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1. Introduction

Classical Hölder spaces and their applications are well known, we refer the reader to [1–4] and
references therein. There has been increasing interest in the theory of the so-called non-standard spaces
during last decades, see the monograph [5] and the references given there. In this paper, we study
function spaces of Hölder type, defined by means of the Bari–Stechkin class (BSC for short), that are
harmonic in the half-space. Almost monotonic functions satisfying conditions (2.1) and (2.2) were
studied in conjunction with Lozinskii condition in the foundational paper [6]. The BSC, as well as its
modifications and generalizations, proved to be essential in the study of mapping properties of some
operators in spaces of continuous functions with prescribed behavior of the modulus of continuity
and in the theory of Fredholm solvability of singular integral equations with piecewise continuous
coefficients, see [5] and references therein. Use of functions in the BSC, instead of just power functions,
allows us to generalize Hölder spaces. This generalization can be used in rough path theory and its
connection with Brownian motion, in the study of boundary value problems for partial differential
equations with different behavior in the boundary, among others.

Fractional calculus, although a quite old topic going back to Euler, Laplace, Abel, Liouville to
name a few, is gaining popularity and has attracted attention in many academic fields due to its wide
applicability. For an encyclopedic treatment of fractional calculus, up to the 1990s, we refer the reader
to [7]. We are interested in the Djrbashian generalized fractional operator, which is a half-plane analog
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of the generalized Hadamard operator L(ω) of M.M. Djrbashian, see [7] 344–346, 432, 435.
Recall that, loosely speaking, Taibleson’s theorem for Hölder spaces asserts that

f ∈ Λxα(Rn)⇐⇒ ‖∂y(Py ∗ f )‖∞ . y−1+α.

In this short note, we investigate the validity of a Taibleson type theorem for a generalized Hölder
space and with the partial differentiation replaced by Djrbashian’s generalized fractional operator.

2. Preliminaries

A non-negative function ω : I → [0,∞), defined on a real interval I, is called almost increasing
if there is a constant C > 1 such that ω(t) 6 Cω(s) for all t, s ∈ I with t 6 s. The notion of almost
decreasing is similarly defined.

Definition 2.1. The Bari-Stechkin class, denoted by Ω, is defined as the set of functions γ : [0,∞) →
[0,∞) with the property that there exists a number δ0 > 0 for which the following conditions hold:

(1) γ(0) = 0 and γ(t) is continuous at t = 0;

(2) γ is almost increasing on [0, δ0];

(3) γ(t)
t is almost decreasing on t ∈ [0, δ0];

(4) there exists a constant C such that for all t ∈ [0, δ0]∫ δ0

t

γ(x)
x2 dx 6 C

γ(t)
t
, (2.1)

where C does not depend on t; and

(5) there exists a constant C such that for all t ∈ [0, δ0],∫ t

0

γ(x)
x

dx 6 Cγ(t), (2.2)

where C does not depend on t.

It should be pointed out that the most relevant behavior of the functions above is near zero. However,
we need to do some estimations on [δ0,∞). Thus, everywhere in this paper, we assume that γ(x)/x2 ∈

L1([δ0,∞)
)
, without loosing the generality of the results.

Definition 2.2. We introduce the generalized Hölder space Λγ(·)(Rn), γ ∈ Ω, as the set of functions
f ∈ L∞(Rn) such that, for any x ∈ Rn and all sufficient small |t| (t ∈ Rn), we have

‖ f (x + t) − f (x)‖∞ 6 Cγ(|t|), (2.3)

with C independent of x and t. The semi-norm and norm are introduced as

‖ f ‖#,Λγ(·) = sup
|t|>0

‖ f (x + t) − f (x)‖∞
γ(|t|)

, ‖ f ‖Λγ(Rn) = ‖ f ‖#,Λγ(Rn) + ‖ f ‖∞.
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The method of proof of the classical Taibleson theorem (see Proposition 7 and Lemma 4 in [11])
carries over, with corresponding modifications, to the generalized Hölder spaces as stated in Theorem
2.1. We leave the reader to check the details.

Theorem 2.1. Let f ∈ L∞(Rn) and γ ∈ Ω. Then the following results are equivalent:

(1) f ∈ Λγ(·)(Rn);

(2) there exists a constant C > 0 such that, for all sufficiently small y > 0, we have ‖∂yu(x, y)‖∞ 6 C γ(y)
y ;

and

(3) there exists a constant C > 0 such that, for all sufficiently small y > 0 and i = 1, n, we have
‖∂xiu(x, y)‖∞ 6 C γ(y)

y .

3. Characterization of the generalized Hölder spaces

In this section, we characterize generalized Hölder spaces Λγ(·)(Rn) by means of Djrbashian’s gen-
eralized fractional operator, which is a twofold generalization of Taibleson’s theorem, both in the
function space as well as in the differential operator.

Throughout the rest of the paper, we assume that ω is a function in the class Θ; i.e., ω(x) > 0 and it
is decreasing on (0,∞).

Moreover, in this section, we just consider those functions from both classes Ω and Θ, which satisfy
the following weighted inequality:∫ ∞

t

γ(s + t)
s2

(∫ s

0
ω(r)dr

)
ds 6 C

γ(t)
t

∫ t

0
ω(s)ds, t ∈ (0,∞), (3.1)

for some constant C > 0. Note that condition (3.1) resembles the one considered in [5, §2.2].
We also assume that

ω1(x) =

∫ x

0
ω(t)dt < ∞, 0 < x < ∞.

Definition 3.1. The Djrbashian generalized fractional operator Lω is introduced, with ω ∈ Θ, as

Lωu(x, y) :=
∫ ∞

0
∂yu(x, y + t)ω(t)dt =

∫ ∞

y
∂su(x, s)ω(s − y)ds, (3.2)

for any function u(x, y) (x ∈ Rn, y > 0) in Rn+1
+ .

For simplicity, we write LωPy(x) := LωP(x, y), where

Py(x) = cny
(
|x|2 + y2)− n+1

2 , y > 0, x ∈ Rn, cn = π−
n+1

2 Γ

(
n + 1

2

)
,

is the Poisson kernel.

Lemma 3.1. Let ω be in the class Θ. Then the following assertions hold:

(1) there is a constant C > 0, such that for any x ∈ Rn \ {0} and for all sufficient small y > 0 we have∣∣∣LωPy(x)
∣∣∣ 6 C

1
yn+1

∫ y

0
ω(s)ds,
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(2) there is a constant C > 0, such that for any x ∈ Rn \ {0} and for all sufficient small y > 0 we have∣∣∣LωPy(x)
∣∣∣ 6 C

1
|x|n+1

∫ |x|

0
ω(s)ds,

and

(3) there is a constant C > 0, such that for any x ∈ Rn \ {0} and for all sufficient small y > 0 we have∥∥∥LωPy(x)
∥∥∥

1
6 C

1
y

∫ y

0
ω(s)ds.

Proof. By the definition of Lω and the well-known property of the Poisson kernel, we get∣∣∣LωPy(x)
∣∣∣ 6 ∫ ∞

y
|∂sPs(x)|ω(s − y)ds .

∫ ∞

y

ω(s − y)
sn+1 ds.

We split the last integral as
(∫ y

0
+

∫ ∞
y

)
ω(r)

(r+y)n+1 dr =: R1 + R2.

The integral R1 is estimated by

R1 6
1

yn+1

∫ y

0
ω(r)dr.

For R2, since ω is decreasing on (0,∞) and yω(y) 6
∫ y

0
ω(r)dr, we obtain

R2 . ω(y)
∫ ∞

y
(r + y)−n−1dr .

ω(y)
yn .

1
yn+1

∫ y

0
ω(r)dr.

Hence, assertion (1) follows.
To obtain assertion (2), we need to consider two cases.
First case: |x| 6 y. From the previous pointwise estimate for LωPy and the fact that 1

s

∫ s

0
ω(r)dr is a

non-increasing function on (0,∞), which can be checked by a standard calculus argument, yields∣∣∣LωPy(x)
∣∣∣ . 1

yn+1

∫ y

0
ω(s)ds .

1
|x|n+1

∫ |x|

0
ω(r)dr.

Second case: |x| > y. We have∣∣∣LωPy(x)
∣∣∣ 6 ∫ ∞

y
|∂sPs(x)|ω(s − y)ds

=

(∫ |x|

y
+

∫ ∞

|x|

)
|∂sPs(x)|ω(s − y)ds =: J1 + J2.

Notice that

J1 .
1
|x|n+1

∫ |x|

y
ω(s − y)ds .

1
|x|n+1

∫ |x|

0
ω(r)dr.

Furthermore, we have

J2 .

∫ ∞

|x|

ω(s − y)
sn+1 ds =

∫ ∞

|x|−y

ω(r)dr
(r + y)n+1
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. ω(|x| − y)
∫ ∞

|x|−y
(r + y)−n−1dr .

ω(|x|)
|x|n
.

1
|x|n+1

∫ |x|

0
ω(t)dt

since ω is decreasing on (0,∞) and |x|ω(|x|) 6
∫ |x|

0
ω(t)dt, which ends assertion (2).

To get estimate (3), we have

‖LωPy(x)‖1 =

∫
|x|6y

∣∣∣LωPy(x)
∣∣∣dx +

∫
|x|>y

∣∣∣LωPy(x)
∣∣∣dx

.
1

yn+1

∫ y

0
ω(s)ds

∫
|x|6y

dx +

∫
|x|>y

(
1
|x|n+1

∫ |x|

0
ω(s)ds

)
dx

.
1
y

∫ y

0
ω(s)ds +

∫ ∞

y

(
1
r2

∫ r

0
ω(s)ds

)
dr.

From Eq (3.1), with γ = 1, the assertion (3) follows. �

It is known that for f ∈ L∞(Rn), we have u(x, y) =
(
Py ∗ f

)
(x) is a harmonic function for any x ∈ Rn

and for all sufficiently small y > 0. Since ‖LωPy(x)‖1 < ∞ for any y > 0, by Lemma 3.1, then Fubini’s
theorem and Young’s convolution inequality it follows that Lωu(x, y) = (LωPy ∗ f )(x).

Next, we give an estimation for any function in the space Λγ(·)(Rn) by means of the operator Lω near
the boundary of the half-space Rn+1

+ .

Theorem 3.1. Let γ ∈ Ω, ω ∈ Θ. If f ∈ Λγ(·)(Rn) then there exists a constant C > 0 such that for all
sufficiently small y > 0 and x ∈ Rn it follows

‖Lωu(x, y)‖∞ 6 C
γ(y)

y

∫ y

0
ω(s)ds, u(x, y) =

(
Py ∗ f

)
(x). (3.3)

Proof. By the definition of the operator Lω and Lemma 2.1, we obtain

‖Lωu(x, y)‖∞ 6
∫ ∞

y
‖∂su(x, s)‖∞ ω(s − y)ds .

∫ ∞

y

γ(s)
s
ω(s − y)ds

= A
(∫ y

0
+

∫ ∞

y

)
γ(t + y)

t + y
ω(t)dt =: K1 + K2.

Observe that K1 .
γ(y)

y

∫ y

0
ω(t)dt, since γ(t)

t is almost decreasing on (0,∞). The integral K2 can be
estimated by

K2 .

∫ ∞

y

γ(t + y)
t

(
1
t

∫ t

0
ω(s)ds

)
dt .

γ(y)
y

∫ y

0
ω(s)ds,

due to ω(t) 6 1
t

∫ t

0
ω(s)ds and condition (3.1). Hence, the desired result follows using the above

estimates. �

One way to prove the converse statement of Theorem 3.1 could be by establishing the inverse
operator of Lω, as was done in [8]. At this moment, we can not say anything about the existence and
form of such inverse operator of Lω on the half-space Rn+1

+ . Thus, the converse of Theorem 3.1 is,
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at present, far from being solved. Nevertheless, in Theorem 3.2, we prove it for a special class of
functions, viz., for ω(x) = x−α with 0 < α < 1.

Recall the Liouville fractional integro-differential type operators:

Iαg(y) =
1

Γ(α)

∫ ∞

y
(t − y)α−1g(t)dt, Dαg(y) := I1−αg′(y),

where 0 < α < 1 and −∞ < y < ∞, with the convention I0g(t) = g(t).

Remark 3.1. One can prove, by changing the region of integration, that if lims→∞ g(s) = 0, then
IαDαg(y) = −g(y). Under this notation, we have that Lx−αu(x, y) = Γ(1 − α)Dαu(x, y).

Now we give some results on properties of these operators. For simplicity, we use the following
notations:

Iαu(x, y) := Iαux(y), IαPy(x) := IαPx(y),

Dαu(x, y) := Dαux(y), DαPy(x) := DαPx(y).

Lemma 3.2. Let 0 < α < 1. Then there exists a constant C > 0 such that
∥∥∥∥Iα

(
∂xi Py

)
(x)

∥∥∥∥
1
6 Cyα−1, for

all sufficiently small y > 0 and x ∈ Rn.

Proof. We split ∥∥∥∥Iα
(
∂xi Py

)∥∥∥∥
1

=

( ∫
y6|x|

+

∫
y>|x|

) ∣∣∣∣Iα (
∂xi Py

)
(x)

∣∣∣∣ dx := L1 + L2.

Since
∣∣∣∂xi Pt(x)

∣∣∣ . t−n−1, we have

Γ(α)
∣∣∣∣Iα (

∂xi Py

)
(x)

∣∣∣∣ 6 ∫ ∞

y
(t − y)α−1

∣∣∣∂xi Pt(x)
∣∣∣ dt .

∫ ∞

y
(t − y)α−1 dt

tn+1

.

(
1

yn+1

∫ y

0
uα−1du +

∫ ∞

y
uα−1 du

un+1

)
. yα−n−1,

thus, L1 . yα−n−1
∫ y

0
rn−1dr . yα−1

n .

Also, if y > |x|, then L2 .
yα−1

1−α , and the lemma follows. �

Lemma 3.3. If f ∈ L∞(Rn), 0 < α < 1 and ‖Lx−αu(x, y/2)‖∞ < ∞, then there exists a constant C > 0
such that ‖∂xiu(x, y)‖∞ 6 Cyα−1

∥∥∥Lx−αu(x, y/2)
∥∥∥
∞

for all sufficiently small y > 0 and x ∈ Rn.

Proof. Since limy→∞ ∂xiu(x, y) = 0 and Remark 3.1 we get

−∂xiu(x, y) = Iαy Dα
y
(
∂xi Py ∗ f

)
(x),

where Iαy ,D
α
y are the same operators of Iα,Dα with respect to the variable y. This notation is necessary

and useful to prove the affirmation. For y = y1 + y2 with y1,2 > 0 and Fubini’s theorem it follows that

Dα
y
(
∂xi Py ∗ f

)
(x)
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=
1

Γ(1 − α)

∫ ∞

y
(s − y)−α∂s

(
∂xi Ps ∗ f

)
(x)ds

=
1

Γ(1 − α)

∫ ∞

y1

(u − y1)−α∂u
(
∂xi Pu+y2 ∗ f

)
(x)du

= ∂xi Py2 ∗

(
1

Γ(1 − α)

∫ ∞

y1

(u − y1)−α(∂uPu) ∗ f
)
(x)du

)
=

(
∂xi Py2

)
∗ Dα

y1
u(y1, x).

We also have that

Iαy Dα
y
(
∂xi Py ∗ f

)
(x) = Iαy

((
∂xi Py2

)
∗ Dα

y1
u(y1, x)

)
= Iαy

((
∂xi Py−y1

)
∗ Dα

y1
u(y1, x)

)
=

1
Γ(α)

∫ ∞

y1+y2

(s − y1 − y2)α−1[(∂xi Ps−y1

)
∗ Dα

y1
u(y1, x)

]
ds

=
1

Γ(α)

∫ ∞

y2

(u − y2)α−1[(∂xi Pu
)
∗ Dα

y1
u(y1, x)

]
du

= Iαy2

(
∂xi Py2

)
∗ Dα

y1
u(x, y1).

Therefore
−∂xiu(x, y) = Iαy2

(
∂xi Py2

)
∗ Dα

y1
u(x, y1).

Notice that, for y1 = y2 = y/2, by Young’s convolution inequality and Lemma 3.2, we obtain∥∥∥∂xiu(x, y)
∥∥∥
∞
6 ‖Iαy/2

(
∂xi Py/2(x)

)
‖1‖Dα

y/2u(x, y/2)‖∞

. yα−1‖Dα
y/2u(·, y/2)(x)‖∞ . yα−1‖Lx−αu(x, y/2)‖∞,

which ends the proof. �

Now we establish a new characterization of the generalized Hölder space by means of the Djr-
bashian generalized fractional operator.

Theorem 3.2. Let γ ∈ Ω. Then the following statements are equivalent:

(1) f ∈ Λγ(·)(Rn).

(2) There exists a constant C > 0 such that

‖Lx−αu(x, y)‖∞ 6 C
γ(y)
yα

, (3.4)

for all sufficiently small y > 0 and x ∈ Rn.

Proof. By Theorem 3.1, with ω(x) = x−α, the first implication follows immediately.
For the converse, assume that condition (3.4) holds. Write

f (x + t) − f (x) =
(
u(x + t, y) − u(x, y)

)
+

(
f (x + t) − u(x + t, y)

)
−

(
f (x) − u(x, y)

)
,
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for any x ∈ Rn and for all sufficiently small |t|, y > 0 (t ∈ Rn), where again y does not depend on
x or t, but it is best to choose for this proof y = |t|. It is easy to see that |u(x + t, y) − u(x, y)| 6∫ 1

0
|∇u(h(r), y)||h′(r)|dr, where h(r) = rx + (1 − r)(x + t), 0 6 r 6 1. Hence, by Lemma 3.3 and

inequality (3.4) it follows that

|u(x + t, y) − u(x, y)| . yα−1γ(y/2)
yα

∫ 1

0
|h′(r)|dr 6 C2γ(y). (3.5)

Also, f (x + t) − u(x + t, y) = −
∫ y

0
∂su(x + t, s)ds. Now by Lemma 3.3 and inequality (3.4), we have

∥∥∥∂yu(x, y)
∥∥∥
∞
6

∫ ∞

y

n∑
k=1

‖∂xk∂xku(x,w)‖∞ dw .
∫ ∞

y
‖∂xku(x,w)‖∞

dw
w

.

∫ ∞

y

γ(w)dw
w2 .

(∫ δ0

y
+

∫ ∞

δ0

)
γ(w)dw

w2 .
γ(y)

y
,

where the last inequality is obtained from condition (2.1) and the fact that γ(y)/y > Cγ(1). Now, using
condition (2.2) we get

| f (x + t) − u(x + t, y)| 6
∫ y

0
‖∂su(x + t, s)‖∞ ds .

∫ y

0

γ(s)
s

ds . γ(y). (3.6)

Similarly, we obtain
| f (x) − u(x, y)| . γ(|t|). (3.7)

Hence, by conditions (3.5), (3.6) and (3.7) it follows that f ∈ Λγ(·)(Rn). �

Corollary 3.1. Let 0 < β < α 6 1. Then the following statements are equivalent:

(1) f ∈ Λxβ(Rn).

(2) There exists a constant C > 0 such that ‖Lx−αu(x, y)‖∞ 6 Cyβ−α for all sufficiently small y > 0 and
x ∈ Rn. In particular, for α = 1, we recover the Taibleson’s theorem.

4. Conclusions

In this paper we have proved a general version of Taibleson’s theorem by using a generalized Hölder
space and with the partial differentiation replaced by Djrbashian’s generalized fractional operator. In
particular, we recovered the classical result when the Djrbashian’s type operator becomes to the known
partial derivative. Future works can be directed to investigative some other classical results in more
general function spaces by means of different integro-differential operators.
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