
Electronic  
Research Archive

http://www.aimspress.com/journal/era

ERA, 30(3): 929–942.
DOI: 10.3934/era.2022048
Received: 14 September 2021
Revised: 28 November 2021
Accepted: 29 November 2021
Published: 02 March 2022

Research article

Global dynamics of a modified Leslie-Gower predator-prey model with
Beddington-DeAngelis functional response and prey-taxis

Jialu Tian and Ping Liu*

Y.Y.Tseng Functional Analysis Research Center and School of Mathematical Sciences, Harbin
Normal University, Harbin, Heilongjiang, 150025, China

* Correspondence: Email: liuping506@gmail.com.

Abstract: In this paper, our purpose is to discuss the global dynamics of a modified Leslie-Gower
predator-prey model with Beddington-DeAngelis functional response and prey-taxis under homoge-
neous Neumann boundary conditions. First, we derive that the global classical solutions of the system
are globally bounded by taking advantage of the Morse’s iteration of the parabolic equation, which
further arrives at the global existence of classical solutions with a uniform-in-time bound. In addition,
we establish the global stability of the spatially homogeneous coexistence steady states under certain
conditions on parameters by constructing Lyapunov functionals.
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1. Introduction

In the ecosystem, the interaction of predator and prey is well-known and essential. It has become
a hot topic to study the dynamic behavior of a predator-prey model. A famous predator-prey system
established by Leslie and Gower in 1960 is of the form

du
dt
= λu − au2 − vϕ(u, v),

dv
dt
= (h −

ev
u

)v,
(1.1)

where u(t) and v(t) are the population density of prey and predator at time t, respectively. Here λ and
a are the intrinsic growth rate and the strength of competition among individuals of preys. The term
ev
u is called the Leslie-Gower term which means the loss in the predator population only due to rarity
of its favorite food, where the parameter e is a measure of the amount of food provided by the prey
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transformed into the birth of predator. The environment carrying capacity for the predator u
e is not

constant but proportional to the number of the prey. And they found that the predator could switch
over to other preys even though its growth would be limited by the shortage of its favorite food. Hence,
a positive constant d should be added into the denominator of the Leslie-Gower term, which is called
a modified Leslie-Gower term ev

u+d .
The functional response function ϕ(u, v) represents the consumption of prey. It is particularly sig-

nificant to select an appropriate response function to describe the relationship between the predator and
the prey. As is known to all, the functional response can be classified into two types: prey-dependent
and predator-dependent. The earliest functional response function (ϕ(u) = u) was proposed by Lotka
and Volterra [1]. In the following research process, many scholars proposed several different response
functions according to different predators and preys, among which Holling II type (ϕ(u) = qu

α+bu ) has
been studied by a large number of researchers [2].

Recent accumulating evidence shows that predator-dependent is more realistic than prey-dependent
in depicting the consuming of the prey. The classic example is Beddington-DeAngelis (abbreviated
as B-D) functional response proposed by Beddington [3] and DeAngelis [4], which has the following
form

ϕ(u, v) =
qu

α + bu + cv
,

where q is the consumption rate; α, b, c mean the saturation constant, the saturation constant for an
alternative prey and the predator interference, respectively. Compared with Holling-II functional re-
sponse, B-D functional response has an extra term cv in the denominator modeling mutual interference
among predators, which can exhibit more plentiful, more complicated and more acceptable dynam-
ics [5–7]. In [8], Yu considered B-D functional response into the system (1.1). For this case, (1.1)
becomes 

du
dt

= λu − au2 −
quv

α + bu + cv
,

dv
dt

= (h −
ev

u + d
)v

(1.2)

with an initial condition u0(t) = u0, v0(t) = v0. He discussed the structure of nonnegative equilibria
to (1.2) and their local stability. In addition, he applied the fluctuation lemma and Lyapunov direct
method to get the global asymptotic stability of a positive equilibrium.

In the real world, the distribution of population density in a fixed bounded domain is inhomoge-
neous which makes that the population in high density area will spread to its low density area. Hence,
establishing and studying various reaction-diffusion systems have been an effective way for researchers
to further explore and predict biological evolution [9]. Through choosing appropriate scale transfor-
mation, (1.2) can be rewritten as

∂u
∂t
= d1∆u + λu − au2 −

quv
1 + bu + cv

,

∂v
∂t
= d2∆v + (1 −

ev
u + d

)v.
(1.3)

In fact, on top of random diffusion of the predator and the prey, it has been recognized that the
spatial-temporal variations of the predator moves along the gradient direction of the prey. This kind of
movement which is not random but directed is called prey-taxis, various types of predator-prey models
with prey-taxis have received great attention among mathematical ecologist [10,11]. In detail, Wu, Shi
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and Wu [12] in 2016 was the first one that established the global boundedness for such model in higher
dimension space with small χ > 0, specific models are as follows:

∂u
∂t
= ∆u − χ∇(q(u)∇v) + cϕ(u, v) − g(u), x ∈ Ω, t > 0,

∂v
∂t
= d∆v + f (v) − ϕ(u, v), x ∈ Ω, t > 0,

∂u
∂n
=
∂v
∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω.

(1.4)

Later on, Jin and Wang [13] analyzed the global boundedness for such model in two-dimensional
domain and also prove the global stability of prey-taxis system. Wang and Wang [14] concerned
the reaction-diffusion systems modeling the population dynamics of two predators and one prey with
nonlinear prey-taxis in 2018. Wu and Ni [15] in 2021 proved the global existence and boundedness
of solutions of a diffusive prey-predator model with prey-taxis and trophic interactions of three levels.
And prey-taxis and predator-taxis also have an essential impact on pattern formation [16–18].

Coupled with the factors mentioned above, a modified Leslie-Gower predator-prey model with
Beddington-DeAngelis functional response and prey-taxis can be formulated as:

∂u
∂t
= d1∆u + λu − au2 −

quv
1 + bu + cv

, x ∈ Ω, t > 0,

∂v
∂t
= d2∆v − χ∇(v∇u) + v(1 −

ev
u + d

), x ∈ Ω, t > 0,

∂u
∂n
=
∂v
∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω.

(1.5)

Here u(x, t) and v(x, t) represent the densities of prey and predator at place x and time t, Ω is a bounded
domain in Rn with smooth boundary ∂Ω and n is the outward unit normal vector on ∂Ω. χ is called
prey-taxis coefficient, and prey-taxis is called attractive (repulsive) if χ > 0 (χ < 0). The parameters d1

and d2 are the diffusion rates of the prey and predator respectively. And we assume that all parameters
are positive and have the same meaning as above. Our first main result is the following:

Theorem 1.1. LetΩ be a bounded domain inR2 with smooth boundary. Suppose that (u0, v0) ∈ [W1,∞]2

with u0, v0 ≥ 0(. 0). Then the problem (1.5) has a unique nonnegative global classical solution
(u, v) ∈ [C(Ω̄ × [0,∞)) ∩C2,1(Ω̄ × (0,∞))]2 satisfying

∥u(·, t)∥W1,∞(Ω) + ∥v(·, t)∥L∞(Ω) ≤ C, for all t > 0, (1.6)

where C > 0 is a constant independent of t, and in particular 0 < u ≤ K0, where

K0 =: max
{
∥u0∥L∞(Ω),

λ

a
}
. (1.7)

It’s easy to see that the system (1.5) admits four non-negative solutions:
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(i) the trivial solution E0 = (0, 0);

(ii) the semi-trivial solutions E1 = (0,
d
e

) and E2 = (
λ

a
, 0);

(iii) there exists a unique positive constant solution E∗ =: (u∗, v∗) when

(H0) λ >
qd

e + cd

holds, where

u∗ =
−A1 +

√
A2

1 − 4A0A2

2A0
, v∗ =

u∗ + d
e
,

A0 = abe + ac, A1 = acd + ae + q − beλ − cλ and A2 = qd − eλ − cdλ.

The following important property on positive constant equilibrium E∗ can be presented.

Theorem 1.2 (global stability). If condition (H0) and the following conditions are satisfied

q < min
{

4d1d2u∗

χ2K2
0dv∗

,
acde

(K0 + d)(be + c)

}
, (1.8)

then the positive constant equilibrium E∗ is globally asymptotically stable. Furthermore, it follows that

∥u − u∗∥L∞ + ∥v − v∗∥L∞ → 0 as t → ∞, (1.9)

where the convergence is exponential.

Herein, we briefly outline the plan of this paper: Section 2 proves some estimates and the local
existence of the global classical solutions; Section 3 addresses the boundedness and global existence
of solutions; Section 4 analyzes the global stability of co-existence steady state.

2. Local existence and preliminaries

In what follows, we shall abbreviate
∫
Ω

f dx as
∫
Ω

f and ∥ f ∥L2(Ω) as ∥ f ∥L2 for simplicity and use
ci(i = 1, 2, 3 · · · ) to denote a generic constant which may vary in the context. We first state the existence
of local-in-time classical solution of the system (1.5) by using the abstract theory (cf. [19]).

Lemma 2.1 (Local existence). Let Ω be a bounded domain in R2 with smooth boundary. Assume
(u0, v0) ∈ [W1,∞(Ω)]2 with u0, v0 ≥ 0(. 0). Then there exists a positive constant Tmax ∈ (0,∞] (the
maximal existence time) such that the problem (1.5) has a unique classical solution (u, v) ∈ [C(Ω̄ ×
[0,Tmax)) ∩C2,1(Ω̄ × (0,Tmax))]2 satisfying u, v ≥ 0 for all t > 0. Moreover, we have

either Tmax = ∞ or lim sup
t→Tmax

(∥u(·, t)∥W1,∞ + ∥v(·, t)∥L∞) = ∞. (2.1)

Proof. The local-in-time existence and uniqueness of classical solution to the problem (1.5) follow
from Amann’s theorem [20]. The specific proof steps can refer to [21, Lemma 2.1]. □
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Lemma 2.2. Let Ω ⊂ Rn be a bounded domain with sufficient smooth boundary. Under the conditions
Theorem 1.1, the solution (u, v) of the system (1.5) satisfies

0 < u(x, t) ≤ K0, for all x ∈ Ω, t > 0, (2.2)

where K0 is defined by (1.7), and it further follows that

lim sup
t→∞

u(x, t) ≤
λ

a
, for all x ∈ Ω̄. (2.3)

Proof. The proof procedure refers to Lemma 2.2 in [13]. □

Lemma 2.3 (see [21, 25]). Let Ω ⊂ Rn be a bounded domain with sufficient smooth boundary. Let
T ∈ (0,∞] and suppose that u ∈ C0(Ω × [0,T )) ∩C2,1(Ω × (0,T )) is a solution of

∂u
∂t
= d1∆u − u + g0(u, v), x ∈ Ω, t ∈ (0,T ),

∂u
∂n
= 0, x ∈ ∂Ω, t ∈ (0,T )

where g0(u, v) = u+λu−au2−
quv

1 + bu + cv
and g0(u, v) ∈ L∞((0,T ); Lp(Ω)), then there exists a constant

C1 such that

∥u(·, t)∥W1,r ≤ C1, with r ∈

[1, np
n−p ), if p ≥ n,

[1,∞], if p > n.

Lemma 2.4. Let (u, v) be the solution of the system (1.5), then there exist two positive constants M and
C2 such that ∫

Ω

v ≤ M =: max
{∫
Ω

v0,
|Ω|

γ

}
for all t ∈ (0,Tmax) (2.4)

and ∫ t+τ

t

∫
Ω

v2 ≤ C2 =:
Mτ
γ

for all t ∈ (0, T̃max), (2.5)

where γ =
e

K0 + d
, τ =: min{1, 1

2Tmax} and T̃max =:

Tmax − τ, if Tmax < ∞,

∞, if Tmax = ∞.

Proof. By means of u(x, t) ≤ K0, the second equation of the system (1.5) becomes

vt ≤ d2∆v − χ∇(v∇u) + v(1 − γv). (2.6)

Integrating this equation over Ω, it follows that

d
dt

∫
Ω

v ≤
∫
Ω

v − γ
∫
Ω

v2. (2.7)

Then applying the Cauchy-Schwarz inequality, we have γ
∫
Ω

v2 ≥
γ

|Ω|
(
∫
Ω

v)2 which implies

d
dt

∫
Ω

v ≤
∫
Ω

v −
γ

|Ω|
(
∫
Ω

v)2. (2.8)

It is obvious that v(·, x) satisfies (2.4) by the ODE methods. Then integrating (2.7) over (t, t + τ) and
using (2.4), we can obtain (2.5). □
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Lemma 2.5. Let (u, v) be the solution of the system (1.5), then there exist two positive constants C3

and C4 independent of t such that

∥∇u∥L2 ≤ C3 for all t ∈ (0,Tmax) (2.9)

and ∫ t+τ

t

∫
Ω

|∆u|2 ≤ C4 for all t ∈ (0, T̃max), (2.10)

where τ and T̃max are defined by Lemma 2.4.

Proof. We multiply the first equation of the system (1.5) by −∆u, and integrate the result by parts to
have

1
2

d
dt

∫
Ω

|∇u|2 + d1

∫
Ω

|∆u|2 = λ
∫
Ω

|∇u|2 − 2a
∫
Ω

u|∇u|2 + q
∫
Ω

uv
1 + bu + cv

∆u

≤ λ

∫
Ω

|∇u|2 +
∫
Ω

qK0

1 + bK0
v|∆u|

≤ λ

∫
Ω

|∇u|2 +
q2K2

0

2d1(1 + bK0)2

∫
Ω

v2 +
d1

2

∫
Ω

|∆u|2,

then
d
dt

∫
Ω

|∇u|2 + d1

∫
Ω

|∆u|2 ≤ 2λ
∫
Ω

|∇u|2 + A
∫
Ω

v2, (2.11)

where A = q2K2
0

d1(1+bK0)2 . Multiplying (2.7) by A
γ

and adding the result to (2.11), which yields

d
dt

(
∫
Ω

|∇u|2 +
A
γ

∫
Ω

v) + d1

∫
Ω

|∆u|2 ≤ 2λ
∫
Ω

|∇u|2 +
A
γ

∫
Ω

v. (2.12)

Adding
∫
Ω
|∇u|2 + A

γ

∫
Ω

v to the both sides of this equation, we can get

d
dt

(
∫
Ω

|∇u|2 +
A
γ

∫
Ω

v) + (
∫
Ω

|∇u|2 +
A
γ

∫
Ω

v) + d1

∫
Ω

|∆u|2

≤(2λ + 1)
∫
Ω

|∇u|2 +
2A
γ

∫
Ω

v.
(2.13)

By the sobolev interpolation inequality and Lemma 2.2, we have for any ε > 0 and a constant m∗ =:
CεK2

0 |Ω| that ∫
Ω

|∇u|2 ≤ ε
∫
Ω

|∆u|2 +Cε

∫
Ω

u2 ≤ ε

∫
Ω

|∆u|2 + m∗, (2.14)

which updates (2.13) to
d
dt

(
∫
Ω

|∇u|2 +
A
γ

∫
Ω

v) + (
∫
Ω

|∇u|2 +
A
γ

∫
Ω

v) ≤
2A
γ

∫
Ω

v + (2λ + 1)m∗. (2.15)

Let y(t) =:
∫
Ω
|∇u|2 + A

γ

∫
Ω

v, we obtain that

y′(t) + y(t) ≤
2A
γ

M + (2λ + 1)m∗ =: m∗∗ for all t ∈ (0,Tmax). (2.16)

By the Gronwall inequality, there exists T > 0 such that t > T , we have y(t) ≤ y(T ) +m∗∗(Tmax − T ) =:
M∗. Hence, ∥∇u∥L2 = (

∫
Ω
|∇u|2)

1
2 < (M∗)

1
2 = C3. On the other hand, by integrating (2.13) over (t, t + τ)

and further calculating, we have
∫ t+τ

t

∫
Ω
|∆u|2 ≤ 1

d1
[(2λ + 1)C3τ +

2A
γ

M] = C4. □
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3. Boundedness of solutions

In this section, we shall use some related estimates derived in the previous section to further show
the boundedness and existence of global classical solutions for the system (1.5). Motivated by Jin, Kim
and Wang [25], we shall prove the following Gronwall-type inequality

d
dt

∫
Ω

v2 ≤ c6∥v∥2L2∥∆u∥2L2 + c8,

which yields the uniform-in-time boundedness of ∥v(·, t)∥L2 . Based on the parabolic regularity, we can
get ∥v(·, t)∥L∞ is uniformly bounded, which along with Lemma 2.1 extends a local solution to a global
one.

Lemma 3.1 (L2-estimate). Let Ω be a bounded domain in R2 with smooth boundary. If (u, v) is a
solution of the system (1.5), then there exists a constant C5 > 0 such that

∥v(·, t)∥L2 ≤ C5 for all t ∈ (0,Tmax). (3.1)

Proof. Multiplying the inequality (2.6) by v and integrating the results over Ω, we have

1
2

d
dt

∫
Ω

v2 + d2

∫
Ω

|∇v|2 + γ
∫
Ω

v3 ≤ χ

∫
Ω

v∇u∇v +
∫
Ω

v2. (3.2)

And applying the Hölder inequality and Young’s inequality, we have

χ

∫
Ω

v∇u∇v ≤
χ2

2d2

∫
Ω

(v∇u)2 +
d2

2

∫
Ω

(∇v)2

and ∫
Ω

v2 ≤
γ

2

∫
Ω

v3 +
16

27γ2 |Ω|.

It follows that

d
dt

∫
Ω

v2 + d2

∫
Ω

|∇v|2 + γ
∫
Ω

v3 ≤
χ2

d2

∫
Ω

|v|2|∇u|2 + c1

≤
χ2

d2
(
∫
Ω

|v|4)
1
2 (
∫
Ω

|∇u|4)
1
2 + c1, (3.3)

where c1 =
32

27γ2 |Ω|. According to Gagliardo-Nirenberg inequality, we can get

(
∫
Ω

|v|4)
1
2 = ∥v∥2L4 ≤ c2(∥∇v∥L2∥v∥L2 + ∥v∥2L2), (3.4)

(
∫
Ω

|∇u|4)
1
2 = ∥∇u∥2L4 ≤ c3(∥∆u∥L2∥∇u∥L2 + ∥∇u∥2L2). (3.5)

Using the fact ∥∇u∥L2 ≤ c4 in Lemma 2.5, we derive from

∥∇u∥2L4 ≤ c5(∥∆u∥L2 + 1), where c5 := c3(c4 + c2
4). (3.6)
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Substituting (3.4) and (3.5) into (3.3) gives

d
dt

∫
Ω

v2 + d2

∫
Ω

|∇v|2 + γ
∫
Ω

v3 ≤
χ2c2c5

d2
(∥∇v∥L2∥v∥L2 + ∥v∥2L2)(∥∆u∥L2 + 1) + c1

=
χ2c2c5

d2
∥∇v∥L2∥v∥L2∥∆u∥L2 +

χ2c2c5

d2
∥∇v∥L2∥v∥L2

+
χ2c2c5

d2
∥v∥2L2∥∆u∥L2 +

χ2c2c5

d2
∥v∥2L2

+ c1

=: I1 + I2 + I3 + I4,

where

I1 =
χ2c2c5

d2
∥∇v∥L2∥v∥L2∥∆u∥L2 ≤

d2

2
∥∇v∥2L2 +

(χ2c2c5)2

2d3
2

∥v∥2L2∥∆u∥2L2 ,

I2 =
χ2c2c5

d2
∥∇v∥L2∥v∥L2 ≤

d2

2
∥∇v∥2L2 +

(χ2c2c5)2

2d3
2

∥v∥2L2 ,

I3 =
χ2c2c5

d2
∥v∥2L2∥∆u∥L2 ≤

(χ2c2c5)2

2d3
2

∥v∥2L2∥∆u∥2L2 +
d2

2
∥v∥2L2 ,

I4 =
χ2c2c5

d2
∥v∥2L2

+ c1,

then
I1 + I2 + I3 + I4 ≤ d2∥∇v∥2L2 + c6∥v∥2L2∥∆u∥2L2 + c7∥v∥2L2 + c1,

where c6 =
(χ2c2c5)2

d3
2
, c7 =

(χ2c2c5+d2
2)2

2d3
2

. It follows that

d
dt

∫
Ω

v2 + γ

∫
Ω

v3 ≤ c6∥v∥2L2∥∆u∥2L2 + c7∥v∥2L2 + c1. (3.7)

Furthermore, we can get the following estimate of the second term to the right of the inequality

c7∥v∥2L2 ≤ c7
( ∫
Ω

v3) 2
3 |Ω|

1
3 ≤ γ

∫
Ω

v3 +
4c3

7

27γ2 |Ω|.

Finally, letting c8 =: 4c3
7

27γ2 |Ω| + c1, one has from (3.7) that

d
dt

∫
Ω

v2 ≤ c6∥v∥2L2∥∆u∥2L2 + c8 for all t ∈ (0,Tmax).

Noting (2.5) and (2.10), the rest of this proof is completed by using the same proof method as [25,
Theorem 3.1]. □

Lemma 3.2 (L∞-estimate). Suppose that the conditions in Lemma 3.1 hold, then the solution of the
system (1.5) satisfies

∥v(·, t)∥L∞ ≤ C6 for all t ∈ (0,Tmax), (3.8)

where the constant C6 > 0 independent of t.
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Proof. Using vp−1 with p ≥ 2 as a test function for the equation (2.6) and integrating the results over
Ω, we have

1
p

d
dt

∫
Ω

vp + d2(p − 1)
∫
Ω

vp−2|∇v|2 + γ
∫
Ω

vp+1 ≤ χ(p − 1)
∫
Ω

vp−1|∇u||∇v| +
∫
Ω

vp.

Adding
∫
Ω

vp to both sides of the above equation and using the Hölder inequality and Young’s inequal-
ity, we end up with

1
p

d
dt

∫
Ω

vp + d2(p − 1)
∫
Ω

vp−2|∇v|2 + γ
∫
Ω

vp+1 +

∫
Ω

vp

≤χ(p − 1)
∫
Ω

vp−1|∇u||∇v| + 2
∫
Ω

vp

≤
χ2(p − 1)

2d2

∫
Ω

vp|∇u|2 +
d2(p − 1)

2

∫
Ω

vp−2|∇v|2 + 2
∫
Ω

vp,

which implies

1
p

d
dt

∫
Ω

vp +
d2(p − 1)

2

∫
Ω

vp−2|∇v|2 + γ
∫
Ω

vp+1 +

∫
Ω

vp

≤
χ2(p − 1)

2d2

∫
Ω

vp|∇u|2 + 2
∫
Ω

vp

≤
χ2(p − 1)

2d2

∫
Ω

vp|∇u|2 + γ
∫
Ω

vp+1 +
2

p + 1

(
2p

(p + 1)γ

)p

|Ω|.

Multiplying the above inequality by p and integrating the results over Ω, we obtain

d
dt

∫
Ω

vp +
p(p − 1)d2

2

∫
Ω

vp−2|∇v|2 + p
∫
Ω

vp ≤
χ2 p(p − 1)

2d2

∫
Ω

vp|∇u|2 + pc9, (3.9)

where c9 =
2

p+1 ( 2p
(p+1)γ )

p|Ω|. By means of

p(p − 1)d2

2

∫
Ω

vp−2|∇v|2 =
2(p − 1)d2

p

∫
Ω

|∇v
p
2 |2,

the inequality (3.9) becomes

d
dt

∫
Ω

vp +
2(p − 1)d2

p

∫
Ω

|∇v
p
2 |2 + p

∫
Ω

vp ≤
χ2 p(p − 1)

2d2

∫
Ω

vp|∇u|2 + pc9. (3.10)

Noting the fact ∥v(·, t)∥L2 < C5 and ∥∇u(·, t)∥L4 < c10 in Lemma 3.1 and Lemma 2.3, then one has

χ2 p(p − 1)
2d2

∫
Ω

vp|∇u|2 ≤
χ2 p(p − 1)

2d2
(
∫
Ω

v2p)
1
2 (
∫
Ω

|∇u|4)
1
2 ≤

c2
10χ

2 p(p − 1)
2d2

∥v
p
2 ∥2L4 .

Owing to Gagliardo-Nirenberg inequality, we have

∥v
p
2 ∥2L4 ≤ c11(∥∇v

p
2 ∥

2(1− 1
p )

L2 ∥v
p
2 ∥

2
p

L
4
p
+ ∥v

p
2 ∥2

L
4
p
)
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= c11(∥∇v
p
2 ∥

2(1− 1
p )

L2 ∥v∥L2 + ∥v∥p
L2).

Define c12 =
c2

10c11χ
2 p(p−1)

2d2
, it follows that

χ2 p(p − 1)
2d2

∫
Ω

vp|∇u|2 ≤ c12C5∥∇v
p
2 ∥

2(1− 1
p )

L2 + c12C
p
5

≤
2(p − 1)d2

p

∫
Ω

|∇v
p
2 |2 +

2d2

p
(
c12C5

2d2
)p + c12C

p
5 ,

which together with (3.10) gives

d
dt

∫
Ω

vp + p
∫
Ω

vp ≤ c13 for all t ∈ (0,Tmax), (3.11)

where
c13 =

2d2

p
(
c12C5

2d2
)p + c12C

p
5 + pc9.

Through Gronwall’s inequality and (3.11), we can derive

∥v(·, t)∥pLp ≤ e−pt∥v0∥
p
Lp +

c13

p
(1 − e−pt) ≤ ∥v0∥

p
Lp +

c13

p
for all t ∈ (0,Tmax). (3.12)

Then choosing p = 4 in (3.12) and using Lemma 2.3, we can find a constant c14 independent of p
such that ∥∇u(·, t)∥L∞ < c14. Then applying Moser iteration procedure (cf. [22]), one has (3.8). This
completes the proof. □

On account of Lemma 3.2 and Lemma 2.3, we can get the global boundedness of solutions to (1.5)
by the Moser iteration procedure (cf. [19]). Next, we will show the following results on the global
existence of solutions.

Lemma 3.3 (global existence). Let Ω be a bounded domain in R2 with smooth boundary. Assume
(u0, v0) ∈ [W1,∞(Ω)]2 with u0, v0 ≥ 0(. 0), then the system (1.5) has a unique global classical solution

(u, v) ∈ [C(Ω̄ × [0,∞)) ∩C2,1(Ω̄ × (0,∞))]2

satisfying (1.6).

Proof. From Lemma 3.2 and Lemma 2.3, which together with the local existence results in Lemma 2.1
completes the proof of this Lemma. □

4. Proof of Theorem 1.2

We are now in the position to derive the global stability of E∗ = (u∗, v∗).

Proof. Let (u(x, t), v(x, t)) be any solution of the system (1.5), we construct the following Lyapunov
function

W∗(u(x, t), v(x, t)) =
1
q

∫
Ω

(u − u∗ − u∗ ln
u
u∗

) + d
∫
Ω

(v − v∗ − v∗ ln
v
v∗

).
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It is clear from the fact W∗(ω) = 0 if ω = (u∗, v∗) and W∗(ω) > 0 for all ω , (u∗, v∗). That is, W∗(ω) is
a positive definite function. Furthermore, from definition of W∗ and results of Theorem 1.1, we have
W∗(ω) ≤ C7 for a constant C7 > 0 independent of t > 0 (see [13, 21]). Next, we take the derivative of
W∗ with regard to t along the trajectory of the system (1.5) and arrive at

dW∗

dt
=

d1

q

∫
Ω

(1 −
u∗

u
)∆u +

1
q

∫
Ω

(u − u∗)(λ − au −
qv

1 + bu + cv
)

+ d
∫
Ω

(1 −
v∗

v
)
(
d2∆v − χ∇(v∇u)

)
+ d

∫
Ω

(v − v∗)(1 −
ev

u + d
)

= : I21 + I22,

where

I21 =
d1

q

∫
Ω

(1 −
u∗

u
)∆u + d

∫
Ω

(1 −
v∗

v
)
(
d2∆v − χ∇(v∇u)

)
= −

d1u∗

q

∫
Ω

|∇u|2

u2 − dd2v∗
∫
Ω

|∇v|2

v2 + χdv∗
∫
Ω

|∇u||∇v|
v

≤
(χ2dv∗

4d2
−

d1u∗

qK2
0

) ∫
Ω

|∇u|2

and

I22 =

∫
Ω

1
q

(u − u∗)(au∗ +
qv∗

1 + bu∗ + cv∗
− au −

qv
1 + bu + cv

)

+ d(v − v∗)(1 −
ev − ev∗ + ev∗

u + d
)

=

∫
Ω

[ bv∗

(1 + bu∗ + cv∗)(1 + bu + cv)
−

a
q

]
(u − u∗)2

+
[ d
u + d

−
1 + bu∗

(1 + bu∗ + cv∗)(1 + bu + cv)

]
(u − u∗)(v − v∗) −

ed
u + d

(v − v∗)2

= −

∫
Ω

[
k(u, v)(u − u∗)2 + 2l(u, v)(u − u∗)(v − v∗) + m(u, v)(v − v∗)2], (4.1)

where

k(u, v) =
a
q
−

bv∗

(1 + bu∗ + cv∗)(1 + bu + cv)
,

l(u, v) =
1
2

[
1 + bu∗

(1 + bu∗ + cv∗)(1 + bu + cv)
−

d
u + d

]
,

m(u, v) =
ed

u + d
.

The equation (4.1) can be further written as

I22 = −

∫
Ω

{
(u − u∗, v − v∗)

(
k(u, v) l(u, v)
l(u, v) m(u, v)

)
(u − u∗, v − v∗)T

}
. (4.2)
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It is obvious that I22 < 0 if and only if the matrix in the integrand of (4.2) is positive definite, which is
equivalent to k(u, v) > 0 and ρ(u, v) = k(u, v)m(u, v) − l2(u, v) > 0, where

ρ(u, v) =
ade

q(u + d)
−

bdev∗

(u + d)(1 + bu∗ + cv∗)(1 + bu + cv)
−

(1 + bu∗)2

4(1 + bu∗ + cv∗)2(1 + bu + cv)2

−
d2

4(u + d)2 +
d(1 + bu∗)

2(u + d)(1 + bu∗ + cv∗)(1 + bu + cv)
.

By calculation and the condition, we can get

k(u, v) >
a
q
−

bv∗

1 + bu∗ + cv∗
>

a
q
−

b
c
=

1
qc

(
ac − qb

)
;

ρ(u, v) >
ade

q(K0 + d)
−

bdev∗

(u + d)(1 + bu∗ + cv∗)
−

(1 + bu∗)2

4(1 + bu∗ + cv∗)2 −
d2

4(u + d)2

>
ade

q(K0 + d)
−

bdev∗

dcv∗
− 1 =

1
qc(K0 + d)

[
acde − q(be + c)(K0 + d)

]
,

then I21 < 0 can be determined by the first fraction in (1.8) and we can see that k(u, v) > 0 and
ρ(u, v) > 0 from the second fraction in (1.8). Here it is clearly that the coexistence state (u∗, v∗) is
globally asymptotically stable by the LaSalle’s invariant principle and there exists a t0 > 0 so that for
all t > t0 the following inequality holds:

1
q

∫
Ω

(u − u∗ − u∗ ln
u
u∗

) + d
∫
Ω

(v − v∗ − v∗ ln
v
v∗

) ≤
1

qu∗

∫
Ω

(u − u∗)2 +
d
v∗

∫
Ω

(v − v∗)2,

for the specific procedures of the above equation, we can refer to the proof of [13, Lemma 4.3] and [21,
Lemma 4.5] which further yields the exponential decay rate in L∞−norm from (1.9).

□

Remark 1. Theorem 1.2 discusses the global stability under the assumption that χ > 0. If χ ≤ 0, the
lighter condition q < acde

(K0+d)(be+c) is needed to satisfy the global stability. That’s to say, if there is no
prey-taxis phenomenon (χ = 0) or the prey can gather to form a group that can resist foreign enemies
(χ < 0), the co-existence steady state is globally asymptotically stable when the competition between
predators and preys is weak. Once prey-taxis phenomenon occurs (χ > 0), the above state may require
weaker competitiveness to maintain its global stability.
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