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Abstract: The main goal of this work is to investigate the following nonlinear plate equation

utt + ∆
2u + α(t)g(ut) = u|u|β,

which models suspension bridges. Firstly, we prove the local existence using Faedo-Galerkin method
and Banach fixed point theorem. Secondly, we prove the global existence by using the well-depth
method. Finally, we establish explicit and general decay results for the energy of solutions of the
problem. Our decay results depend on the functions α and g and obtained without any restriction
growth assumption on g at the origin. The multiplier method, properties of the convex functions,
Jensen’s inequality and the generalized Young inequality are used to establish the stability results.

Keywords: plate equation; Galerkin method; Banach fixed point theorem; general decay; nonlinear
frictional damping

1. Introduction

The importance of bridges is undeniable and their presence in human daily life goes back a long
time. With the presence of the bridges, road and railway traffic runs without any interruption over rivers
and hazardous areas, time and fuel are saved, congestion on roads is minimized, distances between
places are reduced, and many accidents have been avoided, as the bridges have reduced the number
of bends and zig-zags in roads. As a result, many economies have grown and many societies have
become connected. However, bridges have brought some challenges, such as collapse and instability
due to natural hazards such as wind, earthquakes, etc. To overcome these difficulties, engineers and
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scientists have made efforts to find the best designs and possible models. Our aim in this work is to
investigate the following plate problem

utt + ∆
2u + α(t)g(ut) = u|u|β, in Ω × (0,T ),

u(0, y, t) = uxx(0, y, t) = u(π, y, t) = uxx(π, y, t) = 0, (y, t) ∈ (−d, d) × (0,T ),
uyy(x,±d, t) + σuxx(x,±d, t) = 0, (x, t) ∈ (0, π) × (0,T ),
uyyy(x,±d, t) + (2 − σ)uxxy(x,±d, t) = 0, (x, t) ∈ (0, π) × (0,T ),
u(x, y, 0) = u0(x, y), ut(x, y, 0) = u1(x, y), in Ω × (0,T ),

(1.1)

where Ω = (0, π) × (−d, d), d, β > 0, g : R → R and α : [0,+∞) → (0,+∞) is a nonincreasing
differentiable function, u is the vertical displacement of the bridge and σ is the Poisson ratio. This
is a weakly damped nonlinear suspension-bridge problem, in which the damping is modulated by a
time dependent-coefficient α(t). Firstly, we prove the local existence using the Faedo-Gherkin method
and Banach fixed point theorem. Secondly, we prove the global existence by using the well-depth
method. Finally, we establish an explicit and general decay result, depending on g and α, for which
the exponential and polynomial decay rate estimates are only special cases. The proof is based on
the multiplier method and makes use of some properties of convex functions, including the use of the
general Young inequality and Jensen’s inequality.

2. Literature review

The famous report by Claude-Louis Navier [1] was the only mathematical treatise of suspen-
sion bridges for several decades. Another milestone theoretical contribution was the monograph by
Melan [2]. After the Tacoma collapse, engineers felt the necessary to introduce the time variable
in mathematical models and equations in order to attempt explanations of what had occurred. As a
matter of fact, in Appendix VI of the Federal Report [3], a model of inextensible cables is derived
and the linearized Melan equation was obtained. Other important contributions were the works by
Smith-Vincent and the analysis of vibrations in suspension bridges presented by Bleich-McCullough-
Rosecrans-Vincent [4]. In all these historical references, the bridge was modelled linearly as a beam
suspended to a cable. Hence, all the equations were linear. Mathematicians have not shown any interest
in suspension bridges until recently. McKenna, in 1987, introduced the first nonlinear models to study
them from a theoretical point of view, and he was followed by several other mathematicians (see [5,6]).
McKenna’s main idea was to consider the slackening of the hangers as a nonlinear phenomenon, a
statement which is by now well-known also among engineers [7, 8]. The slackening phenomenon was
analyzed in various complex beam models by several authors (see [9–11]). Motivated by the wonderful
book of Rocard [12], where it was pointed out that the correct way to model a suspension bridge is
through a thin plate, Ferrero-Gazzola [13] introduced the following hyperbolic problem:

utt(x, y, t) + ηut + ∆
2u(x, y, t) + h(x, y, u) = f , in Ω × R+,

u(0, y, t) = uxx(0, y, t) = u(π, y, t) = uxx(π, y, t) = 0, (y, t) ∈ (−ℓ, ℓ) × R+,
uyy(x,±ℓ, t) + σuxx(x,±ℓ, t) = 0, (x, t) ∈ (0, π) × R+,
uyyy(x,±ℓ, t) + (2 − σ)uxxy(x,±ℓ, t) = 0, (x, t) ∈ (0, π) × R+,
u(x, y, 0) = u0(x, y), ut(x, y, 0) = u1(x, y), in Ω × R+,

(2.1)

where Ω = (0, π) × (−ℓ, ℓ) is a planar rectangular plate, σ is the well-known Poisson ratio, η is the
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damping coefficient, h is the nonlinear restoring force of the hangers and f is an external force. After
the appearance of the above model, many mathematicians showed interest in investigating variants of
it, using different kinds of damping with the aim to obtain stability of the bridge modeled through the
above problem. Messaoudi [14] considered the following nonlinear Petrovsky equation

utt + ∆
2u + aut|ut|

m−2 = bu|u|p−2, (2.2)

and proved the existence of a local weak solution, showed that this solution is global if m ≥ p and
blows up in finite time if p > m and the energy is negative. Wang [15] considered the equation

utt + δut + ∆
2u + au = u|u|p−2, (2.3)

where a = a(x, y, t) together with the above initial and boundary conditions. After showing the unique-
ness and existence of local solutions, he gave sufficient conditions for global existence and finite-time
blow-up of solutions. Mukiawa [16] considered a plate equation modeling a suspension bridge with
weak damping and hanger restoring force. He proved the well-posedness and established an explicit
and general decay result without putting restrictive growth conditions on the frictional damping term.
Messaoudi and Mukiawa [17] studied problem (2.3), where the linear frictional damping was replaced
by nonlinear frictional damping and established the existence of a global weak solution and proved
exponential and polynomial stability results. Audu et al. [18] considered a plate equation as a model
for a suspension bridge with a general nonlinear internal feedback and time-varying weight. Under
some conditions on the feedback and the coefficient functions, the authors established a general decay
estimate. For more results related to the existence of work on similar problems, we mention the work
of Xu et al. [19], in which they proved the local existence of a weak solution by the Galerkin method
and the global existence by the potential well method. He et al. [20] considered the following Kirchhoff
type equation

−

(
a + b

∫
Ω

|∇u|2dx
)
∆u = f (u) + h, in Ω, (2.4)

where Ω ⊆ R3 is a bounded domain or Ω = R3, 0 ≤ h ∈ L2(Ω) and f ∈ C (R,R). The authors proved
the existence of at least one or two positive solutions by using the monotonicity trick, and nonexistence
criterion is also established by virtue of the corresponding Pohoaev identity. Recently, Wang et al. [21]
considered the fractional Rayleigh-Stokes problem where the nonlinearity term satisfied certain critical
conditions and proved the local existence, uniqueness and continuous dependence upon the initial data
of ε-regular mild solutions. More results in this direction can be found in [22–27]. The paper is
organized as follows. In Section 3, we present some preliminaries and essential lemmas. We prove the
local existence in Section 4 and the global existence in Section 5. The statement and the proof of our
stability result will be given in Section 6.

3. Preliminaries and essential lemmas

In this section, we present some material needed in the proofs of our results. First, we introduce the
following space

H2
∗ (Ω) = {w ∈ H2(Ω) : w = 0 on {0, π} × (−d, d)}, (3.1)
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together with the inner product

(u, v)H2
∗
=

∫
Ω

(
∆u∆v + (1 − σ)(2uxyvxy − uxxvyy − uyyvxx)

)
dx. (3.2)

It is well known that (H2
∗ (Ω), (·, ·)H2

∗
) is a Hilbert space, and the norm ∥.∥2

H2
∗

is equivalent to the usual
H2, see [13]. Throughout this paper, c is used to denote a generic positive constant.

Lemma 3.1. [15] Let u ∈ H2
∗ (Ω) and assume that 1 ≤ p < ∞, then, there exists a positive constant

Ce = Ce(Ω, p) > 0 such that
∥u∥p ≤ Ce∥u∥H2

∗ (Ω).

Lemma 3.2. (Jensen’s inequality) Let ψ : [a, b] −→ R be a convex function. Assume that the functions
f : (0, L) −→ [a, b] and r : (0, L) −→ R are integrable such that r(x) ≥ 0, for any x ∈ (0, L) and∫ L

0
r(x)dx = k > 0. Then,

ψ

(
1
k

∫ L

0
f (x)r(x)dx

)
≤

1
k

∫ L

0
ψ( f (x))r(x)dx. (3.3)

We consider the following hypotheses:

(H1). The function g : R→ R is nondecreasing C0 function satisfying for ε, c1, c2 > 0,

c1|s| ≤ |g(s)| ≤ c2|s|, if |s| ≥ ε,
|s|2 + g2(s) ≤ G−1 (sg(s)) , if |s| ≤ ε,

(3.4)

where G : R+ → R+ is a C1 function which is linear or strictly increasing and strictly convex C2

function on [0, ε] with G(0) = 0 and G′(0) = 0. In addition, the function g satisfies, for ϑ > 0,

(g(s1) − g(s2)) (s1 − s2) ≥ ϑ|s1 − s2|
2. (3.5)

(H2). The function α : R+ → R+ is a nonincreasing differentiable function such that
∫ ∞

0
α(t)dt = ∞.

Remark 3.3. Hypothesis (H1) implies that sg(s) > 0, for all s , 0 and it was introduced and employed
by Lasiecka and Tataru [28]. It was shown there that the monotonicity and continuity of g guarantee
the existence of the function G with the properties stated in (H1).

Remark 3.4. As in [28], we use Condition (3.5) to prove the uniqueness of the solution.

The following lemmas will be of essential use in establishing our main results.

Lemma 3.5. [29] Let E : R+ → R+ be a nonincreasing function and γ : R+ → R+ be a strictly
increasing C1-function, with γ(t)→ +∞ as t → +∞. Assume that there exists c > 0 such that

∞∫
S

γ′(t)E(t)dt ≤ cE(S ) 1 ≤ S < +∞.

Then there exist positive constants k and ω such that

E(t) ≤ ke−ωγ(t).
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Lemma 3.6. [30] Let E : R+ → R+ be a differentiable and nonincreasing function and χ : R+ → R+

be a convex and increasing function such that χ(0) = 0. Assume that∫ +∞

s
χ (E(t)) dt ≤ E(s), ∀s ≥ 0. (3.6)

Then, E satisfies the following estimate

E(t) ≤ ψ−1 (h(t) + ψ (E(0))) , ∀t ≥ 0, (3.7)

where ψ(t) =
∫ 1

t
1
χ(s)ds, and 

h(t) = 0, 0 ≤ t ≤ E(0)
χ(E(0)) ,

h−1(t) = t + ψ−1(t+ψ(E(0)))
χ(ψ−1(t+ψ(E(0)))) , t > 0.

4. Local existence

In this section, we state and prove the local existence of weak solutions of problem (1.1). Similar
results can be found in [31, 32]. To this end, we consider the following problem

utt(x, y, t) + ∆2u(x, y, t) + α(t)g(ut) = f (x, t), in Ω × (0,T ),
u(0, y, t) = uxx(0, y, t) = u(π, y, t) = uxx(π, y, t) = 0, (y, t) ∈ (−d, d) × (0,T ),
uyy(x,±d, t) + σuxx(x,±d, t) = 0, (x, t) ∈ (0, π) × (0,T ),
uyyy(x,±d, t) + (2 − σ)uxxy(x,±d, t) = 0, (x, t) ∈ (0, π) × (0,T ),
u(x, y, 0) = u0(x, y), ut(x, y, 0) = u1(x, y), in Ω × (0,T ),

(4.1)

where f ∈ L2(Ω × (0,T )) and (u0, u1) ∈ H2
∗ (Ω) × L2(Ω). Then, we prove the following theorem:

Theorem 4.1. Let (u0, u1) ∈ H2
∗ (Ω)× L2(Ω). Assume that (H1) and (H2) hold. Then, problem (4.1) has

a unique local weak solution

u ∈ L∞([0,T ),H2
∗ (Ω)), ut ∈ L∞([0,T ), L2(Ω)), utt ∈ L∞([0,T ),H(Ω)),

whereH(Ω) is the dual space of H2
∗ (Ω).

Proof. Uniqueness: Suppose that (4.1) has two weak solutions (u, v). Then, w = u − v satisfies

wtt(x, y, t) + ∆2w(x, y, t) + α(t)g(ut) − α(t)g(vt) = 0, in Ω × (0,T ),
w(0, y, t) = wxx(0, y, t) = w(π, y, t) = wxx(π, y, t) = 0, (y, t) ∈ (−d, d) × (0,T ),
wyy(x,±d, t) + σwxx(x,±d, t) = 0, (x, t) ∈ (0, π) × (0,T ),
wyyy(x,±d, t) + (2 − σ)wxxy(x,±d, t) = 0, (x, t) ∈ (0, π) × (0,T ),
w(x, y, 0) = wt(x, y, 0) = 0, in Ω × (0,T ).

(4.2)

Multiplying (4.2) by wt and integrating over (0, t), we get

1
2

d
dt

[∫
Ω

(
w2

t + |∆w|2
)

dx
]
+ α(t)

∫
Ω

(g(ut) − g(vt)) (ut − vt)dx = 0. (4.3)
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Integrating (4.3) over (0, t), we obtain∫
Ω

(
w2

t + |∆w|2
)

dx + 2α(t)
∫ t

0

∫
Ω

(g(ut) − g(vt)) (ut − vt)dxds = 0. (4.4)

Using Condition (3.5) and (H2), for a.e. x ∈ Ω, we have∫
Ω

(
w2

t + |∆w|2dx
)
= 0, (4.5)

We conclude u = v = 0 on Ω× (0,T ), which proves the uniqueness of the solution of problem (4.1).
Existence: To prove the existence of the solution for problem (4.1), we use the Faedo-Galerkin method
as follows: First, we consider

{
v j

}∞
j=1

an orthonormal basis of H2
∗ (Ω) and define, for all k ≥ 1, a sequence

vk inVk = span {v1, v2, ..., vk} ⊂ H2
∗ (Ω), given by

uk(x, t) = Σk
j=1a j(t)v j(x),

for all x ∈ Ω and t ∈ (0,T ) and satisfies the following approximate problem
∫
Ω

uk
tt(x, t)v jdx +

∫
Ω
∆uk(x, t)∆v jdx + α(t)

∫
Ω

g(uk
t )v j =

∫
Ω

f (x, t)v jdx, in Ω × (0,T ),

uk(x, y, 0) = uk
0(x, y), uk

t (x, y, 0) = uk
1(x, y), in Ω × (0,T ),

(4.6)

for all j = 1, 2, ..., k,

uk(0) = uk
0 = Σ

k
i=1 ⟨u0, vi⟩ vi, uk

t (0) = uk
1 = Σ

k
i=1 ⟨u1, vi⟩ vi, (4.7)

such that
uk

0 −→ u0 ∈ H2
∗ (Ω),

uk
1 −→ u1 ∈ L2(Ω).

(4.8)

For any k ≥ 1, problem (4.6) generates a system of k nonlinear ordinary differential equations. The
ODE’s standard existence theory assures the existence of a unique local solution uk for problem (4.6)
on [0,Tk), with 0 < Tk ≤ T. Next, we have to show, by a priori estimates, that Tk = T,∀k ≥ 1. Now,
multiplying (4.6) by a′j(t), using Green’s formula and the boundary conditions, and then summing each
result over j we obtain, for all 0 < t ≤ Tk,

1
2

d
dt

[∫
Ω

(
|uk

t |
2 + (∆uk)2

)
dx

]
+ α(t)

∫
Ω

uk
t g

(
uk

t

)
dx =

∫
Ω

f (x, t)uk
t (x, t)dx. (4.9)

Then, integrating (4.9) over (0, t) leads to

1
2

∫
Ω

(
|uk

t |
2 + |∆uk|2

)
dx +

∫ t

0

∫
Ω

α(s)uk
t g

(
uk

t

)
dxds

=
1
2

∫
Ω

(
|uk

1|
2 + |∆uk

0|
2
)

dx +
∫ t

0

∫
Ω

f (x, t)uk
t (x, t)dxds. (4.10)
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From the convergence (4.8), using the fact that f ∈ L2 (Ω × (0,T )) , and exploiting Young’s inequal-
ity, then (4.10) becomes, for some C > 0, and for any t ∈ [0, tk)

1
2

∫
Ω

[
|uk

t |
2 + |∆uk|2dx

]
+

∫ t

0

∫
Ω

α(s)uk
t g

(
uk

t

)
dxds

≤
1
2

∫
Ω

[
|uk

1|
2 + |∆uk

0|
2
]

dx + ε
∫ t

0

∫
Ω

|uk
t |

2dxds +Cε

∫ t

0

∫
Ω

| f (x, s)|2dxds

≤ Cε + ε sup
(0,Tk)

∫
Ω

|uk
t |

2dx.

(4.11)

Therefore, we obtain

1
2

sup
(0,Tk)

∫
Ω

|uk
t |

2dx +
1
2

sup
(0,Tk)

∫
Ω

|∆uk|2dx +
1
2

sup
(0,Tk)

∫ tk

0

∫
Ω

α(s)uk
t (x, s)g

(
uk

t (x, s)
)

dxds

≤ Cε + ε sup
(0,Tk)

∫
Ω

|uk
t |

2dx.
(4.12)

Choosing ε = 1
4 , estimate (4.12) yields, for all Tk ≤ T and C > 0,

sup
(0,Tk)

∫
Ω

|uk
t |

2dx + sup
(0,Tk)

∫
Ω

|∆uk|2dx + sup
(0,Tk)

∫ tk

0

∫
Ω

α(s)uk
t (x, s)g

(
uk

t (x, s)
)

dxds ≤ C. (4.13)

Consequently, the solution uk can be extended to (0,T ), for any k ≥ 1. In addition, we have

(uk) is bounded in L∞((0,T ),H2
∗ (Ω)) and (uk

t ) is bounded in L∞((0,T ), L2(Ω)).

Therefore, we can extract a subsequence, denoted by (uℓ) such that, when ℓ → ∞, we have

uℓ → u weakly * in L∞((0,T ),H2
∗ (Ω)) and uℓt → ut weakly * in L∞((0,T ), L2(Ω)).

Next, we prove that g(uℓt ) is bounded in L2
(
(0,T ); L2(Ω)

)
. For this purpose, we consider two cases:

Case 1. G is linear on [0, ε]. Then using (H1) and Young’s inequality, we get∫
Ω

g2(uℓt )dx ≤ c
∫
Ω

uℓt g(uℓt )dx −
∫
Ω

|uℓt |
2dx

≤
c

4δ0

∫
Ω

|uℓt |
2dx + δ0

∫
Ω

g2(uℓt )dx,
(4.14)

for a suitable choice of δ0 and using the fact that uℓt is bounded in L2((0,T ), L2(Ω)), we obtain∫ T

0

∫
Ω

g2(uℓt )dxdt ≤ c. (4.15)

Case 2. G is nonlinear. Let 0 < ε1 ≤ ε such that

sg(s) ≤ min{ε,G(ε)} for all |s| ≤ ε1. (4.16)
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Then, one can show that  s2 + g2(s) ≤ G−1(sg(s)) for all |s| ≤ ε1

c′1|s| ≤ |g(s)| ≤ c′2|s| for all |s| ≥ ε1.
(4.17)

Define the following sets

Ω1 = {x ∈ Ω : |uℓt | ≤ ε1}, and Ω2 = {x ∈ Ω : |uℓt | > ε1}. (4.18)

Then, using (4.17) and (4.18) leads for some c′2 > 0,∫
Ω

g2(uℓt )dx =
∫
Ω2

g2(uℓt )dx +
∫
Ω1

g2(uℓt )dx

≤ c′2

∫
Ω2

|uℓt |
2dx +

∫
Ω1

(
|uℓ|2t + g2(uℓt )

)
dx −

∫
Ω1

|uℓt |
2dx

≤ c′2

∫
Ω2

|uℓt |
2dx +

∫
Ω1

G−1(uℓt g(uℓt ))dx.

(4.19)

Let
Jℓ(t) :=

∫
Ω1

uℓt g(uℓt )dx,

Eℓ(t) =
1
2

(
∥uℓt ∥

2
2 + ∥u

ℓ∥2H2
∗ (Ω)

)
−

1
β + 2

∥uℓ∥β+2
β+2, (4.20)

and (
Eℓ

)′
(t) = −α(t)

∫
Ω

uℓt g(uℓt )dx ≤ 0. (4.21)

Using (4.19) and Jensen’s inequality, we obtain∫
Ω

g2(uℓt )dx ≤ c
∫
Ω

|uℓt |
2dx +G−1(Jℓ(t))

= c
∫
Ω

|uℓt |
2dx +

G′
(
ε0

Eℓ(t)
Eℓ(0)

)
G′

(
ε0

Eℓ(t)
Eℓ(0)

)G−1
(
Jℓ(t)

)
.

(4.22)

Using the convexity of G (G′ is increasing), we obtain for t ∈ (0,T ),

G′
(
ε0

Eℓ(t)
Eℓ(0)

)
≥ G′

(
ε0

Eℓ(T )
Eℓ(0)

)
= c.

Let G∗ be the convex conjugate of G in the sense of Young (see [33], pp. 61–64), then, for s ∈
(0,G′(ε)],

G∗(s) = s(G′)−1(s) −G[(G′)−1(s)] ≤ s(G′)−1(s). (4.23)

Using the general Young inequality

AB ≤ G∗(A) +G(B), if A ∈ (0,G′(ε)], B ∈ (0, ε],
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for

A = G′
(
ε0

Eℓ(t)
Eℓ(0)

)
and B = G−1

(
Jℓ(t)

)
,

and using the fact that Eℓ(t) ≤ Eℓ(0), we get∫
Ω

g2(uℓt )dx ≤ c
∫
Ω

|uℓt |
2dx + cε0

Eℓ(t)
Eℓ(0)

G′
(
ε0

Eℓ(t)
El(0)

)
−C(Eℓ)′(t)

≤ c
∫
Ω

|uℓt |
2dx + cε0

Eℓ(t)
Eℓ(0)

G′
(
ε0

Eℓ(t)
Eℓ(0)

)
−C(Eℓ)′(t)

≤ c
∫
Ω

|uℓt |
2dx + c −C(Eℓ)′(t).

(4.24)

Integrating (4.24) over (0,T ), we obtain∫ T

0

∫
Ω

g2(uℓt )dxdt ≤ c
∫ T

0

∫
Ω

|uℓt |
2dxdt + cT −C

(
Eℓ(T ) − Eℓ(0)

)
. (4.25)

Using (4.21) and the fact that uℓt is bounded in L2
(
(0,T ); L2(Ω)

)
, we conclude that g(uℓt ) is bounded

in L2
(
(0,T ); L2(Ω)

)
. So, we find, up to a subsequence, that

g(uℓt )⇀χ in L2
(
(0,T ); L2(Ω)

)
. (4.26)

Now, we have to show that χ = g(ut). In (4.6), we use uℓ instead of uk and then integrate over (0, t)
to get∫

Ω
uℓt v jdx −

∫
Ω

uℓ1v jdx +
∫ t

0

∫
Ω
∆uℓ∆v jdxds +

∫ t

0

∫
Ω
α(s)g(uℓt )v jdxds =

∫ t

0

∫
Ω

f v jdxds, j < ℓ. (4.27)

As ℓ → +∞, we easily check that∫
Ω

utv jdx −
∫
Ω

u1v jdx +
∫ t

0

∫
Ω
∆u∆v jdxds +

∫ t

0

∫
Ω
α(s)χv jdxds =

∫ t

0

∫
Ω

f v jdxds, j ≥ 1. (4.28)

Hence, for v ∈ H2
∗ (Ω), we have∫

Ω
utvdx −

∫
Ω

u1vdx +
∫ t

0

∫
Ω
∆u∆vdxds +

∫ t

0

∫
Ω
α(s)χvdxds =

∫ t

0

∫
Ω

f vdxds. (4.29)

Since all terms define absolute continuous functions, we get, for a.e. t ∈ [0,T ] and for v ∈ H2
∗ (Ω),

the following
d
dt

∫
Ω

utvdx +
∫
Ω
∆u∆vdx +

∫
Ω
α(t)χvdx =

∫
Ω

f vdxds. (4.30)

This implies that
utt + ∆

2u + α(t)χ = f , in D′ (Ω × (0,T )) . (4.31)

Using (H1), we see that

Xℓ :=
∫ T

0

∫
Ω

α(s)
(
uℓt − v

) (
g(uℓt ) − g(v)

)
dxdt ≥ 0, v ∈ L2

(
(0,T ); L2(Ω)

)
. (4.32)
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So, by using (4.6) and replacing uk by uℓ, we get

Xℓ =

∫ T

0

∫
Ω

f uℓt dxdt +
1
2

∫
Ω

(
|uℓt |

2 + |∆uℓ|2
)

dx −
1
2

∫
Ω

|uℓt (x,T )|2dx

−
1
2

∫
Ω

|∆uℓt (x,T )|2dx −
∫ T

0

∫
Ω

α(t)g(uℓt )vdxdt −
∫ T

0

∫
Ω

α(t)g(v)
(
uℓt − v

)
dxdt.

(4.33)

Taking ℓ → +∞, we obtain

0 ≤ lim sup
ℓ

Xℓ ≤

∫ T

0

∫
Ω

f utdxdt +
1
2

∫
Ω

(
|u1|

2 + |∆u0|
2
)

dx

−
1
2

∫
Ω

|ut(x,T )|2dx −
1
2

∫
Ω

|∆ut(x,T )|2dx −
∫ T

0

∫
Ω

α(t)χvdxdt

−

∫ T

0

∫
Ω

α(t)g(v) (ut − v) dxdt.

(4.34)

Replacing v by ut in (4.30) and integrating over (0,T ), we obtain∫ T

0

∫
Ω

f utdxdt =
1
2

∫
Ω

(
|ut(x,T )|2dx + |∆u(x,T )|2

)
dx −

1
2

∫
Ω

|u1|
2dx

−
1
2

∫
Ω

|∆u0|
2dx +

∫ T

0

∫
Ω

α(t)χutdxdt.
(4.35)

Adding of (4.34) and (4.35), we get

0 ≤ lim sup
ℓ

Xℓ ≤

∫ T

0

∫
Ω

α(t)χutdxdt −
∫ T

0

∫
Ω

α(t)χvdxdt −
∫ T

0

∫
Ω

α(t)g(v)(ut − v)dxdt. (4.36)

This gives ∫ T

0

∫
Ω

α(t) (χ − g(v)) (ut − v)dxdt ≥ 0, v ∈ L2
(
(0,T ), L2(Ω)

)
. (4.37)

Hence, ∫ T

0

∫
Ω

α(t) (χ − g(v)) (ut − v)dxdt ≥ 0, v ∈ L2 (Ω × (0,T )) . (4.38)

Let v = λw + ut, where λ > 0 and w ∈ L2 (Ω × (0,T )). Then, we get

−λ

∫ T

0

∫
Ω

α(t) (χ − g(λw + ut)) wdxdt ≥ 0, w ∈ L2 (Ω × (0,T )) . (4.39)

For λ > 0, we have

λ

∫ T

0

∫
Ω

α(t) (χ − g(λw + ut)) wdxdt ≤ 0, w ∈ L2 (Ω × (0,T )) . (4.40)

As λ→ 0 and using the continuity of g with respect of λ, we get

λ

∫ T

0

∫
Ω

α(t) (χ − g(ut)) wdxdt ≤ 0, w ∈ L2 (Ω × (0,T )) . (4.41)
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Similarly, for λ < 0, we get

λ

∫ T

0

∫
Ω

α(t) (χ − g(ut)) wdt ≥ 0, w ∈ L2 (Ω × (0,T )) . (4.42)

This implies that χ = g(ut). Hence, (4.30) becomes∫
Ω

(uttv + ∆u∆v + α(t)g(ut)v) dx =
∫
Ω

f vdx, v ∈ L2
(
(0,T ); H2

∗ (Ω)
)
. (4.43)

which gives
utt + ∆

2u + α(t)g(ut) = f , in D′ (Ω × (0,T )) . (4.44)

To handle the initial conditions of problem (4.1), we first note that

uℓ⇀u weakly ∗in L∞(0,T ; H2
∗ (Ω))

uℓt⇀ut weakly ∗ in L∞(0,T ; L2(Ω)).
(4.45)

Thus, using Lion’s Lemma and (4.6), we easily obtain uℓ → u ∈ C
(
[0,T ]; L2(Ω)

)
. Therefore,

uℓ(x, 0) makes sense and uℓ(x, 0)→ u(x, 0) ∈ L2(Ω). Also, we see that

uℓ(x, 0) = uℓ0 → u0(x) ∈ H2
∗ (Ω).

Hence, u(x, 0) = u0(x). As in [34], let ϕ ∈ C∞0 (0,T ), and replacing uk by uℓ, we obtain from (4.6)
and for any j ≤ ℓ 

−
∫ T

0

∫
Ω

uℓt (x, t)v j(x)ϕ′(t)dxdt = −
∫ T

0

∫
Ω
∆uℓ(x, t)∆v j(x)ϕ(t)dxdt

−
∫ T

0

∫
Ω
α(t)g(uℓt )v j(x)ϕ(t)dxdt +

∫ T

0

∫
Ω

f (x, t)v j(x)ϕ(t)dxdt.
(4.46)

As ℓ → +∞, we have for any ϕ ∈ C∞0 ((0,T )),
−

∫ T

0

∫
Ω

ut(x, t)v j(x)ϕ′(t)dxdt = −
∫ T

0

∫
Ω
∆u(x, t)∆v j(x)ϕ(t)dxdt

−
∫ T

0

∫
Ω
α(t)g(ut)v j(x)ϕ(t)dxdt +

∫ T

0

∫
Ω

f (x, t)v j(x)ϕ(t)dxdt,
(4.47)

for all j ≥ 1. This implies that

−
∫ T

0

∫
Ω

ut(x, t)v(x)ϕ′(t)dxdt =
∫ T

0

∫
Ω

[
−∆2u(x, t) − α(t)g(ut) + f (x, t)

]
v(x)ϕ(t)dxdt, (4.48)

for all v ∈ H2
∗ (Ω). This means that utt ∈ L∞((0,T );H(Ω)) and u solves the equation

utt + ∆
2u + α(t)g(ut) = f . (4.49)

Thus
ut ∈ L∞((0,T ); L2(Ω)), utt ∈ L∞((0,T );H(Ω)).
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Consequently, ut ∈ C((0,T );H(Ω)). So, uℓt (x, 0) makes sense and follows that

uℓt (x, 0)→ ut(x, 0) inH(Ω)

and since
uℓt (x, 0) = uℓ1(x)→ u1(x) in L2(Ω),

then
ut(x, 0) = u1(x).

This ends the proof of Theorem 4.1.

Now, we proceed to establish the local existence result for problem (1.1).

Theorem 4.2. Let (u0, u1) ∈ H2
∗ (Ω) × L2(Ω) be given. Then problem (1.1) has a unique local weak

solution

u ∈ L∞
(
[0,T ),H2

∗ (Ω)
)
, ut ∈ L∞

(
[0,T ), L2(Ω)

)
, utt ∈ L∞ ([0,T ),H(Ω)) .

Remark 4.3. In this remark, we point out four cases regarding the solution of problem (1.1):

1) If β = 0, g is linear and (u0, u1) ∈
(
H4(Ω) ∩ H2

∗ (Ω)
)
× H2

∗ (Ω), then problem (1.1) has a unique
classical solution

u ∈ C2
(
[0,T ),H2

∗ (Ω)
)
, ut ∈ C1

(
[0,T ), L2(Ω)

)
, utt ∈ C ([0,T ),H(Ω)) .

2) If β = 0, g is linear and (u0, u1) ∈ H2
∗ (Ω) × L2(Ω), then problem (1.1) has a unique weak solution

u ∈ C1
(
[0,T ),H2

∗ (Ω)
)
, ut ∈ C

(
[0,T ), L2(Ω)

)
, utt ∈ L∞ ([0,T ),H(Ω)) .

3) If β > 0 or g is nonlinear and (u0, u1) ∈ H2
∗ (Ω) × L2(Ω), then problem (1.1) has a unique weak

solution

u ∈ L∞
(
[0,T ),H2

∗ (Ω)
)
, ut ∈ L∞

(
[0,T ), L2(Ω)

)
, utt ∈ L∞ ([0,T ),H(Ω)) .

4) If β > 0 or g is nonlinear and (u0, u1) ∈
(
H4(Ω) ∩ H2

∗ (Ω)
)
× H2

∗ (Ω), then problem (1.1) has a
unique strong solution

u ∈ L∞
(
[0,T ),H4(Ω) ∩ H2

∗ (Ω)
)
, ut ∈ L∞

(
([0,T ),H2

∗ (Ω)
)
, utt ∈ L∞([0,T ), L2(Ω)).

Proof. To prove Theorem 4.2, we first let v ∈ L∞
(
[0,T ),H2

∗ (Ω)
)

and f̃ (v) = |v|βv. Then, by the embed-
ding Lemma 3.1, we have

|| f̃ (v)||22 =
∫
Ω

|v|2(β+1)dx < +∞. (4.50)

Hence,
f̃ (v) ∈ L∞([0,T ), L2(Ω)) ⊂ L2(Ω × (0,T )).

Therefore, for each v ∈ L∞([0,T ),H2
∗ (Ω)), there exists a unique solution

u ∈ L∞([0,T ),H2
∗ (Ω)), ut ∈ L∞([0,T ), L2(Ω))
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satisfying the following nonlinear problem
utt + ∆

2u + α(t)g(ut) = f̃ (v), in Ω × (0,T ),
u(0, y, t) = uxx(0, y, t) = u(π, y, t) = uxx(π, y, t) = 0, (y, t) ∈ (−d, d) × (0,T ),
uyy(x,±d, t) + σuxx(x,±d, t) = 0, (x, t) ∈ (0, π) × (0,T ),
uyyy(x,±d, t) + (2 − σ)uxxy(x,±d, t) = 0, (x, t) ∈ (0, π) × (0,T ),
u(x, y, 0) = u0(x, y), ut(x, y, 0) = u1(x, y), in Ω × (0,T ),

(4.51)

Now, let
WT =

{
w ∈ L∞((0,T ),H2

∗ (Ω))/wt ∈ L∞((0,T ), L2(Ω))
}
,

and define the map K : WT −→ WT by K(v) = u. We note that WT is a Banach space with respect to
the following norm

||w||WT = ||w||L∞((0,T ),H2
∗ (Ω)) + ||wt||L∞((0,T ),L2(Ω)).

Multiply (4.51) by ut and integrate over Ω × (0, t), we get for all t ≤ T,

1
2

∫
Ω

u2
t dx +

1
2

∫
Ω

|∆u|2dx +
∫ t

0

∫
Ω

α(s)utg(ut)dxds

=
1
2

∫
Ω

u2
1dx +

1
2

∫
Ω

|∆u0|
2dx +

∫ t

0

∫
Ω

|v|βvutdxds.
(4.52)

Using Young’s inequality and the embedding Lemma 3.1, we have∫
Ω

|v|βvutdx ≤
ε

4

∫
Ω

u2
t dx +

4
ε

∫
Ω

|v|2(β+1)dx

≤
ε

4

∫
Ω

u2
t dx +

4Ce

ε
||v||2(β+1)

H2
∗

.

(4.53)

Thus, (4.52) becomes

1
2

∫
Ω

u2
t dx +

1
2

∫
Ω

|∆u|2dx ≤ λ0 +
εT
4

sup
(0,T )

∫
Ω

u2
t dx +

Ce

ε

∫ T

0
||v||2(β+1)

H2
∗

dt, (4.54)

where λ0 =
1
2 ||u1||

2
2 +

1
2 ||∆u0||

2
2 and Ce is the embedding constant. Choosing ε such that εT

2 =
1
4 , we get

||u||2WT
≤ λ + Tb||v||2(β+1)

WT
.

Suppose that ||v||WT ≤ M and for M2 > λ and T ≤ T0 <
M2−λ

bM2(β+1) , we conclude that

||u||2WT
≤ λ + TbM2(β+1) ≤ M2.

Therefore, we deduce that K : B −→ B, where

B =
{
w ∈ L∞((0,T ),H2

∗ (Ω))/wt ∈ L∞((0,T ), L2(Ω)); ||w||WT ≤ M
}
.

Next, we prove, for T0(even smaller), K is a contraction. For this purpose, let u1 = K(v1) and
u2 = K(v2) and set u = u1 − u2, then u satisfies the following

utt + ∆
2u + α(t)g(u1t) − α(t)g(u2t) = |v1|

βv1 − |v2|
βv2. (4.55)
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Multiplying (4.55) by ut and integrating over Ω × (0, t) we get, for all t ≤ T,

1
2

∫
Ω

u2
t dx +

1
2

∫
Ω

|∆u|2dx +
∫ t

0

∫
Ω

(α(t)g(u1t) − α(t)g(u2t)) (u1t − u2t) dxds

=

∫ t

0

∫
Ω

(
f̃ (v1) − f̃ (v2)

)
utdxds.

(4.56)

Using (3.5) and (H2), we have

1
2

∫
Ω

u2
t dx +

1
2

∫
Ω

|∆u|2dx ≤
∫ t

0

∫
Ω

(
f̃ (v1) − f̃ (v2)

)
utdxds. (4.57)

Now, we evaluate

Λ :=
∫
Ω

| f̃ (v1) − f̃ (v2)||ut|dx =
∫
Ω

| f̃ ′(ξ)||v||ut|dx, (4.58)

where v = v1 − v2, ξ = τv1 + (1 − τ)v2, 0 ≤ τ ≤ 1, and f̃ ′(ξ) = (β + 1)|ξ|β.
Young’s inequality implies

Λ ≤
δ

2

∫
Ω

u2
t dx +

2
δ

∫
Ω

| f̃ ′(ξ)|2|v|2dx ≤
δ

2

∫
Ω

u2
t dx +

2(β + 1)2

δ

∫
Ω

|αv1 + (1 − α)v2|
2β|v|2dx

≤
δ

2

∫
Ω

u2
t dx +Cδ

(
|v|

2n
n−2

) n−2
n

(
|αv1 + (1 − α)v2|

nβ
) 2

n
.

(4.59)

Using the embedding Lemma 3.1, we arrive at

Λ ≤
δ

2

∫
Ω

u2
t dx +CδCe||v||2H2

∗

(
||v1||

2β
H2
∗

+ ||v2||
2β
H2
∗

)
≤
δ

2

∫
Ω

u2
t dx + 4CδCeM2β||v||2β

H2
∗

.

(4.60)

Therefore, (4.57) takes the form

1
2
||u||2WT

≤
δT0

2
||u||2WT

+CδM2βT0||v||
2β
WT
. (4.61)

Choosing δ sufficiently small, we see that

||u||2WT
≤ 4CδM2βT0||v||

2β
WT
= γ0T0||v||

2β
WT
. (4.62)

Taking T0 small enough so that,

||u||2WT
≤ ν||v||2βWT

, for some 0 < ν < 1. (4.63)

Thus, K is a contraction. The Banach fixed point theorem implies the existence of a unique u ∈ B
satisfying K(u) = u. Thus, u is a local solution of (1.1).
Uniqueness: Suppose that problem (1.1) has two weak solutions (u, v). Taking, w = u− v, that satisfies
the following equation, for all t ∈ (0,T ) ,
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
wtt − ∆

2w + α(t)g(ut) − α(t)g(vt) = u|u|β − v|v|β

w(0, y, t) = wxx(0, y, t) = w(π, y, t) = wxx(π, y, t) = 0, (y, t) ∈ (−d, d) × (0,T ),
w(x, 0) = wt(x, 0) = 0, in Ω.

(4.64)

Multiplying (4.64) by wt and integrating over Ω × (0, t), we obtain

1
2

∫
Ω

w2
t dx +

1
2

∫
Ω

|∆w|2dx +
∫ t

0

∫
Ω

(α(t)g(ut) − α(t)g(vt)) (ut − vt) dxds

=

∫ t

0

∫
Ω

(
u|u|β − v|v|β

)
wtdxds.

(4.65)

Using (3.5) and (H2) implies that

1
2

∫
Ω

w2
t dx +

1
2

∫
Ω

|∆w|2dx ≤
∫ t

0

∫
Ω

(
u|u|β − v|v|β

)
wtdxds. (4.66)

By repeating the same above estimates, we obtain∫
Ω

(
w2

t dx + |∆w|2
)

dx = 0. (4.67)

This gives w ≡ 0. The proof of the uniqueness is completed.

5. Global existence

In this section, we prove that problem (1.1) has a global solution. For this purpose, we introduce
the following functionals. The energy functional associated with problem (1.1) is

E(t) =
1
2

(
∥ut∥

2
2 + ∥u∥

2
H2
∗ (Ω)

)
−

1
β + 2

∥u∥β+2
β+2. (5.1)

Direct differentiation of (5.1), using (1.1), leads to

E′(t) = −α(t)
∫
Ω

utg(ut)dx ≤ 0. (5.2)

J(t) =
1
2
∥u∥2H2

∗ (Ω) −
1

β + 2
∥u∥β+2

β+2 (5.3)

and
I(t) = ∥u∥2H2

∗ (Ω) − ∥u∥
β+2
β+2. (5.4)

Clearly, we have

E(t) = J(t) +
1
2
∥ut∥

2
2. (5.5)

Lemma 5.1. Suppose that (H1) and (H2) hold and (u0, u1) ∈ H2
∗ (Ω) × L2(Ω), such that

0 < γ = Cβ+2
e

(
2(β + 2)

β
E(0)

) β
2

< 1, I(u0) > 0, (5.6)

then I(u(t)) > 0, ∀t > 0.
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Proof. Since I(u0) > 0, then there exists (by continuity) Tm < T such that I(u(t) ≥ 0, ∀t ∈ [0,Tm];
which gives

J(t) =
1
2
∥u∥2H2

∗ (Ω) −
1

β + 2
∥u∥β+2

β+2

=
β

2(β + 2)
∥u∥2H2

∗ (Ω) +
1

β + 2
I(t)

≥
β

2(β + 2)
∥u∥2H2

∗ (Ω).

(5.7)

By using (5.2), (5.5) and (5.7), we have

∥u∥2H2
∗ (Ω) ≤

2(β + 2)
β

J(t) ≤
2(β + 2)

β
E(t) ≤

2(β + 2)
β

E(0), ∀t ∈ [0,Tm]. (5.8)

The embedding theorem, (5.6) and (5.8) give, ∀t ∈ [0,Tm],

∥u∥β+2
β+2 ≤ Cβ+2

e ∥u∥
β+2
H2
∗ (Ω)
≤ Cβ+2

e ∥u∥
β

H2
∗ (Ω)
∥u∥2H2

∗ (Ω) ≤ γ∥u∥
2
H2
∗ (Ω) < ∥u∥

2
H2
∗ (Ω). (5.9)

Therefore,
I(t) = ∥u∥2H2

∗ (Ω) − ∥u∥
β+2
β+2 > 0, ∀t ∈ [0,Tm].

By repeating this procedure, and using the fact that

lim
t→Tm

Cβ+2
e

(
2(β + 2)

β
E(t)

) β
2

≤ γ < 1,

Tm is extended to T.

Remark 5.2. The restriction (5.6) on the initial data will guarantee the nonnegativeness of E(t).

Proposition 5.3. Suppose that (H1) and (H2) hold. Let (u0, u1) ∈ H2
∗ (Ω) × L2(Ω) be given, satisfying

(5.6). Then the solution of (1.1) is global and bounded.

Proof. It suffices to show that ∥u∥2
H2
∗ (Ω)
+ ∥ut∥

2
2 is bounded independently of t. To achieve this, we use

(5.2), (5.4) and (5.5) to get

E(0) ≥ E(t) = J(t) +
1
2
∥ut∥

2
2

≥
β − 2

2β
∥u∥2H2

∗ (Ω) +
1
2
∥ut∥

2
2 +

1
β

I(t)

≥
β − 2

2β
∥u∥2H2

∗ (Ω) +
1
2
∥ut∥

2
2,

(5.10)

since I(t) is positive. Therefore
∥u∥2H2

∗ (Ω) + ∥ut∥
2
2 ≤ CE(0),

where C is a positive constant, which depends only on β.
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6. Stability result

In this section, we state and prove our stability result. For this purpose, we establish some lemmas.

Lemma 6.1. (Case: G is linear) Let u be the solution of (1.1). Then, for T > S ≥ 0, the energy
functional satisfies ∫ T

S
α(t)E(t)dt ≤ cE(S ). (6.1)

Proof. We multiply (1.1) by αu and integrate over Ω × (S ,T ) to get

0 =
∫ T

S
α(t)

∫
Ω

(
uutt + u∆2u + α(t)ug(ut) − |u|β+2

)
dxdt

=

∫ T

S
α(t)

∫
Ω

(
(uut)t − u2

t + α(t)ug(ut) − |u|β+2
)

dxdt +
∫ T

S
α(t)∥u∥2H2

∗ (Ω)dt

=

∫ T

S
α(t)

d
dt

(∫
Ω

uutdx
)

dt +
∫ T

S
α(t)

∫
Ω

u2
t dxdt

+

∫ T

S
α(t)∥u∥2H2

∗ (Ω)dt − 2
∫ T

S
α(t)

∫
Ω

u2
t dxdt

+

∫ T

S
α2(t)

∫
Ω

ug(ut)dxdt −
∫ T

S
α(t)∥u∥β+2

β+2dt.

(6.2)

Adding and subtracting the following terms

γ

∫ T

S
α(t)∥u∥2H2

∗ (Ω)dt + (1 + γ)
∫ T

S
α(t)∥ut∥

2
2dt, where γ is defined in (5.6),

to (6.2), and recalling (5.9), we arrive at∫ T

S
α(t)

d
dt

(∫
Ω

uutdx
)

dt + (1 − γ)
∫ T

S
α(t)

(
∥u∥2H2

∗ (Ω) + ∥ut∥
2
2

)
dt

− (2 − γ)
∫ T

S
α(t)

∫
Ω

u2
t dxdt +

∫ T

S
α2(t)

∫
Ω

ug(ut)dxdt

= −

∫ T

S
α(t)

(
γ∥u∥2H2

∗ (Ω) − ∥u∥
β+2
β+2

)
dt ≤ 0.

(6.3)

Integrating the first term of (6.3) by parts and using (5.1), then (6.3) becomes

(1 − γ)
∫ T

S
αEdt ≤ (1 − γ)

∫ T

S
α
(
∥u∥2H2

∗ (Ω) + ∥ut∥
2
2

)
dt

≤ −

[
α

∫
Ω

uutdx
]T

S
+

∫ T

S
α′

∫
Ω

uutdxdt

+ (2 − γ)
∫ T

S
α

∫
Ω

u2
t dxdt −

∫ T

S
α2

∫
Ω

ug(ut)dxdt.

(6.4)

Now, we estimate the terms in the right-hand side of (6.4) as follows:
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1) Estimate for −
[
α
∫
Ω

uutdx
]T

S
.

Using Lemma 3.1 and Young’s inequality, we obtain∫
Ω

uutdx ≤
1
2

∫
Ω

(
u2 + u2

t

)
dx ≤ c∥u∥H2

∗ (Ω) + ∥ut∥
2
2 ≤ cE(t), (6.5)

which implies that

−

[
α

∫
Ω

uutdx
]T

S
≤ c[−α(T )E(T ) + α(S )E(S )] ≤ cα(S )E(S ) ≤ cE(S ). (6.6)

2) Estimate for
∫ T

S
α′

∫
Ω

uutdxdt.
The use of (6.5) and (H2) leads to∫ T

S
α′

∫
Ω

uutdxdt ≤ c

∣∣∣∣∣∣
∫ T

S
α′Edt

∣∣∣∣∣∣ ≤ cE(S )

∣∣∣∣∣∣
∫ T

S
α′dt

∣∣∣∣∣∣ ≤ cE(S ). (6.7)

3) Estimate for
∫ T

S
α
(∫
Ω

u2
t dx

)
dt.

Using (H1), (5.2) and recalling that G is linear, we have∫ T

S
α

(∫
Ω

u2
t dx

)
dt ≤

1
c1

∫ T

S
α(t)

∫
Ω

utg(ut)dxdt

≤ −

∫ T

S
cE′(t)dt

≤ cE(S ).

(6.8)

4) Estimate for −
∫ T

S
α2(t)

∫
Ω

ug(ut)dxdt.

Using (H1), Lemma 3.1, Holder’s inequality and recalling G is linear, we obtain

α2(t)
∫
Ω

ug(ut)dx ≤ α2(t)
(∫
Ω

|u|2dx
) 1

2
(∫
Ω

|g(ut)|2dx
) 1

2

≤ α
3
2 (t)∥u∥H2

∗ (Ω)

(
α(t)

∫
Ω

utg(ut)dx
) 1

2

≤ cα(t)E
1
2 (t)

(
−E′(t)

) 1
2 .

(6.9)

Applying Young’s inequality to E
1
2 (t)(−E′(t))

1
2 with p = 2 and p∗ = 2, to get

α2(t)
∫
Ω

ug(ut)dx ≤ cα(t)
(
εE(t) −CεE′(t)

)
≤ cεαE(t) −CεE′(t),

(6.10)

which implies that ∫ T

S
α2(t)

(∫
Ω

(−ug(ut))dx
)

dt

≤ cε
∫ T

S
α(t)E(t)dt +CεE(S ).

(6.11)
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Combining the above estimates and taking ε small enough, we get (6.1).

Lemma 6.2. (Case: G is nonlinear) Let u be the solution of (1.1). Then, for T > S ≥ 0, the energy
functional satisfies∫ T

S
α(t)ϕ̃ (E(t)) dt ≤ cϕ̃(E(S )) + c

∫ T

S
α(t)

ϕ̃(E)
E

∫
Ω

(
|ut|

2 + |ug(ut)|
)

dxdt, (6.12)

where ϕ̃ : R+ → R+ is any convex, increasing and of class C1[0,∞) function such that ϕ̃(0) = 0.

Proof. We multiply (1.1) by α(t) ϕ̃(E)
E u and integrate over Ω × (S ,T ) to get

0 =
∫ T

S
α(t)

ϕ̃(E)
E

∫
Ω

(
(uut)t − u2

t + α(t)ug(ut) − |u|β+2
)

dxdt

+

∫ T

S
α(t)

ϕ̃(E)
E
∥u∥2H2

∗ (Ω)dt

=

∫ T

S
α(t)

ϕ̃(E)
E

d
dt

(∫
Ω

uutdx
)

dt +
∫ T

S
α(t)

ϕ̃(E)
E
∥u∥2H2

∗ (Ω)dt

+

∫ T

S
α(t)

ϕ̃(E)
E

∫
Ω

u2
t dxdt − 2

∫ T

S
α(t)

ϕ̃(E)
E

∫
Ω

u2
t dxdt

+

∫ T

S
α2(t)

ϕ̃(E)
E

∫
Ω

ug(ut)dxdt −
∫ T

S
α(t)

ϕ̃(E)
E
∥u∥β+2

β+2.

(6.13)

Adding and subtracting to (6.13) the following terms

γ

∫ T

S
α(t)

ϕ̃(E)
E
∥u∥2H2

∗ (Ω)dt + (1 + γ)
∫ T

S
α(t)

ϕ̃(E)
E
∥ut∥

2
2dt, where γ is defined in (5.6),

we arrive at

(1 − γ)
∫ T

S
α(t)ϕ̃(E)dt ≤ −

∫ T

S
α(t)

ϕ̃(E)
E

d
dt

(∫
Ω

uutdx
)

dt

+ (2 − γ)
∫ T

S
α(t)

ϕ̃(E)
E

∫
Ω

u2
t dxdt −

∫ T

S
α2(t)

ϕ̃(E)
E

∫
Ω

ug(ut)dxdt

−

∫ T

S
α
ϕ̃(E)

E

(
γ∥u∥2H2

∗ (Ω) − ∥u∥
β+2
β+2

)
.

(6.14)

Using (5.9), it is easy to deduce that −
∫ T

S
α ϕ̃(E)

E

(
γ∥u∥2

H2
∗ (Ω)
− ∥u∥β+2

β+2

)
dt ≤ 0.

Integrating by parts in the first term, in the right-hand side of (6.14), we get

(1 − γ)
∫ T

S
α(t)ϕ̃(E)dt ≤ −

[
α(t)

ϕ̃(E)
E

∫
Ω

uutdx
]T

S

+

∫ T

S

∫
Ω

ut

(
α′(t)

ϕ̃(E)
E

u + α(t)
(
ϕ̃(E)

E

)′
u
)

dxdt

+ (2 − γ)
∫ T

S
α(t)

ϕ̃(E)
E

∫
Ω

u2
t dxdt

−

∫ T

S
α2(t)

ϕ̃(E)
E

∫
Ω

ug(ut)dxdt.

(6.15)
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Using Cauchy Schwarz’ inequality, Lemmas 3.1 and 5.1, we obtain∫
Ω

uutdx ≤
(∫
Ω

|u|2dx
) 1

2
(∫
Ω

|ut|
2dx

) 1
2

≤ c∥u∥H2
∗ (Ω)∥ut∥2 ≤ cE(t).

(6.16)

Using (6.16), the properties of α(t) and the fact that the function s → ϕ̃(s)
s is non-decreasing and E

is non-increasing, we have∫ T

S
α′(t)

ϕ̃(E)
E

∫
Ω

uutdxdt ≤ c
∫ T

S
α′(t)

ϕ̃(E)
E

Edt

≤ cϕ̃(E(S ))
∫ T

S
α′(t)dt ≤ cϕ̃(E(S )).

(6.17)

Similarly, we get∫ T

S
α(t)

(
ϕ̃(E)

E

)′ ∫
Ω

uutdxdt ≤ E(S )
∫ T

S
α(t)

(
ϕ̃(E)

E

)′
dt

≤ E(S )
[
α(t)

ϕ̃(E)
E

]T

S
− E(S )

∫ T

S
α′(t)

ϕ̃(E)
E

dt

≤ E(S )
(
α(T )

ϕ̃(E(T ))
E(T )

− α(S )
ϕ̃(E(S ))

E(S )

)
− E(S )

ϕ̃(E(S ))
E(S )

∫ T

S
α′(t)dt

≤ E(S )α(T )
ϕ̃(E(T ))

E(T )
− ϕ̃(E(S )) (α(T ) − α(S ))

≤ E(S )α(S )
ϕ̃(E(S ))

E(S )
+ ϕ̃(E(S ))α(S ) ≤ cϕ̃(E(S )).

(6.18)

A combination of (6.15)–(6.18) leads to (6.12).

In order to finalize the proof of our result, we let

ϕ̃(s) = 2ε0sG′(ε2
0s), and G1(s) = G(s2),

where ε0 > 0 is small enough and G∗ and G∗1 denote the dual functions of the convex functions G and
G1 respectively in the sense of Young (see, Arnold [33], pp. 64).

Lemma 6.3. Suppose G is nonlinear, then the following estimates

G∗
(
ϕ̃(s)

s

)
≤
ϕ̃(s)

s
(
G′

)−1
(
ϕ̃(s)

s

)
(6.19)

and

G∗1

(
ϕ̃(s)
√

s

)
≤ ε0ϕ̃(

√
s). (6.20)

hold, where ϕ̃ is defined earlier in Lemma 6.2.
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Proof. Since G∗ and G∗1 are the dual functions of the convex functions G and G1 respectively, then

G∗(s) = s(G′)−1(s) −G
[
(G′)−1(s)

]
≤ s(G′)−1(s) (6.21)

and
G∗1(s) = s(G′1)−1(s) −G1

[
(G′1)−1(s)

]
≤ s(G′1)−1(s). (6.22)

Using (6.21) and the definition of ϕ̃, we obtain (6.19). For the proof of (6.20), we use (6.22) and
the definitions of G1 and ϕ̃ to obtain

ϕ̃(s)
√

s
(G′1)−1

(
ϕ̃(s)
√

s

)
≤ 2ε0

√
sG′(ε2

0s)(G′1)−1
(
2ε0
√

sG′(ε2
0s)

)
= 2ε0

√
sG′(ε2

0s)(G′1)−1
(
G′1(ε0

√
s)
)

= 2ε2
0sG′(ε2

0s)

= ε0ϕ̃(
√

s).

(6.23)

Now, we state and prove our main decay results.

Theorem 6.4. Let (u0, u1) ∈ H2
∗ (Ω)×L2(Ω). Assume that (H1) and (H2) hold. Then there exist positive

constants k and c such that, for t large, the solution of (1.1) satisfies

E(t) ≤ ke−c
∫ t

0 α(s)ds, if G is linear, (6.24)

E(t) ≤ ψ−1 (h(α̃(t)) + ψ (E(0))) , if G is nonlinear, (6.25)

where

α̃(t) =
∫ t

0
α(t)dt, ψ(t) =

∫ 1

t

1
χ(s)

ds, and χ(s) = 2ε0csG′(ε2
0s)

and 
h(t) = 0, 0 ≤ t ≤ E(0)

χ(E(0)) ,

h−1(t) = t + ψ−1(t+ψ(E(0)))
χ(ψ−1(t+ψ(E(0)))) , t > 0.

Proof. To establish (6.24), we use (6.1) and Lemma 3.5 for γ(t) =
∫ t

0
α(s)ds. Consequently the re-

sult follows. For the proof of (6.25), we re-estimate the terms of (6.12) as follows: we consider the
following partition of Ω:

Ω1 = {x ∈ Ω : |ut| ≥ ε1}, Ω2 = {x ∈ Ω : |ut| ≤ ε1}.

So, ∫ T

S
α(t)

ϕ̃(E)
E

∫
Ω1

(
|ut|

2 + |ug(ut)|
)

dxdt

=

∫ T

S
α(t)

ϕ̃(E)
E

∫
Ω1

|ut|
2dxdt +

∫ T

S
α(t)

ϕ̃(E)
E

∫
Ω1

|ug(ut)|dxdt

:= I1 + I2.
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Using the definition of Ω1, (3.4) and (5.2), we have

I1 ≤ c
∫ T

S
α(t)

ϕ̃(E)
E

∫
Ω1

utg(ut)dxdt

≤ c
∫ T

S

ϕ̃(E)
E

(
−E′(t)

)
dt ≤ cϕ̃(E(S )).

(6.26)

After applying Hölder’s and Young’s inequalities and Lemma 3.1, we obtain for some ε > 0,

I2 ≤

∫ T

S
α(t)

ϕ̃(E)
E

(∫
Ω1

|u|2dx
) 1

2
(∫
Ω1

|g(ut)|2
) 1

2

dt

≤ ε

∫ T

S
α(t)

ϕ̃2(E)
E2 ∥u∥H2

∗ (Ω)dt + c(ε)
∫ T

S
α(t)

∫
Ω1

|g(ut)|2dt.

(6.27)

The definition of Ω1, (3.4), (5.1), (5.2) and (6.27) lead to

I2 ≤ ε

∫ T

S
α(t)

ϕ̃2(E)
E

dt + c(ε)
∫ T

S
α(t)

∫
Ω1

utg(ut)dxdt

≤ ε

∫ T

S
α(t)

ϕ̃2(E)
E

dt + c(ε)E(S ).
(6.28)

Using the definition of ϕ̃ and the convexity of G, then (6.28) becomes

I2 ≤ ε

∫ T

S
α(t)

ϕ̃2(E)
E

dt + cE(S )

= 2εε0

∫ T

S
α(t)ϕ̃(E)G′

(
ε2

0E(t)
)

dt + cE(S )

≤ 2εε0

∫ T

S
α(t)ϕ̃(E)G′

(
ε2

0E(0)
)

dt + cE(S )

≤ 2cεε0

∫ T

S
α(t)ϕ̃(E)dt + cE(S ).

(6.29)

Combining (6.12), (6.26) and (6.29) and choosing ε small enough, we obtain∫ T

S
α(t)ϕ̃(E)dt ≤cϕ̃(E) + c

∫ T

S
α(t)

ϕ̃(E)
E

∫
Ω2

(
|ut|

2 + |ug(ut)|
)

dxdt. (6.30)

Using Young’s inequality and Jensen’s inequality (Eq 3.3), (Eq 3.4) and (Eq 5.1), we get∫ T

S
α(t)

ϕ̃(E)
E

∫
Ω2

(
|ut|

2 + |ug(ut)|
)

dxdt ≤
∫ T

S
α(t)

ϕ̃(E)
E

∫
Ω2

G−1 (utg(ut)) dxdt

+

∫ T

S
α(t)

ϕ̃(E)
E
∥u∥

1
2

H2
∗ (Ω)

(∫
Ω2

G−1(utg(ut))dx
) 1

2

dxdt

≤ |Ω|

∫ T

S
α(t)

ϕ̃(E)
E

G−1
(

1
|Ω|

∫
Ω

utg(ut)dx
)

dt

+

∫ T

S
α(t)

ϕ̃(E)
E

√
E

√
|Ω|G−1

(
1
|Ω|

∫
Ω

utg(ut)dx
)
dt.

(6.31)
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Applying the generalized Young inequality

AB ≤ G∗(A) +G(B)

to the first term of (6.31), with A = ϕ̃(E)
E and B = G−1

(
1
|Ω|

∫
Ω

utg(ut)dx
)
, we easily see that

ϕ̃(E)
E

G−1
(

1
|Ω|

∫
Ω

utg(ut)dx
)
≤ G∗

(
ϕ̃(E)

E

)
+

1
|Ω|

∫
Ω

utg(ut)dx. (6.32)

Then we apply it to the second term of (6.31), with A = ϕ̃(E)
E

√
E and B =

√
|Ω|G−1

(
1
|Ω|

∫
Ω

utg(ut)dx
)

to obtain

ϕ̃(E)
E

√
E

√
|Ω|G−1

(
1
|Ω|

∫
Ω

utg(ut)dx
)
≤ G∗1

(
ϕ̃(E)

E

√
E
)
+ |Ω|G−1

(
1
|Ω|

∫
Ω

utg(ut)dx
)
. (6.33)

Combining (6.31)–(6.33) and using (6.19) and (6.20), we arrive at∫ T

S
α(t)

ϕ̃(E)
E

∫
Ω2

(
|ut|

2 + |ug(ut)|
)

dxdt

≤ c
∫ T

S
α(t)

(
G∗1

(
ϕ̃(E)

E

√
E
)
+G∗

(
ϕ̃(E)

E

))
dt + c

∫ T

S
α(t)

∫
Ω

utg(ut)dxdt

≤ c
∫ T

S
α(t)

ε0 +
(G′)−1

(
ϕ̃(E)

E

)
E

 ϕ̃(E)dt + cE(S ).

(6.34)

Using the definition of ϕ̃ and the fact that s → (G′)−1(s) is non-decreasing, we deduce that, for
0 < ε0 ≤

1
2 ,

(G′)−1
(
ϕ̃(E)

E

)
E

=
(G′)−1

(
2ε0G′(ε2

0E)
)

E
≤ ε2

0. (6.35)

Combining (6.34) and (6.35) leads to∫ T

S
α(t)

ϕ̃(E)
E

∫
Ω2

(
|ut|

2 + |ug(ut)|
)

dxdt ≤ cε0

∫ T

S
α(t)ϕ̃(E)dt + cE(S ). (6.36)

Then, choosing ε0 small enough, we deduce from (6.30) and (6.36) that∫ T

S
α(t)ϕ̃(E(t))dt ≤ c

(
1 +

ϕ̃(E(S ))
E(S )

)
E(S ).

Using the facts that E is non-increasing and s→ ϕ̃(s)
s is non-decreasing, we obtain∫ +∞

S
α(t)ϕ̃(E(t))dt ≤ cE(S ). (6.37)
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Let Ẽ = E ◦ α̃−1, where α̃(t) =
∫ t

0
α(s)ds. Then we deduce from (6.37) that∫ ∞

S
ϕ̃(Ẽ(t))dt =

∫ ∞

S
ϕ̃(E(α̃−1(t)))dt

=

∫ ∞

α̃−1(S )
α(η)ϕ̃(E(η))dη

≤ cE
(
α̃−1(S )

)
≤ cẼ(S ).

Using Lemma 3.6 for Ẽ and χ(s) = 1
c ϕ̃(s), we deduce from (3.6) the following estimate

Ẽ(t) ≤ ψ−1 (h(t) + ψ (E(0))) ,

which gives (6.25), by using the definition of Ẽ and the change of variables.

Remark 6.5. The stability result (6.25) is a decay result. Indeed,

h−1(t) = t +
ψ−1 (t + ψ(E(0)))

χ
(
ψ−1(t + ψ(E(0)))

)
= t +

c

2ε0cG′
(
ε2

0ψ
−1(t + r)

)
≥ t +

c

2ε0cG′
(
ε2

0ψ
−1(r)

)
≥ t + c̃.

Hence, limt→∞ h−1(t) = ∞, which implies that limt→∞ h(t) = ∞. Using the convexity of G, we have

ψ(t) =
∫ 1

t

1
χ(s)

ds =
∫ 1

t

c

2ε0sG′
(
ε2

0s
) ≥ ∫ 1

t

c

sG′
(
ε2

0

) ≥ c [ln |s|]1
t = −c ln t.

Therefore, limt→0+ ψ(t) = ∞ which leads to limt→∞ ψ
−1(t) = 0.

Examples

1) Let g(s) = sm, where m ≥ 1. Then the function G is defined in the neighborhood of zero by

G(s) = cs
m+1

2

which gives, near zero

χ(s) =
c(m + 1)

2
s

m+1
2 .

So, we obtain

ψ(t) = c
∫ 1

t

2

(m + 1)s
m+1

2

ds =


c

t
m−1

2
, i f m > 1;

−c ln t, i f m = 1,
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and then, in the neighborhood of∞

ψ−1(t) =
{

ct−
2

m−1 , i f m > 1;
ce−t, i f m = 1,

Using the fact that h(t) = t as t goes to infinity, we obtain from (6.24) and (6.25)

E(t) ≤


c
(∫ t

0
α(s)ds

)− 2
m−1

, i f m > 1;

ce−
∫ t

0 α(s)ds, i f m = 1.

2) Let g(s) = sm
√
− ln s, where m ≥ 1. Then the function G is defined in the neighborhood of zero

by

G(s) = cs
m+1

2

√
− ln
√

s

which gives, near zero

χ(s) = cs
m+1

2
(
− ln
√

s
)− 1

2

(
m + 1

2

(
− ln
√

s
)
−

1
4

)
.

Therefore, we get

ψ(t) =c
∫ 1

t

1

s
m+1

2

(
− ln
√

s
)− 1

2
(

m+1
2

(
− ln
√

s
)
− 1

4

)ds

=c
∫ 1√

t

1

τm−2

(ln τ)−
1
2

(
m+1

2 ln τ − 1
4

)dτ

=


c

t
m−1

2
√
− ln t

, i f m > 1;

c
√
− ln t, i f m = 1,

and then, in the neighborhood of∞, we have

ψ−1(t) =


ct−

2
m−1 (ln t)−

1
m−1 , i f m > 1;

ce−t2 , i f m = 1,

Using the fact that h(t) = t as t goes to infinity, we obtain

E(t) ≤


c
(∫ t

0
α(s)ds

)− 2
m−1

(
ln

(∫ t

0
α(s)ds

))− 1
m−1

, i f m > 1;

ce−
(∫ t

0 α(s)ds
)2

, i f m = 1,
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decay rates for a suspension bridge with locally distributed nonlinear damping, J. Franklin Inst.,
357 (2020), 2388–2419. https://doi.org/10.1016/j.jfranklin.2020.01.004

25. F. Gazzola, Mathematical Models for Suspension Bridges, 2015. https://doi.org/10.1007/978-3-
319-15434-3

26. W. Liu, H. Zhuang, Global existence, asymptotic behavior and blow-up of solutions for a suspen-
sion bridge equation with nonlinear damping and source terms, Nonlinear Differ. Equations Appl.
NoDEA, 24 (2017), 67. https://doi.org/10.1007/s00030-017-0491-5

27. V. F. Jr, F. Gazzola, E. M. dos Santos, Instability of modes in a partially hinged rectangular plate,
J. Differ. Equations, 261 (2016), 6302–6340. https://doi.org/10.1007/s00030-017-0491-5

28. I. Lasiecka, D. Tataru, Uniform boundary stabilization of semilinear wave equations with
nonlinear boundary damping, Differ. Integr. Equations, 6 (1993), 507–533. Available from:
file:///C:/Users/97380/Downloads/1370378427.pdf.

29. P. Martinez, A new method to obtain decay rate estimates for dissipative systems, ESAIM: Control
Optim. Calculus Var., 4 (1999), 419–444. https://doi.org/10.1051/cocv:1999116

Electronic Research Archive Volume 30, Issue 11, 4038–4065.

http://dx.doi.org/https://doi.org/10.1006/jmaa.2001.7697
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2014.04.015
http://dx.doi.org/https://doi.org/10.1186/s13661-018-0931-0
http://dx.doi.org/https://doi.org/10.1515/msds-2019-0006
http://dx.doi.org/https://doi.org/10.1016/j.rinam.2021.100219
http://dx.doi.org/https://doi.org/10.1016/j.apnum.2018.06.004
http://dx.doi.org/https://doi.org/10.1515/anona-2020-0154
http://dx.doi.org/https://doi.org/10.1515/anona-2022-0249
http://dx.doi.org/https://doi.org/10.1016/j.na.2014.04.011
http://dx.doi.org/https://doi.org/10.1007/s00498-018-0226-0
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2020.01.004
http://dx.doi.org/https://doi.org/10.1007/978-3-319-15434-3
http://dx.doi.org/https://doi.org/10.1007/978-3-319-15434-3
http://dx.doi.org/https://doi.org/10.1007/s00030-017-0491-5
http://dx.doi.org/https://doi.org/10.1007/s00030-017-0491-5
http://dx.doi.org/https://doi.org/10.1051/cocv:1999116


4065
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