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Abstract: In this article, we investigate the dynamics of a stochastic HIV model with a Hill-type
infection rate and distributed delay, which are better choices for mass action laws. First, we transform
a stochastic system with weak kernels into a degenerate high-dimensional system. Then the existence
of a stationary distribution is obtained by constructing a suitable Lyapunov function, which determines
a sharp critical value Rs

0 corresponding to the basic reproduction number for the determined system.
Moreover, the sufficient condition for the extinction of diseases is derived. More importantly, the exact
expression of the probability density function near the quasi-equilibrium is obtained by solving the
Fokker-Planck equation. Finally, numerical simulations are illustrated to verify the theoretical results.
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1. Introduction

Human immunodeficiency virus (HIV) is the one of the most harmful diseases, and thus has
always been a hot topic worthy of attention. Considering the crowding effect of the CD4+T cells
(prey of virus), Bairagi and Adak [1] proposed the HIV-1 system with a Hill type function based on
the following mass action principle:

dx
dt
= s − µx −

βxnv
an + xn ,

dy
dt
=
βxnv

an + xn − (α + µ)y,

dv
dt
= cαy − γv.

(1.1)

Here x(t), y(t) and v(t) denote the concentrations of activated CD4+T cells, infected CD4+T cells
and virus particles, respectively. n ≥ 1 is a Hill constant. Other parameters can be referred to in [1].
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Besides, from [1], the basic reproductive number for System (1.1) is as follows:

R1 =
βcαsn

γ(α + µ)(anµn + sn)
. (1.2)

And when R1 < 1, the disease-free equilibrium E0( s
µ
, 0, 0) is globally asymptotically stable, and

when R1 > 1, E0 is unstable and there exists a unique endemic equilibrium, which is globally
asymptotically stable. Considering that the growth of infected CD4+T cells is affected not only by the
number of normal cells, but also by the number of previous cells, we investigate the HIV system with
distributed delay:

dx
dt
= s − µx −

βxnv
an + xn ,

dy
dt
= β

∫ t

−∞

f (t − s)
xn(s)v(s)

an + xn(s)
ds − (α + µ)y,

dv
dt
= cαy − γv,

(1.3)

where the kernel f (t) = tkσk+1e−σt

k! is a gamma distribution initially proposed by Macdonald [2] and σ > 0
is a mean delay. For convenience, we choose the weak kernel case (k = 0), that is, f (t) = σe−σt. Let

w(t) =
∫ t

−∞

f (t − s)
xn(s)v(s)

an + xn(s)
ds.

Then System (1.3) is transformed into the equivalent form:

dx
dt
= s − µx −

βxnv
an + xn ,

dy
dt
= βw − (α + µ)y,

dv
dt
= cαy − γv,

dw
dt
= −σw +

σxnv
an + xn .

(1.4)

Xu [3] investigated the global asymptotic stability of an HIV-1 infection model with distributed
intracellular delays. Using methods similar to those in Theorems 2.3 and 2.4 of [1] and Theorems 3.1
and 3.2 of [3], we obtain the following results.

Theorem 1. (i) The disease-free equilibrium point E0( s
µ
, 0, 0, 0) of System (1.4) is globally

asymptotically stable when R1 < 1 and unstable when R1 > 1, where R1 is defined in Eq.(1.2);
(ii) The endemic equilibrium point E∗(x∗, y∗, v∗,w∗) of System (1.4) is globally asymptotically stable

when R1 > 1, where

x∗ = a
(

A
β − A

) 1
n

, y∗ =
γ

Acα

s − µa
(

A
β − A

) 1
n
 , v∗ =

cα
γ

y∗, w∗ =
α + µ

β
y∗,

with A = (µ+α)γ
cα .
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In addition, the infectious diseases are inevitably affected by environmental white noises [4–6]. In
view of the above, we consider the following stochastic HIV-1 model with distributed delay:

dx =
(
s − µx −

βxnv
an + xn

)
dt + σ1xdB1(t),

dy =
(
β

∫ t

−∞

σe−σ(t−s) xn(s)v(s)
an + xn(s)

ds − (α + µ)y
)

dt + σ2ydB2(t),

dv = (cαy − γv)dt + σ3vdB3(t),

(1.5)

where B j(t), j = 1, 2, 3 represent independent Brownion motions whose noise intensities are
expressed as σ2

j , j = 1, 2, 3. In [7–9], the existence of a stationary distribution and the extinction of
stochastic systems are studied based on the theory of Khasminskii [10] by constructing the suitable
Lyapunov function, which implies that the diseases will be prevalent or tend to extinction. In [11],
Guo and Zhang gave the numerical approximation for an HIV infection model incorporating the
mean-reverting Ornstein-Uhlenbeck process. In [12], the extinction and the existence of a unique
invariant probability measure for a stochastic HIV-1 infection model with degenerate diffusion were
obtained. In [13], a group of stochastic dynamic models of the HIV/AIDS infection in a host
population are presented, and global asymptotic and p−exponential stability of the disease-free
equilibrium in probability was investigated. The most difficulty with our work is determining how to
deal with the Hill-type infection rate and distributed delay when constructing the Lyapunov function
and proving the positive definiteness.

Similarly, let

w(t) =
∫ t

−∞

σe−σ(t−s) xn(s)v(s)
an + xn(s)

ds.

Then

dw
dt
= −σ2e−σt

∫ t

−∞

eσs xn(s)v(s)
an + xn(s)

ds + σ
xn(t)v(t)

an + xn(t)

= −σw(t) +
σxn(t)v(t)
an + xn(t)

.

Thus, System (1.5) is transformed into the following equivalent form:

dx =
(
s − µx −

βxnv
an + xn

)
dt + σ1xdB1(t),

dy = (βw − (α + µ)y) dt + σ2ydB2(t),
dv = (cαy − γv)dt + σ3vdB3(t),

dw =
(
−σw +

σxnv
an + xn

)
dt.

(1.6)

In comparison with other existing results, the achieved contributions and innovations can be
summarized as follows:

• A stochastic HIV model with a Hill-type infection rate and distributed delay is proposed, which
may reflect more reality than the existing ones.
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• The existence of a stationary distribution for System (1.6) is obtained by constructing a suitable
Lyapunov function, which determines a critical value R∗0 corresponding to the basic reproduction
number.
• The exact density function near the endemic quasi-equilibrium is given by solving the Fokker-

Planck equation.
• Our main innovation is the development of a technique to deal with the Hill-type infection rate,

which is different with the existing ones.

The rest of the article is organized as follows. In Section 2, the sufficient condition of the existence
of a stationary distribution for the stochastic system given by Eq.(1.5) is derived; it determines a sharp
critical value Rs

0. In Section 3, the extinction of the diseases is investigated. In Section 4, the exact
probability density function at the quasi-endemic equilibrium is derived. In Section 5, the numerical
results are illustrated. Finally, the conclusion is given briefly.

2. Stationary distribution for the stochastic system given by Eq.(1.6)

The existence and uniqueness of the global positive solution of System (1.6) will be given. Since
this is standard, we omit it.

Theorem 2. For any initial value (x(0), y(0), v(0),w(0)) ∈ R4
+, there exists a unique positive solution

(x(t), y(t), v(t),w(t)) for System (1.6) on t ≥ 0 and the solution will remain in R4
+ with a probability of

one.

Consider the following auxilary Logistic equation:

dX
dt
= s − µX + σ1X(t)dB1(t). (2.1)

Similar to Lemma 4.1 in [14] and [15], we have the following lemma:

Lemma 1. [14,15] Eq (2.1) has a unique stationary distribution with the density function f ∗(·) defined
by

f ∗(z) =
ba1

1

Γ(a1)
z−(a1+1)e−

b1
z , z > 0, (2.2)

where a1 =
2µ+σ2

1
σ2

1
, b1 =

2s
σ2

1
and Γ(·) is a Gamma function and the following equalities hold:∫ ∞

0
z f ∗(z) dz = lim

t→+∞

1
t

∫ t

0
X(t) dt = EX(t) =

s
µ
, a.s. (2.3)

∫ ∞

0
zn f ∗(z) dz =

bn
1Γ(a1 − n)
Γ(a1)

, a.s. if µ >
(n − 1)σ2

1

2
.

Proof. Eq.(2.1) has a unique stationary distribution with the density function f ∗(z) on (0,∞), which is
defined by Eq.(2.2) and Eq.(2.3) holds. In addition,∫ ∞

0
zn f ∗(z) dz =

ba1
1

Γ(a1)

∫ ∞

0
zn−a1−1e−

b1
z dz =

bn
1

Γ(a1)

∫ ∞

0
z̃a1−n−1e−z̃dz̃ =

bn
1Γ(a1 − n)
Γ(a1)

.
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Next, we consider the following integral equation:

X(t) = X(t0) +
∫ t

t0
b(s, X(s))ds +

k∑
r=1

∫ t

t0
σr(s, X(s))dBr(s), t ≥ t0 ≥ 0. (2.4)

Lemma 2. [10, 16] Suppose that System (2.4) has a global positive solution and there exists a non-
negative function V ∈ C2(R4

+,R+) and a bounded closed set D such that LV ≤ −1 for R4
+ \ D. Then

System (2.4) has a stationary distribution.

Next by applying a method similar to those in [7–9], which are based on the theory of Khasminskii
[10] and combining Theorem 2.1 and Lemmas 2.1 and 2.2, we obtain the following main result.

Theorem 3. Assuming that Rs
0 > 1 and µ > (n−1)σ2

1
2 , System (1.6) has a unique stationary distribution

π(·), where

Rs
0 =

s

µ +
σ2

1
2

 βcα

(α + µ + σ
2
2

2 )(γ + σ
2
3

2 )
(
an +

bn
1Γ(a1−n)
Γ(a1)

)


1
n

, (2.5)

where a1 =
2µ+σ2

1
σ2

1
and b1 =

2s
σ2

1
.

Proof. By Theorem 2 and Lemma 2, we only need to construct a Lyapunov function. For
convenience, denote F(x) = xn

an+xn . Noting that d
dx

(
F(x)

x

)
=

xn−2((n−1)an−xn)
(an+xn)2 , we have that

F(x)
x ≤

1/a, n = 1
(F((n − 1)

1
n a))/((n − 1)

1
n a), n > 1

≜ C1 for x ∈ (0,+∞). By the first equation of Eq.(1.6), we

have dx ≤ (s − µx)dt + σ1xdB1(t). By the comparison principle, we have that x(t) ≤ X(t), a.s. Define

V1 = − ln x − c1 ln y − c2 ln v − c3 ln w +
βC1

γ
v,

where

c1 =
s

n(α + µ + σ
2
2

2 )
n

√√
βcα

(α + µ + σ
2
2

2 )(γ + σ
2
3

2 )(an +
∫ +∞

0
xnπ(x) dx)

,

c2 =
s

n(γ + σ
2
3

2 )
n

√√
βcα

(α + µ + σ
2
2

2 )(γ + σ
2
3

2 )(an +
∫ +∞

0
xnπ(x) dx)

,

c3 =
s
σn

n

√√
βcα

(α + µ + σ
2
2

2 )(γ + σ
2
3

2 )(an +
∫ +∞

0
xnπ(x) dx)

.
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By Ito’s formula, Lemma 1 and F(x)
x ≤ C1, we have that,

LV1 = −
s
x
−

c1βw
y
−

c2cαy
v
−

c3σF(x)v
w

+
βF(x)v

x
+
βC1cαy
γ

− βC1v

+ c1

(
α + µ +

σ2
2

2

)
+ c2

(
γ +
σ2

3

2

)
+ c3σ +

(
µ +
σ2

1

2

)
≤ −

n∑
k=1

s
nx
−

c1βw
y
−

c2cαy
v
−

c3σF(x)v
w

+
βF(x)v

x
+
βC1cαy
γ

−
βF(x)v

x

+

(
µ +
σ2

1

2

)
+ c1

(
α + µ +

σ2
2

2

)
+ c2

(
γ +
σ2

3

2

)
+ c3σ − c4(an + xn) + c4(an + xn)

≤ −

n∑
k=1

s
nx
−

c1βw
y
−

c2cαy
v
−

c3σF(x)v
w

− c4(an + xn) +
βC1cαy
γ

+

(
µ +
σ2

1

2

)
+ c1

(
α + µ +

σ2
2

2

)
+ c2

(
γ +
σ2

3

2

)
+ c3σ + c4

(
an +

∫ ∞

0
zn f ∗(z) dz

)
+ c4

(
Xn −

∫ ∞

0
zn f ∗(z) dz

)
≤ − (n + 4)

(
c1c2c3c4βcασsn

nn

) 1
n+4

+ c1

(
α + µ +

σ2
2

2

)
+ c2

(
γ +
σ2

3

2

)
+ c3σ

+ c4

(
an +

∫ ∞

0
zn f ∗(z) dz

)
+
βC1cαy
γ

+

(
µ +
σ2

1

2

)
+ c4

(
Xn −

∫ ∞

0
zn f ∗(z) dz

)

≤ − s

 βcα

(α + µ + σ
2
2

2 )(γ + σ
2
3

2 )(an +
∫ ∞

0
zn f ∗(z) dz)


1
n

+

(
µ +
σ2

1

2

)
+
βC1cαy
γ

+ c4

(
Xn −

∫ ∞

0
zn f ∗(z) dz

)
=(1 − Rs

0)
(
µ +
σ2

1

2

)
+
βC1cαy
γ

+ c4

(
Xn −

∫ ∞

0
zn f ∗(z) dz

)
,

(2.6)

where Rs
0 is defined in Eq.(2.5), and

c4 =
s

n
(
an +

∫ ∞
0

zn f ∗(z) dz
) n

√√
βcα

(α + µ + σ
2
2

2 )(γ + σ
2
3

2 )(an +
∫ ∞

0
zn f ∗(z) dz)

.

The Itô formula is applied to

V2 = − ln x +
βC1

γ
v − ln v − ln w, V3 =

1
θ + 1

(
x +

y
2
+

(α + µ)v
4cα

+
βw
σ

)θ+1

,

where
0 < θ <

2k
p
, with p = max{σ2

1, σ
2
2, σ

2
3}, k = min{µ,

α + µ

2
, γ,
σ

2
}.
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Then

LV2 = −
s
x
+ βv

(
F(x)

x
−C1

)
+
βC1cαy
γ

−
cαy

v
−
σF(x)v

w
+ µ + γ + σ +

1
2

(σ2
1 + σ

2
3)

≤ −
s
x
+
βC1cαy
γ

−
cαy

v
−
σF(x)v

w
+ µ + γ + σ +

1
2

(σ2
1 + σ

2
3),

(2.7)

and

LV3 ≤

(
s − µx −

βw
2
−

(α + µ)y
4

−
(α + µ)γv

4cα

) (
x +

y
2
+

(α + µ)v
4cα

+
βw
σ

)θ
+
θ

2

(
x +

y
2
+

(α + µ)v
4cα

+
βw
σ

)θ−1

(σ2
1x2 +

σ2
2

4
y2 + σ2

3
(α + µ)2

(4cα)2 v2)

≤

(
s − µx −

βw
2
−

(α + µ)y
4

−
(α + µ)γv

4cα

) (
x +

y
2
+

(α + µ)v
4cα

+
βw
σ

)θ
+
θ

2
p
(
x +

y
2
+

(α + µ)v
4cα

+
βw
σ

)θ−1 x2 +

(y
2

)2
+

(
(α + µ)v

4cα

)2

+

(
βw
σ

)2
≤s

(
x +

y
2
+

(α + µ)v
4cα

+
βw
σ

)θ
− k

(
x +

y
2
+

(α + µ)v
4cα

+
βw
σ

)θ+1

+
θp
2

(
x +

y
2
+

(α + µ)v
4cα

+
βw
σ

)θ+1

≤A −
ρ

2

(
x +

y
2
+

(α + µ)v
4cα

+
βw
σ

)θ+1

≤A −
ρ

2

xθ+1 +

(y
2

)θ+1
+

(
(α + µ)v

4cα

)θ+1

+

(
βw
σ

)θ+1 ,

(2.8)

where ρ = k − θp2 > 0, and

A := max
(x,y,v,w)∈R4

+

{s
(
x + y

2 +
(α+µ)v

4cα +
βw
σ

)θ
−
ρ

2

(
x + y

2 +
(α+µ)v

4cα +
βw
σ

)θ+1
}.

Define
V(x, y, v,w) = MV1 + V2 + V3, (2.9)

where M is a positive constant sufficiently enough satisfying

−M(Rs
0 − 1)

(
µ +
σ2

1

2

)
+ µ +

σ2
1

2
+
σ2

3

2
+ γ + σ + A ≤ −2. (2.10)

By Eqs.(2.6)–(2.10), we have that

LV(x, y, v,w) ≤G(x, y, v,w) + Mc4

(
Xn −

∫ ∞

0
zn f ∗(z) dz

)
, (2.11)

where

G(x, y, v,w) = − 2 + (M + 1)
βC1cαy
γ

−
s
x
−

cαy
v
−
σF(x)v

w

−
ρ

2

xθ+1 +

(y
2

)θ+1
+

(
(α + µ)v

4cα

)θ+1

+

(
βw
σ

)θ+1 .
Electronic Research Archive Volume 30, Issue 11, 4066–4085.
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First, we consider the expression G(x, y, v,w) in two cases:
Case 1. If y→ 0+, then G(x, y, v,w) ≤ −2 + (M + 1)βC1cαy

γ
→ −2.

Case 2. If x → ∞ or x → 0+ or y → ∞ or v → ∞ or w → ∞ or y ↛ 0+, v → 0+ or x ↛ 0+, v ↛
0+, w→ 0+, then

G(x, y, v,w) ≤ − 2 + H −
s
x
−

cαy
v
−
σF(x)v

w

−
ρ

4

xθ+1 +

(y
2

)θ+1
+

(
(α + µ)v

4cα

)θ+1

+

(
βw
σ

)θ+1→ −∞,
where H = sup

y∈(0,+∞)
{(M + 1)βC1cαy

γ
−
ρ

4

(
y
2

)θ+1
}.

In light of the above, there exists a sufficiently small constant ε > 0 such that

G(x, y, v,w) < −1, for (x, y, v,w) ∈ R4
+ \ Dε,

where Dε = {(x, y, v,w) ∈ R4
+|ε ≤ x ≤ 1

ε
, ε ≤ y ≤ 1

ε
, ε2 ≤ v ≤ 1

ε2
, ε3 ≤ w ≤ 1

ε3
}.

By the continuity of G(x, y, v,w), there exists a positive constant K such that

G(x, y, v,w) ≤ K, for (x, y, v,w) ∈ R4
+.

Hence, integrating from 0 to t and taking the expectation for both sides of Eq.(2.11) give that

−E(V(x0, , y0, v0,w0)) ≤
∫ t

0
E(L(V(x(τ), y(τ), v(τ),w(τ))))dτ

+ Mc4E
(∫ t

0
Xn(τ)dτ −

∫ t

0

∫ ∞

0
zn f ∗(z) dzdτ

)
.

Let t → ∞, then,

0 ≤ lim inf
t→∞

1
t

∫ t

0
E(L(V(x(τ), y(τ), v(τ),w(τ))))dτ

= lim inf
t→∞

1
t

∫ t

0
E(L(V(x(τ), y(τ), v(τ),w(τ)))I(x,y,v,w)∈R4

+\Dε)dτ

+ lim inf
t→∞

1
t

∫ t

0
E(L(V(x(τ), y(τ), v(τ),w(τ)))I(x,y,v,w)∈Dε)dτ

≤ lim inf
t→∞

1
t

∫ t

0

(
−P((x(τ), y(τ), v(τ),w(τ)) ∈ R4

+\Dε) + KP((x(τ), y(τ), v(τ),w(τ)) ∈ Dε)
)

dτ

= lim inf
t→∞

1
t

∫ t

0
(−1 + P((x(τ), y(τ), v(τ),w(τ)) ∈ Dε) + KP((x(τ), y(τ), v(τ),w(τ)) ∈ Dε)) dτ

≤ − 1 + (1 + K) lim inf
t→∞

1
t

∫ t

0
P((x(τ), y(τ), v(τ),w(τ)) ∈ Dε)dτ,

which implies that,

lim inf
t→∞

1
t

∫ t

0
P((x, y, v,w) ∈ Dε)dτ ≥

1
1 + K

, (2.12)

where P(t, (x, y, v,w), ·) is the transition probability of (x(t), y(t), v(t),w(t)). By the invariance of R4
+ and

the inequality given by Eq.(2.12), there exists an invariant probability measure π(·) on R4
+, (see [17,18]).

The result is confirmed.
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3. Extinction of the diseases of System (1.6)

Theorem 4. Let (x(t), y(t), v(t),w(t)) be a solution of System (1.6) with any initial value
(x(0), y(0), v(0),w(0)) ∈ R4

+. Then the following results will hold:

lim
t→+∞

sup
ln (δ1y(t) + δ2v(t) + δ3w(t))

t
≤ µ̄,

where

δ1 =
1
α + µ

, δ2 =
λ

cα
, δ3 =

β

(α + µ)λσ
, λ =

3
√

R1,

κ = max{α + µ, γ, σ)}(λ − 1)I{λ≥1} +min{α + µ, γ, σ}(λ − 1)I{λ≤1},

µ̄ = κ +
σδ3

δ2

∫ ∞

0

∣∣∣∣∣∣F(X) − F
(

s
µ

)∣∣∣∣∣∣ f ∗(X)dX,

(3.1)

where R1 is defined by Eq.(1.2).
Especially, if µ̄ < 0, then the infected CD4+T cells population y(t) and virus particle v(t) will die

out exponentially with a probability of one.

Proof. Define
z(t) = δ1y(t) + δ2v(t) + δ3w(t).

Applying the Itô formula,

d(ln z) = L(ln z)dt +
δ1σ2y

z
dB2(t) +

δ2σ3v
z

dB3(t), (3.2)

where

L(ln z) =
1
z

(δ1βw + δ2cαy + δ3σF(x)v − δ1(α + µ)y − δ2γv − δ3σw) −
1

2z2 (δ2
1σ

2
2y2 + δ2

2σ
2
3v2)

≤
1
z

(
δ1βw + δ2cαy + δ3σF

(
s
µ

)
v − δ1(α + µ)y − δ2γv − δ3σw

)
+

v
z
σδ3

(
F(x) − F

(
s
µ

))
=

1
z

(δ1(α + µ), δ2γ, δ3σ)(Ms(y, v,w)T − (y, v,w)T) +
v
z
σδ3

(
F(x) − F

(
s
µ

))
≤

1
z

(λ − 1)(δ1(α + µ)y + δ2γv + δ3σw) +
v
z
σδ3

(
F(X) − F

(
s
µ

))
≤max{α + µ, γ, σ)}(λ − 1)I{λ≥1} +min{α + µ, γ, σ}(λ − 1)I{λ≤1}

+
σδ3

δ2

∣∣∣∣∣∣F(X) − F
(

s
µ

)∣∣∣∣∣∣ ,
and the monotone increasing property of F(X) with Ms =


0 0 β

α+µ
cα
γ

0 0
0 F( s

µ
) 0

 , and λ = 3√R1 =
3
√
βcαF( s

µ )

(α+µ)γ
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satisfies (δ1(α + µ), δ2γ, δ3σ)Ms = λ(δ1(α + µ), δ2γ, δ3σ). Integrating both sides of Eq.(3.2) yields that,
ln z(t)

t
≤

ln z(0)
t
+max{α + µ, γ, σ)}(λ − 1)I{λ≥1} +min{α + µ, γ, σ}(λ − 1)I{λ≤1}

+
σδ3

δ2

1
t

∫ t

0

∣∣∣∣∣∣F(X(τ)) − F
(

s
µ

)∣∣∣∣∣∣ dτ + M1(t)
t
+

M2(t)
t
,

(3.3)

where M1(t) =
∫ t

0
δ1σ2y(τ)

z(τ) dB2(τ) and M2(t) =
∫ t

0
δ2σ3v(τ)

z(τ) dB3(τ). Noting that the quadratic variation
⟨M1,M1⟩t

t =
σ2

2
t

∫ t

0
δ21y2(τ)
z2(τ) dτ ≤ σ2

2 < ∞,
⟨M2,M2⟩t

t ≤ σ2
3 < ∞,

lim
t→∞

Mi(t)
t
= 0, a.s., i = 1, 2. (3.4)

From the ergodic theorem and Eq.(3.3) and Eq.(3.4), it follows that,

lim
t→+∞

sup
ln z(t)

t
≤max{α + µ, γ, σ)}(λ − 1)I{λ≥1} +min{α + µ, γ, σ}(λ − 1)I{λ≤1}

+
σδ3

δ2

∫ ∞

0

∣∣∣∣∣∣F(x) − F
(

s
µ

)∣∣∣∣∣∣ f ∗(x)dx := µ̄, a.s..

If µ̄ < 0, it is obvious to get lim
t→+∞

z(t) = 0, a.s., which implies that lim
t→+∞

y(t) = lim
t→+∞

v(t) = lim
t→+∞

w(t) =
0, a.s. In the other words, infected cells will exponentially decrease to zero with a probability of one.

4. Probability density function of System (1.6)

We have obtained the existence of the stationary distribution of System (1.6). Next we give the
details about the local probability density function of System (1.6).

First, let x̄ = ln x, ȳ = ln y, v̄ = ln v, w = ln w, then by Itô’s formula, System (1.6) is transformed
into the following form:

dx̄ =
(
se−x̄ −

βe(n−1)x̄+v̄

an + enx̄ − µ1

)
dt + σ1dB1(t),

dȳ =
(
βew̄−ȳ − µ2 − α

)
dt + σ2dB2(t),

dv̄ =
(
cαeȳ−v̄ − µ3

)
dt + σ3dB3(t),

dw̄ =
(
σenx̄+v̄−w̄

an + enx̄ − σ

)
dt,

(4.1)

where µi = µ +
σ2

i
2 , i = 1, 2 and µ3 = γ +

σ2
3

2 .
Define

Rs
1 =

βcαsn

(anµn
1 + sn)(µ2 + α)µ3

, (4.2)

which is the same as Eq.(1.2) when σi = 0(i = 1, 2, 3). Define a quasi-endemic equilibrium Ẽ∗ =
(x̃∗, ỹ∗, ṽ∗, w̃∗) = (ex∗ , ey∗ , ev∗ , ew∗), where

x̃∗ = a
 Ã

β − Ã

 1
n

, ỹ∗ =
µ3

Ãcα

s − µ1a
 Ã

β − Ã

 1
n
 , ṽ∗ =

cα
µ3

ỹ∗, w̃∗ =
α + µ2

β
ỹ∗, (4.3)
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where Ã = (µ2+α)µ3
cα . And Ẽ∗ exists if and only if Rs

1 > 1, and Ẽ∗ is the same with the endemic equilibrium
E∗ of the determined system given by Eq.(1.4) when there is no white noises.

Let (x̂, ŷ, v̂, ŵ) = (x̄− x∗, ȳ−y∗, v̄−v∗, w̄−w∗), then the linearized system of Eq.(4.1) at (x∗, y∗, v∗,w∗)
is as follows:

dx̂ = (−a11 x̂ − a13v̂)dt + σ1dB1(t),
dŷ = (−a22ŷ + a22ŵ)dt + σ2dB2(t),
dv̂ = (a32ŷ − a32v̂)dt + σ3dB3(t),
dŵ = (a41 x̂ + a43v̂ − a43ŵ)dt,

(4.4)

where, combining (4.3),

a11 = µ1 +
nβane(n−1)x∗+v∗

(an + enx∗)2
> 0, a13 = βew∗−x∗ > 0, a22 = µ2 + α > 0,

a32 = cαey∗−v∗ = µ3 > 0, a41 =
nanσenx∗+v∗−w∗

(an + enx∗)2
> 0, a43 =

σenx∗+v∗−w∗

an + enx∗
= σ > 0.

It is obvious that
a11a43 = µ1σ + a41a13 > a41a13. (4.5)

Theorem 5. Let Y = (x̂, ŷ, v̂, ŵ) be a solution to Eq.(4.4) with the initial value
(x̂(0), ŷ(0), v̂(0), ŵ(0)) ∈ R4. If Rs

1 > 1, then there exists a unique density function Φ(Y) around the
quasi-equilibrium Ẽ∗, which can be approximately expressed in the following form

Φ(Y) = (2π)−2|Σ|−
1
2 e−

1
2 (x̂,ŷ,v̂,ŵ)Σ−1(x̂,ŷ,v̂,ŵ),

in which Σ = Σ1 + Σ2 + Σ3 is positive definite, Rs
1 is defined by Eq.(4.2), Σ1 = ρ

2
1M−1

1 Θ1(M−1
1 )T and

Σ2, Σ3 will be described below for different cases.

Proof. System (4.4) can be rewritten into dY = AYdt + ΛdB(t), where Y = (x̂, ŷ, v̂, ŵ)T ,
Λ = diag(σ1, σ2, σ3, 0), B(t) = (B1(t), B2(t), B3(t), 0) and

A =


−a11 0 −a13 0

0 −a22 0 a22

0 a32 −a32 0
a41 0 a43 −a43

 .
According to [19], the four dimensional Fokker-Planck equation to describe a density function

Φ(Y) = Φ(x̂, ŷ, v̂, ŵ) of the stationary distribution of Eq.(4.4) around the quasi-equilibrium Ẽ∗ is as
follows:

−
σ2

1∂
2Φ

2∂x̂2 −
σ2

2∂
2Φ

2∂ŷ2 −
σ2

3∂
2Φ

2∂v̂2 +
∂

∂x̂
((−a11 x̂ − a13v̂)Φ) +

∂

∂ŷ
((−a22ŷ + a22ŵ)Φ)

+
∂

∂v̂
((a32ŷ − a32v̂)Φ) +

∂

∂ŵ
((a41 x̂ + a43v̂ − a43ŵ)Φ) = 0,

which is an approximate representation of the Gaussian distribution Φ(Y) = ke−
1
2 (Y−Y∗)Q(Y−Y∗)T

, with
Y∗ = (0, 0, 0, 0); also, Q is a real symmetric matrix, which satisfies QΛ2Q + AT Q + QA = 0. If Q
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is positive-definite, let Q−1 = Σ, then Λ2 + AΣ + ΣAT = 0. By the finite independent superposition
principle,

Λ2
i + AΣi + ΣiAT = 0, i = 1, 2, 3, (4.6)

where Σ = Σ1 + Σ2 + Σ3, Λ
2 = Λ2

1 + Λ
2
2 + Λ

2
3, Λ1 = diag(σ1, 0, 0, 0), Λ2 = diag(0, σ2, 0, 0), Λ3 =

diag(0, 0, σ3, 0).
Step 1. For System (4.4), we consider

Λ2
1 + AΣ1 + Σ1AT = 0. (4.7)

Let

M1 =


a22a32a41 a2

22a32 + a22a2
32 + a3

32 −a3
32 + a22a43a32 −a2

22a32 − a22a2
32 − a43a22a32

0 −a2
32 − a22a32 a2

32 a22a32

0 a32 −a32 0
0 0 1 0

 ,
then

B1 = M1AM−1
1 =


−N1 −N2 −N3 −N4

1 0 0 0
0 1 0 0
0 0 1 0

 , (4.8)

where
N1 = a11 + a22 + a32 + a43 > 0,
N2 = a11a22 + a11a32 + a11a43 + a22a32 + a22a43 + a32a43 > 0,
N3 = a11(a43a22 + a43a32 + a22a32) > 0,
N4 = a13a22a32a41 > 0.

(4.9)

Then, by incorporating Eq.(4.8), Eq.(4.7) is transformed into the following form:

M1Λ
2
1MT

1 + B1(M1Σ1MT
1 ) + (M1Σ1MT

1 )BT
1 = 0,

which implies that
1
σ2

1

Λ2
1 + B1Θ1 + Θ1BT

1 = 0, (4.10)

where Θ1 =
1
ρ2

1
M1Σ1MT

1 with ρ1 = a22a32a41σ1.
By tedious and complex computation and the incorporation of (4.5), we get that

N1(N2N3 − N1N4) − N2
3 > a3

11(a32 + a43) (a22(a22 + a32 + a43) + a32a43)

+ a2
11

(
a22a43((a22 + a43)2 + 3a32(a22 + a32 + a43)) + a22a32(a22 + a32)2 + a32a43(a32 + a43)2

)
+ a11

(
a2

43

(
a2

22(a22 + a43) + a2
32(a32 + a43)

)
+ a2

22a2
32(a22 + a32 + 3a43)

+a43a22a32

(
a43(3a32 + a22) + (a43 + a22)2

))
> 0.

By Lemma 3.1 of [20], Θ1 is positive definite. Then Σ1 = ρ
2
1M−1

1 Θ1(M−1
1 )T is also a positive definite

matrix.
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Step 2. For System (4.4), we consider

Λ2
2 + AΣ2 + Σ2AT = 0. (4.11)

Let

T1 = M2AM−1
2 =


−a22 0 −

a22a43
a13

a22

a32 −a32 0 0
0 −a13 −a11 0
0 0 ω1

a13
−a43

 with M2 =


0 1 0 0
0 0 1 0
1 0 0 0

a43
a13

0 0 1

 ,
where ω1 = a2

43 − a11a43 + a13a41.
Case 2.1. If ω1 , 0, we find the standard matrix M21 such that B1 = M21T1M−1

21 , where

M21 =


−a32ω1 (a11 + a32 + a43)ω1

(a2
11+a11a43+a2

43)ω1

a13
−a3

43

0 −ω1
−(a11+a43)ω1

a13
a2

43

0 0 ω1
a13

−a43

0 0 0 1

 ,
and B1 is defined in Eq.(4.8). Similar to Step 1, Eq.(4.11) is transformed into the following equation:

1
σ2

2

Λ2
2 + B1Θ1 + Θ1BT

1 = 0,

which is the same with Eq.(4.10), and Θ1 is positive definite which implies that
Σ2 = ρ

2
21(M21M2)−1Θ1(M−1

2 M−1
21 )T with ρ21 = a32|ω1|σ2 is also positive definite.

Case 2.2. If ω1 = 0, there exists a new standard matrix M22 such that B2 = M22T1M−1
22 , where

M22 =


−a13a32 a11a13 + a13a32 a2

11 0
0 −a13 −a11 0
0 0 1 0
0 0 0 1

 , B2 =


−H11 −H12 −H13 −H14

1 0 0 0
0 1 0 0
0 0 0 −a43

 .
Similarly, Eq (4.11) is transformed into the following form

(M22M2)Λ2
2(M22M2)T + B2(M22M2)Σ2(M22M2)T + (M22M2)Σ2(M22M2)T BT

2 = 0,

which implies that
1
σ2

2

Λ2
2 + B2Θ2 + Θ2BT

2 = 0, (4.12)

where Θ2 =
1
ρ2

22
(M22M2)Σ2(M22M2)T with ρ22 = a13a32σ2. Direct computation induces that

H11 = a11 + a22 + a32 > 0, H13 = a22a32(a11 − a43) =
a22a32a13a41

a43
> 0, and by ω1 = 0,

H11H12 − H13 = a2
11(a22 + a32) + a2

22(a11 + a32) + a22a32(2a11 + a43 + a32) + a11a2
32 > 0.

By Lemma 3.2 of [20], Θ2 is semi-positive definite. Then Σ2 = ρ
2
22(M22M2)−1Θ2((M22M2)−1)T is

also semi-positive definite.
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Hence, for System (4.4), Σ2 is positive definite for ω1 , 0 or semi-positive definite for ω1 = 0.
Step 3. For System (4.4), we consider the following algebraic equation:

Λ2
3 + AΣ3 + Σ3AT = 0. (4.13)

Likewise, let

T2 = M3AM−1
3 =


−a32 0 0 a32

a43 −a43 −
a13a41

a43
a41 0

0 −
a13ω1

a2
43

a13a41
a43
− a11 0

0 a22 0 −a22

 with M3 =


0 0 1 0
0 0 0 1
1 0 0 a13

a43

0 1 0 0

 .
Next, we discuss them in three cases.
Case 3.1. If ω1 , 0, let C3 = P3T2P3

−1, where

P3 =


1 0 0 0
0 1 0 0
0 0 1 0

0 0 a22a2
43

a13ω1
1

 , C3 =


−a32 0 −

a22a32a2
43

a13ω1
a32

a43 −a43 −
a13a41

a43
a41 0

0 −
a13ω1

a2
43

a13a41
a43
− a11 0

0 0 a22a43ω2
a13ω1

−a22

 ,
with ω2 = a13a41 − a11a43 + a22a43.

Case 3.1.1. If ω2 , 0, there exists a standard matrix M31 such that B1 = M31C3(M−1
31 ), where

M31 =


−a22ω2

a22(a11+a22+a43)ω2
a43

ω31 −a3
22

0 −
a22ω2

a43
−

a22ω2(a11a43−a13a41+a22a43)
a13ω1

a2
22

0 0 a22a43ω2
a13ω1

−a22

0 0 0 1


with

ω31 = −
a22

a13ω1

(
a11(a11a43 − a13a41)2 − a13a41(−a22ω1 + a11a2

43 − a13a41a43) − a3
22a2

43

)
,

and B1 is defined in Eq.(4.8). Similar to Step 1, Eq.(4.13) is transformed into the following equation:

1
σ2

3

Λ2
3 + B1Θ1 + Θ1BT

1 = 0,

which is the same with Eq.(4.10), and Θ1 is positive definite which implies that
Σ3 = ρ

2
31(M31P3M3)−1Θ1((M31P3M3)−1)T with ρ31 = a22|ω2|σ3 > 0 is also positive definite.

Case 3.1.2. If ω2 = 0, then

B3 ≜ M32C3M−1
32 =


−H21 −H22 −H23 −H24

1 0 0 0
0 1 0 0
0 0 0 −a22

 ,
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where

M32 =


−

a13ω1
a43

a13(a11+a43)ω1

a2
43

a43a2
11−a13a41a11−a13a41a43

a43
0

0 −
a13ω1

a2
43

a13a41
a43
− a11 0

0 0 1 0
0 0 0 1

 .
Direct computation yields that

H21 = a11 + a32 + a43 > 0, H23 = a32a43(a11 − a22) = a32a13a41 > 0, and by ω2 = 0,
H21H22 − H23 = (a11 + a32)(a11a32 + a11a43 + a2

43) + a22a32a43 > 0.

Similarly, Eq.(4.13) is transformed into the following equation:

1
σ2

3

Λ2
3 + B3Θ3 + Θ3BT

3 = 0.

By Lemma 3.2 of [20], Θ3 is semi-positive definite, which implies that
Σ3 = ρ

2
32(M32P3M3)−1Θ2((M32P3M3)−1)T with ρ32 =

a13 |ω1 |

a43
σ3 > 0 is also semi-positive definite.

Case 3.2. If ω1 = 0, then

B4 ≜ M33T2M−1
33 =


−H31 −H32 −H33 −H34

1 0 0 0
0 1 0 0
0 0 0 a13a41

a43
− a11

 ,
where

M33 =


a22a43 −a2

22 − a22(a43 +
a13a41

a43
) a22a41 a2

22

0 a22 0 −a22

0 0 0 1
0 0 1 0

 ,
and

H31 =
1

a43
(a13a41 + a22a43 + a32a43 + a2

43) > 0, H33 =
a13a22a32a41

a43
> 0,

H31H32 − H33 =
1

a2
43

(a22a43 + a32a43 + a13a41 + a2
43)(a22a2

43 + a13a41(a22 + a32))

+
a22a32

a43
(a22 + a32 + a43) > 0.

Similarly, Eq.(4.13) is transformed into the following form:

1
σ2

3

Λ2
3 + B4Θ4 + Θ4BT

4 = 0.

By Lemma 3.2 of [20], Θ4 is semi-positive definite, which implies that
Σ3 = ρ

2
33(M33M3)−1Θ4((M33M3)−1)T with ρ33 = a22a43σ3 > 0 is also semi-positive definite.

Hence, for System (4.4), Σ3 is positive definite for ω1 , 0, ω2 , 0 and semi-positive definite for
ω1 , 0 and ω2 = 0 or ω1 = 0.

With all the things above, Σ = Σ1 + Σ2 + Σ3 in Eq.(4.6) is positive definite. Thus, there is a local
asymptotic density function Φ(x̂, ŷ, v̂, ŵ) near the quasi-endemic equilibrium Ẽ∗.
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5. Numerical simulations

In this section, we give some numerical simulations to illustrate our theoretical results.

5.1. Determined system given by Eq.(1.4)

For the ODE system given by Eq.(1.4), the parameters refer to the data in [1] as follows

s = 9, µ = 0.01, β = 0.005, a = 50, c = 550, σ = 0.5, α = 0.35, γ = 2, n = 1. (5.1)

By Eq.(1.2), we obtain R1 =
βcαsn

γ(α+µ)(anµn+sn) ≈ 1.2664 > 1; then, there exists an endemic equilibrium

point E∗(x∗, y∗, v∗,w∗), where x∗ = a
(

A
β−A

) 1
n
≈ 148.45, y∗ = γ

Acα (s − µx∗) ≈ 20.8763, v∗ = cα
γ

y∗ ≈
2009.3 and w∗ = α+µ

β
y∗ ≈ 1503.1, with A = (µ+α)γ

cα � 0.0037. By Theorem 1.1(ii), the endemic
equilibrium point E∗ is globally asymptotically stable, as illustrated in Figure 1 (red lines). By
decreasing the value c by c = 400, we obtain R1 = 0.9211 < 1. By Theorem 1.1(i), the disease-free
equilibrium point E0(900, 0, 0, 0) is globally asymptotically stable, as illustrated in Figure 1 (blue
lines).
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Figure 1. Paths of x(t), y(t), v(t) and w(t) of the deterministic HIV system given by Eq.(1.4)
with the initial value: (x(0), y(0), v(0),w(0)) = (400, 50, 50, 50).
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5.2. Stochastic system given by Eq.(1.6)

In the subsection, we consider the effect of white noises on the HIV system and establish the
discretized system by Milstein method [21]:

xk+1 = xk +

(
s − µxk −

βxn
kvk

an + xn
k

)
∆t + σ1xk

√
∆tξk +

1
2
σ2

1xk(ξ2
k − 1)∆t,

yk+1 = yk + (βwk − (α + µ)yk)∆t + σ2yk

√
∆tζk +

1
2
σ2

2yk(ζ2
k − 1)∆t,

vk+1 = vk + (cαyk − γvk)∆t + σ3vk

√
∆tςk +

1
2
σ2

3vk(ς2
k − 1)∆t,

wk+1 = wk +

(
−σwk +

σxn
kvk

an + xn
k

)
∆t,

where ξk, ζk, ςk (k = 1, 2, · · · ) are independent Gaussian random variables, which satisfy the standard
normal distribution N(0, 1).

Fixing the same parameters as Eq.(5.1), we choose the noise intensities σ1 = 0.05, σ2 = 0.08, σ3 =

0.08. By Eq.(2.5), we get that

Rs
0 =

s

µ +
σ2

1
2

 βcα

(α + µ + σ
2
2

2 )(γ + σ
2
3

2 )
(
an +

bn
1Γ(a1−n)
Γ(a1)

)


1
n

= 1.2451 > 1.

Then by Theorem 3, there exists a stationary distribution for the degenerate system given by
Eq.(1.6), which implies the persistence of the disease, as illustrated in the left graph of Figure 2. The
right graph of Figure 2 demonstrates the distribution of a density function near the deterministic
steady state.
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Figure 2. (Left) paths of x(t), y(t) and v(t) for System (1.5) with the given initial value
(x(0), y(0), v(0)) = (2, 2, 5), which implies the persistence of the diseases; (right) Histograms
of the probability density functions of x(t), y(t) and v(t).
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Further increasing the noise intensitiesσ1 = σ2 = σ3 = 0.3 and choosing
µ = 0.07, β = 0.005, c = 50, α = 0.5, a = 100 andσ = 0.9, we obtain from Eq.(3.1) that
µ̄ = −0.1715 < 0. From Theorem 4, we know that the infected CD4+T cell population y(t) and virus
particle v(t) tend to extinction (see Figure 3).
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Figure 3. Paths of x(t), y(t) and v(t) for System (1.5) with the given initial value
(x(0), y(0), v(0)) = (100, 2, 5), which implies the extinction of the diseases.

6. Discussion and conclusions

Some authors give the numerical simulations and theoretical analysis for an HIV infection model
with CD4+ T-cells. For example, Evirgen et al. [22] gave the existence and uniqueness of the solutions
for a fractionalized HIV infection model with the Atangana-Baleanu fractional derivative by using the
Arzela-Ascoli theorem. Umar et al. [23] provided the numerical outcomes of a nonlinear HIV infection
system, which is different from the Runge-Kutta method. Dewasurendra et al. [24] applied the MDDiM
method to an HIV infection model of CD4+ T-cells, which shows the advantages over HAM.

Our main difference is the proposal of an HIV model with a Hill-type infection rate xn

an+xn (n ≥ 1)
and distributed delay under the disturbance of white noise and proof of the existence of a stationary
distribution by constructing a suitable Lyapunov function, which is a vast challenge. More importantly,
we have given the exact local probability density function near the quasi-equilibrium by solving the
corresponding Fokker-Planck equation. We have given the rigorous mathematical proof by describing
the dynamics of the system, not only the numerical simulations.

In this paper, we first demonstrated the global asymptotical stability of the disease-free equilibrium
and endemic equilibrium for the deterministic system. Second, the existence of a stationary distribution
for an equivalent degenerate stochastic system was derived to obtain the sharp critical value Rs

0 by
using the theory of Khasminskii. Rs

0 is consistent with the basic reproduction number without the
white noises. Under a certain condition, the sufficient conditions for the extinction of the diseases have
been given. In the part of numerical simulation, by incorporating the experimental data [25], we have
applied the default parameter values given in Table 1 of [1] to verify the effectiveness of a stochastic
system with degenerate diffusion.

There are still many interesting and instructive issues worthy of further study. For example, we
consider the existence and uniqueness of the positive periodic solutions for the complex periodic
system.
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22. F. Evirgen, S. Ucar, N. Özdemir, System analysis of HIV infection model with CD4+ T
under Non-Singular kernel derivative, Appl. Math. Nonlinear Sci., 5 (2020), 139–146.
https://doi.org/10.2478/amns.2020.1.00013

23. M. Umar, Z. Sabir, M. A. Z. Raja, H. M. Baskonus, S. W. Yao, E. Ilhan, A novel study of Morlet
neural networks to solve the nonlinear HIV infection system of latently infected cells, Results
Phys., 25 (2021), 104235. https://doi.org/10.1016/j.rinp.2021.104235

24. M. Dewasurendra, Y. Zhang, N. Boyette, I. Islam, K. Vajravelu, A method of directly defining
the inverse mapping for a HIV infection of CD4+ T-cells model, Appl. Math. Nonlinear Sci., 6
(2021), 469–482. https://doi.org/10.2478/amns.2020.2.00035

25. D. Ho, A. Neumann, A. Perelson, W. Chen, J. Leonard, M. Markowitz, Rapid turnover of
plasma virons and CD4 lymphocytes in HIV-1 infection, Nature, 373 (1995), 123–126.
https://doi.org/10.1038/373123a0

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 30, Issue 11, 4066–4085.

http://dx.doi.org/https://doi.org/10.1016/j.amc.2018.12.007
http://dx.doi.org/https://doi.org/10.1016/j.apm.2016.05.007
http://dx.doi.org/https://doi.org/10.1137/19M1246973
http://dx.doi.org/https://doi.org/10.1016/j.amc.2014.03.035
http://dx.doi.org/https://doi.org/10.3934/dcds.2009.24.1005
http://dx.doi.org/https://doi.org/10.1017/jpr.2015.18
http://dx.doi.org/https://doi.org/10.2307/1427522
http://dx.doi.org/https://doi.org/10.1137/0149110
http://dx.doi.org/https://doi.org/10.1016/j.matcom.2021.08.003
http://dx.doi.org/https://doi.org/10.1137/S0036144500378302
http://dx.doi.org/https://doi.org/10.2478/amns.2020.1.00013
http://dx.doi.org/https://doi.org/10.1016/j.rinp.2021.104235
http://dx.doi.org/https://doi.org/10.2478/amns.2020.2.00035
http://dx.doi.org/https://doi.org/10.1038/373123a0
http://creativecommons.org/licenses/by/4.0

	Introduction
	Stationary distribution for the stochastic system given by Eq.(1.6)
	Extinction of the diseases of System (1.6)
	Probability density function of System (1.6)
	Numerical simulations
	Determined system given by Eq.(1.4)
	Stochastic system given by Eq.(1.6)

	Discussion and conclusions

