamic mechanisms of synchro-
nization. We find that the synchronization of spikes within dendritic bursters occurs earlier than within
somatic bursters. The transition state between in-phase and anti-phase spike synchronization is called
the asymmetric periodic somatic burster. Finally, a discussion is provided in the last section.

2. Model description

The single-compartment pre-BötC inspiratory neurons [22] are coupled and modified as follows:

V̇i = (−INaPi − ICANi − INai − IKi − ILi − Isyn−ei − Igapi)/C, (2.1)

where i, j = 1, 2 and i , j, V is the membrane potential; INaP, ICAN , INa, IK , IL, Isyn−e, and Igap

represent the persistent sodium current, calcium-activated nonspecific cationic current, Na+ current,
delayed-rectifier K+ current, leakage current, synaptic coupling current, and electric coupling current,
respectively; and C is the overall cell capacitance. These currents are calculated as follows:

INaPi = gNapmp∞hi(Vi − ENa),
ICANi = gCAN f ([Ca]i)(Vi − ENa),
INai = gNam3

∞(Vi)(1 − hi)(Vi − ENa),
IKi = gKn3

i (Vi − EK),
ILi = gL(Vi − EL),
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Isyn−ei = gsyn−esi(Vi − Esyn−e),
Igapi = ggap(Vi − V j).

The activation and inactivation variables n and h are described by the following equations:

ṅi = (n∞(Vi) − ni)/τn(Vi), (2.2)

ḣi = (h∞(Vi) − hi)/τh(Vi). (2.3)

The voltage-dependent activation and inactivation steady states and the time constants are described as
follows:

α∞(Vi) =
1

1 + e
Vi−θα
σα

, α = mp,m, h, n, s

τβ(Vi) =
τβ

cosh Vi−θβ
2σβ

. β = n, h

The synaptic activation variable s can be described as follows:

ṡi = αs(1 − si)s∞(V j) − si/τs. (2.4)

The Ca2+ kinetics are described by two equations representing the intracellular Ca2+ balance ([Ca])
and IP3 channel gating variable (l):

˙[Ca]i = fc(JERIN − JEROUT ), (2.5)

l̇i = AKd(1 − li) − A[Ca]ili. (2.6)

The flux into the cytosol from the ER (JERIN ) and the flux from the cytosol back to the ER (JEROUT ) are
described as follows:

JERIN = [LIP3 + PIP3(
[IP3][Ca]ili

([IP3] + KI)([Ca]i + Ka)
)3](

[Ca]Tot − [Ca]i

σ
− [Ca]ili),

JEROUT = VS ERCA
[Ca]2

i

K2
S ERCA + [Ca]2

i

.

The function f ([Ca]i) describes the activation of ICAN by Ca2+:

f ([Ca]i) =
1

1 + [KCAN ]
[Ca]i

nCAN
,

The parameter values used in the model are listed in Table 1.
The function of the coupled neuron spike phase is as follows:

ϕi = 2kπ + 2π
t − tk

i

tk+1
i − tk

i

, (tk
i < t < tk+1

i , k = 1, 2, ...N − 1), (i, j = 1, 2),

where t represents time, tk
i is the time when the k-th spike fires in the i-th neuron, and N is the number

of spikes. The phase difference of a spike is defined as follows:

∆ϕ(t) = |ϕ1(t) − ϕ2(t)|.

According to the values of max(∆ϕ(t)), we define the synchronization of spikes within mixed
bursters as follows:

Electronic Research Archive Volume 30, Issue 3, 961–977.



964

Table 1. Values of parameters in the model.

Parameter Value Parameter Value Parameter Value
θmp −40 mV τh 10000 ms EL −58 mV
θm −34 mV τn 100 ms Esyn−e 0 mV
θh −48 mV τs 5 ms nCAN 0.97
θn −29 mV gNaP 3 nS KCAN 0.74 µM
θs −10 mV gNa 15 nS [Ca]Tot 1.25 µM
σmp −6 mV gK 9 nS σ 0.185
σm −5 mV gL 2.3 nS VS RECA 400
σh 5 mV gCAN 0.7 nS kS RECA 0.2 µM
σn −4 mV ENa 50 mV LIP3 0.27 pL · s−1

σs −5 mV EK −85 mV PIP3 31000 pL · s−1

KI 1.0 µM Ka 0.4 µM [IP3] 0.95 µM
C 21 µF αs 0.2 fc 0.000025 pL−1

A 0.001 µM−1 · s−1 Kd 0.4 µM

(a) max(∆ϕ(t)) = 0: In-phase synchronization of a spike;

(b) max(∆ϕ(t)) = π: Anti-phase synchronization of a spike;

(c) 0 < max(∆ϕ(t)) < π: Out of phase synchronization of a spike.

(d) max(∆ϕ(t)) > π: Asynchronization of a spike.

Our mathematical model of coupled pre-BötC involves two independent burster mechanisms.
Bursters in the somatic compartment are modeled via the inactivation of a persistent sodium
current(INaP) in the Eq (2.1), whereas bursters in the dendritic compartment rely on Ca2+ oscillations,
which are determined by the neuromodulatory tone and modeled via calcium-activated nonspecific
cationic current (ICAN) in the Eq (2.1). The former are usually called somatic bursters, and the latter
are called dendritic bursters (Figure 1(e)).

3. Results

3.1. Effects of electrical and synaptic coupling strength on mixed bursters

To investigate the effects of the electrical and synaptic coupling strength on mixed bursters, we use
the interspike interval (ISI) of the membrane potential V1 to describe the variations of the mixed burster
pattern. The ISIs when varying gsyn−e with different fixed values of ggap are shown Figure 1(a)–(d). The
ISI sequences can be divided into four types, as shown in Figure 1(a) (refer to Figure 1(f) for details).
These types are described as follows:

Type 1 (refer to marker d1 in Figure 1(f)): the top wavy sequences. The interspike interval is from
the start of the last spike of the dendritic burster in the previous period to the first spike of the first
somatic burster in the next period.

Type 2 (refer to marker d2 in Figure 1(f)): the second lasting increasing linear sequence. The interval
is between two adjacent somatic bursters.
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Figure 1. Interspike interval (ISI) diagrams for the parameter gsyn−e with different values of
ggap: (a) ggap = 0 (nS), (b) ggap = 1 (nS), (c) ggap = 2 (nS), and (d) ggap = 3 (nS). Time
sequences with ggap fixed at 1 nS: (e) gsyn−e = 1 (nS) and (f) gsyn−e = 4 (nS). The olive and
red curves represent V1 and [Ca], respectively. Type 1 (d1): Interval between the dendritic
burster and the next somatic burster. Type 2 (d2): Interval between the adjacent somatic
bursters. Type 3 (d3): Interval between the dendritic burster and the previous somatic burster.
Type 4: Interspike interval within bursters.

Electronic Research Archive Volume 30, Issue 3, 961–977.



966

Type 3 (refer to marker d3 in Figure 1(f)): the parabolic sequences. The interval is between the last
somatic burster and dendritic burster in one period.

Type 4: the bottom sequences. The interspike intervals are within bursters.
For ggap = 0 (nS), with the increase in gsyn−e, d1 is slowly increases in general. d2 increases ap-

proximately linearly, which indicates that the intervals between two adjacent somatic bursters increase
accordingly. The trend of d3 is parabolic and periodic. Every parabolic sequence starts at the sequences
of d2 and ends at the sequences of d4, which means that the last somatic burster approaches a dendritic
burster, and then they merge with each other. The number of parabolic sequences is the number of
somatic bursters in one period. In summary, with the increase in gsyn−e, the number of somatic bursters
gradually decreases to 0. The somatic bursters then finally transition to spike firing. The ISI diagrams
with ggap = 1, 2, and 3 (nS) are shown in Figure 1(b), (c), and (d), respectively. The structure of the ISI
diagrams with different ggap is similar to that shown in Figure 1(a). As the parameter ggap increases,
the value of gsyn−e, which transitions to spike firing, increases correspondingly.

With a fixed gsyn−e, the ISI diagrams with gsyn−e = 0, 2, 4, and 6 (nS) are shown in Figure 2. When
gsyn−e is 0 nS (Figure 2(a)), with the increase in ggap, the ISIs begin to increase initially, similar to the
behavior shown in Figure 1(a)–(d). In particular, the number of somatic busters decreasing. When
ggap reaches a critical value, the ISIs remain unchanged, regardless of how ggap increases. This critical
value signifies that the mixed bursters reach a steady state in which the time sequences maintain the
same pattern. When gsyn−e increases to 2 nS, the critical value increases correspondingly (Figure 2(b)).
With gsyn−e increasing to 4 nS, the former part of the ISI is also increasing as ggap increases, and the
critical value also increases. There seems to be a transition state before the ISIs reach the steady state
(Figure 2(c)). When gsyn−e increases to 6 nS, the region of the transition state and critical value also
increase correspondingly (Figure 2(d)).

3.2. In-phase and anti-phase spike synchronization within somatic bursters

We select the first somatic burster of periodic mixed bursters to investigate its synchronization. In
Section 3.1, we found that there is a steady state of ISIs with a change in gsyn−e or ggap. With the
increase in the value of ggap, the somatic burster of the coupled system transitions to complete spike
synchronization from anti-phase spikes, as shown in Figure 3. For ggap = 0.2 (nS), the spikes within
a somatic burster are almost anti-phase, as shown in Figure 3(a). With ggap increasing to 0.6 nS, the
duration of the somatic burster increases, and the first several spikes begin to be in-phase, while others
are still anti-phase within one somatic burster, as shown in Figure 3(b). When ggap increases to 1.3 nS,
all the spikes within the somatic burster remain in-phase (Figure 3(c)). When ggap further increases to
2 nS, the spikes within the somatic burster still stay in the in-phase state and maintain the same firing
pattern, for example, as shown in Figure 3(d). Compared with the cases considered in Section 3.1,
increasing ggap leads to in-phase spike synchronization for the somatic bursters. Furthermore, ggap will
not affect the state of the coupled system when ggap is greater than a critical value. However, increasing
gsyn−e will delay the synchronization, because increasing gsyn−e leads to an increase in the critical value
(shown in Figure 2).

As we mentioned earlier, the increase in ggap leads to a critical value at which the coupled system
transitions to in-phase spikes from anti-phase spikes, and the increase in gsyn−e postpones the critical
value. To better understand the influence of the two kinds of coupling strengths on the critical value, we
record the average values of the phase difference of the spikes in somatic bursters with the parameters
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Figure 2. ISI diagrams for a fixed value of parameter ggap with different values of gsyn−e: (a)
gsyn−e = 0 (nS), (b) gsyn−e = 2 (nS), (c) gsyn−e = 4 (nS), and (d) gsyn−e = 6 (nS).

ggap and gsyn−e. The pseudo-color diagram in the (ggap, gsyn−e)-plane is shown in Figure 4. The color
represents the average values of the phase difference of the spikes, and the number represented by
the color is shown in the colormap on the right. There is a distinct boundary between the in-phase
and anti-phase spike synchronization regions. With the increase in gsyn−e, the boundary moves to
the direction in which ggap is also increasing. The boundary curve is the critical value of the in-
phase and anti-phase synchronization in the coupled system. Increasing ggap can indeed lead to the
in-phase synchronization of the coupled system, but increasing gsyn−e can delay the synchronization
through the trend of the boundary curve. For a smaller value of ggap, the system is in anti-phase spike
synchronization. Increasing gsyn−e will destroy the state in which the somatic burster is in-phase spike
synchronization. For a larger value of ggap, the system is in in-phase spike synchronization. As long
as ggap is large enough (larger than the synchronization threshold), the system will achieve complete
synchronization. When ggap and gsyn−e are both small, the synchronization state of the coupled system
is affected by both of them. As long as ggap is large enough, ggap will dominate the synchronization
state of the coupled system.

Bursters occur within the region of bistability, where both periodic and equilibrium solutions coex-
ist. The region of bistability is necessary for the existence of square-wave bursters [23], as shown in
Figure 5. Using h as the bifurcation parameter of the fast subsystem, we explain the dynamic bifurca-
tion mechanisms of the in-phase and anti-phase spike synchronization within somatic bursters for the
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Figure 3. Time sequence of somatic bursters with the increase in ggap: (a) ggap = 0.2 (nS),
(b) ggap = 0.6 (nS), (c) ggap = 1.3 (nS), and (d) ggap = 2 (nS). gsyn−e is fixed at 2 nS. The olive
and orange curves represent the membrane potentials V1 and V2, respectively.

coupled system. The bifurcation diagrams of the fast subsystem for four different cases (Figure 3) are
plotted in Figure 5. The red curve represents an anti-phase periodic solution, which is called the AP
branch. The blue curve represents an in-phase periodic solution, which is called the IP branch. The IP
branch starts from the IP Hopf bifurcation point and ends at a homoclinic point (HC). The AP branch
starts from the AP Hopf bifurcation point. The AP branch is initially unstable but becomes stable
through a branch point of cycles (BPCAP), after which it loses its stability through a fold limit bifur-
cation of cycles (LPCAP). The IP branch is initially unstable, but becomes stable through a fold limit
bifurcation of cycles (LPCIP), and then it loses its stability through a branch point of cycles (BPCIP).

The AP branch is stable, but the IP branch is unstable in the bistable region. Thus, the somatic
burster contains anti-phase spikes rather than in-phase spikes (Figure 5(a)). When ggap increases to 0.6
nS, as shown in Figure 5(b), although the bistable region still includes a stable AP branch, the spikes
within the somatic burster are also anti-phase spikes. Compared with the case in Figure 5(a), BPCAP

and BPCIP are shifted to the left along the corresponding branches, which gives rise to a decrease in
the size of the stable region of the limit cycle on the AP branch but an increase on the IP branch.
With the increase in ggap, the AP branch gradually loses stability and the IP branch gradually obtains
a more stable branch through BPCAP and BPCIP, respectively, as shown in Figure 5(a)–(d). When the
AP branch loses stability in the whole bistable region, the IP branch will become stable in the bistable

Electronic Research Archive Volume 30, Issue 3, 961–977.



969

0 1 2 3 4 5 6
g

syn-e
(nS)

0

1

2

3

4

5

6

g ga
p(n

S)

0

0.5

1

1.5

2

2.5

3
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average value of the phase difference is π).

region, as shown in Figure 5(c). The coupled system will enter an in-phase spike state. At the same
time, BPCIP will disappear. If ggap continues to increase, the AP branch completely loses stability
and BPCAP disappears, as shown in Figure 5(d). However, the IP branch remains stable. The somatic
bursters remain in in-phase spike synchronization. At the same time, the increase in ggap causes the AP
Hopf bifurcation point to move to the left, along with the AP branch.

The somatic burster in which spikes are anti-phase begins at SN and ends at the LPCAP bifurcation
on the AP branch (shown in Figure 5(a) and (b)). The somatic burster in which spikes are in-phase also
begins at SN but ends at the HC bifurcation on the IP branch (shown in Figure 5(c) and (d)). BPCAP

and BPCIP are heavily related to the anti-phase and in-phase spike synchronizations. Thus, we divide
the (h,V) plane into regions I and II by BPCAP and BPCIP, as shown in Figure 6(a). In region I, the IP
branch is stable, so it must be related to the in-phase solution. In region II, the AP branch is stable, so
it must be related to the anti-phase solution (Figure 6(a)).

The two-parameter bifurcation diagram with parameters h and ggap is shown in Figure 6(b). The
somatic burster in which spikes are in-phase begins at SN and ends at HC, and the in-phase solution
is stable on the right side of BPCIP. Thus, the curves of SN, HC, and BPCIP form region I, where we
select the right side of the curve of BPCIP. In region I, the coupled system exhibits in-phase spikes
within somatic bursters. The somatic burster in which spikes are anti-phase also begins at SN but ends
at LPCAP. The anti-phase solution is stable on the left side of BPCAP, so the curves of SN, LPCAP, and
BPCAP form region II, where we select the left side of the curve of BPCAP. In region II, the coupled
system exhibits anti-phase spikes within somatic bursters.

With the increase in ggap, the curves of the AP Hopf bifurcation point, BPCIP, BPCAP, and LPCAP,
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Figure 5. Bifurcation diagrams of fast subsystem with respect to the slow variable parameter
h. The dashed and solid lines represent unsteady and steady states, respectively. The red line
represents the anti-phase periodic solution, and the blue line represents the in-phase periodic
solution, with gsyn−e = 2 (nS): (a) ggap = 0.2 (nS), (b) ggap = 0.6 (nS), (c) ggap = 1.3 (nS),
and (d) ggap = 2 (nS). AP: Anti-phase periodic solution; IP: In-phase periodic solution; SN:
Limit point bifurcation; HC: Homoclinic point bifurcation; LPC: Limit point bifurcation of
cycles; BPC: Branch point of cycles.

shift to the left. However, the curves of SN, HC, and the IP Hopf bifurcation point remain unchanged.
More specifically, when ggap is roughly equivalent to 1.3 nS, the curve of BPCIP finally merges with the
curve of HC, which implies that BPCIP finally falls into the point of HC. As ggap continues to increase,
the curve of BPCAP finally merges with the curve of LPCAP, which means that BPCAP finally falls into
the point of LPCAP. If ggap is less than 1.3 nS, the trajectory of the coupled system must be located in
region II, and the somatic bursters must be anti-phase spikes, such as the cases in Figure 5(a) and (b).
When ggap is up to 1.3 nS, the trajectory of coupled system is located in region I, and BPCIP has disap-
peared but BPCAP has not. The somatic bursters are in-phase spikes, as shown in Figure 5(c). If ggap

continues to increase, the trajectory of the coupled system is still located in region I, and the somatic
bursters are still in-phase spikes. However, BPCAP gradually merges with LPCAP and disappears, as
shown in Figure 5(d).

Electronic Research Archive Volume 30, Issue 3, 961–977.



971

LPCIP

IP HopfAP Hopf

SN

HC

LPCAP

BPCAP

V
 (m

V
)

h

BPCIP

a

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3

4

5
 SN
 HC
 IP Hopf
 AP Hopf
 BPCIP

 BPCAP

 LPCAP

g g
ap

 (n
S)

h

b

ggap»1.3 

Figure 6. (a): Bifurcation diagram of fast subsystem with gsyn−e set to 2 nS. (b): Two-
parameter bifurcation diagram of fast subsystem with gsyn−e set to 0.2 nS. Region I: In-phase
solution; region II: Anti-phase solution.

3.3. Synchronization of spikes within dendritic bursters occurs before that within somatic bursters

In Section 3.2, we discussed the synchronization of spikes in the somatic bursters. The synchro-
nization of dendritic bursters in mixed bursters should be also considered. We next select a period to
investigate the synchronization of somatic and dendritic bursters. The phase difference sequences for
one period are shown in Figure 7. When ggap is 0.2 nS, the first four columns of ∆ϕ(t) show the phase
differences for four somatic bursters, and the last column shows the phase difference for a dendritic
burster, as shown in Figure 7(a). ∆ϕ(t) of the somatic bursters is π. However, not all the values of ∆ϕ(t)
for the dendritic burster are π. Some were less than π and greater than 0. This implies that the somatic
bursters are in the anti-phase spike state, and that the former part of the dendritic burster has started to
transition from anti-phase spikes to in-phase spikes. As ggap increases to 0.7 nS, the somatic bursters
still remain in the anti-phase spike state. However, the dendritic burster almost reaches in-phase spike
synchronization, because ∆ϕ(t) is close to zero except a little part of it, as shown in Figure 7(b). As ggap

continues to increase, the somatic bursters have started to transition from anti-phase spikes to in-phase
spikes, and the dendritic burster has almost reached in-phase spike synchronization (Figure 7(c)).
When ggap is 1.3 nS, ∆ϕ(t) remains at zero during one period (Figure 7(d)), and all the bursters reach
in-phase synchronization. Based on the phase difference sequences for one period, we conclude that
the time at which spike synchronization occurs within the dendritic bursters is earlier than that within
the somatic bursters.

With [Ca]tot = gCAN f ([Ca]) [22] set as the slow parameter, we perform the bifurcation analysis to
explain why in-phase spike synchronization within dendritic bursters occurs earlier than within somatic
bursters. The abrupt increase in [Ca]tot leads to the beginning of the dendritic burster, and the gating
variable h that originally increases also decreases, as shown in Figure 8(a). When h decreases to the
lowest point, it begins to increase, and the dendritic burster ends. The parameters are the same as
those in Figure 7(b), so the dendritic burster is in-phase but the somatic bursters are not. With the
increase in [Ca]tot, the bifurcation points of SN, HC, BPCIP, LPCAP, and BPCAP move in the direction
of h decreasing, as shown in Figure 8(b). As described above, the anti-phase solution begins at SN
and ends at LPCAP, and the anti-phase solution is stable on the left side of BPCAP. Thus, there must
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Figure 7. Phase difference sequences for one complete period with gsyn−e fixed at 2 nS: (a)
ggap = 0.2 (nS), (b) ggap = 0.7 (nS), (c) ggap = 1 (nS), and (d) ggap = 1.3 (nS).

be an anti-phase solution in region II. The in-phase solution is stable on the right side of BPCIP, so
there must be an in-phase solution in region I. The trajectory of the somatic bursters lies between the
curves LPCAP and SN in region II. This means that the somatic bursters are anti-phase spikes. When
[Ca]tot increases to about 0.4 nS, the dendritic burster appears, and the trajectory is only in region I,
which indicates that the dendritic burster is in an in-phase spike state. The beginning of h increasing
corresponds to the end of the dendritic burster. However, before the end of the dendritic burster, a
small part of the trajectory falls in region II, which explains why a small part of the dendritic burster is
in an anti-phase spike state (Figure 8(b)). The rapid jump of [Ca]tot caused the trajectory to transition
from region II to region I, which is the reason that the synchronization of in-phase spikes within the
dendritic bursters occurs earlier than within the somatic bursters.

3.4. Transition between in-phase and anti-phase spike synchronization: asymmetric periodic somatic
bursters

The somatic bursters transition from anti-phase spikes to in-phase spikes, then they change into
asymmetric periodic somatic bursters. The amplitude of the somatic burster for V1 is not the same
as that for V2, as shown in Figures 9(a) and (b). The amplitude of the first somatic burster (V1) in
Figure 9(a) is smaller than that of the first somatic burster (V2) in Figure 9(b). However, the result is
opposite for the second somatic burster. At the same time, it should be noted that the type of the first

Electronic Research Archive Volume 30, Issue 3, 961–977.



973

somatic burster for V1 is the same as that of the second somatic burster for V2, and that the type of
second somatic burster for V1 is the same as that of the first somatic burster for V2.
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Figure 8. (a) Time sequence diagram of V , h, and [Ca]tot. The olive curve represents V , the
blue curve represents h, and the red curve represents [Ca]tot. (b) Two-parameter bifurcation
diagram of the curves of SN, HC, BPCIP, LPCAP, and BPCAP, where gsyn−e is 2 nS and ggap

is 0.7 nS, region I: In-phase solution; region II: Anti-phase solution.
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Figure 9. Time sequence diagrams for asymmetric periodic somatic bursters, where gsyn−e is
2 nS and ggap is 1.15 nS. The olive curve represents V , and the red curve represents [Ca].

Using fast/slow decomposition and bifurcation analysis, we analyze the asymmetric periodic so-
matic bursters in Figures 9(a) and (b). By extending BPCIP, we obtain two new pairs of stable branches
that start at BPCIP and end at BPCAP, as shown in Figure 10(a) and (b). The violet and cyan curves rep-
resent maximum and minimum values of the stable limit cycles. The branch with a smaller amplitude
(violet curve) is denoted as the s-ASP branch, and the branch with a larger amplitude (cyan curve) is
denoted as the g-ASP branch.

We select the first somatic bursters of V1 and V2 in Figure 9(a) and (b) to analyze the dynamic
bifurcation mechanisms of the asymmetric periodic somatic bursters. For the first somatic burster of
V1, the asymmetric burster starts at SN and moves to the left along the stable s-ASP branch. It continues
to move to the left along the stable AP branch when it passes through BPCAP. The asymmetric burster
terminates at LPCAP, which is same behavior as that of the bursters in which spikes are anti-phase, as
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shown in Figure 10(a). The asymmetric burster for the first somatic burster of V2 also starts at SN and
then moves to the left along the stable g-ASP branch. It continues to move to the left along the stable
AP branch when it passes through BPCAP. The asymmetric burster terminates at LPCAP, as does the
burster in which spikes are anti-phase, as shown in Figure 10(b). This results in asymmetric periodic
somatic bursters. Based on the above analysis, we infer that the mechanisms for the second somatic
burster of V1 are same as that for the first somatic burster of V2, and the mechanisms for the second
somatic burster of V2 are same as those for the first somatic burster of V1.
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Figure 10. Bifurcation diagrams of the fast subsystem for the first asymmetric periodic
somatic burster in Figures 9 (a) and (b).

4. Discussion

We have shown the effects of the electrical and synaptic coupling strength on the in-phase and
anti-phase spikes within mixed bursters in the coupled neuronal system of the pre-BötC model. The
results show that increasing the electrical coupling accelerates the synchronization of in-phase spikes
and changes the number of somatic bursters for mixed bursters in one period. Increasing the synaptic
coupling delays the synchronization of in-phase spikes and changes the number of somatic bursters
for mixed bursters in one period at the same time. Using fast/slow and bifurcation analysis methods,
we analyze the dynamic mechanisms of the in-phase and anti-phase solutions for the coupled system.
The in-phase spike synchronization within mixed bursters is largely mediated by the stability of the
AP branch. Increasing the electrical coupling leads to movement of BPCIP, causing the IP branch to
lose stability. The result is similar to that of anti-phase spikes within mixed bursters. This leads to the
bistable region, which consists of a stable AP branch and stable equilibrium points, changing into one
that consists of a stable IP branch and stable equilibrium points. Correspondingly, the mixed bursters
of the anti-phase spikes turn into the ones of in-phase spikes. Based on this result, we investigate the
influence of the second bifurcation parameter ggap on some key bifurcation points. According to the
bifurcation mechanisms of the IP and AP branches, the two-parameter bifurcation plane is divided
into in-phase and anti-phase solution regions. With the increase in parameter ggap, the trajectory of
the coupled system transitions from an anti-phase solution region to an in-phase solution region. The
in-phase spike synchronization of the dendritic bursters occurs earlier than that of the somatic bursters.

The oscillation of intracellular Ca2+ concentration in the dendrite gives rise to dendritic bursters.
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At the same time, the oscillation of intracellular Ca2+ causes the trajectory of the system to enter the
region in which the solution is in-phase in advance, after which it transitions into the region in which the
solution is anti-phase with the decrease in the oscillation of the intracellular Ca2+ concentration. The
calcium-activated nonspecific cationic current keeps a lower value when the firing pattern of neurons
is a somatic burster pattern. For dendritic bursters, the calcium-activated nonspecific cationic current
abruptly increases. Therefore, we conclude that the calcium-activated nonspecific cationic current
could facilitate the in-phase spike synchronization for mixed bursters.

Our simulations also show that increasing the strength of the electrical coupling from a lower value
(corresponding to in-phase spikes) to a higher value (corresponding to anti-phases spikes) causes a
transition solution (asymmetric periodic somatic bursters). The IP branch is initially stable, but loses
its stability through BPCIP. The bifurcation point of BPCIP gives rise to two new pairs of stable periodic
branches. This leads to different dynamic mechanisms for the in-phase and bursters in which spikes
are anti-phase. The AP branch is initially unstable, but becomes stable by BPCAP. By coincidence,
these two pairs of branches end up at BPCAP. This explains why the asymmetric periodic solution is
produced in the transition process between in-phase and anti-phase spikes.
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Bötzinger complex neurons, Chin. Phys. B, 27 (2018), 070502. https://doi.org/10.1088/1674-
1056/27/7/070502

17. L. Duan, J. Liu, X. Chen, P. Xiao, Y. Zhao, Dynamics of in-phase and anti-phase
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