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Abstract: In this article, we investigate the dynamics of a stochastic HIV model with a Hill-type
infection rate and distributed delay, which are better choices for mass action laws. First, we transform
a stochastic system with weak kernels into a degenerate high-dimensional system. Then the existence
of a stationary distribution is obtained by constructing a suitable Lyapunov function, which determines
a sharp critical value R} corresponding to the basic reproduction number for the determined system.
Moreover, the sufficient condition for the extinction of diseases is derived. More importantly, the exact
expression of the probability density function near the quasi-equilibrium is obtained by solving the
Fokker-Planck equation. Finally, numerical simulations are illustrated to verify the theoretical results.
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1. Introduction

Human immunodeficiency virus (HIV) is the one of the most harmful diseases, and thus has
always been a hot topic worthy of attention. Considering the crowding effect of the CD4*T cells
(prey of virus), Bairagi and Adak [1] proposed the HIV-1 system with a Hill type function based on
the following mass action principle:

dx Bx"v

— =5 —ux-— ,

dt H a" + x*

dy Bx"v

2 —(a + )y, 1.1
dt  a*+ x" (4 40y (D
dv

— = cay — yv.

dr Y=Y

Here x(1), y(t) and v(¢) denote the concentrations of activated CD4*T cells, infected CD4*T cells
and virus particles, respectively. n > 1 is a Hill constant. Other parameters can be referred to in [1].
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Besides, from [1], the basic reproductive number for System (1.1) is as follows:

R = peas” . (1.2)
(@ + p)(a* " + s")

And when R; < 1, the disease-free equilibrium Eo(ﬁ, 0,0) is globally asymptotically stable, and
when R; > 1, E, is unstable and there exists a unique endemic equilibrium, which is globally
asymptotically stable. Considering that the growth of infected CD4*T cells is affected not only by the
number of normal cells, but also by the number of previous cells, we investigate the HIV system with

distributed delay:
dx Bx"v
—_— =5 — —_
Hr ar+ x"’

x”
Y-p f £t - n(s)v,f()) S— (@ + Wy, (1.3)

= ca v,
dt Y=

k+l

where the kernel f(7) = " is a gamma distribution initially proposed by Macdonald [2] ando >0
is a mean delay. For convenlence we choose the weak kernel case (k = 0), thatis, f() = oe™”".  Let

w(t) = f Fli - 5 2SS

a” + x”(s)
Then System (1.3) is transformed into the equivalent form:

dx Bx"v
— =5 —ux— ,
dt H ar + x"
d

= = pw—(@+py,

(1.4)
i = cay —yv,

dw ox'v
— = —ow+ )
dt ar + x"

Xu [3] investigated the global asymptotic stability of an HIV-1 infection model with distributed
intracellular delays. Using methods similar to those in Theorems 2.3 and 2.4 of [1] and Theorems 3.1
and 3.2 of [3], we obtain the following results.

Theorem 1. (i) The disease-free equilibrium point Eo(ﬁ, 0,0,0) of System (1.4) is globally
asymptotically stable when R, < 1 and unstable when Ry > 1, where R, is defined in Eq.(1.2);

(ii) The endemic equilibrium point E*(x*,y*,v*,w") of System (1.4) is globally asymptotically stable
when R, > 1, where

X =a . = — 1|5 —ua , V. = —y, W = N
B-4] 7 T Al H\BZa e B3

; — (wroyy
with A = =
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In addition, the infectious diseases are inevitably affected by environmental white noises [4-6]. In
view of the above, we consider the following stochastic HIV-1 model with distributed delay:

n

dx:(s—,ux— Py

)dl + o1 xdBq (1),

a* + x"
! n
dy = ﬁf O'e_‘T(H)Mds — (@ + p)y|dt + oydBs (1), (1.3)
oo a + x'(s)
dv = (cay — yv)dt + o3vdB;(t),
where B;(t), j = 1,2,3 represent independent Brownion motions whose noise intensities are

expressed as 0'3, j=1,2,3. In[7-9], the existence of a stationary distribution and the extinction of
stochastic systems are studied based on the theory of Khasminskii [10] by constructing the suitable
Lyapunov function, which implies that the diseases will be prevalent or tend to extinction. In [11],
Guo and Zhang gave the numerical approximation for an HIV infection model incorporating the
mean-reverting Ornstein-Uhlenbeck process. In [12], the extinction and the existence of a unique
invariant probability measure for a stochastic HIV-1 infection model with degenerate diffusion were
obtained. In [13], a group of stochastic dynamic models of the HIV/AIDS infection in a host
population are presented, and global asymptotic and p—exponential stability of the disease-free
equilibrium in probability was investigated. The most difficulty with our work is determining how to
deal with the Hill-type infection rate and distributed delay when constructing the Lyapunov function
and proving the positive definiteness.

Similarly, let
! n
w(?) :f oot T2V (s)v(s) ds

- ar+ x'(s)
Then
dw _ 5 T X(s)v(s) X(O)v(1)
dr 7 ‘[we a" + x”(s)ds - a" + x'(t)
_ ox"(H)v(t)
= —ow(t) + P o0

Thus, System (1.5) is transformed into the following equivalent form:

X'y

a’ + x"
dy = (Bw — (a + p)y) dt + o2yd By (1),
dv = (cay — yv)dt + o3vdB;(t),

dw = (—O'W + arxy )dt.

dx = (s — ux — B )dt + o1xdBq (1),

(1.6)

a” + x"

In comparison with other existing results, the achieved contributions and innovations can be
summarized as follows:

e A stochastic HIV model with a Hill-type infection rate and distributed delay is proposed, which
may reflect more reality than the existing ones.
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e The existence of a stationary distribution for System (1.6) is obtained by constructing a suitable
Lyapunov function, which determines a critical value R corresponding to the basic reproduction
number.

e The exact density function near the endemic quasi-equilibrium is given by solving the Fokker-
Planck equation.

e Our main innovation is the development of a technique to deal with the Hill-type infection rate,
which is different with the existing ones.

The rest of the article is organized as follows. In Section 2, the sufficient condition of the existence
of a stationary distribution for the stochastic system given by Eq.(1.5) is derived; it determines a sharp
critical value R;. In Section 3, the extinction of the diseases is investigated. In Section 4, the exact
probability density function at the quasi-endemic equilibrium is derived. In Section 5, the numerical
results are illustrated. Finally, the conclusion is given briefly.

2. Stationary distribution for the stochastic system given by Eq.(1.6)

The existence and uniqueness of the global positive solution of System (1.6) will be given. Since
this 1s standard, we omit it.

Theorem 2. For any initial value (x(0), y(0), v(0), w(0)) € Ri, there exists a unique positive solution
(x(t), y(t), v(t), w(t)) for System (1.6) on t > 0 and the solution will remain in Ri with a probability of
one.

Consider the following auxilary Logistic equation:

dX
o s —uX + o1 X(@0)dB(1). 2.1

Similar to Lemma 4.1 in [14] and [15], we have the following lemma:

Lemma 1. [14,15] Eq (2.1) has a unique stationary distribution with the density function f*(-) defined

by
(@)= b—(lllz_(‘“”)e_b?l z2>0 (2.2)
I'(ay) ’ ’
where a; = 2”%20%, by = i—i and I'(+) is a Gamma function and the following equalities hold:
< 1 s
zf (z)dz = lim — X(t)dt = EX(t) = —, a.s. 2.3)
0 t—+oo 0 M
o b'T(a; —n) (n—1)o?
'fr()dz = —-=,  as. ifu> ——02 .
[ #r@d= 27 >

Proof. Eq.(2.1) has a unique stationary distribution with the density function f*(z) on (0, c0), which is
defined by Eq.(2.2) and Eq.(2.3) holds. In addition,

foo e — b foo ety g b oty bil(a; — n)
0 I'(ar) Jo I'(ar) Jo ['(a) .
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Next, we consider the following integral equation:
t k t
X() = X(1y) + f b(s, X(s))ds + Zf o, (s, X(s5)dB,(s), t >ty > 0. 2.4)
1o r=1 Y10

Lemma 2. [10, 16] Suppose that System (2.4) has a global positive solution and there exists a non-
negative function V.€ C*(R*,R,) and a bounded closed set D such that LV < —1 for R* \ D. Then
System (2.4) has a stationary distribution.

Next by applying a method similar to those in [7-9], which are based on the theory of Khasminskii
[10] and combining Theorem 2.1 and Lemmas 2.1 and 2.2, we obtain the following main result.

n— 0'2 . . . . .
Theorem 3. Assuming that R} > 1 and p > ( ;) L, System (1.6) has a unique stationary distribution
n(-), where
1
. s Bea
Ry = o? 2 o} BT (a) - ’ (2.5)
1 ) 3 n iIai—n)
”+7 (a+#+7)(’y+7)(a + T(a1) )

2/v¢+0'2
where a; = 2= and by = 3.
9 91

Proof. By Theorem 2 and Lemma 2, we only need to construct a Lyapunov function. For

convenience, denote F(x) = ﬁ Noting that % (@) = %, we have that
1/a, =1 )

@ < /o | | " = C, for x € (0, +0). By the first equation of Eq.(1.6), we
(F((n=1Dra))/(n—-1)ra), n>1

have dx < (s — ux)dt + o1 xdB,(t). By the comparison principle, we have that x() < X(f), a.s. Define

_ C
Vi=—-Inx-c¢; 1ny—c21nv—c31nw+'ﬂv,
Y

where

S

Peca
n(a+p+2) \(@+u+ D+ D@+ [ xa(x)dx)

s Peca
C2 = 0_2 n 0_2 0_2 +00 ’
n(y +5) \(@+p+F)y+5)a" + fo xX'm(x) dx)

s Bea
C3 = on n e = T .
(@+p+ F)y+ )@+ fo x"m(x) dx)
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By Ito’s formula, Lemma 1 and @ < C,, we have that,

LV = s c1fw _ Ccay c3;oF(x)v N BF(x)v N BCicay _BCyy
X y v w X 0%
0'2 0'2 0'2
+C1(a’+/.l+7)+C2(7+7)+C30’+(M+7)
s cfw  ccay c30F(x)v N BF(x)v N BCicay BF(x)v

S_ _
= nx y v w X 0% X

o2 o2 o2
+(,u+71)+c1(a/+,u+72)+02(7+73)+C30'—C4(a"+xn)+c4(an+xn)

IA
|

5 ci1Bfw  crca c;oF(x)v Cica
s apw  ccay  c30F(x) —c4(a”+x”)+ﬁ1 y
n

k=1 Y v
2

X
o1 o3 o5 *
Rl a+ﬂ+7 tolyt S tarta a"+f Z'f (@) dz
0

+C4(X”—f z”f*(z)dz)
0

2

n nlﬁ 2
<-(n+4) (clczc_gc:fcao-s ) + ¢ (af +u+ %) + (y + %) + 30
oo o2 (2.6)
+cy (a" + f 7'f*(2) dz) + BCicay ( _1) (X" f 7'f*(2) dz)
0 Y 2 0

[ Bea ] ﬁClcay

<-5
(@+p+ Dy + D@+ [T 21 d2) 4

+cy (X"—f z"f*(z)dz)
0
2 Y 0

where R} is defined in Eq.(2.5), and

Ry Bea
Cq = o n = = - .
n(a+ [[or@d) N @+ p+ S+ D+ [ @ do)
The Ito formula is applied to

1 0+1
(x+§+w+ﬁ_vv) ,

— ,BCI —
Vo=—Inx+"—v-Inv-Inw, Vs=——
2 nx \% nv nw 3 0+ 1 dea o

where ok
+
0<6<=, with p=max{o?, 02 o2}, k=min{y, 0‘2“, y, %}.
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Then
— F C F 1
LVs =2 +pv (ﬁ—c) PCicay —ﬂ—w+y+y+a+—(a%+o-§)
X X 0% v w 2 @7
C F 1 ’
< —§+ﬁ 17cozy - ij -z vix)v +,u+)/+<7+§(<7%+0'§),
and .
o Bw  (a+py (a+mpyv y  (a+pyv  PBw
LV <|s—pux—-22 - - 2 B2
V3_(S = 4 4ea x+2+ dea " o
0 y ety g\ L, 05, L@’
+2(x+2+ o +0' (0'1x+4y + 035 (4ca)2v)
0
<[s— x_,B_w (@+py (@+myw)i v (e+py pw
2 4 4ea 2 dea o
( , (@ +,u)v BN (y)2 (@ +pvY’ (ﬁw>2
— xX+|z) +|——] +|—
o 2 4dea o 2.8)
0+1 :
Yy, (@ + v L Bw y (a+wyv  pw
< o4y~ 7 4T o4y~ 77 4T
_S( 2" e 0') k(x+2+ dea o
Lop( Ly Gty B\
— x —_— —
2 2 4ea o
. B )_) (a, +/J)V ,B_W 0+1
N 2 2 4ea o
ca= 8 wm o (2)7 o (fm) " (B
2 dear o ’
wherep:k—— > 0, and
o atpy , pr\! _p (atpy |, pw)o+!
A= (x,yr’?j;ceﬁ{ (x +t5+ 7.+ F) -3 (x+ + s T F) .
Define _ L
Vix,y,v,w) =MV, +V, + V3, (2.9)
where M is a positive constant sufficiently enough satisfying
o? o o3
—M(R’—1)(,u+7)+,u+71+7+7+0'+A< -2. (2.10)
By Egs.(2.6)—(2.10), we have that
LV(x,y,v,w) <G(x,y,v,w) + Mcy (X” - f z"f*(Z)dz), (2.11)
0

where

F
Gy, vow) = =2+ (M + NP 5 _coy  gFy
%

X Vv w
e ) () (B,
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First, we consider the expression G(x, y, v, w) in two cases:
Case 1. If y — 0", then G(x, y,v,w) < -2+ (M + 1)@ - 2.
Case2. If x 5 c0orx >0 ory > c0orv—ocorw—ooory-»0",v—->0"orx-»0"v-»
0*, w — 0", then
s cay oF(x)yv

Gx,y,vyw)<-2+H—- - — — —
X v w

R ] IR

NG
where H = sup (M + )£ _g (1)),
ye(0,+00)
In light of the above, there exists a sufficiently small constant &£ > 0 such that
G(x,y,v,w) < —1, for (x,y,v,w) € R} \ D,,

where D, = {(x,y,v,w) ER}le<x <1l e<y<i &<v<4 e<w< Ll
., . € €
By the continuity of G(x, y, v, w), there exists a positive constant K such that

G(x,y,v,w) < K, for (x,y,v,w) € Ri.

Hence, integrating from O to 7 and taking the expectation for both sides of Eq.(2.11) give that

~E(V (X0, , Y0, Vo, W) < fo E(L(V(x(1), (1), v(7), w(r))))dT

+MC4E(f Xn(T)dT—f fwz”f*(z)dsz).
0 0o Jo

0 <liminf — ! f E(L(V(x(1), y(1), (1), w(T))))dT
0

t—oo

Let t — oo, then,

1 —
=liminf — j; E(L(V(x(7), y(0), (1), WO 1y 1 rer? \0, AT

>0

[—0o0

¢ lim inf % f ELV (D), Y1), (1), W e, )T
0

<liminf — ! f (—P((x(T),y(T), v(7),w(1)) € Ri\Dg) + KP((x(7), y(1), v(1), w(1)) € DE)) dr
0

1—00

=liminf — f (=1 + P((x(7), y(1), v(1), w(T)) € D,) + KP((x(1), y(1), v(1), w(7)) € D,))dt

t—o00
1
<-1+(1+K)liminf n f P((x(1), y(1), v(1), w(T)) € D,)dr,
{—oo 0
which implies that,

1 [ 1
liminf — f P((x.y,v,w) € D)dt 2 ——. (2.12)
t—o00

where P(t, (x,y,v,w), ) is the transition probability of (x(7), y(¢), v(t), w(¢)). By the invariance of Ri and
the inequality given by Eq.(2.12), there exists an invariant probability measure 71(-) on R*, (see [17,18]).
The result is confirmed.
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3. Extinction of the diseases of System (1.6)

Theorem 4. Let (x(t),y(t),v(t),w(t)) be a solution of System (1.6) with any initial value
(x(0), y(0), v(0),w(0)) € Ri. Then the following results will hold:

In (61y(2) + 02v(2) + S3w(2)) <

lim sup <Q,
t—+00 t
where | 1 P
5 = , 0= —, 03= ————, 1= +R,,
: a+u T (a + Ao \/_
k = max{a + u, y, o)}(Ad — Dlsyy + min{a + u, y, o} (A — Dlj<, (3.1)
6 00
G=k+ Qf F(X) - F(f) F(X)dX,
62 Jo M

where R, is defined by Eq.(1.2).
Especially, if i < 0, then the infected CD4*T cells population y(t) and virus particle v(t) will die
out exponentially with a probability of one.

Proof. Define
Z(t) = 01y(8) + 9v(t) + 3w(2).

Applying the /t6 formula,

0 o)
10'2yde(t)+ 2073V

d(Inz) = L(Inz)dt + dBs(1), (3.2)
where

1 1
L(Inz) :2(61'8W + 0cay + 030 F(x)v — 61(a + )y — d2yv — 630w) — 2—Z2(6%U%y2 + 6%0'%\/2)

1

<- (61ﬁw + 0cay + 030F (ﬁ) v—01(a+pu)y—oyyv— 630'w)
z H
+2o6s (F(x) - F(f))

z M

1 T ™ .V s

Zz(51(a + ), 627, 030)(M(y, v, w)" — (y,v,w)") + 20'53 F(x)-F i

<= 1@+ )y + Syv + Bsw) + oty (F(X) F (5))

<max{a + u, y, o)}(Ad— DIz + minfa + py, y, o} (4 = DIy

0
A F(X)—F(f) ,
) M
0o o X
caF(2
and the monotone increasing property of F(X) with M, = % 0 0 |,andd= VR, = ﬂ(a ﬂl()“y )
0 F(3) O
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satisfies (01(a + W), 02y, 030)M = A(d1(a + p), 2y, 630). Integrating both sides of Eq.(3.2) yields that,
In z(7) < In z(0)
t ot

+ max{a + u, y, o)A — Dlpsry + minf{a + p, y, o} (A4 — Dijpcy

0'53 1 !
o
2 0
where M;(t) = f " oon@ gp () and M,(r) = f ' 200 @ g (7). Noting that the quadratic variation
1) = Jy 0 2 oA0D) = |y 75 3(T). g q
dr < 03 < o0, Wz’—t’”2>’§0'§<oo,
i M)
im —— =

t—00 t
From the ergodic theorem and Eq.(3.3) and Eq.(3.4), it follows that,
In z(7)

FX() - F (E) dr+ MO M) (3.3)
M t t

MMy, _ T3 f, 3y (@)

t ot Jo 2@

0, as.,i=1,2. (3.4)

lim sup

[—+00

<max{a + u, y, o)A = Dz + minf{a + u, y, o} (4 = DIy
0'(53 0

s
g9 Fx)—F|l2
62 Jo () (.U)

If 1 < 0, itis obvious to get lim z(¢) = 0, a.s., which implies that lim y(f) = lim v(¢) = lim w(?) =
t—+00 t—+00 t—+00 t—+00

ff(xydx:=f, a.s..

0, a.s. In the other words, infected cells will exponentially decrease to zero with a probability of one.

4. Probability density function of System (1.6)

We have obtained the existence of the stationary distribution of System (1.6). Next we give the
details about the local probability density function of System (1.6).

First, let X = Inx, y = Iny, ¥ = Inv, w = Inw, then by Ito’s formula, System (1.6) is transformed
into the following form:

B ﬁe(n—l))'cﬂ'/
dx = (se_x - = ,ul) dt + o1dB (1),
am + e
dy = (,Bew_y — My — a) dt + 0,d B, (1), @.1)
dv = (caey_v - /l3) dt + o3dBs(1), .
nxX+v—w
AW = (‘”— - 0') dt,
am + ex
o2 . o2
where y; = pu+ =, i=1,2and 3 =y + .
Define
s Beas"
R 4.2)

b (@™} + ")z + )z’

which is the same as Eq.(1.2) when o = 0/ = 1,2,3). Define a quasi-endemic equilibrium E* =

O, y5, v, wh) = (e, e, e, "), where

X =a —| , y'==—|s—a =
B-A Aca “\p-a
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where A = % And E* exists if and only if R{ > 1, and E* is the same with the endemic equilibrium
E” of the determined system given by Eq.(1.4) when there is no white noises.

Let (%, 9,9, W) = (X—x*, —y*, V—v*, w—w"*), then the linearized system of Eq.(4.1) at (x*, y*, v*, w*)
is as follows:

dx = (—an X — apsV)dt + o1d B (1),
dy = (—and + apw)dt + 02dB;(1),

A A A “4.4)
v = (a32y - 6132V)dl + O'3dB3(l),
dw = (a1 X + aV — apw)dt,
where, combining (4.3),
nBa" e(n—l)?w7 — -
a :,Ll]+ﬁ—7>0, as :ﬁew * > 0, 6122:/12+CZ>0,
(an + enx )2
- na'o en?+F—v7* o en?ﬁ?—W
ap =cae® " =u3>0, ay = ——=—>0, ay=——=—=0>0.
(Cl” + enx )2 a + e"x
It is obvious that
apag = o +asaz > asa;s. 4.5)

Theorem 5. Let Y = (X,,V, W) be a solution to Eq.(4.4) with the initial value
(£(0), $(0), 9(0), w(0)) € R*. If R} > 1, then there exists a unique density function ®(Y) around the
quasi-equilibrium E*, which can be approximately expressed in the following form

DY) = (27T)—2|2|—%e—%(ﬁ,y,a,mz-l(x,y,ﬁ,m

in which £ = X, + £, + 33 is positive definite, R} is defined by Eq.(4.2), £, = pIM;'®;(M;" and
%,, X3 will be described below for different cases.

Proof. System (4.4) can be rewritten into dY = AYdt + AdB(t), where Y = (%,3,7,W)7,
A = diag(o-la 02,073, O)’ B(t) = (Bl(t)’ BZ(I)’ B3(t)’ 0) and

—ai 0 —ai3 0
0 —dn 0 an»
A =
0 asp —az) 0
as 0 ay -—ag

According to [19], the four dimensional Fokker-Planck equation to describe a density function
O(Y) = O(x,9,V, W) of the stationary distribution of Eq.(4.4) around the quasi-equilibrium E* is as
follows:

o0 oD 030D 6

T 0w T 2R 20w (( ank — a13v)®)+—(( any + apw)®)

0
aA ((azy — azd)P) + w ((an X + agd — apw)®) =

Wthh is an approximate representation of the Gaussian distribution ®(Y) = ke 2Y=YI20=Y"" \ith
= (0,0,0,0); also, Q is a real symmetric matrix, which satisfies QA’Q + ATQ + QA = O. IfQ
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is positive-definite, let Q! = X, then A + AT + AT = 0. By the finite independent superposition
principle,
A+ AT+ AT =0,i=1,2,3, (4.6)

where X = X, + X + X3, A* = AT + A + A3, A = diag(01,0,0,0), Ay = diag(0,0,,0,0), A; =
diag(0,0, 03, 0).
Step 1. For System (4.4), we consider

A+ AT + AT = 0. 4.7)
Let
2 2 3 _,3 —_2 _ 2 _
Q2032041 5,03 + A2d3, + 43, —03, T 422043030 —a,,033 — A2d3, — (43022037
M, = 0 —a§2 — dxndsz a§2 andsy
1 — ’
0 as —az 0
0 0 1 0
then
-N, =N, —-N; -N,
1 0 0 0
— -1 _
0 0 1 0
where
Nl =ap +axy+azp+ags > 0,
Ny = anaxn + ayas + anag + anasy + anag + anagy > 0, (4.9)
N3 = aji(agzaxn + agzaz + anaz) > 0, .
Ny = apzaxazas > 0.
Then, by incorporating Eq.(4.8), Eq.(4.7) is transformed into the following form:
M\ ATM| + By(M\Z, M) + (M2, M[)B] =0
which implies that
1
— A} + B0, +0,B] =0, (4.10)

0'1

where ®; = —M12 M with p| = apaznas o;.
By tedlous and complex computation and the incorporation of (4.5), we get that
Ni(N2N3 — NiNy) = N3 > @, (az + as3) (ar(an + as + ass) + azass)
+a;, (022043((6122 +ag3)” + 3azn(an + axn + an)) + anan(an + an)’ + apas(an + 6143)2)
+an (6142;3 (aiz(azz +ag) + az,(axn + 6143)) + a3,a3,(axn + axn + 3as)
tas3axa3; (043(36132 +an) + (a3 + 022)2)) > 0.

By Lemma 3.1 of [20], ©, is positive definite. Then £; = ptM;'®;(M;")" is also a positive definite
matrix.
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Step 2. For System (4.4), we consider

A+ AT, + AT = 0. 4.11)
Let
—aj) 0 —% an 0 1 00
_ o _ | an —axn 0 . 0010
Tl = MzAMz = 0 —ais —ay; 0 with M2 = 00 ol
0 0 2L —dau3 W0 01

a3

8
]

where w1 = ai3 — aq1043 + A13d41 .
Case 2.1. If w; # 0, we find the standard matrix M»; such that B, = M,, T\ M;!, where

213
(a%1 +aj 1a43+ai3)w1 3
—apw; (an +an +ap)w;, —— —— —a;
_ —(an +as)w 2
M, = 0 @1 a3 @ |,
0 2L —-a
™ 43
0 0 0 1

and B is defined in Eq.(4.8). Similar to Step 1, Eq.(4.11) is transformed into the following equation:

1
_ZA% + B;®; + @18{ =0,
P
which is the same with Eq.(4.10), and ®, is positive definite which implies that
2y = p3, (M M) 'O (M5 M; )T with py) = aslwilo, is also positive definite.

Case 2.2. If w; = 0, there exists a new standard matrix M,, such that B, = M5 T} M2‘2‘, where

—ap;3az  apdapz tapds 0%1 0 -Hyy -Hyp -Hy;; —-Hy
_ 0 —a|3 —aj 0 _ 1 0 0 0
Ma=1"" 0 1 oolB=| o 1 0 0
0 0 0 1 0 0 0 —ay;

Similarly, Eq (4.11) is transformed into the following form
(M My)A5 (Mo Ma)" + By(Myy M) Ea(May Ma)' + (M Ma)So(Myy M) B = 0,

which implies that
1
— A+ B0, + ©,B] =0, 4.12)
03
where ©, = p%(MzzMg)Zz(MzzMz)T with p,, = aj3a3,0. Direct computation induces that
22

axAzpd13dyg

Hyy =ay +an+axn >0, Hjs=apan(a) —apn) = >0, and by w; =0,

ass
2 2 2
Hy\Hiy — Hiz = aj,(axn + az) + ay,(ay + ax) + apaz(2ay + ag + axn) +apaz, > 0.

By Lemma 3.2 of [20], ®, is semi-positive definite. Then Xy = p3,(MarM>) ' @y(Mp M) is
also semi-positive definite.
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Hence, for System (4.4), X, is positive definite for w; # 0 or semi-positive definite for w; = 0.
Step 3. For System (4.4), we consider the following algebraic equation:

A3 +AZ; + 5347 = 0. (4.13)
Likewise, let
—as 0 0 asp 001 O
_ R as . 000 1
T = M;AM;' =| _aer” asan oo o [With My=1o 000 an
ays as3 ass
0 a 0 —am 0100

Next, we discuss them in three cases.
Case 3.1. If w; # 0, let C3 = P3T,P5', where

2
a2a320;,

0

1 0 0 -
asp 0 " ar3 ass
13441
P = 0 1 0 0 Ca = a3 —43 — =~ (273 0
3= > 3= a;wi a13a4] ’
00 12 0 0 e W — g 0
ana & N
0 0 =21 apanwy  _
ai3wi 0 0 a3 an

with w, = ajza41 — aj1as3 + axaus.
Case 3.1.1. If w, # 0, there exists a standard matrix M3, such that B; = M31C3(M3‘]1), where

+ap+

—ar W) an(aii ;1:32 as3)w w3 _agz

0 _anw _ a20w1(a11043—a13041+A22043) a2

M5 = as3 ai3wi 22

3 0 0 a2a43W2 _

aiw a2

0 0 0 1

with
__ an 2 2 3 2
w3 = _a w ayi(anas — aizas)” — apas(—anw; + anay; — a13041043) — ar,ays ),
131

and B is defined in Eq.(4.8). Similar to Step 1, Eq.(4.13) is transformed into the following equation:

1
?Ag + Bl®l + ®1B{ =0,
3
which is the same with Eq.(4.10), and ®, is positive definite which implies that
23 = p%l(M31P3M3)_1@1((M31P3M3)_1)T with P31 = a22|w2|0'3 > 0 is also positive definite.
Case 3.1.2. If w, = 0, then

_H21 _H22 _H23 _H24
1 0 0 0
0 1 0 0 |
0 0 0 —ajn

83 = M32C3M3_21 =
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where
__aj3wi az(ay+as)w; ‘143‘1%]_013041(1”_013“41”43 0
as; al, as
0 _ ai3wi andan _ 4 0
M32 = %23 as3 1 .
0 0 1 0
0 0 0 1

Direct computation yields that
Hy = ay +an +agp >0, Hy=apagy(a —axn) = apazas > 0, and by w, = 0,
Hy Hy, — Hyz = (a1 + an)(anas + ayjass + aig) + apazpag > 0.

Similarly, Eq.(4.13) is transformed into the following equation:

1
;A% + B;0; + ®3BZ =0.
3

By Lemma 3.2 of [20], ®3 is semi-positive definite, which implies that
23 = p3,(M3P3sM3) ' Oy((M3,PsM3) ™) with ps, = %03 > 0 is also semi-positive definite.
Case 3.2. If w; =0, then ‘

—-H3 —-Hz —Hzs —Hs,

1 0 0 0
By £ My3To M) = ,
4 3342 33 0 1 0 O
0 0 0 Wi _ g
4 11
where ) )
alza.
apasy —ay, —an(as + 1;4341) axdas  dy,
Max = 0 an 0 —an
33 — D)
0 0 0 1
0 0 1 0
and
a13ar»aznd
2 1302232041
Hj = p (a13a41 + axass + anag +ayz) >0, Hiz = . > 0,
43 43

1
_ 2 P
H31H3, — Hyz = —-(axaus + anass + aizas + ag3)(ands; + aizas(axn + as))
Ay
andsp
+

(6122 +az + 6143) > 0.
ass

Similarly, Eq.(4.13) is transformed into the following form:

1
_ZAg + B4®, + @481 =0.
03
By Lemma 3.2 of [20], ®, is semi-positive definite, which implies that
23 = p3;,(M33M3) ' @s(M33 M3)™1)T with p33 = axpauzos > 0 is also semi-positive definite.

Hence, for System (4.4), X5 is positive definite for w; # 0, w, # 0 and semi-positive definite for

w; #0and w, =0orw; =0.

With all the things above, £ = X + X, + Z3 in Eq.(4.6) is positive definite. Thus, there is a local

asymptotic density function ®(X, y, ¥, w) near the quasi-endemic equilibrium E*.
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5. Numerical simulations

In this section, we give some numerical simulations to illustrate our theoretical results.

5.1. Determined system given by Eq.(1.4)

For the ODE system given by Eq.(1.4), the parameters refer to the data in [1] as follows

s=9, u=0.0I1, B=0.005 a=50, c=550, c =05, =035, y=2,n=1. (5.1
By Eq.(1.2), we obtain R = % ~ 1.2664 > 1; then, there exists an endemic equilibrium

point E*(x*,y*,v*,w"), where x* = a(ﬁf;A)E ~ 148.45, y* = L (s—ux*) ~ 20.8763, v* = %y* r
2009.3 and w* = SHy* ~ 1503.1, with A = #2292 = 0,0037. By Theorem 1.1(ii), the endemic
equilibrium point E* is globally asymptotically stable, as illustrated in Figure 1 (red lines). By
decreasing the value ¢ by ¢ = 400, we obtain R; = 0.9211 < 1. By Theorem 1.1(1), the disease-free
equilibrium point E((900,0,0,0) is globally asymptotically stable, as illustrated in Figure 1 (blue

lines).

(a) (b)

1000 60
R1>1 40 R1>1
R, <1
= R, <1 = 1
= 500 ! =
20
o o
0O 200 400 600 800 0O 200 400 600 800
Time (days) Time (days)
c d
6000 (©) (d)
Ry>1 4000 Ry=>1
___4000 R,<1 g R, <1
= El
2000 2000
(o] “— (o] S
(0] 200 400 600 800 o 200 400 600 800
Time (days) Time (days)

Figure 1. Paths of x(¢), y(¢), v(¢) and w(¢) of the deterministic HIV system given by Eq.(1.4)
with the initial value: (x(0), y(0), v(0), w(0)) = (400, 50, 50, 50).
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5.2. Stochastic system given by Eq.(1.6)
In the subsection, we consider the effect of white noises on the HIV system and establish the

discretized system by Milstein method [21]:

Bxivi

n n
a +.xk

1
Xpe1 = Xg + (s — UXy — )At + ox VALE, + Eoﬁxk(f,% — DAt
1
Vel = Vi + (Bwe = (@ + 0y At + 0oy VAL + S0oy¢ = DAL,

1
Viel = Vi + (cayr — yvi)At + o3V \/Egk + E(rgvk(g,f — DAz,

O XV

Wiyl = Wi +|—Owi + At,
a" + x!
k

where &, (i, ¢k (k=1,2,---) are independent Gaussian random variables, which satisfy the standard
normal distribution N(O, 1).

Fixing the same parameters as Eq.(5.1), we choose the noise intensities oy = 0.05, o, = 0.08, o3 =
0.08. By Eq.(2.5), we get that

=

R = —2 pea = 1.2451 > 1.

2 2 2 n
oy o o3 bil(a1—n)
,Ll+ 2 (01+,U+7)(7+7)(a"+ T(ar) )

Then by Theorem 3, there exists a stationary distribution for the degenerate system given by
Eq.(1.6), which implies the persistence of the disease, as illustrated in the left graph of Figure 2. The
right graph of Figure 2 demonstrates the distribution of a density function near the deterministic
steady state.

(a) 5. =< 10% (d)
_—. 500 =
= 22
0 20
0 1000 2000 2 100 150 200 250
Time (days)

()

y(t)
(o))
o o
Distribution
oO-=N

0 1000 2000 ¢
Time (days)
(c)

v(t)
[é)]
o
o
o o
Distribution
oO=N

0 1000 2000 ¢
Time (days)

Figure 2. (Left) paths of x(7), y(¢) and v(¢) for System (1.5) with the given initial value
(x(0), y(0),v(0)) = (2,2,5), which implies the persistence of the diseases; (right) Histograms
of the probability density functions of x(¢), y(¢) and v(¢).
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Further increasing the noise intensities o = o = o3 = 0.3 and choosing
u = 007, = 0005 ¢ = 50, = 05,a = 100ando = 0.9, we obtain from Eq.(3.1) that
p = =0.1715 < 0. From Theorem 4, we know that the infected CD4* T cell population y(f) and virus

particle v(7) tend to extinction (see Figure 3).

(a) (b)

600 []

= 400 =
= =1
200
o o
(o]

o 500 1000 50 100
Time (days) Time (days)
©
=10 L
[e]
o 50 100
Time (days)

Figure 3. Paths of x(7), y(r) and v(r) for System (1.5) with the given initial value
(x(0), y(0), v(0)) = (100, 2, 5), which implies the extinction of the diseases.

6. Discussion and conclusions

Some authors give the numerical simulations and theoretical analysis for an HIV infection model
with CD4" T-cells. For example, Evirgen et al. [22] gave the existence and uniqueness of the solutions
for a fractionalized HIV infection model with the Atangana-Baleanu fractional derivative by using the
Arzela-Ascoli theorem. Umar et al. [23] provided the numerical outcomes of a nonlinear HIV infection
system, which is different from the Runge-Kutta method. Dewasurendra et al. [24] applied the MDDiM
method to an HIV infection model of CD4* T-cells, which shows the advantages over HAM.

Our main difference is the proposal of an HIV model with a Hill-type infection rate ﬁ (n>1)
and distributed delay under the disturbance of white noise and proof of the existence of a stationary
distribution by constructing a suitable Lyapunov function, which is a vast challenge. More importantly,
we have given the exact local probability density function near the quasi-equilibrium by solving the
corresponding Fokker-Planck equation. We have given the rigorous mathematical proof by describing
the dynamics of the system, not only the numerical simulations.

In this paper, we first demonstrated the global asymptotical stability of the disease-free equilibrium
and endemic equilibrium for the deterministic system. Second, the existence of a stationary distribution
for an equivalent degenerate stochastic system was derived to obtain the sharp critical value Rj by
using the theory of Khasminskii. R; is consistent with the basic reproduction number without the
white noises. Under a certain condition, the sufficient conditions for the extinction of the diseases have
been given. In the part of numerical simulation, by incorporating the experimental data [25], we have
applied the default parameter values given in Table 1 of [1] to verify the effectiveness of a stochastic
system with degenerate diffusion.

There are still many interesting and instructive issues worthy of further study. For example, we
consider the existence and uniqueness of the positive periodic solutions for the complex periodic
system.
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