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Abstract: In order to reduce the oscillations of the numerical solution of fractional exotic options
pricing model, a class of numerical schemes are developed and well studied in this paper which are
based on the 4th-order Padé approximation and 2nd-order weighted and shifted Grünwald difference
scheme. Since the spatial discretization matrix is positive definite and has lower Hessenberg Toeplitz
structure, we prove the convergence of the proposed scheme. Numerical experiments on fractional
digital option and fractional barrier options show that the (0,4)-Padé scheme is fast, and significantly
reduces the oscillations of the solution and smooths the Delta value.
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1. Introduction

Assuming that the price of underlying assets satisfies the geometric Brownian motion, the Black-
Scholes option pricing model was firstly proposed in 1973 which depends only on the risk-free interest
rate and the volatility [1]. The Black-Scholes model quickly attracted a great deal of attention from the
communities of both academic researcher and engineer. In order to improve the efficiency of the model
and also fit the practical market, a sequence of option pricing models were proposed and studied, for
instance, jump-diffusion model [2,3], stochastic volatility model [4,5] and the fractional option pricing
models based on Lévy process including of finite moment log stable (FMLS) [6], KoBol [7, 8] and
CGMY [9] model.

In order to solve the fractional option pricing models based on Lévy process, a number of
numerical approaches were proposed and well studied in the past decades. Cont and Voltchkova [10]
first presented a finite difference methods for solving the fractional European option pricing model
driven by exponential Lévy process and studied the stability and convergence. Then, Cartea and
del-Castillo-Negrete [11] rewrote FMLS, CGMY and KoBol option pricing models as a general
fractional partial differential equation and studied the shifted Grünwald difference (SGD) formula for
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the numerical solution. Marom and Momoniat [12] further compared the numerical solutions of three
fractional option pricing models based on Lévy process. Chen and Wang [13] developed a numerical
scheme with second-order accuracy in both the spatial and time mesh size for pricing European and
American option under a geometric Lévy process. Recently, Zhang et al. [14] constructed an implicit
numerical scheme with second-order accuracy for FMLS model and used BiCGstab method to solve
the discreted linear equations.

As we known, exotic options play important roles and are widely used in the practical finance
market [15]. However, it is a great challenge to obtain the solution for traditional numerical methods
since the non-smooth payoffs usually lead to serious degradation in the convergence of the numerical
schemes and result in inaccurate and discontinuous solution near the strike or barrier. For instance, the
well known second-order implicit schemes, Crank-Nicolson method, are prone to spurious oscillations
unless the time step size is small enough. To overcome this difficulty, Wade et al. [16] studied the
Padé schemes to smooth the Crank-Nicolson scheme to get fourth-order schemes for pricing barrier
European option models, see also [15,17–19] for the Padé schemes for different exotic option models.

For the fractional exotic options under FMLS model, a class of fourth-order numerical schemes
are presented and studied in this paper. We first discretize the fractional option pricing models with
weighted and shifted Grünwald difference (WSGD) formula, which is of second-order accuracy in
space direction. Then, by making use of the Padé schemes for the time direction, an L-stable and
fourth-order accurate scheme is obtained. The convergence of the proposed numerical scheme is
proved when the spatial discretization matrix is positive definite and has lower Hessenberg Toeplitz
structure, without the assumption of the self-adjoint operator. The proposed method is adapted to be
implemented on parallel processors by making use of partial fraction. Numerical experiments on
digital option and barrier option are presented to verify the efficiency and accuracy of our numerical
schemes.

The structure of this paper is organized as follows. The weighted and shifted Grünwald
difference schemes for space discretization is presented in Section 2. Time stepping schemes on Padé
approximation and the implementations are presented in Section 3. We then analyze and prove the
convergence of the numerical scheme in Section 4. Numerical experiments are given to show the
accuracy and efficiency of the proposed schemes in Section 5. Finally, conclusions are drawn in
Section 6.

2. The FMLS model and the discretization in space

Denote S t as the asset price at time t, the FMLS model [6] can be written as follow:

∂V(x, t)
∂t

+ (r − ν)
∂V(x, t)
∂x

+ ν ·−∞ Dα
x V(x, t) = rV(x, t), (2.1)

where V(x, t) is the price of the option at the time t before the expiry time T , x = ln S t, −∞Dα
x (1 < α < 2)

is the left Riemann-Liouville derivative [20], ν = −1
2σ

α sec
(
απ
2

)
, S t is the price of underlying asset at

time t, r is the risk free interest rate and σ is the volatility.
In order to solve the FMLS model numerically, we first transform (2.1) into a forward problem by

using the transformation t∗ = T − t, and then drop ∗ for simplicity of the notation. Then we truncate the
interval of x to a finite interval [Bd, Bu], and consider the following FMLS model for pricing European
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option

∂V(x, t)
∂t

= (r − ν)
∂V(x, t)
∂x

+ ν · Bd Dα
x V(x, t) − rV(x, t), x ∈ (Bd, Bu) , t ∈ (0,T ], (2.2)

where the left Riemann-Liouville derivative [20] is defined as

Bd Dα
x V(x, t) =

1
Γ(2 − α)

d2

dx2

∫ x

Bd

V(η, t)
(x − η)α−1 dη, 1 < α < 2,

and the initial and boundary conditions are as follows:

V(x, 0) = v(x), Bd ≤ x ≤ Bu,

V(Bd, t) = 0, V(Bu, t) = B(t), 0 < t < T.
(2.3)

Let M and N be the number of the uniform discrete points in the space and time direction
respectively, h = (Bu − Bd) /M and τ = T/N be the corresponding step length. Define
t j = jτ( j = 0, 1, 2, · · · ,N), xi = Bd + ih(i = 0, 1, 2, · · · ,M), then the discrete equation can be obtained.
We discrete the first order derivative and α order left Riemann-Liouville fractional derivative by
central difference scheme and weighted and shifted Grünwald difference (WSGD) scheme [21]
respectively.

The second-order WSGD scheme was first proposed by Tian et al. [21], which is a more general
and flexible approach and independent on the changed fractional order. It is further applied into the
numerical solution of time fractional sub-diffusion equation [22,23], as well as fractional Black-Schole
equation in the FMLS model [14]. Recently Liu et al. [24] developed a class of second-order θ schemes
based on the WSGD formula for solving the nonlinear fractional cable equation.

Using WSGD scheme , the fractional derivative can be approximated as

Bd Dα
x V (xi, t) =

1
hα

i+1∑
k=0

ω(α)
k V (xi−k+1, t) + O

(
h2

)
, (2.4)

where 
ω(α)

0 = α
2 g(α)

0 , ω(α)
k = α

2 g(α)
k + 2−α

2 g(α)
k−1

g(α)
0 = 1, g(α)

k =
(
1 − α+1

k

)
g(α)

k−1, k = 1, 2, · · · .∑∞
k=0 g(α)

k = 0, g(α)
k > 0, k = 0, 2, 3 . . . . g(α)

1 = −α < 0.
(2.5)

Denote V j
i = V(xi, t j),V j =

(
V j

1,V
j

2, · · · ,V
j
M−1

)T
, i = 0, 1, 2, · · · ,M, j = 0, 1, 2, · · · ,N, then the

semidiscretization equation is given by

∂V
∂t

∣∣∣∣∣
(xi,t j)

= (r − ν)
V j

i+1 − V j
i−1

2h
+
ν

hα

i+1∑
k=0

ω(α)
k V j

i−k+1 − rV j
i , (2.6)

where

V0
i = v (xi) , i = 1, 2, · · · ,M − 1. (2.7)

Electronic Research Archive Volume 30, Issue 3, 874–897.



877

Denote ζ = ν
hα , ξ = r−ν

2h , it leads to the following semi-equation

∂V
∂t

∣∣∣∣∣
(xi,t j)

+ AV j = f j, i = 1, 2, · · · ,M − 1, (2.8)

where A = rI − ζB − ξC, B =
[
bi j

]
(M−1)×(M−1)

defined by

bi j =



ω(α)
1 , i = j, j = 1, . . . ,M − 1,

ω(α)
2 , i = j + 1, j = 1, . . . ,M − 2,

ω(α)
0 , i = j − 1, j = 2, . . . ,M − 1,

ω(α)
i− j+1, i − j ≥ 2, j = 1, . . . ,M − 3,

0, otherwise,

(2.9)

C = tridiag{−1, 0, 1} and f j = (0, 0, · · · , 0, (ξ + ζω(α)
0 )(B(t j+1) + B(t j)). Since both the matrices B

and C are Toeplitz matrices, the matrix A is also a Toeplitz matrix [25].

3. Time stepping schemes

In order to smooth the oscillations caused by the non-smooth payoff functions and improve the
accuracy, we construct time stepping schemes with Padé approximation. The discretization (2.8) in
space leads to the following system of initial value problem

vt + Av = f (t), v(0) = v, (3.1)

in a Hilbert space X, where v denotes the initial condition v(x) in (2.3). We assume the resolvent set
ρ(A) (The points λ for which λI − A has a bounded inverse in X comprise the resolvent set ρ(A) of A)
satisfies , for some γ ∈ (0, π2 ) [26],

ρ(A) ⊃ Σ̄γ, Σγ := {z ∈ C : γ < | arg(z)| ≤ π, z , 0}, (3.2)

Also, assume there exists C ≥ 1 such that

‖(zI − A)−1‖ ≤ C|z|−1, z ∈ Σγ. (3.3)

The exact solution of (3.1) satisfies the following recurrence formula

v(t j+1) = e−τAv(t j) + τ

∫ 1

0
e−τA(1−η) f (t j + τη)dη, (3.4)

where τ = T/N, j = 0, 1, 2, · · · ,N − 1.
Consider now its discrete analogue of the form

v j+1 = R(τA)v j + τ

m′∑
i=1

Qi(τA) f (t j + siτ), (3.5)

where {si}
m′
i=1 ⊂ [0, 1] are the the distinct numbers selected as integral points to approximate v(t j+1) in

formula (3.4).
The time discretization scheme (3.5) is accurate of order q in time which can be described as

follow.
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Lemma 3.1. [26] The time discretization scheme (3.5) is accurate of order q if

R(z) = e−z + O
(
zq+1

)
, as z→ 0, (3.6)

and, for 0 ≤ l ≤ q,

m′∑
i=1

sl
iQi(z) =

l!
(−z)l+1

R(z) −
l∑

j=0

(−z) j

j!

 + O
(
zq−l

)
, as z→ 0, (3.7)

or, equivalently,

m′∑
i=1

sl
iQi(z) =

∫ 1

0
sle−z(1−s)ds + O

(
zq−l

)
, as z→ 0. (3.8)

It is shown in [26] that for the case m′ = q (m′ is the number of quadrature points and q is the
accuracy of the scheme), the conditions of the Lemma 3.1 can be achieved by choosing the rational
functions R(z) satisfying (3.6), selecting distinct real numbers, by Gaussian Quadrature, {Qi(z)}qi=1, and
finally solving the system

q∑
i=1

sl
iQi(z) =

l!
(−z)l+1

R(z) −
l∑

j=0

(−z) j

j!

 , l = 0, 1, . . . , q − 1. (3.9)

This system (3.9) is of Vandermonde type (whose determinant is not zero), which gives the rational
functions {Qi(z)}qi=1 as linear combinations of the terms on the right hand side of (3.9).

For the case when the number of quadrature points m′ is less than the order of the scheme q,
an alternative formula similar to (3.9) is given in [26]. The accuracy conditions are reformulated by
defining

Rl(z) =
l!

(−z)l+1

R(z) −
l∑

j=0

(−z) j

j!

 − m′∑
i=1

sl
iQi(z), l = 0, 1, . . . , q − 1

and requiring that

Rl(z) = 0, as z→ 0, for l = 0, 1, . . . ,m′ − 1,

and a moment condition

∫ 1

0
p(s)s jds = 0, for j = 0, . . . , q − m′ − 1. (3.10)

on the quadrature points, with p(s) =
m′∏
i=1

(s − si). The formula to obtain the rational functions {Qi(z)}qi=1

in [26] is
m′∑
i=1

sl
iQi(z) =

l!
(−z)l+1

R(z) −
l∑

j=0

(−z) j

j!

 , l = 0, 1, . . . ,m′ − 1. (3.11)

For the rest of this chapter, we will use Padé approximation as R(z) above to constructe the high-
order numerical scheme.
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3.1. Padé approximations

Let Pn,m(z) and Qn,m(z) be two polynomials of degree n and m respectively, the (n + m) th order
rational Padé approximation of the exponential function e−z can be written as

Rn,m(z) =
Pn,m(z)
Qn,m(z)

,

where

Pn,m(z) =

n∑
j=0

(m + n − j)!n!
(m + n)! j!(n − j)!

(−z) j,

and

Qn,m(z) =

m∑
j=0

(m + n − j)!m!
(m + n)! j!(m − j)!

z j.

The Padé approximation Rn,m(z) to the exponential function e−z is of the order (n + m).

Definition 3.1. The rational approximation Rn,m(z) of e−z is said to be A-stable if |Rn,m(z)| < 1 whenever
<(z) < 0 and L-stable if in addition |Rn,m(z)| → 0 as<(z)→ −∞.

It is known from [27] that Rn,m(z) = e−z + O
(
|z|m+n+1

)
as z → 0, and we consider the L-stable

(0, 2m)-Padé approximations and A-stable (m,m)-Padé approximations [28] for the exponential
function e−z.

Here for practical purpose, we are particularly interested to the following A-stable and L-stable
Padé approximation of e−z respectively:

R2,2(z) =
1 − 1

2z + 1
12z2

1 + 1
2z + 1

12z2

and
R0,4(z) =

1
1 + z + 1

2z2 + 1
6z3 + 1

24z4
.

Replace the matrix exponential e−τA by (n,m) Padé approximation Rn,m(τA), the recurrence
relation is approximated by

V j+1 = Rn,m(τA)V j + τ

2∑
i=1

Q(i)
n,m(τA) f (t j + siτ), j = 0, 1, 2, · · · ,N − 1, (3.12)

which is the fully discretization of (2.2). The {Q(i)
n,m(z)}2i=1 are rational functions, which have same

denominator as those Rn,m(z) and {si}
2
i=1 are the Gaussian points.

Using the result of equation (3.11), we still have the same accuracy when we choose the
corresponding Padé approximation

2∑
i=1

sl
iQ

(i)
n,m(z) =

l!
(−z)l+1

Rn,m(z) −
l∑

j=0

(−z) j

j!

 , l = 0, 1, (3.13)

which is a linear system in Q(i)
n,m(z) and could be solved easily since the matrix of the coefficients on the

left is of Vandermonde’s type.
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3.2. A fourth order L-stable method

Consider the fourth order L-stable Padé approximation R0,4(z) with s1 = 3−
√

3
6 and s2 = 3+

√
3

6 , the
system reduces to

Q(1)
0,4(z) + Q(2)

0,4(z) = −
1
z

(R0,4(z) − 1),

s1Q(1)
0,4(z) + s2Q(2)

0,4(z) =
1
z2 (R0,4(z) − 1 + z).

(3.14)

Solving the Eq (3.14), it leads to the following fourth order schemes

V j+1 = R0,4(τA)V j + τQ(1)
0,4(τA)g(t j + s1τ) + Q(2)

0,4(τA) f (t j + s2τ),

where

Q(1)
0,4(z) =

1
2 + (3−

√
3

12 )z + (2−
√

3
24 )z2 + (1−

√
3

48 )z3

1 + z + 1
2z2 + 1

6z3 + 1
24z4

,

Q(2)
0,4(z) =

1
2 + (3+

√
3

12 )z + (2+
√

3
24 )z2 + (1+

√
3

48 )z3

1 + z + 1
2z2 + 1

6z3 + 1
24z4

.

3.3. Partial fractional form of the schemes

Both the schemes discussed above require to take inverse of higher order matrix polynomial which
can cause computational difficulty due to higher power of matrix A.

For overcoming this difficulty, Khaliq et al. [29], Gallopoulos and Saad [30] and references therein
developed these schemes in a partial fraction decomposition (with complex arithmetic) that allows
efficient and accurate computations on serial or parallel machines.

The partial fraction form of the rational functions Rn,m(z) and {Q(i)
n,m(z)}2i=1 requires us to consider

two cases, n < m and n = m for subdiagonal and diagonal Padé schemes respectively.
If n < m, then we have

Rn,m(z) =

q1∑
j=1

w j

z − ci
+ 2

q1+q2∑
j=q1+1

<(
w j

z − ci
),

Q(i)
n,m(z) =

q1∑
j=1

wi j

z − ci
+ 2

q1+q2∑
j=q1+1

<(
wi j

z − ci
), i = 1, 2,

and for the case n = m, the partial fraction form for Rn,m(z) and Q(i)
n,m(z) is given by Gallopoulos and

Saad [30]

Rn,m(z) = (−1)n +

q1∑
j=1

w j

z − ci
+ 2

q1+q2∑
j=q1+1

<(
w j

z − ci
),

Q(i)
n,m(z) =

q1∑
j=1

wi j

z − ci
+ 2

q1+q2∑
j=q1+1

<(
wi j

z − ci
), i = 1, 2,
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where Rn,m(z) as well as Q(i)
n,m(z) have q1 real and 2q2 complex pole ci with q1+2q2 = m , and w j =

Rn,m(c j)
Q′n,m(c j)

and wi j =
N

(i)
n,m(c j)

D
′(i)
n,m(c j)

.

The polynomial N (i)
n,m(z) and D(i)

n,m(z) are the numerator and denominator of the function Q(i)
n,m(z)

respectively.
The poles and weights for Rn,m(z) and Q(i)

n,m(z) are:

q1 = 0, q2 = 2,
c1 = −0.270555768932292 + 2.50477590436244i,
c2 = −1.72944423106769 − 0.888974376121862i,
w1 = −0.541413348429154 + 0.248562520866115i,
w2 = 0.541413348429182 + 1.58885918222330i,

w11 = −0.295373909958643 − 0.179575890979879i,
w12 = 0.112361208066424 + 0.596907381204152i,
w21 = 0.174204307471874 − 0.023488268401115i,
w22 = 0.508808394420345 + 0.002507912891072i.

The algorithm becomes
V j+1 = 2<(y1) + 2<(y2),

where

(τA − c1I)y1 = w1V j + τw11 f (t j + s1τ) + τw21 f (t j + s2τ),
(τA − c2I)y2 = w2V j + τw12 f (t j + s1τ) + τw22 f (t j + s2τ), i = 1, 2,

(3.15)

which can be solved in parallel on two machines for speedup, or on a serial machine.

4. Convergence analysis

In this section, we prove the convergence of the proposed scheme in the case that the spatial
discretization matrix A is a lower Hessenberg Toeplitz matrix, without the assumption of a self-adjoint
operator in [26].

We begin with the proof of the positive definiteness of matrix A. The matrix A is positive definite
if and only if its symmetric part W = (A + AT )/2 is positive definite [31], which means its eigenvalues
are all positive.

Theorem 4.1. Assume the fractional parameter α satisfying 1 < α < 2, the matrix A = rI − ζB − ξC
defined in (2.8) as the following

ai j =



−ζω(α)
1 + r, i = j, j = 1, . . . ,M − 1,

−ζω(α)
2 + ξ, i = j + 1, j = 1, . . . ,M − 2,

−ζω(α)
0 − ξ, i = j − 1, j = 2, . . . ,M − 1,

−ζω(α)
i− j+1, i ≥ j + 2, j = 1, . . . ,M − 3,

0, otherwise,

(4.1)

is positive definite.
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Proof. Consider now the matrix W = [(−ζB − ξC) + (−ζB − ξC)T ]/2 defined by

wi j =


−ζω(α)

1 , i = j, j = 1, . . . ,M − 1,
−ζ(ω(α)

0 + ω(α)
2 )/2, |i − j| = 1,

−ζω(α)
|i− j|+1/2, |i − j| ≥ 2,

(4.2)

Use Gerschgorin Disk Theorem and note that wii = ζ(α + 2)(α − 1)/2 > 0, we only need to
prove it is row diagonally dominant and column diagonally dominant. It is clear that the ith and the
(M − i − 1)th rows are the same. Without loss of generality, we choose 1 ≤ i ≤ dM−1

2 e.
For i = 1, we have

|w11| −
∑
j,1

|w1 j| =
ζ

2

2|ω(α)
1 | − |ω

(α)
0 + ω(α)

2 | −

M−1∑
k=3

|ω(α)
k |


=

ζ

2

[
(1 −

α

4
)(α + 2)(α − 1) −

(
−
α

2
g(α)

2 + g(α)
2 + . . . + g(α)

M−2 +
α

2
g(α)

M−1

)]
=

ζ

2

[
(α − 1)(

α

2
+ 2) −

(
g(α)

2 + . . . + g(α)
M−2 +

α

2
g(α)

M−1

)]
>

ζ

2

(α − 1)(
α

2
+ 2) −

∞∑
k=2

g(α)
k


=

ζ

2

[
(α − 1)(

α

2
+ 2) − (α − 1)

]
=

ζ

2
(α − 1)(

α

2
+ 1) > 0.

For i = 2, 3, . . . , dM−1
2 e, using the properties in (2.5), we have

|wii| −
∑
j,1

|wi j| =
ζ

2

2|ω(α)
1 | − 2|ω(α)

0 + ω(α)
2 | − 2

i∑
k=3

|ω(α)
k | −

M−i∑
k=i+1

|ω(α)
k |


=

ζ

2

 (2 − α)(α + 2)(α − 1)
2

− 2
i∑

k=3

|ω(α)
k | −

M−i∑
k=i+1

|ω(α)
k |


>

ζ

2

 (2 − α)(α + 2)(α − 1)
2

− 2
M−i∑
k=3

|ω(α)
k |


=

ζ

2

[
(2 − α)(α + 2)(α − 1)

2
− 2

(
−
α

2
g(α)

2 + g(α)
2 + . . . + g(α)

M−2 +
α

2
g(α)

M−1

)]
=

ζ

2

2(α − 1) − 2
M−i∑
k=3

g(α)
k


>

ζ

2

2(α − 1) − 2
∞∑

k=2

g(α)
k

 =
ζ

2
[2(α − 1) − 2(α − 1)] = 0.

Therefore, the matrix W is row diagonal dominant. Because of its Toeplitz structure, it is column
diagonally dominant as well, and thus the matrix A is positive definite.
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Assume the function R(·) is the L-stable (0, 2m)-Padé approximation of order q in (3.6), and v is
the initial condition in (3.1), then the convergence of the scheme is established in the following two
theorems.

Theorem 4.2. Assume that A defined in (3.1) and satisfying (3.2) and (3.3) is diagonalizable. For the
R(·) and q > 0 in (3.6), there exists a constant C > 0 such that for n > 1

‖(e−tnA − Rn(τA))v‖ ≤ Cτq‖v‖, v ∈ RM−1. (4.3)

Proof. Let A have eigenvalues {λi}
M−1
i=1 and corresponding orthonormal eigenvectors {wi}

M−1
i=1 . Suppose

v =
M−1∑
j=1

α jw j, then we have

e−tnAv =

M−1∑
j=1

α je−λ jtnw j,

and

Rn(τA)v =

M−1∑
j=1

α jRn(τλ j)w j.

It follows that

‖(e−tnA − Rn(τA))v‖2 =

M−1∑
j=1

α2
j |e
−nτλ j − Rn(τλ j)|2.

Using the identity an − bn = (a − b)
∑n−1

j=0 a jbn− j−1, it follows that

|e−nτλ j − Rn(τλ j)| = |(e−τλ j − R(τλ j))
n−1∑
j=0

(e−τ jλ jRn− j−1(τλ j))|

= |(τλ j)q+1
n−1∑
j=0

(e−τ jλ jRn− j−1(τλ j))|.

Without the confusion, we will reuse the constant C from line to line. From Theorem 4.1 we know
that A is positive definite, thus <(λ j) > 0, j = 1, 2 . . . ,M − 1. For any integer k ≥ 0 and l > 0, there
exists a constant C such that

|(τλ j)ke−τlλ j | ≤ C, (4.4)

We also find there exists 0 < c < 1 such that |R(z)| ≤ e−cz for (0,4)-Padé scheme, thus we have the
following bound

|e−nτλ j − Rn(τλ j)| ≤ Cnτq+1e−c(n−1)τλ = Cτq.

Therefore,

‖(e−tnA − Rn(τA))v‖2 ≤ Cτ2q
M−1∑
j=1

α2
j = Cτ2q‖v‖2,

and the proof is complete.
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Use the results of Theorem 4.2, and define the spaces Ḣ s = D
(
As/2

)
in [26] with the norm as

following

|v|s = (Asv, v)1/2 = ‖As/2v‖ =

M−1∑
j=1

λs
j(v,w j)2


1/2

,

we complete the proof of the convergence in the following theorem.

Theorem 4.3. Suppose that f (l)(t) ∈ Ḣ2q−2l for l < q and t ≥ 0, then there exists a constant C such that

‖vn − v(tn)‖ ≤ Cτq

‖v‖ + tn

q−1∑
l=0

sup
s<tn
| f (l)(s)|2q−2l +

∫ tn

0
‖ f (q)‖ds

 , (4.5)

i.e., the time discretization scheme (3.5) is accurate of order q.

Proof. The error En = vn − v(tn), for n ≥ 2, can be written as:

En = (Rn(τA) − E(tn))v︸                ︷︷                ︸
En

0

+ τ

n−1∑
j=0

(
Rn− j−1(τA)Rk f (t j) − E(tt− j−1)Ik f (t j)

)
︸                                                    ︷︷                                                    ︸

En
q

,
(4.6)

where E(t) = e−tA,

Ik f (t j) =

∫ 1

0
E(τ − sτ) f (t j + sτ)ds, Rk f (t j) =

m′∑
i=1

Qi(τA) f (t j + siτ).

The error term En
0 can be approximated by the established result from Theorem 4.2 as follows:

‖En
0‖ = ‖(e−tnA − Rn(τA))v‖ ≤ Cτq‖v‖. (4.7)

After inserting the term Rn− j−1(τA)Ik f (t j) in the error term En
q and rearranging its terms, it can be

derived as

En
q = τ

n−1∑
j=0

(
Rn− j−1(τA) − E(tn− j−1)

)
Ik f (t j)︸                                           ︷︷                                           ︸

En
1

+ τ

n−1∑
j=0

Rn− j−1(τA) (Rk − Ik) f (t j)︸                                   ︷︷                                   ︸
En

2

.
(4.8)

Following the approach given in [26], we have the following estimate for En
1 and En

2,

‖En
1‖ ≤ Cτq

∫ tn

0
| f |2qds, (4.9)

which is bounded by the right hand side of (4.5). Also

‖En
2‖ ≤

n−1∑
j=0

Cτq+1
q−1∑
j=0

| f (l)(t j)|2q−2l + Cτq
n−1∑

0

∫ t j+1

t j

‖ f (q)‖ds. (4.10)
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Since Eq (4.9) can be incorporated into the right hand side of (4.10), we obtain the following
estimate for the main scheme:

‖En
q‖ ≤

n−1∑
j=0

Cτq+1
q−1∑
j=0

| f (l)(t j)|2q−2l + Cτq
n−1∑

0

∫ t j+1

t j

‖ f (q)‖ds,

≤ Cτqtn

q−1∑
l=0

sup
s<tn
| f (l)(s)|2q−2l + Cτq

∫ tn

0
‖ f (q)‖ds.

(4.11)

Combining (4.7) and (4.11), it leads to

‖En‖ ≤ ‖En
0‖ + ‖En

q‖

≤ Cτq

‖v‖ + tn

q−1∑
l=0

sup
s<tn
| f (l)(s)|2q−2l +

∫ tn

0
‖ f (q)‖ds

 , (4.12)

which completes the proof.

5. Numerical experiments

In this section, numerical performance of different Padé schemes compared with the
Crank-Nicolson scheme is given for the numerical solution of both fractional digital options and
fractional barrier options.

Since the non-smooth payoffs of fractional exotic options usually result in inaccurate and
discontinuous solution, or serious errors when estimating the hedging parameters, e.g., Delta, Vega
and Gamma values, we compare the price of the options under different schemes, as well as the
Delta [16, 32, 33], which is the rate of change of the option value with respect to the asset price and
can be approximated in the following way:

∂V
∂S

∣∣∣∣∣
S i

=
1
exi
·
∂V
∂x

∣∣∣∣∣
xi

≈
V(xi+1, t) − V(xi−1, t)

2hexi
.

The order of the numerical scheme is defined as

Order = log τ2
τ1

‖Vτ2(·, 0) − V∗(·, 0)‖
‖Vτ1(·, 0) − V∗(·, 0)‖

,

where V∗(·, 0) denotes the exact solution at t = 0 and Vτ(·, 0) denotes the numerical solution with time
step τ at t = 0. In our experiments, the exact solution V∗(·, 0) is approximated by the numerical solution
using a dense mesh with M = N = 8192 and we set τ2/τ1 = 2 to obtain the convergence order.

5.1. A fractional digital call option

Example 5.1. Consider a fractional digital call option pricing model as follows
∂V(x, t)
∂t

+ (r − ν)
∂V(x, t)
∂x

+ νBd Dα
x V(x, t) = rV(x, t), (x, t) ∈ (Bd, Bu) × (0,T ),

V (Bd, t) = 0, V (Bu, t) = 50e−r(T−t), t ∈ [0,T ),
V(x,T ) = v(x), x ∈ (Bd, Bu) ,
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where α = 1.5, r = 0.05, σ = 0.25, Bu = ln 100, Bd = ln 0.1, T = 1, K = 50 and ν = −1
2σ

α sec απ
2

where the payoff function is

v(x) =


50, ln K < x < Bu,

25, x = ln K,

0, Bd < x < ln K.

,

where we take the average of playoff at x = ln K from mathematical viewpoint to restore the
discontinuity in the payoff [15].

Figure 1. The price and Delta of digital option using the Crank-Nicolson scheme.

Figure 2. The price and Delta of digital option using the (2,2)-Padé scheme.

In Figures 1–3, the surfaces of the price and the corresponding Delta value of the fractional
European digital option are plotted for the Crank-Nicolson, (2,2)-Padé and (0,4)-Padé schemes
respectively when N = 16 and M = 4096.

From Figures 1–3, it is observed that the second-order Crank–Nicolson method suffers from
oscillations with non-smooth payoff function while the (0,4)-Padé scheme can provide reliable and
smooth option values and Delta value with little oscillation.
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Figure 3. The price and Delta of digital option using the (0,4)-Padé scheme.

The reason for the oscillation phenomenon at the strike price is that the time discretization grids
are coarse [33, 34]. One possible remedy is reducing the discrete step size in time direction or local
mesh refinement strategy [35, 36], which would highly increase the computational time. Here, the
(0,4)-Padé scheme could obtain the best accuracy cheaply and smooth the oscillations with relative
less discrete points.

Table 1. The numerical results of digital option with the Crank-Nicolson scheme.

N τ ‖Vτ(·, 0) − V∗(·, 0)‖2 Order ‖Vτ(·, 0) − V∗(·, 0)‖∞ Order
8 0.12500000 51.4645 *** 27.0184 ***
16 0.06250000 27.4790 0.9052 19.2316 0.4905
32 0.03125000 10.3013 1.4155 6.1728 1.6395
64 0.01562500 1.0048 3.3578 4.9171×10−1 3.6500
128 0.00781250 3.4284×10−3 8.1952 2.2191×10−4 11.1136

Table 2. The numerical results of digital option with the (2,2)-Padé scheme.

N τ ‖Vτ(·, 0) − V∗(·, 0)‖2 Order ‖Vτ(·, 0) − V∗(·, 0)‖∞ Order
8 0.12500000 31.7954 *** 21.3352 ***
16 0.06250000 13.3594 1.2510 9.0302 1.2404
32 0.03125000 2.0437 2.7086 1.3213 2.7728
64 0.01562500 5.1328×10−3 8.6372 2.7977×10−3 8.8835
128 0.00781250 7.4134×10−8 16.0793 4.8969×10−9 19.1239

In Tables 1–3, we list the error of the numerical solution in L2 and L∞ norm, as well as the
corresponding order for the Crank-Nicolson scheme, (2,2)-Padé and (0,4)-Padé respectively when τ is
varying and M = 8192.

From Tables 1–3, it is seen that the numerical results of digital option with both (2,2)-Padé scheme
and (0,4)-Padé scheme have fourth-order accuracy, which is much better than those of the Crank-
Nicolson scheme.
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Table 3. The numerical results of digital option with the (0,4)-Padé scheme.

N τ ‖Vτ(·, 0) − V∗(·, 0)‖2 Order ‖Vτ(·, 0) − V∗(·, 0)‖∞ Order
8 0.12500000 1.7217×10−2 *** 1.1203×10−3 ***
16 0.06250000 1.3686×10−3 3.6530 9.0190×10−5 3.6348
32 0.03125000 9.7572×10−5 3.8101 8.1591×10−6 3.4665
64 0.01562500 7.0293×10−6 3.7950 1.8366×10−6 2.1514
128 0.00781250 7.8313×10−7 3.1661 3.8539×10−7 2.2526

In Figure 4, we plot the curves of option price and the corresponding Delta value versus the price
of the asset when t = 0 for the Crank-Nicolson, (2,2)-Padé and (0,4)-Padé scheme respectively.

Figure 4. The price and Delta of Digital option at time t = 0 using different schemes.

From Figure 4, it is further confirmed that the (0,4)-Padé scheme can significantly reduce the
oscillations of the solution near the strike price and smooth both the price of option and the Delta
value, compared with the Crank-Nicolson and (2,2)-Padé schemes. It is possibly because of (0,4)-Padé
scheme is a high order scheme, so that it can quickly converges to the exact solution with less time
layer.

5.2. A fractional barrier put option

Example 5.2. Consider a fractional barrier put option pricing model as follows
∂V(x, t)
∂t

+ (r − ν)
∂V(x, t)
∂x

+ νBd Dα
x V(x, t) = rV(x, t), (x, t) ∈ (Bd, Bu) × (0,T ),

V (Bu, t) = V (Bd, t) = 0, t ∈ [0,T ),
V(x,T ) = v(x), x ∈ (Bd, Bu) ,

where α = 1.5, r = 0.05, σ = 0.25, Bu = ln 100, Bd = ln 0.1, T = 1, K = 50, E = 20 and
ν = −1

2σ
α sec απ

2 . The payoff function is

v(x) =

 max {K − ex, 0} , ln E < x ≤ Bu,

0, Bd < x ≤ ln E.
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Figure 5. The price and Delta of barrier option using the Crank-Nicolson scheme.

Figure 6. The price and Delta of barrier option using the (2,2)-Padé scheme.

Figure 7. The price and Delta of barrier option using the (0,4)-Padé scheme.
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In Figures 5–7, the price surfaces of the fractional barrier put option and the corresponding Delta
value are plotted for the Crank-Nicolson, (2,2)-Padé and (0,4)-Padé schemes respectively when N = 16
and M = 4096.

From Figures 5–7, it is observed that the option price and Delta value of the Crank–Nicolson
method still suffer from serious oscillations near the barrier while those of the (0, 4)-Padé scheme
provide the best approximate results.

It is also seen that though the (2, 2)-Padé scheme makes use of the same interpolation points with
the (0, 4)-Padé scheme, the price of option and Delta values of the (2, 2)-Padé scheme still oscillate
near the barrier.

Moreover, in Figure 8, we plot the curves of option price and the corresponding Delta value versus
the asset price when t = 0 for the Crank-Nicolson, (2,2)-Padé and (0,4)-Padé scheme respectively.

Figure 8. The price and Delta of barrier option at time t = 0 using different schemes.

From Figure 8, it is further verified that the (0,4)-Padé scheme is the best one, which can
significantly reduce the oscillations of the option price and the Delta value near the barrier.

Table 4. The numerical results of barrier option with the Crank-Nicolson scheme.

N τ ‖Vτ(·, 0) − V∗(·, 0)‖2 Order ‖Vτ(·, 0) − V∗(·, 0)‖∞ Order
8 0.12500000 33.7205 *** 17.8600 ***
16 0.06250000 19.9914 0.7542 14.8495 0.2663
32 0.03125000 8.8330 1.1784 7.7376 0.9405
64 0.01562500 9.9060×10−1 3.1565 7.8221×10−1 3.3063
128 0.00781250 2.1208×10−3 8.8676 2.3627×10−4 11.6929

In Tables 4–6, the error of the numerical solution in L2 and L∞ norm, as well as the corresponding
order for the Crank-Nicolson, (2,2)-Padé and (0,4)-Padé schemes are listed respectively when τ is
varying and M = 8192.

From Tables 4–6, it is observed that the price of the digital option with both (2,2)-Padé scheme and
(0,4)-Padé scheme can achieve the fourth-order accuracy, while the results of the (0,4)-Padé scheme
are more accurate than those of the (2,2)-Padé scheme.
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Table 5. The numerical results of barrier option with the (2,2)-Padé scheme.

N τ ‖Vτ(·, 0) − V∗(·, 0)‖2 Order ‖Vτ(·, 0) − V∗(·, 0)‖∞ Order
8 0.12500000 22.5121 *** 15.7317 ***
16 0.06250000 11.0447 1.0274 9.6167 0.7101
32 0.03125000 1.9755 2.4831 1.4823 2.6977
64 0.01562500 5.2250×10−3 8.5626 3.1998×10−3 8.8556
128 0.00781250 4.4324×10−8 16.8470 2.9549×10−9 20.0465

Table 6. The numerical results of barrier option with the (0,4)-Padé scheme.

N τ ‖Vτ(·, 0) − V∗(·, 0)‖2 Order ‖Vτ(·, 0) − V∗(·, 0)‖∞ Order
8 0.12500000 1.0414×10−2 *** 6.7754×10−4 ***
16 0.06250000 8.2617×10−4 3.6559 5.4547×10−5 3.6347
32 0.03125000 5.8268×10−5 3.8257 3.8767×10−6 3.8146
64 0.01562500 3.8786×10−6 3.9091 2.5746×10−7 3.9124
128 0.00781250 3.1080×10−7 3.6415 1.5452×10−8 4.0584

5.3. A fractional double barrier call option

Example 5.3. Consider a fractional double barrier call option pricing model as follows
∂V(x, t)
∂t

+ (r − ν)
∂V(x, t)
∂x

+ νBd Dα
x V(x, t) = rV(x, t), (x, t) ∈ (Bd, Bu) × (0,T ),

V (Bu, t) = V (Bd, t) = 0, t ∈ [0,T ),
V(x,T ) = v(x), x ∈ (Bd, Bu) ,

where α = 1.5, r = 0.05, σ = 0.25, Bu = ln 100, Bd = ln 0.1, T = 1, K = 20, E1 = 40, E2 = 70 and
ν = −1

2σ
α sec απ

2 . The payoff function is

v(x) =

 max {ex − K, 0} , ln E1 < x ≤ ln E2,

0, Bd < x ≤ ln E1, ln E2 ≤ x < Bu.

In Figures 9–11, the price surfaces of the fractional double barrier call option and the
corresponding Delta value are drawn for the Crank-Nicolson, (2,2)-Padé and (0,4)-Padé schemes
respectively with N = 16 and M = 2048.

From Figures 9–11, it is observed that both the Crank–Nicolson and (2,2)-Padé schemes suffer
from spurious oscillations near the barrier while (0,4)-Padé approximation provides reliable option
values and smooth Delta value.

In Figure 12, we plot the curves of option price and the corresponding Delta value versus the asset
price when t = 0 for Crank-Nicolson, (2,2)-Padé and (0,4)-Padé scheme respectively.

From Figure 12, it is further confirmed that the (0,4)-Padé scheme can significantly reduce the
oscillation of the price of the option near the barrier and smooth the corresponding Delta value.

In Tables 7–9, the error of the numerical solution in L2 and L∞ norm, as well as the corresponding
order for the Crank–Nicolson, (2,2)-Padé and (0,4)-Padé schemes are listed respectively when τ is
varying and M = 8192.
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Figure 9. The price and Delta of double barrier option using the Crank-Nicolson scheme.

Figure 10. The price and Delta of double barrier option using the (2,2)-Padé scheme.

Figure 11. The price and Delta of double barrier option using the (0,4)-Padé scheme.
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Figure 12. The price and Delta of double barrier option at time t = 0 using different schemes.

Table 7. The numerical results of double barrier option with the Crank–Nicolson scheme.

N τ ‖Vτ(·, 0) − V∗(·, 0)‖2 Order ‖Vτ(·, 0) − V∗(·, 0)‖∞ Order
8 0.12500000 60.6264 *** 29.9147 ***
16 0.06250000 35.9440 0.7542 24.8172 0.2695
32 0.03125000 15.8816 1.1784 12.9186 0.9419
64 0.01562500 1.7811 3.1565 1.3060 3.3062
128 0.00781250 3.6030×10−3 8.9493 3.7585×10−4 11.7628

Table 8. The numerical results of double barrier option with the (2,2)-Padé scheme.

N τ ‖Vτ(·, 0) − V∗(·, 0)‖2 Order ‖Vτ(·, 0) − V∗(·, 0)‖∞ Order
8 0.12500000 40.4761 *** 26.3017 ***
16 0.06250000 19.8581 1.0273 16.0588 0.7118
32 0.03125000 3.5519 2.4831 2.4759 2.6974
64 0.01562500 9.3945×10−3 8.5626 5.3429×10−3 8.8561
128 0.00781250 7.9967×10−8 16.8421 5.0636×10−9 20.0090

Table 9. The numerical results of double barrier option with the (0,4)-Padé scheme.

N τ ‖Vτ(·, 0) − V∗(·, 0)‖2 Order ‖Vτ(·, 0) − V∗(·, 0)‖∞ Order
8 0.12500000 1.9302×10−2 *** 1.0964×10−3 ***
16 0.06250000 1.5287×10−3 3.6584 8.8458×10−5 3.6316
32 0.03125000 1.0763×10−4 3.8281 6.3074×10−6 3.8099
64 0.01562500 7.1519×10−6 3.9117 4.3025×10−7 3.8738
128 0.00781250 5.1858×10−7 3.7857 3.6863×10−8 3.5449
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From Tables 7–9, it is seen that the numerical price of the fractional double barrier call option for
both (2,2)-Padé scheme and (0,4)-Padé scheme can achieve fourth-order accuracy while the numerical
results of the Crank–Nicolson scheme only obtains the second-order accuracy. Among the three
schemes, the (0,4)-Padé scheme is the most accurate one, which requires less discrete points than the
other two schemes to achieve the same accuracy.

6. Conclusions

A class of fourth order Padé schemes for pricing fractional exotic options under FMLS model
are proposed and studied, which make use of the 2nd-order weighted and shifted Grünwald difference
scheme in space direction and the 4th-order Padé schemes in time direction. The convergence of the
Padé schemes are proved in detailed under the FMLS model. Numerical experiments on fractional
digital option and fractional barrier options are given to verify the 4th-order precision, and show that
the (0,4)-Padé scheme can significantly reduce the oscillations of the solution near the strike price or
barrier, smooth the Delta value and save the computational time.
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diffusion and exponential lévy models, SIAM J. Numer. Anal., 43 (2005), 1596–1626.
https://doi.org/10.1137/S0036142903436186
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