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Abstract: In this paper, a fully discrete scheme is proposed to solve the nonlinear Schrödinger-
Possion equations. The scheme is developed by the scalar auxiliary variable (SAV) approach, the
Crank-Nicolson temproal discretization and the Galerkin-Legendre spectral spatial discretization. The
fully discrete scheme is proved to be mass- and energy- conserved. Moreover, unconditional energy
stability and convergence of the scheme are obtained by the use of the Gagliardo-Nirenberg and some
Sobolev inequalities. Numerical results are presented to confirm our theoretical findings.
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1. Introduction

In this paper, we present a fully-discrete structure-preserving scheme for the following nonlinear
Schrödinger-Possion equations

iut + uxx + βuv = f (|u|2)u + ψ(x)u, in Ω × [0,T ],
− vxx = |u|2, in Ω × [0,T ],
u = v = 0, on ∂Ω × [0,T ],
u(x, 0) = u0(x), in Ω̄,

(1.1)

where i =
√
−1, Ω = (−1, 1). ψ(x) is the real-valued potential function that represents the external field.

β ∈ R is a coupling constant that represents the relative strength of the Poisson potential, β ≥ 0 holds in
the case of attracting forces and β < 0 holds in the case of repulsive forces. The Schrödinger-Possion
system is a local single particle approximation of time-dependent Hartree-Fock system. This nonlinear
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system (1.1) has important applications in many quantum systems [1, 2], where the complex-valued
function u(x, t) denotes the single particle wave function, and v(x, t) represents the Poisson potential
relative to the boundary condition.

In recent years, much attention has been paid to developing efficient numerical schemes for solving
the Schrödinger-Possion equations (1.1). For instance, Soler and Ringhofer [3] proposed a modified
Crank-Nicolson scheme, which is mass- and energy-conserving in the discrete level. Dong [4] im-
proved the numerical methods for the general 3D case. And the computational cost was significantly
reduced. Zhang and Dong [5] applied the backward Euler and time-splitting sine pseudo-spectral meth-
ods to study the ground state and dynamics of 3D system in different setups. Auzinger et al. [6] used
operator splitting methods combined with finite element spatial discretizations to solve the problem.
Cheng et al. [7] proposed a fast spectral element method which can reach exponential accuracy for
the Schrödinger-Poisson system. Lubich [8] gave an error analysis of Strang-type splitting integra-
tors for the Schrödinger-Poisson equations. Furthermore, there exists many other numerical schemes
for Schrödinger-type equations. Li et al. [9] developed efficient numerical schemes for the coupled
fractional Klein-Gordon-Schrödinger equation by combining the Crank-Nicolson/leap-frog difference
methods for the temporal discretization and the Galerkin finite element methods for the spatial dis-
cretization. Li et al. [10] constructed the conservative linearized Galerkin finite element methods
(FEMs) for the nonlinear Klein-Gordon-Schrödinger equations. Li et al. [11] proposed a fully dis-
crete scheme for the nonlinear fractional Schrödinger equation with wave operator by combining the
Crank-Nicolson method in temporal direction with the Galerkin finite element method in the spatial
direction. Antoine et al. [12] applied the finite difference time domain methods and time-splitting
spectral method to solve the nonlinear Schrödinger/Gross-Pitaevskii equations. More details about
the related papers can be found in [13–19]. Up to now, most schemes are proved to be mass- and
energy-conserving. The convergence results are missing in most references.

In this paper, we aim to develop structure-preserving schemes as well as their error analysis for
the Schrödinger-Poisson system. We firstly introduce a scalar auxiliary variable (SAV) and rewrite the
equations as a new family of partial differential equations. Then, we apply the Legendre-Galerkin spec-
tral method in the spatial discretization and the Crank-Nicolson method in the temporal discretization.
We show the fully-discrete scheme is mass- and energy-conserved. Moreover, we obtain the bounded-
ness of the numerical solutions based on the Gagliardo-Nirenberg and some Sobolev inequalities.

In terms of the bounded numerical solutions, we present a rigourous error analysis of the fully
discrete numerical scheme. The convergence results indicate that the fully-discrete scheme is of order
2 in the temporal direction and decreases exponentially in the spatial direction.

Compared with other numerical schemes for the nonlinear Schrödinger-Possion equations, the pro-
posed scheme is proved to be mass- and energy-conserved without any time steps restrictions. Further-
more, by applying spectral method in space, the proposed scheme can reach exponential convergence
in space. We also give the unconditional convergence in the L∞-norm in the final section.

It is remarkable that the key to developing structure-preserving method is the so called scalar aux-
iliary variable (SAV) approach. The approach was firstly proposed by Shen et al. in [20, 21] and has a
successful application in developing energy stable or energy-conserving schemes for time-dependent
partial differential equations, such as gradient flows [22–24], wave equations [25–27], Schrödinger
equations [28, 29] and so on [30]. Up to now, most numerical results are obtained in the real spaces
and much attention is paid on energy-conserving properties of the scheme. In this paper, the study is
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extended to a coupled system in the complex space and the unconditional converge results are investi-
gated.

The rest of the paper is organized as follows. In Section 2, a fully discrete scheme for the gen-
eralized nonlinear Schrödinger-Possion equation is introduced. In Section 3, the convergence of the
proposed scheme is discussed. In Section 4, some numerical experiments are provided to demonstrate
the theoretical results. Finally, some concluding remarks are presented in Section 5.

Throughout the paper we use C and Ci(i ∈ N) to denote positive constants, which could have
different values in different places.

2. Fully discrete scheme

In this section, we present the fully discrete method based on SAV approach.

2.1. Preparation

Through the paper, we use the following notations:

(u, v) =

∫
Ω

u(x)v̄(x)dx, ‖u‖2 = (u, u), ‖u‖2l =

∫
Ω

|∂l
xu|

2dx, ‖u‖2Hk =

k∑
l=0

‖u‖2l ,

where 0 ≤ l ≤ k, k ∈ N and v̄ denotes the conjugate of v. Firstly, we assume that the exact solutions of
Schrödinger-Possion equations (1.1) satisfy∥∥∥∥∥∂u(l1)

∂t

∥∥∥∥∥
Hσ

+

∥∥∥∥∥∂v(l2)

∂t

∥∥∥∥∥
Hσ

≤ K∗, 0 ≤ t ≤ T, (2.1)

where l1 = 0, 1, 2, 12 = 0, 1, σ ≥ 2 and K∗ > 0 is a positive constant.
We also let φk(x) = Lk(x) − Lk+2(x), where {Lk(x)}Nk=0 represents the Legendre polynomials. Define

XN ={φk(x) : k = 0, 1, · · · , N − 2}.

Denote the polynomial space by

PN = {p(x)|p(x) =

N∑
i=0

cixi, ci ∈ R}.

For all u ∈ L2(Ω), we define PL : L2(Ω) 7→ XN as:

(PLu − u, ν) = 0, ∀ν ∈ XN .

Let ν = PLu and ν = ∆PLu respectively, we can obtain the following stability properties:

‖PLu‖ ≤ ‖u‖, ∀u ∈ L2(Ω),
‖∇PLu‖ ≤ ‖∇u‖, ∀u ∈ H1

0(Ω).

Thus ‖PLu‖H1 ≤ ‖u‖H1 , ∀u ∈ H1
0(Ω). Meanwhile, we define ΠN : H1

0(Ω) 7→ XN as:

(∇ΠNu − ∇u,∇ν) = 0, ∀ν ∈ XN .

Then we have the following lemma.
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Lemma 1. ( [31]) For all u ∈ H1
0(Ω) ∩ Hm(Ω)(m ≥ 1), there holds

‖u − ΠNu‖l ≤ CN l−m‖u‖m, l = 0, 1,

where C > 0 is a constant independent of N.

We collect some lemmas here. They play an important role in the proof of the main results.

Lemma 2. ( [32]) Suppose that v(x) ∈ C1[a, b], and v(a) = v(b) = 0, then

‖v‖∞ ≤

√
b − a
2
|v|1,

‖v‖ ≤
b − a
√

6
|v|1.

Lemma 3. ( [33]) Let m be a nonnegative integer, and assume g ∈ Hm(Ω) and ∂Ω ∈ Cm+2. Suppose
that ν ∈ H1

0(Ω) is the unique solution of the boundary problem

αν − β2∆ν = g in Ω,

ν = 0 on ∂Ω.

Then ν ∈ Hm+2(Ω) and the following estimate holds

‖ν‖Hm+2 ≤ C‖g‖Hm ,

where C depending on m, Ω and α, β.

Lemma 4. ( [32]) Suppose that u(t) ∈ C3[0,T ], then we have∣∣∣ut(tn+ 1
2
) −

u(tn+1) − u(tn)
tn+1 − tn

∣∣∣ ≤ C(tn+1 − tn)2,

where C is a constant independent of tn+1 − tn.

Lemma 5. ( [34]) Suppose that the discrete mesh function {$n|n = 1, 2, · · · , M; Mτ = T } is nonneg-
ative and satisfies recurrence formula

$n+1 −$n ≤ Aτ$n+1 + Bτ$n + Cnτ,

where A, B and Cn(n = 1, 2, · · · , M) are nonnegative constants. Then

$n ≤ ($0 + τ

M∑
l=1

Cl)e2(A+B)T , n = 1, 2, · · · , M,

where τ is small such that (A + B)τ ≤ M−1
2M (M > 1).

Lemma 6. ( [35]) The Legendre polynomials {Ln(x)} satisfy the following three-term recurrence rela-
tion

(n + 1)Ln+1(x) = (2n + 1)xLn(x) − nLn−1(x), n ≥ 1,
L0(x) = 1, L1(x) = x,

and the orthogonality relation ∫ 1

−1
Lk(x)L j(x)dx =

{
1/(k + 1

2 ), j = k
0, j , k,

where k, j ≥ 1.
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2.2. The SAV-CN scheme

In system (1.1), a scalar auxiliary variable can be introduced:

w(t) =
√
H(t) + C0,

where

H(t) =

∫
Ω

(F(|u|2) + ψ(x)|u|2)dx with F(s) =

∫ s

0
f (z)dz.

Thus (1.1) can be rewritten as

iut + uxx + βuv = b(u)w, (2.2)
vxx = −|u|2, (2.3)
wt = < (b(u), ut), (2.4)

where b(u) = ( f (|u|2)u+ψ(x)u)/
√
H(t) + C0 and<(·) means to take the real part of a complex number.

Then, we present the fully-discrete scheme. Let tn = nτ, n = 0, 1, · · · ,Nt, where τ = T
Nt

and Nt is a
positive integer. For a sequence of functions {ϕi}

Nt
i=0, we denote

Dτϕ
n =

ϕn+1 − ϕn

τ
, n = 0, 1, 2, · · · , Nt − 1,

ϕn+ 1
2 =

ϕn+1 + ϕn

2
, n = 0, 1, 2, · · · , Nt − 1.

The SAV-CN scheme is to find un
N , v

n
N ∈ XN and wn

N ∈ R1 such that, for n = 0, 1, 2, · · · , Nt − 1:

i(Dτun
N , φ) + ((un+ 1

2
N )xx, φ) + (βun+ 1

2
N vn+ 1

2
N , φ) = (b(un+ 1

2
N )wn+ 1

2
N , φ),∀φ ∈ XN , (2.5)

((vn+1
N )x, φx) = (|un+1

N |
2, φ),∀φ ∈ XN , (2.6)

wn+1
N − wn

N = < (b(un+ 1
2

N ), un+1
N − un

N), (2.7)

where b(un+ 1
2

N ) = ( f (|un+ 1
2

N |
2)un+ 1

2
N + ψ(x)un+ 1

2
N )/

√
H(tn+ 1

2
) + C0.

Firstly, we have the following continuous and discrete mass and energy conservation laws, respec-
tively.

Theorem 1. Suppose that u, v, and w are the solutions of system (2.2)–(2.4), then the continuous mass
and energy conservation laws can be obtained as follows:

(I)
d
dt
M̂ = 0, with M̂ = ‖u‖2,

(II)
d
dt
Q̂ = 0, with Q̂ = ‖ux‖

2 −
β

2
‖vx‖

2 + (w(t))2.

Besides, suppose that un
N , vn

N and wn
N are the solutions of system (2.5)–(2.7), we have

(III) M̃n+1 = M̃n, with M̃n = ‖un
N‖

2, 0 ≤ n ≤ Nt − 1,

(IV) Q̃n+1 = Q̃n, with Q̃n = ‖(un
N)x‖

2 −
β

2
‖(vn

N)x‖
2 + (wn

N)2, 0 ≤ n ≤ Nt − 1.
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Proof. Case (a): Proof of (I) and (II).
Taking the inner product of Eq (2.2) with ū, we can obtain that

i(ut, u) + (uxx, u) + β(uv, u) = (b(u)w, u). (2.8)

Meanwhile, multiplying Eq (2.3) with −βv̄, and integrating it over Ω, we can get

− β(vxx, v) = β(|u|2, v). (2.9)

Summing up Eqs (2.8) and (2.9), we can get

i(ut, u) − ‖ux‖
2 + β‖vx‖

2 = (b(u)w, u).

Taking the imaginary part, we can obtain

<(ut, u) =
1
2

d
dt
‖u‖2 = 0.

Besides, multiplying Eq (2.2) with ūt, and integrating it over Ω, we can get:

i(ut, ut) + (uxx, ut) + β(uv, ut) = (b(u)w, ut),

Taking the real part, we can obtain

< (uxx, ut) +< β(uv, ut) = < (b(u)w, ut),

which is equivalent to

−
d
dt
‖ux‖

2 +
β

2
d
dt

(v, |u|2) =
d
dt

(w)2,

Since (v, |u|2) = ‖vx‖
2, we can obtain the mass and energy conservation laws

d
dt
M̂ = 0, with M̂ = ‖u‖2,

d
dt
Q̂ = 0, with Q̂ = ‖ux‖

2 −
β

2
‖vx‖

2 + (w)2.

Case (b): Proof of (III) and (IV).
Let φ = un+ 1

2
N in Eq (2.5). Taking the imaginary part, we have

1
2τ

(‖un+1
N ‖

2 − ‖un
N‖

2) = 0,

which implies M̃n+1 = M̃n.

Let φ = Dτun
N in Eq (2.5). Consider the real part, one has

I1 + I2 + I3 + I4 = 0,

where

I1 = < (iDτun
N ,Dτun

N) = <
i
τ2 ‖u

n+1
N − un

N‖
2 = 0,
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I2 = < ((un+ 1
2

N )xx,Dτun
N) =

1
2τ

(−‖(un+1
N )x‖

2 + ‖(un
N)x‖

2),

I3 = < (βun+ 1
2

N vn+ 1
2

N ,Dτun
N) = <

β

2τ
(vn+ 1

2
N , |un+1

N |
2 − |un

N |
2)

= <
β

4τ
(vn+1

N + vn
N , (v

n+1
N )xx − (vn

N)xx)

=
β

4τ
(‖(vn+1

N )x‖
2 − ‖(vn

N)x‖
2),

I4 = −< (b(un+ 1
2

N )wn+ 1
2

N ,Dτun
N) = −

wn+ 1
2

N

τ
< (b(un+ 1

2
N ), un+1

N − un
N)

= −
1
2τ

(wn+1
N + wn

N)(wn+1
N − wn

N) = −
1
2τ

((wn+1
N )2 − (wn

N)2).

Therefore, we have

‖(un+1
N )x‖

2 −
β

2
‖(vn+1

N )x‖
2 + (wn+1

N )2 = ‖(un
N)x‖

2 −
β

2
‖(vn

N)x‖
2 + (wn

N)2.

This completes the proof.

Then we have the following unconditional convergence results.

Theorem 2. Suppose that the exact solutions of Schrödinger-Possion equations (1.1) satisfy (2.1).
Then, there exists a positive constant τ0, such that when τ ≤ τ0, the fully-discrete system defined in Eqs
(2.5)–(2.7) has the numerical approximations {um

N , vm
N , wm

N}, m = 1, 2, 3, . . . ,Nt, satisfying

(I) ‖um − um
N‖

2 + ‖vm − vm
N‖

2 + (wm − wm
N)2 ≤ C(N2−2σ + τ4), (2.10)

(II) ‖um − um
N‖

2
L∞ + ‖vm − vm

N‖
2
L∞ ≤ C(N2−2σ + τ4), (2.11)

where C is a positive constant independent of τ and N.

3. Numerical analysis

This section is concerned with the proof of convergence analysis of the fully conservative discrete
scheme.

3.1. Boundedness

Firstly, we present the boundedness of the numerical solutions un
N , vn

N and wn
N in L∞-norm and H1-

norm respectively.

Lemma 7. Suppose that the exact solutions satisfy (2.1), then the following estimates hold:

‖un
N‖H1 ≤ K2, ‖vn

N‖H2 ≤ K3, |wn
N | ≤ K1,

‖un
N‖L∞ ≤ K4, ‖vn

N‖L∞ ≤ K5,

where Ki(i = 1, 2, · · · , 5) are positive constants independent of τ and N.
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Proof. By the discrete mass conservation M̃n = ‖un
N‖

2 = M̃0, we have ‖un
N‖ ≤ C1.

Let φ = vn
N in Eq (2.6), we can obtain that

− ((vn
N)xx, vn

N) = ‖(vn
N)x‖

2 = (|un
N |

2, vn
N).

According to Lemma 3, we can get ‖vn
N‖H2 ≤ C2‖|un

N |
2‖ = C2‖un

N‖
2
L4 .

By using Gagliardo-Nirenberg inequalities, we can obtain

‖vn
N‖

2
H2 ≤ C2‖un

N‖
4
L4 ≤ C2‖(un

N)x‖‖un
N‖

3 ≤ ε‖(un
N)x‖

2 + C3‖un
N‖

6,

where C3 is dependent on ε. Next, we will show the boundedness of ‖(un
N)x‖, ‖(vn

N)x‖ and wn
N respec-

tively. Firstly, if β ≤ 0, we can conclude from Theorem 1 that ‖(un
N)x‖

2 ≤ C4, ‖(vn
N)x‖

2 ≤ C5 and
|wn

N | ≤ C6.
Secondly, if β > 0, by Theorem 1, we have

Q̃n = ‖(un
N)x‖

2 −
β

2
‖(vn

N)x‖
2 + (wn

N)2 = Q̃0 = C7.

Thus ‖(un
N)x‖

2 + (wn
N)2 = C7 +

β

2‖(v
n
N)x‖

2 ≤
β

2 (ε‖(un
N)x‖

2 + C3‖un
N‖

6) + C7, which can be rewritten as

(1 −
β

2
ε)‖(un

N)x‖
2 + (wn

N)2 ≤ C7 + C3
β

2
‖un

N‖
6 ≤ C8.

Let ε < 1/β, we can get ‖(un
N)x‖

2 ≤ C9, |wn
N | ≤ K1. Then we can infer that ‖un

N‖H1 ≤ K2, ‖vn
N‖H2 ≤ K3.

By using the Soblev embedding theorem, we can obtain

‖un
N‖L∞ ≤ K4, ‖vn

N‖L∞ ≤ K5.

The proof is completed.

We now present the following unconditionally optimal error estimates of numerical scheme (2.5)–
(2.7).

3.2. Proof of Theorem 2

Denote ũn = ΠNun, en = ũn − un
N , en+ 1

2
0 = ũ(tn+ 1

2
) − un+ 1

2
N , ηn = vn − vn

N and ζn = wn − wn
N . Let

un = u(x, tn), vn = (x, tn),wn = w(tn). Subtracting Eqs (2.5)–(2.7) from Eqs (2.2)–(2.4), we have

i(Dτen, φ) = ((en+ 1
2

0 )x, φx) + (Gn+ 1
2

1 , φ) + (Rn+ 1
2

1 , φ), ∀φ ∈ XN , (3.1)
− (ηn+1

xx , φ) = (Gn+1
2 , φ), ∀φ ∈ XN , (3.2)

ζn+1 − ζn = <(b(un+ 1
2 ), un+1 − un) −<(b(un+ 1

2
N ), un+1

N − un
N) + τRn+ 1

2
2 , (3.3)

where

Gn+ 1
2

1 = −β(ũn+ 1
2 vn+ 1

2 − un+ 1
2

N vn+ 1
2

N )

+ (b(ũn+ 1
2 )wn+ 1

2 − b(un+ 1
2

N )wn+ 1
2

N ),
Gn+1

2 = |un+1|2 − |un+1
N |

2,
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Rn+ 1
2

1 = i(Dτun − ut(tn+ 1
2
) + i(Dτũn − Dτun) + β(ũn+ 1

2 − un+ 1
2 )vn+ 1

2

+ (b(un+ 1
2 ) − b(ũn+ 1

2 ))wn+ 1
2 ,

Rn+ 1
2

2 = Dτwn − wt(tn+ 1
2
) +<(b(un+ 1

2 ), ut(tn+ 1
2
) − Dτun).

Let φ = en+ 1
2 in Eq (3.1), we can obtain

i(Dτen, en+ 1
2 ) = ((en+ 1

2
0 )x, e

n+ 1
2

x ) + (Gn+ 1
2

1 , en+ 1
2 ) + (Rn

1, e
n+ 1

2 )

= ((ũ(tn+ 1
2
) − ũn+ 1

2 )x + en+ 1
2

x , en+ 1
2

x ) + (Gn+ 1
2

1 , en+ 1
2 ) + (Rn

1, e
n+ 1

2 ),
(3.4)

where we have used

en+ 1
2

0 = ũ(tn+ 1
2
) − ũn+ 1

2 + ũn+ 1
2 − un+ 1

2
N . (3.5)

Thus Eq (3.4) can be rewritten as

i
2τ

(‖en+1‖2 − ‖en‖2) =
1
τ
=(en+1, en) + ((ũ(tn+ 1

2
) − ũn+ 1

2 )x, e
n+ 1

2
x )

+ ‖en+ 1
2

x ‖
2 + (Gn+ 1

2
1 , en+ 1

2 ) + (R1, en+ 1
2 ). (3.6)

where =(·) means to take the imaginary part of a complex number. Taking the imaginary part of Eq
(3.6), we have

1
2τ

(‖en+1‖2 − ‖en‖2) = =((ũ(tn+ 1
2
) − ũn+ 1

2 ))xx, en+ 1
2 ) + =(Gn+ 1

2
1 , en+ 1

2 ) + =(R1, en+ 1
2 ). (3.7)

We first estimate =(Gn+ 1
2

1 , en+ 1
2 ). Utilizing Cauchy-Schwarz inequality, we have

=(Gn+ 1
2

1 , en+ 1
2 ) ≤

1
2

(‖Gn+ 1
2

1 ‖2 + ‖en+ 1
2 ‖2). (3.8)

We know that

|Gn+ 1
2

1 | ≤ |β||ũn+ 1
2 vn+ 1

2 − un+ 1
2

N vn+ 1
2

N | + |b(ũn+ 1
2 )wn+ 1

2 − b(un+ 1
2

N )wn+ 1
2

N |

≤ |β|(|(ũn+ 1
2 − un+ 1

2
N )vn+ 1

2 | + |(vn+ 1
2 − vn+ 1

2
N )un+ 1

2
N |)

+ |(b(ũn+ 1
2 ) − b(un+ 1

2
N ))wn+ 1

2 | + |(wn+ 1
2 − wn+ 1

2
N )b(un+ 1

2
N )|.

By Lemma 1, Lemma 4 and Theorem 7, we have |Gn+ 1
2

1 | ≤ C(τ2 + |ηn+ 1
2 |+ |ζn+ 1

2 |+ |en+ 1
2 |). Using Lemma

4, we obtain |Rn+ 1
2

1 | ≤ Cτ2 + CN−σ and ‖(ũ(tn+ 1
2
) − ũn+ 1

2 )xx‖
2 ≤ Cτ2. Thus

‖en+1‖2 − ‖en‖2 ≤ Cτ((ζn+ 1
2 )2 + ‖en+ 1

2 ‖2 + ‖ηn+ 1
2 ‖2) + Cτ(N−2σ + τ4). (3.9)

Similarly, we can obtain

‖Gn+ 1
2

1 ‖H1 ≤ |β|‖ṽn+ 1
2 un+ 1

2 − un+ 1
2

N vn+ 1
2

N ‖H1 + ‖b(ũn+ 1
2 )wn+ 1

2 − b(un+ 1
2

N )wn+ 1
2

N ‖H1
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≤ C(τ2 + ‖ηn+ 1
2 ‖H1 + ‖en+ 1

2 ‖H1 + |ζn+ 1
2 |),

and ‖Rn+ 1
2

1 ‖H1 ≤ C(N1−σ + τ2).
Then, setting φ = en+1 − en in Eq (3.1), we get

i(Dτen, en+1 − en) = ((en+ 1
2

0 )x, en+1
x − en

x) + (Gn+ 1
2

1 , en+1 − en) + (Rn+ 1
2

1 , en+1 − en). (3.10)

Taking the real part in Eq (3.10), we have

<(en+ 1
2

x , en+1
x − en

x) +<[(ũ(tn+ 1
2
) − ũn+ 1

2 , en+1 − en)

+ (Gn+ 1
2

1 , en+1 − en) + (Rn+ 1
2

1 , en+1 − en)] = 0, (3.11)

which can be written as

‖en+1
x ‖

2 − ‖en
x‖

2 = −2τ[<(ũ(tn+ 1
2
) − ũn+ 1

2 ,Dτen) + (Gn+ 1
2

1 ,Dτen) +(Rn+ 1
2

1 ,Dτen)], (3.12)

According to the Sobolev inequalities and the estimations of the truncation errors, we have

‖en+1
x ‖

2 − ‖en
x‖

2 ≤ Cετ((ζn+ 1
2 )2 + ‖en+ 1

2 ‖2H1 + ‖ηn+ 1
2 ‖2H1 + N2−2σ + τ4) + ετ‖Dτen‖2H−1 , (3.13)

where ε > 0 is a positive constant.
In order to estimate ‖Dτen‖H−1 above, we consider Eq (3.1), from which we can get the following

estimate for any test functions ν ∈ XN ⊆ H1
0(Ω):

|(Dτen, ν)| = | − i((en+ 1
2

0 )x, (PLν)x) − i(Gn+ 1
2

1 , PLν) − i(Rn+ 1
2

1 , PLν)|

≤ C(‖en+ 1
2 ‖H1 + ‖ηn+ 1

2 ‖ + |ζn+ 1
2 | + ‖Gn+ 1

2
1 ‖H−1 + ‖Rn+ 1

2
1 ‖H−1)‖PLν‖H1

≤ C(‖en+ 1
2 ‖H1 + ‖ηn+ 1

2 ‖ + |ζn+ 1
2 | + (τ2 + N1−σ))‖ν‖H1 ,

(3.14)

where PLν represents the L2 projection operator of ν defined in Section 2.1.
By the duality between H−1(Ω) and H1

0(Ω), we can derive that

‖Dτen‖2H−1 ≤ C(‖en+ 1
2 ‖2H1 + ‖ηn+ 1

2 ‖2 + |ζn+ 1
2 |2 + (τ4 + N2−2σ)). (3.15)

Then, multiplying (3.15) with ετ and summing up (3.13), (3.15), we get

‖en+1
x ‖

2 − ‖en
x‖

2 ≤ Cτ((ζn+ 1
2 )2 + ‖en+ 1

2 ‖2H1 + ‖ηn+ 1
2 ‖2H1) + Cτ(N2−2σ + τ4). (3.16)

Let φ = ηn+1 in Eq (3.2), one has

‖ηn+1
x ‖

2 = (Gn+1
2 , ηn+1)

≤
1
2

(‖Gn+1
2 ‖

2 + ‖ηn+1‖2)

≤
1
2
‖|un+1|2 − |un+1

N |
2‖2 +

1
2
‖ηn+1

x ‖
2,
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where we have used Lemma 2. Then

‖ηn+1
x ‖

2 ≤ ‖|un+1|2 − |un+1
N |

2‖2

≤ ‖(|un+1| + |un+1
N |)(|u

n+1| − |un+1
N |)‖

2

≤ C‖|un+1| − |un+1
N |‖

2

≤ C‖|un+1 − ũn+1 + ũn+1 − un+1
N |‖

2

≤ CN−2σ + C‖en+1‖2,

(3.17)

which also implies

‖ηn+1‖2 ≤ CN−2σ + C‖en+1‖2. (3.18)

Further, taking the inner product of the Eq (3.3) with 2ζn+ 1
2 , we can obtain

(ζn+1)2 − (ζn)2 =2<(b(un+ 1
2 ), un+1 − un)ζn+ 1

2 − 2<(b(un+ 1
2

N ), un+1
N − un

N)ζn+ 1
2

+ 2τRn
2ζ

n+ 1
2 , (3.19)

where
un+1 − un = iτ(un+ 1

2
xx + βun+ 1

2 vn+ 1
2 − b(un+ 1

2 )wn+ 1
2 ),

un+1
N − un

N = iτ((un+ 1
2

N )xx + βun+ 1
2

N vn+ 1
2

N − b(un+ 1
2

N )wn+ 1
2

N ).
(3.20)

According to Eq (3.20), we can transform Eq (3.19) into

(ζn+1)2 − (ζn)2 = 2ζn+ 1
2 (<(b(un+ 1

2 ) − b(un+ 1
2

N ), un+1 − un)

−< τ((b(un+ 1
2

N ))x, i(u
n+ 1

2
x − ũn+ 1

2
x ))

−< τ((b(un+ 1
2

N ))x, ie
n+ 1

2
x ) + τRn

2

+< τ(b(un+ 1
2

N ), i(Gn+ 1
2

1 + Rn
1))). (3.21)

Similar to the analysis above, we can obtain

(ζn+1)2 − (ζn)2 ≤ Cτ(‖b(un+ 1
2

N )‖ + ‖(b(un+ 1
2

N ))x‖ + ‖ut‖L∞(0,T ;Hσ))((ζn+ 1
2 )2 + ‖en+ 1

2 ‖2H1

+ ‖ηn+ 1
2 ‖2 + ‖Gn+ 1

2
1 ‖2) + Cτ(N2−2σ + τ4).

Based on inequality (3.18) and Theorem 7, we can conclude that

(ζn+1)2 − (ζn)2 ≤ Cτ(‖en+ 1
2 ‖2H1 + (ζn+ 1

2 )2) + Cτ(N2−2σ + τ4). (3.22)

Combining the inequalities (3.9), (3.16), (3.18) and (3.22), we have

‖en+1‖2H1 − ‖en‖2H1 + (ζn+1)2 − (ζn)2 ≤Cτ(N2−2σ + τ4) + Cτ(‖en‖2H1 + ‖en+1‖2H1

+ (ζn)2 + (ζn+1)2). (3.23)

By using discrete Gronwall’s inequality (Lemma 5), we can obtain

‖en+1‖2H1 + (ζn+1)2 ≤ C(N2−2σ + τ4). (3.24)
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Then it follows that
‖ηn+1‖2 ≤ C(N2−2σ + τ4). (3.25)

Using the triangle inequality, we have

‖um − um
N‖

2 ≤ ‖um − ũm‖2 + ‖ũm − um
N‖

2 ≤ C(N2−2σ + τ4), (3.26)
‖vm − vm

N‖
2 ≤ ‖vm − ṽm‖2 + ‖ṽm − vm

N‖
2 ≤ C(N2−2σ + τ4), (3.27)

which completes the proof.
We further have the error estimates in L∞-norm.
According to Lemma 2 and (3.24), we can obtain that

‖em‖2L∞ ≤ C‖em
x ‖

2 ≤ C(N2−2σ + τ4). (3.28)

Based on (3.17), we can get

‖ηm‖2L∞ ≤ C‖ηm
x ‖

2 ≤ C(N2−2σ + τ4). (3.29)

By the triangle inequalities (3.28) and (3.29), we obtain the desired results (2.11).

4. Numerical results

In this section, two numerical examples are presented to verify the theoretical results. In the numer-
ical examples, the errors are defined as follows

η1 = ‖u(x, tn) − un
N‖L∞ , η2 = ‖v(x, tn) − vn

N‖L∞ ,

where u(x, tn), v(x, tn) represent the analytical solutions and un
N , vn

N represent the numerical solutions
respectively. In the numerical simulations, we apply the iterative algorithms [36] to solve the nonlinear
algebraic equations and the iterative tolerance is 10−15.

Example 1. Consider the following nonlinear Schrödinger equations

iut + uxx + uv = 3|u|2u − |u|6u + ψ1(x)u, x ∈ Ω, t ∈ [0,T ],
vxx = −|u|2, x ∈ Ω, t ∈ [0,T ],
u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t ∈ [0,T ],
u(x, 0) = cos(πx/2), x ∈ Ω,

where Ω = (−1, 1) and ψ1(x) is a real potential function obtained by the following exact solutions

u(x, t) = e−it cos(πx/2), v(x, t) = 1/2π2 cos(πx) − 1/4x2 + 1/2π2 + 1/4.

We set N = 15, T = 1 and test the convergence orders in the temporal directions. We show the
maximum numerical errors at T = 1 in Table 1. The numerical results indicate that the numerical
method is second-order accurate in temporal direction. Then, we set τ = 0.001 and solve the problem
with different N. We show the maximum numerical errors in Figure 1, respectively. One can see that
when N increases, the error decreases exponentially.
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Table 1. Errors and convergence orders with N = 15 for example 1.

τ η1 Order η2 Order
1/8 3.4522e − 03 - 1.6242e − 05 -
1/16 8.8208e − 04 1.9686 4.2440e − 06 1.9363
1/24 3.9049e − 04 2.0097 1.9204e − 06 1.9565
1/32 2.1809e − 04 2.0247 1.0625e − 06 2.0562
1/40 1.3862e − 04 2.0310 6.9399e − 07 1.9091
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Figure 1. The L∞-error of u(left) and v(right) with τ = 0.001 when N takes different values
for example 1.
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Figure 2. The discrepancies of the discrete mass(left) and energy(right) with N = 20 and
τ = 0.1 for example 1.

We test the structure-preserving properties of the numerical scheme(i.e., SAV-CN). We also dis-
cretized original equations (1.1) in space by Legendre-Galerkin spectral method and in temporal di-
rection by the extrapolated Crank-Nicolson (ECN) method and the standard Crank-Nicolson (CN)
method. We let N = 20 and τ = 0.1 and show the discrepancies of the discrete mass and energy in
Figure 2. One can see that the discrepancies of the discrete mass are sufficiently small for both the
SAV-CN and CN methods. Furthermore, we also compare the discrepancies of the discrete energy
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between SAV-CN and the original energy (Origin) in Figure 2. We can find that the the discrepancies
of the original energy is between 10−6 and 10−4. In contrast, the discrepancies of the discrete energy
are of the order of the machine precision only for the SAV-CN methods.

Example 2. Consider the following nonlinear Schrödinger equations

iut + uxx − uv = |u|2u − |u|4u + ψ2(x)u, x ∈ Ω, t ∈ [0,T ],
vxx = −|u|2, x ∈ Ω, t ∈ [0,T ],
u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t ∈ [0,T ],
u|t=0 = sin(πx/2), x ∈ Ω,

where Ω = (0, 2), and ψ2(x) is a real potential function obtained by the following exact solutions

u(x, t) = eit sin(πx/2), v(x, t) = 1/2π2 cos(πx) − 1/2(x − 1)2 − 1/2π2 + 1/2.

In this example, we firstly use the linear transformation x = s+1(s ∈ (−1, 1)) and solve the resulting
problem by using the proposed method. To test the convergence orders in the temporal direction, we
set N = 15 and refine the temporal stepsizes. The maximum numerical errors at t = 1 and convergence
orders are shown in Table 2. The numerical results show that the convergence orders in the temporal
directions are of 2. Then, we set τ = 0.001 and solve the problem with different N. We present the
maximum numerical errors in Figure 3, respectively. Again, we find that when N increases, the error
decreases exponentially.

Table 2. Errors and convergence orders with N = 15 for example 2.

τ η1 Order η2 Order
1/8 4.2277e − 03 - 2.8882e − 05 -
1/16 1.0385e − 03 2.0254 7.3369e − 06 1.9770
1/24 4.6725e − 04 1.9696 3.2959e − 06 1.9736
1/32 2.6437e − 04 1.9797 1.8469e − 06 2.0133
1/40 1.7003e − 04 1.9780 1.1815e − 06 2.0021
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Figure 3. The L∞-error of u(left) and v(right) with τ = 0.001 when N takes different values
for example 2.
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Next, we let N = 20, τ = 0.1 and solve the problem by using previous mentioned methods. We show
the discrepancies of the discrete mass and energy in Figure 4, respectively. Again, the discrepancies of
the discrete mass are less than 10−15 for both the SAV-CN and CN methods. Besides, we also compare
the discrepancies of the discrete energy between SAV-CN and the original energy (Origin) in Figure
4. We can conclude that the the discrepancies of the original energy is between 10−7 and 10−5. In
contrast, the discrepancies of the discrete energy are sufficiently small only for the SAV-CN methods.
These results further confirm the structure-preserving properties of the proposed method.
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Figure 4. The discrepancies of the discrete mass(left) and energy(right) with N = 20 and
τ = 0.1 for example 2.

5. Conclusions

In this paper, we consider numerical solutions of the nonlinear Schrödinger-Possion equations. The
fully-discrete scheme is developed by combing the SAV approach and the Crank-Niclson Galerkin-
Legendre spectral methods. The fully discrete scheme is proved structure-preserved. The unconditional
stability and convergence results are obtained. It is shown the fully-discrete scheme is of order 2 in the
temporal direction and decreases exponentially in the spatial direction. Numerical results are given to
confirm our theoretical findings.
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