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Abstract: In this paper, we consider the time-fractional telegraph equation of distributed order in
higher spatial dimensions, where the time derivative is in the sense of Hilfer, thus interpolating between
the Riemann-Liouville and the Caputo fractional derivatives. By employing the techniques of the
Fourier, Laplace, and Mellin transforms, we obtain a representation of the solution of the Cauchy
problem associated with the equation in terms of convolutions involving functions that are Laplace
integrals of Fox H-functions. Fractional moments of the first fundamental solution are computed and
for the special case of double-order distributed it is analyzed in detail the asymptotic behavior of
the second-order moment, by application of the Tauberian Theorem. Finally, we exhibit plots of the
variance showing its behavior for short and long times, and for different choices of the parameters
along small dimensions.
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1. Introduction

Distributed-order fractional calculus (DOFC) is a branch of fractional calculus important for the
modeling of complex systems. It generalizes the constant fractional operators by integrating the frac-
tional kernel of these operators over an extended range of orders. The fractional differential operator
of distributed order, for orders not great than 2, is given by

Dα =

∫ u

l
b (α)

dα

dtα
dα, 0 ≤ l < u ≤ 2, b (α) ≥ 0
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where dα
dtα stands for a single-order fractional derivative and b (α) is a non-negative weight function

or generalized function. DOFC takes into account the superposition of orders and is a useful tool
for modeling decelerating anomalous diffusion, ultraslow diffusive processes and strong anomaly (see
e.g., [1, 2]). DOFC models systems whose behavior stems from the complex interplay and superposi-
tion of nonlocal and memory effects occurring over a multitude of scales [3]. Over the last two decades,
a significant number of papers appeared focusing on mathematical aspects and real-world applications
of fractional partial differential equations with distributed order, see e.g., [2, 4–15] for mathematical
aspects, [16, 17] for applications, and the review paper [18] about the mathematics of DOFC, includ-
ing analytical, numerical methods, and the extensive overview of the recent applications of DOFC to
fields like transport processes, and control theory. Moreover, DOFC was applied also in the study of
composite materials [19, 20] and viscoelastic materials having spatially varying properties [21].

The classical telegraph equation was first derived by Lord Kelvin in the 19th century [22]. It is a
hyperbolic partial differential equation of the form

c2 ∂
2
ttu (x, t) + c1 ∂tu (x, t) − c2

0 ∂
2
xxu (x, t) + d u (x, t) = q (x, t) , x ∈ R, t > 0.

This equation was proposed by Cattaneo in 1958 (see [23]) to overcome the problem of infinite prop-
agation velocity in heat transmission. Over the years, this equation and its time-fractional versions
appeared in the study of several phenomena such as transmission lines for all frequencies [24], random
walks [25], solar particle transport [26], oceanic diffusion [27], wave propagation [28], damped small
vibrations, anomalous diffusion and wave-like processes [29–32], scalar part of the Maxwell equations.

The TFTE with time-fractional derivatives of orders α1 ∈]0, 1] and α2 ∈]1, 2] was studied from
the analytical, numerical, and probabilistic points of view by several authors. In [33], Cascaval et al.
discussed the well-posedness of some initial-boundary value problems for the TFTE as well as the
asymptotic behaviour of their solutions. In [31], the authors studied the neutral case of the TFTE and
obtained an explicit Fourier representation of the fundamental solution (FS) and made a probabilistic
interpretation of the FS in terms of stable probability density functions. Particular attention was given
to the case α1 = 1/2 and α2 = 1 due to its connection of the telegraph process with Brownian motion.
Some of these results were generalized by Camargo et al. in [34] for general α1 and α2 and studied
later by Boyadjiev and Luchko in [29]. In [35], the authors considered a generalized telegraph equation
with time-fractional derivatives in the Hilfer and Hadamard senses and space-fractional derivatives are
in the sense of Riesz-Feller. Górska et al., (see [36]) considered various types of generalized telegraph
equations and determine the conditions under which solutions can be recognized as probability density
distributions.

The works [32, 37–41] are examples of works devoted to the study of the TFTE in the multidimen-
sional case with n space variables, where in some cases the second derivative in space is replaced by
the Euclidean Laplace operator. In [32] the authors solved the multi-dimensional TFTE with multi-
term time-fractional derivatives and proved that its fundamental solution is the law of a stable isotropic
multi-dimensional process time-changed. Ovidio et al., [41] constructed compositions of vector pro-
cesses whose distribution is related to space-time fractional n-dimensional telegraph equations. We
refer also the works of Masoliver and his co-workers about the TFTE and its connections with random
walks (see [42–45]), and the recent survey paper [30] where is presented a very complete review of
the fractional telegraph process. In [38, 40] were employed Fourier, Laplace and Mellin transform
techniques to obtain the first and second FS. Moreover, the application of the Residue Theorem allows
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obtaining double series representation for the FS of the TFTE in higher dimensions. Connections of
the TFTE with fractional Clifford analysis and Sturm-Liouville theory were presented in [39] and [37].

In our recent paper [46] we studied the time-fractional telegraph equation with generalized dis-
tributed order in Rn × R+ finding a representation of the fundamental solution in terms of convolutions
involving Fox H-functions. In this work, we extend our analysis to time-fractional telegraph equations
of distributed order with Hilfer (or composite) time-fractional derivatives. Hilfer’s derivative tD

γ,ν
0+ was

defined by Hilfer as a two-parameter family of fractional derivatives of order γ > 0 and type ν ∈ [0, 1]
given by (

tD
γ,ν
0+ f

)
(t) =

(
Iν(m−γ)
0+

d
dt

(
I(1−ν)(m−γ)
0+ f

))
(t) ,

where Iγ0+ denotes the left Riemann-Liouville fractional integral of order γ > 0 (see Eq (2.1) in Section
2). The Hilfer fractional derivative allows to interpolate smoothly between the Riemann-Liouville and
the Caputo fractional derivatives (see [16, 47, 48]). These special cases are obtained when ν = 0 and
ν = 1, respectively. The type-parameter produces more stationary states, provides an extra degree of
freedom on the initial condition, and increases the flexibility for the description of complex data. It
was first used by Hilfer to describe the dynamics in glass formers over an extremely large-frequency
window [49]. During the last years fractional differential equations with composite derivatives were
studied by several authors, see e.g., [35,50–56]. In these works the equations are considered in R×R+,
i.e., one single space variable and one time variable. Here, we consider the telegraph equation of
distributed order with Hilfer time-fractional derivatives in the higher dimensional case, i.e., Rn × R+.

The paper is organized as follows. In Section 2 we recall some basic facts about fractional deriva-
tives, integral transforms, and special functions, which are necessary for the development of this work.
In Section 3 we formulate the problem of generalized distributed order telegraph equation for general
density functions. Following the ideas presented in [46], we use a combination of Laplace, Fourier
and Mellin transforms to obtain a representation of the solution of our equation via convolution inte-
grals involving Fox H-functions. The key points to obtain our main result are the use of the classical
Titchmarsh’s Theorem to invert the Laplace transform, and the use of the Mellin transform to invert the
Fourier transform. Some particular cases of our equation are analyzed by considering specific choices
of the parameters of the equation. In Section 4 we compute the expression of the fractional moments
of arbitrary order of the first fundamental solution in the Laplace domain. For the particular case of
single-order derivatives, we invert the Laplace transform of the second-order moment obtaining an ex-
pression in terms of the three-parameter Mittag-Leffler function. For numerical purposes, we study the
corresponding asymptotic behavior of the second-order moment in the time domain for the long and
short time limit, by using the Tauberian Theorem. In the final part of the paper, we present and ana-
lyze some plots of the second-order moment for this particular case. As it will be shown the graphical
representations support the analytical conclusions obtained via the Tauberian Theorem.
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2. Preliminaries

Let a, b ∈ R with a < b and α > 0. The left Riemann-Liouville fractional integral Iγa+ of order γ > 0 is
given by (see [57]) (

Iγa+ f
)

(x) =
1
Γ (γ)

∫ x

a

f (w)
(x − w)1−γ dw, x > a.

The left Hilfer (or composite) fractional derivative tD
γ,ν
0+ of order γ > 0 and type 0 ≤ ν ≤ 1 is given by

(see [16, 47, 48])

(
tD

γ,ν
0+ f

)
(t) =

(
Iν(m−γ)
0+

d
dt

(
I(1−ν)(m−γ)
0+ f

))
(t) , (2.1)

where m = [γ] + 1 and [γ] means the integer part of γ. We observe that in the case when ν = 0 we
recover the left Riemann-Liouville fractional derivative and in the case when ν = 1 we have the left
Caputo fractional derivative. The previous definitions of fractional integrals and derivatives can be
naturally extended to Rn considering partial fractional integrals and derivatives (see Chapter 5 in [58]).

In this work, some integral transforms are used, namely, the Laplace, the Fourier and the Mellin
transforms. The Laplace transform of a real-valued function f (t) is defined by (see [57])

L { f (t)} (s) = f̃ (s) =
∫ +∞

0
e−st f (t) dt, Re (s) ∈ C

and when it is applied to Eq (2.1) leads to (see [50])

L
{

tD
γ,ν
0+ f (t)

}
(s) = sγ f̃ (s) −

m−1∑
j=0

sm− j−ν(m−γ)−1
[

d j

dt j

(
tI

(1−ν)(m−γ)
0+ f

)] (
0+

)
, (2.2)

where the initial-value terms
[

dk

dtk

(
tI

(1−ν)(m−γ)
0+ f

)]
(0+) are evaluated in the limit t → 0+. Concerning the

inverse Laplace transform of functions involving a branch point, we have the following theorem from
Titchmarsh (see [59]).

Theorem 2.1. Let f̃ (s) be an analytic function which has a branch cut on the real negative semiaxis,
which has the following properties

f̃ (s) = O (1) , |s| → +∞, f̃ (s) = O
(

1
|s|

)
, |s| → 0,

for any sector
∣∣∣arg (s)

∣∣∣ < π − η, where 0 < η < π. Then the inverse Laplace transform of f̃ (s) is given
by

f (t) = L−1
{
f̃ (s)

}
(t) = −

1
π

∫ +∞

0
e−rt Im

(
f̃
(
reiπ

))
dr,

where Im (·) denotes the imaginary part.
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The convolution of two integrable functions f and g with support in [0,+∞) is defined by

( f ∗t g) (t) =
∫ t

0
f (t − w) g (w) dw, t ∈ R+ (2.3)

and the Convolution Theorem for the Laplace transform is given by

L {( f ∗t g) (t)} (s) = L { f } (s) L {g} (s) . (2.4)

The n-dimensional Fourier transform of a real-valued integrable function f in Rn is defined by (see
[57])

F { f (x)} (κ) = f̂ (κ) =
∫
Rn

eiκ·x f (x) dx, κ ∈ Rn,

while the corresponding inverse Fourier transform is given formally by

f (x) = F −1
{
f̂ (κ)

}
(x) =

1
(2π)n

∫
Rn

e−ix·κ f̂ (κ) dκ, x ∈ Rn. (2.5)

The convolution operator of two functions in Rn is defined by the integral

( f ∗x g) (x) =
∫
Rn

f (x − z) g (z) dz, x ∈ Rn (2.6)

and the Convolution Theorem for the Fourier transform is given by

F {( f ∗x g) (x)} (κ) = F { f } (κ) F {g} (κ) . (2.7)

For the n-dimensional Laplace operator ∆x =
∑n

i=1
∂2

∂x2
i

we have (see formula (1.3.32) in [57])

F {∆x f (x)} (κ) = −|κ|2 F { f (x)} (κ) . (2.8)

Another integral transform that we use in this work is the Mellin transform. For f locally integrable on
]0,+∞[ it is defined by (see [57])

M{ f (w)} (s) = f ∗ (s) =
∫ +∞

0
ws−1 f (w) dw, s ∈ C, (2.9)

and the inverse Mellin transform is given by

f (w) =M−1 { f ∗ (s)} (w) =
1

2πi

∫ γ+i∞

γ−i∞
w−s f (s) ds, w > 0, γ = Re (s) . (2.10)

The condition for the existence of Eq (2.9) is that −p < γ < −q (called the fundamental strip), where p,
q are the order of f at the origin and ∞, respectively. The integration in Eq (2.10) is performed along
the imaginary axis and the result does not depend on the choice of γ inside the fundamental strip.
For more information about this transform and its properties, see e.g., [57]. The Mellin convolution
between two functions is defined by

( f ∗M g) (x) =
∫ +∞

0
f
( x
u

)
g (u)

du
u
, (2.11)
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and satisfies the Mellin Convolution Theorem (see formula (1.4.40) in [57])

M{ f ∗M g} (s) =M{ f } (s) M{g} (s) .

The following relation holds (see (1.4.30) in [57])

M

{
f
(
1
x

)}
(s) =M{ f } (−s) . (2.12)

The solution of the time-fractional telegraph equation of distributed order obtained in this work
involves the Fox H-function Hm,n

p,q , which is defined, via a Mellin-Barnes type integral, by (see [60])

Hm,n
p,q

 z
(a1, α1) , . . . ,

(
ap, αp

)
(b1, β1) , . . . ,

(
bq, βq

)
 = 1

2πi

∫
C

∏m
j=1 Γ

(
b j + β js

) ∏n
i=1 Γ (1 − ai − αis)∏p

i=n+1 Γ (ai + αis)
∏q

j=m+1 Γ
(
1 − b j − β js

) z−s ds, (2.13)

where ai, b j ∈ C, and αi, β j ∈ R
+, for i = 1, . . . , p and j = 1, . . . , q and C is a suitable contour in the

complex plane separating the poles of the two factors in the numerator (see [60]). The expression of
the second-order moment in Section 4.1 is presented in terms of the three parameter Mittag-Leffler
function Eβ3

β1,β2
(z) (see [61]), which is defined, in terms of power series, by

Eγ
α,β (z) =

∞∑
k=0

(γ)k zk

k!Γ (αk + β)
, z ∈ C, α, β, γ ∈ R, α > 0, (2.14)

where (γ)k is the Pochhammer symbol.

Throughout the paper, we assume that all the involved functions are Laplace and Fourier trans-
formable.

3. Generalized time-fractional telegraph equation of distributed order

In this work we consider the following generalized time-fractional telegraph equation of distributed
order ∫ 1

0

∫ 2

1
b2 (β, ν) t∂

β,ν
0+ u (x, t) dβ dν + a

∫ 1

0

∫ 1

0
b1 (α, µ) t∂

α,µ
0+ u (x, t) dα dµ

− c2 ∆xu (x, t) + d2 u (x, t) = q (x, t) , (3.1)

for given weight functions b2 (β, ν) > 0 and b1 (α, µ) > 0, satisfying∫ 1

0

∫ 2

1
b2 (β, ν) dβ dν = C2,

∫ 1

0

∫ 1

0
b1 (α, µ) dα dµ = C1, (3.2)

and subject to the following initial and boundary conditions(
tI

(1−µ)(1−α)
0+ u

) (
x, 0+

)
= f (x) ,

(
tI

(1−ν)(2−β)
0+ u

) (
x, 0+

)
= g1 (x) (3.3)
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∂

∂t

(
tI

(1−ν)(2−β)
0+ u

)] (
x, 0+

)
= g2 (x) , lim

|x|→+∞
u (x, t) = 0, (3.4)

where (x, t) ∈ Rn×R+, ∆x is the classical Laplace operator in Rn, the partial time-fractional derivatives
of order β ∈ ]1, 2] and α ∈ ]0, 1], and types µ, ν ∈ [0, 1] are in the Hilfer sense and given by Eq (2.1),
a ∈ R+0 , c ∈ R \ {0}, d ∈ R, and C1,C2 ∈ R

+. The positive constants C1 and C2 can be taken as 1 if we
assume the normalization condition for the integrals Eq (3.2). Moreover, q belongs to L1 (Rn × I), and
f , g1, g2 ∈ L1 (Rn). We look for solutions u (x, t) of our problem in the space C2 (Rn) ×C2 (0,+∞) with
possible exception at x = 0.

3.1. Solution in the Fourier-Laplace domain

In order to analytically determine the solution of Eqs (3.1) and (3.2) in the space-time domain we
start applying the Fourier and Laplace transforms to Eq (3.1) and solve the equation in the Fourier-
Laplace domain. After that, there are two alternative strategies related to the order in carrying out the
inversions of the Fourier and Laplace transforms are performed (see [2]):

(S1) invert the Fourier transform, yielding ũ (x, s), and then invert the Laplace transform of the result.

(S2) invert the Laplace transform, yielding û (κ, t), and then invert the Fourier transform of the result.

In this work, we consider the strategy (S2) where the inversion of the Laplace transform is performed
via the classical Titchmarsh’s Theorem, and the inversion of the Fourier transform is performed via the
Mellin transform.

we start by applying in Eq (3.1) the Laplace transform with respect to the variable t ∈ R+ and the
n-dimensional Fourier transform with respect to the variable x ∈ Rn. Taking into account relations Eq
(2.2) and Eq (2.8), and the initial conditions in Eqs (3.3) and (3.4), we obtain

̂̃u (κ, s)
∫ 1

0

∫ 2

1
b2 (β, ν) sβ dβ dν − ĝ1 (κ)

∫ 1

0

∫ 2

1
b2 (β, ν) s1−ν(2−β) dβ dν

− ĝ2 (κ)
∫ 1

0

∫ 2

1
b2 (β, ν) s−ν(2−β) dβ dν + ẫu (κ, s)

∫ 1

0

∫ 1

0
b1 (α, µ) sα dα dµ

− a f̂ (κ)
∫ 1

0

∫ 1

0
b1 (α, µ) s−µ(1−α) dα dµ + c2 |κ|2 ̂̃u (κ, s) + d2 ̂̃u (κ, s) = ̂̃q (κ, s) ,

which is equivalent to

̂̃u (κ, s) =
f̂ (κ) B∗1 (s)

B2 (s) + B1 (s) + |κ|2
+

ĝ1 (κ)
(
B∗2 (s) − d2

c2

)
s−1 (

B2 (s) + B1 (s) + |κ|2
)

+
ĝ2 (κ)

(
B∗2 (s) − d2

c2

)
B2 (s) + B1 (s) + |κ|2

+
̂̃q (κ, s)

c2 (
B2 (s) + B1 (s) + |κ|2

) , (3.5)

where f̂ and ĝi are the Fourier transforms of the functions f and gi, respectively, and

B2 (s) =
1
c2

(∫ 1

0

∫ 2

1
b2 (β, ν) sβ dβ dν + d2

)
, B1 (s) =

a
c2

∫ 1

0

∫ 1

0
b1 (α, µ) sα dα dµ, (3.6)
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B∗2 (s) =
1
c2

(∫ 1

0

∫ 2

1
b2 (β, ν) s−ν(2−β) dβ dν + d2

)
, B∗1 (s) =

a
c2

∫ 1

0

∫ 1

0
b1 (α, µ) s−µ(1−α) dα dµ.

(3.7)

Remark 3.1. When µ = ν = 1, i.e., the telegraph equation has only Caputo fractional derivatives, we
have the following relations between Eqs (3.6) and (3.7)

B∗1 (s) = s−1 B1 (s) and B∗2 (s) −
d2

c2 = s−2
(
B2 (s) −

d2

c2

)
.

The previous relations combined with the fact that Eqs (3.3) and (3.4) reduce to

u (x, 0) = f (x) , u (x, 0) = g1 (x) ,
∂u
∂t

(x, 0) = g2 (x) ,

i.e., f = g1 when ν = µ = 1, allow us to reduce the expression (3.5) to the correspondent one obtained
in [46].

3.2. Solution in the space-time domain

In this section we perform the inversion of the Laplace and Fourier transforms in order to obtain
our solution in the space-time domain. Let us consider the following auxiliary functions in the Laplace
domain

̂̃u1 (κ, s) =
B∗1 (s)

B2 (s) + B1 (s) + |κ|2
, (3.8)

̂̃u2 (κ, s) =
B∗2 (s)

sp (
B2 (s) + B1 (s) + |κ|2

) , (3.9)

̂̃u3 (κ, s) =
1

sp (
B2 (s) + B1 (s) + |κ|2

) , (3.10)

with p = 0 or p = −1. To further proceed we make the following additional assumption:

(H1): The functions ̂̃u j

(
κ, reiπ

)
, j = 1, 2, 3 are in the conditions of Theorem 2.1. (3.11)

Assumption (H1) holds for the particular cases we consider later on. Applying Theorem 2.1, we have

û j (κ, t) = −
1
π

∫ +∞

0
e−rt Im

(̂̃
u j

(
κ, reiπ

))
dr, j = 1, 2, 3. (3.12)

To evaluate the imaginary parts of the functions ̂̃u j

(
κ, reiπ

)
, j = 1, 2, 3, along the ray s = reiπ, with

r > 0, we consider the following polar decompositions

Bl

(
reiπ

)
= ρl (cos (γlπ) + i sin (γlπ)) =⇒


ρl =

∣∣∣∣Bl

(
reiπ

)∣∣∣∣
γl =

1
π

arg
(
Bl

(
reiπ

)) , l = 1, 2 (3.13)

Electronic Research Archive Volume 30, Issue 10, 3595–3631.



3603

B∗l
(
reiπ

)
= ρ∗l

(
cos

(
γ∗l π

)
+ i sin

(
γ∗l π

))
=⇒


ρ∗l =

∣∣∣∣B∗l (
reiπ

)∣∣∣∣
γ∗l =

1
π

arg
(
B∗l

(
reiπ

)) , l = 1, 2. (3.14)

After straightforward calculations, we obtain the following expressions

Im
{̂̃
u1

(
κ, reiπ

)}
= K1 (|κ| , r) =

ρ∗1

[(
A + |κ|2

)
sin

(
γ∗1π

)
− B cos

(
γ∗1π

)][(
A + |κ|2

)2
+ B2

] , (3.15)

Im
{̂̃
u2

(
κ, reiπ

)}
= K2 (p, |κ| , r) =

ρ∗2

[(
A + |κ|2

)
sin

(
γ∗2π

)
− B cos

(
γ∗2π

)]
(−r)p

[(
A + |κ|2

)2
+ B2

] , (3.16)

Im
{̂̃
u3

(
κ, reiπ

)}
= K3 (p, |κ| , r) =

−B

(−r)p
[(

A + |κ|2
)2
+ B2

] , (3.17)

where

A = ρ2 cos (γ2π) + ρ1 cos (γ1π) and B = ρ2 sin (γ2π) + ρ1 sin (γ1π) . (3.18)

Remark 3.2. Taking into account Remark 3.1, when µ = ν = 1 we have, by straightforward calcula-
tions, the following relationsρ

∗
2 = r−2 ρ2

γ∗2 = γ2

and

ρ
∗
1 = r−1 ρ1

γ∗1 = 1 + γ1

.

Applying the inverse Laplace transform to Eq (3.5) and taking into account Eqs (3.12), (3.15), (3.16)
and (3.17), we obtain

û (κ, t) = −
f̂ (κ)
π

∫ +∞

0
e−rt K1 (|κ| , r) dr

−
ĝ1 (κ)
π

∫ +∞

0
e−rt

[
K2 (−1, |κ| , r) −

d2

c2 K3 (−1, |κ| , r)
]

dr

−
ĝ2 (κ)
π

∫ +∞

0
e−rt

[
K2 (0, |κ| , r) −

d2

c2 K3 (0, |κ| , r)
]

dr

−
q̂ (κ, t)
πc2 ∗t

∫ +∞

0
e−rt K3 (0, |κ| , r) dr, (3.19)

where ∗t is given by Eq (2.3) and in the last term me made use of Eq (2.4). For the inversion of the
Fourier transform, taking into account Eqs (2.5) and (2.7), we obtain

u (x, t) = − f (x) ∗x F
−1

{
1
π

∫ +∞

0
e−rt K1 (|κ| , r) dr

}
(x, t)
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− g1 (x) ∗x F
−1

{
1
π

∫ +∞

0
e−rt

[
K2 (−1, |κ| , r) −

d2

c2 K3 (−1, |κ| , r)
]

dr
}

(x, t)

− g2 (x) ∗x F
−1

{
1
π

∫ +∞

0
e−rt

[
K2 (0, |κ| , r) −

d2

c2 K3 (0, |κ| , r)
]

dr
}

(x, t)

− q (x, t) ∗t ∗x F
−1

{
1
πc2

∫ +∞

0
e−rt K3 (0, |κ| , r) dr

}
(x) . (3.20)

Using the following formula presented in [58] for the inverse Fourier transform of L1-functions

1
(2π)n

∫
Rn

e−ix·κ φ (|κ|) dκ =
|x|1−

n
2

(2π)
n
2

∫ +∞

0
φ (w) w

n
2 J n

2−1 (|x|w) dw, (3.21)

and since we are dealing with radial functions in κ, Eq (3.20) can be rewritten as

u (x, t)

= −
1
π

f (x) ∗x

[
|x|1−

n
2

(2π)
n
2

∫ +∞

0

∫ +∞

0
e−rt K1 (w, r) dr w

n
2 J n

2−1 (|x|w) dw
]

−
1
π

g1 (x) ∗x

[
|x|1−

n
2

(2π)
n
2

∫ +∞

0

∫ +∞

0
e−rt

[
K2 (−1,w, r) −

d2

c2 K3 (−1,w, r)
]

dr w
n
2 J n

2−1 (|x|w) dw
]

−
1
π

g2 (x) ∗x

[
|x|1−

n
2

(2π)
n
2

∫ +∞

0

∫ +∞

0
e−rt

[
K2 (0,w, r) −

d2

c2 K3 (0,w, r)
]

dr w
n
2 J n

2−1 (|x|w) dw
]

−
1
πc2 q (x, t) ∗t ∗x

[
|x|1−

n
2

(2π)
n
2

∫ +∞

0

∫ +∞

0
e−rt K3 (0,w, r) dr w

n
2 J n

2−1 (|x|w) dw
]

= −
1
π

f (x) ∗x

[∫ +∞

0
e−rt |x|

1− n
2

(2π)
n
2

∫ +∞

0
K1 (w, r) w

n
2 J n

2−1 (|x|w) dw︸                                               ︷︷                                               ︸
I1

dr
]

−
1
π

g1 (x) ∗x

[∫ +∞

0
e−rt |x|

1− n
2

(2π)
n
2

∫ +∞

0

[
K2 (−1,w, r) −

d2

c2 K3 (−1,w, r)
]

w
n
2 J n

2−1 (|x|w) dw︸                                                                                ︷︷                                                                                ︸
I2

dr
]

−
1
π

g2 (x) ∗x

[∫ +∞

0
e−rt |x|

1− n
2

(2π)
n
2

∫ +∞

0

[
K2 (0,w, r) −

d2

c2 K3 (0,w, r)
]

w
n
2 J n

2−1 (|x|w) dw︸                                                                            ︷︷                                                                            ︸
I3

dr
]

−
1
πc2 q (x, t) ∗t ∗x

[∫ +∞

0
e−rt |x|

1− n
2

(2π)
n
2

∫ +∞

0
K3 (0,w, r) w

n
2 J n

2−1 (|x|w) dw︸                                                  ︷︷                                                  ︸
I4

dr
]
. (3.22)

To compute explicitly I1, I2, I3, and I4 in Eq (3.22) we are going to use the Mellin transform. First, we
rewrite these integrals as a Mellin convolution Eq (2.11). In fact, considering the following auxiliary
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functions

g1 (w) = K1 (w, r) , g2 (w) = K2 (−1,w, r) −
d2

c2 K3 (−1,w, r) ,

g3 (w) = K2 (0,w, r) −
d2

c2 K3 (0,w, r) , g4 (w) = K3 (0,w, r) ,

f (w) =
1

(2π)
n
2 |x|n w

n
2+1

J n
2−1

(
1
w

)
,

we have for i = 1, 2, 3, 4

Ii = (gi ∗M f )
(

1
|x|

)
=

∫ +∞

0
gi (w) f

(
1
|x|w

)
dw
w

=

∫ +∞

0
gi (w)

w
n
2+1 |x|

n
2+1

(2π)
n
2 |x|n

J n
2−1 (|x|w)

dw
w

=
|x|1−

n
2

(2π)
n
2

∫ +∞

0
gi (w) w

n
2 J n

2−1 (|x|w) dw. (3.23)

From the relations Eqs (2.12) and (2.11), we have for i = 1, 2, 3, 4

M{Ii} (s) =M
{

(gi ∗M f )
(

1
|x|

)}
(s) =M{gi} (−s) M{ f } (−s)

which is equivalent to

M{Ii} (−s) =M{gi} (s) M{ f } (s) , i = 1, 2, 3, 4. (3.24)

Now, we compute the Mellin transforms that appear in (3.24). The Mellin transform of the function f
was already calculated in [46] (see formula (43)):

M{ f } (s) =
1

π
n−1

2 |x|n 2n−1

Γ (n − s)

Γ
(

n+1−s
2

)
Γ
(

s
2

) . (3.25)

To compute the Mellin transform of the function g1, we take into account Eqs (2.9), (3.15) and (3.18),
obtaining

M{g1} (s) =
∫ +∞

0
ws−1 K1 (w, r) dw

=

∫ +∞

0
ws−1

ρ∗1

[(
A + w2

)
sin

(
γ∗1π

)
− B cos

(
γ∗1π

)]
(
A + w2)2

+ B2
dw

= ρ∗1 sin
(
γ∗1π

) ∫ +∞

0

ws+1(
A + w2)2

+ B2
dw
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+ ρ∗1
[
A sin

(
γ∗1π

)
− B cos

(
γ∗1π

)] ∫ +∞

0

ws−1(
A + w2)2

+ B2
dw. (3.26)

Considering the change of variables w2 = z in Eq (3.26) we obtain

M{g1} (s) = ρ∗1 sin
(
γ∗1π

) ∫ +∞

0

z
s
2

z2 + 2Az + A2 + B2 dz︸                              ︷︷                              ︸
I5

+ ρ∗1
[
A sin

(
γ∗1π

)
− B cos

(
γ∗1π

)] ∫ +∞

0

z
s
2−1

z2 + 2Az + A2 + B2 dz︸                              ︷︷                              ︸
I6

. (3.27)

Integrals I5 and I6 were already calculated in [46] (see formulas (49) and (50)). Therefore, we have
that

I5 = −
π

sin (ψ)

Γ
(
1 + s

2

)
Γ
(
1 −

(
1 + s

2

))
Γ
(

sψ
2π

)
Γ
(
1 − sψ

2π

) (
A2 + B2

) s
4−

1
2 (3.28)

and

I6 = −
π

sin (ψ)

Γ
(

s
2

)
Γ
(
1 − s

2

)
Γ
(
ψ

π

(
s
2 − 1

))
Γ
(
1 − ψ

π

(
s
2 − 1

)) (
A2 + B2

) s
4−1

, (3.29)

where

ψ = arccos
(

A
√

A2 + B2

)
. (3.30)

Hence, from Eqs (3.28) and (3.29) we conclude that Eq (3.27) takes the form

M{g1} (s) =
−πρ∗1 sin

(
γ∗1π

)
2 sin (ψ)

Γ
(
1 + s

2

)
Γ
(
1 −

(
1 + s

2

))
Γ
(

sψ
2π

)
Γ
(
1 − sψ

2π

) (
A2 + B2

) s
4−

1
2

−
πρ∗1

[
A sin

(
γ∗1π

)
− B cos

(
γ∗1π

)]
2 sin (ψ)

Γ
(

s
2

)
Γ
(
1 − s

2

)
Γ
(
ψ

π

(
s
2 − 1

))
Γ
(
1 − ψ

π

(
s
2 − 1

)) (
A2 + B2

) s
4−1

. (3.31)

Now, we calculate the Mellin transform of g2. Taking into account Eqs (2.9), (3.16)–(3.18) and (3.30)
we get

M{g2} (s)

=

∫ +∞

0
ws−1 K2 (−1,w, r) dw −

d2

c2

∫ +∞

0
ws−1 K3 (−1,w, r) dw

=

∫ +∞

0
ws−1

ρ∗2

[(
A + w2

)
sin

(
γ∗2π

)
− B cos

(
γ∗2π

)]
(−r)−1

[(
A + w2)2

+ B2
] dw −

d2

c2

∫ +∞

0
ws−1 −B

(−r)−1
[(

A + w2)2
+ B2

] dw

(3.32)
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= −rρ∗2 sin
(
γ∗2π

) ∫ +∞

0

ws+1(
A + w2)2

+ B2
dw − rρ∗2

[
A sin

(
γ∗2π

)
− B cos

(
γ∗2π

)] ∫ +∞

0

ws−1(
A + w2)2

+ B2
dw

−
rd2B

c2

∫ +∞

0

ws−1(
A + w2)2

+ B2
dw

= −rρ∗2 sin
(
γ∗2π

) ∫ +∞

0

ws+1(
A + w2)2

+ B2
dw

−
rρ∗2 c2

[
A sin

(
γ∗2π

)
− B cos

(
γ∗2π

)]
+ rd2B

c2

∫ +∞

0

ws−1(
A + w2)2

+ B2
dw. (3.33)

Considering the change of variables w2 = z in Eq (3.33), we obtain

M{g2} (s) = −
rρ∗2 sin

(
γ∗2π

)
2

∫ +∞

0

z
s
2

z2 + 2Az + A2 + B2 dz

−
rρ∗2 c2

[
A sin

(
γ∗2π

)
− B cos

(
γ∗2π

)]
+ rd2B

2c2

∫ +∞

0

z
s
2−1

z2 + 2Az + A2 + B2 dz. (3.34)

The two integrals in Eq (3.34) correspond to I5 and I6. Hence, from Eqs (3.28) and (3.29) we arrive to

M{g2} (s) =
πr ρ∗2 sin

(
γ∗2π

)
2 sin (ψ)

Γ
(
1 + s

2

)
Γ
(
1 −

(
1 + s

2

))
Γ
(

sψ
2π

)
Γ
(
1 − sψ

2π

) (
A2 + B2

) s
4−

1
2

+
πr

[
ρ∗2 c2

[
A sin

(
γ∗2π

)
− B cos

(
γ∗2π

)]
+ d2B

]
2c2 sin (ψ)

Γ
(

s
2

)
Γ
(
1 − s

2

)
Γ
(
ψ

π

(
s
2 − 1

))
Γ
(
1 − ψ

π

(
s
2 − 1

)) (
A2 + B2

) s
4−1

.

(3.35)

For the calculation of the Mellin transform of g3 we use Eqs (2.9), (3.16)–(3.18) and (3.30) to get

M{g3} (s)

=

∫ +∞

0
ws−1 K2 (0,w, r) dw −

d2

c2

∫ +∞

0
ws−1 K3 (0,w, r) dw

=

∫ +∞

0
ws−1

ρ∗2

[(
A + w2

)
sin

(
γ∗2π

)
− B cos

(
γ∗2π

)]
(−r)0

[(
A + w2)2

+ B2
] dw −

d2

c2

∫ +∞

0
ws−1 −B

(−r)0
[(

A + w2)2
+ B2

] dw.

(3.36)

Expression Eq (3.36) is very similar to Eq (3.32) with a difference in the power of −r. However, this
exponent does not affect any of the performed calculations in obtaining Eq (3.35). Then we get

M{g3} (s) =
−π ρ∗2 sin

(
γ∗2π

)
2 sin (ψ)

Γ
(
1 + s

2

)
Γ
(
1 −

(
1 + s

2

))
Γ
(

sψ
2π

)
Γ
(
1 − sψ

2π

) (
A2 + B2

) s
4−

1
2
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−
π
[
ρ∗2 c2

[
A sin

(
γ∗2π

)
− B cos

(
γ∗2π

)]
+ d2B

]
2c2 sin (ψ)

Γ
(

s
2

)
Γ
(
1 − s

2

)
Γ
(
ψ

π

(
s
2 − 1

))
Γ
(
1 − ψ

π

(
s
2 − 1

)) (
A2 + B2

) s
4−1

. (3.37)

Finally, we calculate the Mellin transform of g4. Taking into account Eqs (2.9), (3.17), (3.18) and
(3.30) we get

M{g4} (s) =
∫ +∞

0
ws−1 K3 (0,w, r) dw = −B

∫ +∞

0

ws−1(
A + w2)2

+ B2
dw. (3.38)

Considering the change of variables w2 = z in Eq (3.38), we obtain

M{g4} (s) = −
B
2

∫ +∞

0

z
s
2−1

z2 + 2Az + A2 + B2 dz. (3.39)

The integral in Eq (3.39) corresponds to the integral I6. Hence, from Eq (3.29) we arrive to

M{g4} (s) =
Bπ

2 sin (ψ)

Γ
(

s
2

)
Γ
(
1 − s

2

)
Γ
(
ψ

π

(
s
2 − 1

))
Γ
(
1 − ψ

π

(
s
2 − 1

)) (
A2 + B2

) s
4−1

. (3.40)

Now, using the inverse Mellin transform Eq (2.10) applied to (3.24), we obtain the representation of the
integrals I1, I2, I3, and I4 in terms of Mellin-Barnes integrals and, consequently, as Fox H-functions.
For the integral I1, taking into account Eqs (2.10), (3.18), (3.31) and (3.25), we obtain

I1 =
−ρ∗1 sin

(
γ∗1π

) (
A2 + B2

)− 1
2

π
n−3

2 (2 |x|)n sin (ψ)

1
2πi

∫ γ+i∞

γ−i∞

Γ
(
1 + s

2

)
Γ (n − s) Γ

(
− s

2

)
Γ
(

s
2

)
Γ
(
ψs
2π

)
Γ
(

n+1
2 −

s
2

)
Γ
(
1 − ψs

2π

)

(
A2 + B2

)− 1
4

|x|


−s

ds

−
ρ∗1

[
A sin

(
γ∗1π

)
− B cos

(
γ∗1π

)] (
A2 + B2

)−1

π
n−3

2 (2 |x|)n sin (ψ)

×
1

2πi

∫ γ+i∞

γ−i∞

Γ (n − s) Γ
(
1 − s

2

)
Γ
(
−
ψ

π
+

ψs
2π

)
Γ
(

n+1
2 −

s
2

)
Γ
(
1 + ψ

π
−

ψs
2π

)

(
A2 + B2

)− 1
4

|x|


−s

ds

which is equivalent, by Eq (2.13), to the following expression in terms of Fox H-functions

I1 =
−ρ∗1 sin

(
γ∗1π

) (
A2 + B2

)− 1
2

π
n−3

2 (2 |x|)n sin (ψ)
H1,2

4,3


(
A2 + B2

)− 1
4

|x|

(1 − n, 1) ,
(
1,

1
2

)
,

(
0,

1
2

)
,
(
0,

ψ

2π

)
(
1,

1
2

)
,

(
1 − n

2
,

1
2

)
,
(
0,

ψ

2π

)


−
ρ∗1

[
A sin

(
γ∗1π

)
− B cos

(
γ∗1π

)] (
A2 + B2

)−1

π
n−3

2 (2 |x|)n sin (ψ)
H0,2

3,2


(
A2 + B2

)− 1
4

|x|

(1 − n, 1) ,
(
0,

1
2

)
,
(
−
ψ

π
,
ψ

2π

)
(
1 − n

2
,

1
2

)
,
(
−
ψ

π
,
ψ

2π

)
 .

(3.41)
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For the integral I2, taking into account Eqs(2.10), (3.18), (3.35) and (3.25), we obtain

I2 =
rρ∗2 sin

(
γ∗2π

) (
A2 + B2

)− 1
2

π
n−3

2 (2 |x|)n sin (ψ)

1
2πi

∫ γ+i∞

γ−i∞

Γ
(
1 + s

2

)
Γ (n − s) Γ

(
− s

2

)
Γ
(

s
2

)
Γ
(
ψs
2π

)
Γ
(

n+1
2 −

s
2

)
Γ
(
1 − ψs

2π

)

(
A2 + B2

)− 1
4

|x|


−s

ds

+
r
[
ρ∗2 c2

(
A sin

(
γ∗2π

)
− B cos

(
γ∗2π

))
+ Bd2

] (
A2 + B2

)−1

c2 π
n−3

2 (2 |x|)n sin (ψ)

×
1

2πi

∫ γ+i∞

γ−i∞

Γ (n − s) Γ
(
1 − s

2

)
Γ
(
−
ψ

π
+

ψs
2π

)
Γ
(

n+1
2 −

s
2

)
Γ
(
1 + ψ

π
−

ψs
2π

)

(
A2 + B2

)− 1
4

|x|


−s

ds

which is equivalent, by Eq (2.13), to the following expression in terms of Fox H-functions

I2 =
rρ∗2 sin

(
γ∗2π

) (
A2 + B2

)− 1
2

π
n−3

2 (2 |x|)n sin (ψ)
H1,2

4,3


(
A2 + B2

)− 1
4

|x|

(1 − n, 1) ,
(
1,

1
2

)
,

(
0,

1
2

)
,
(
0,

ψ

2π

)
(
1,

1
2

)
,

(
1 − n

2
,

1
2

)
,
(
0,

ψ

2π

)


+
r
[
ρ∗2 c2

(
A sin

(
γ∗2π

)
− B cos

(
γ∗2π

))
+ Bd2

] (
A2 + B2

)−1

c2 π
n−3

2 (2 |x|)n sin (ψ)

× H0,2
3,2


(
A2 + B2

)− 1
4

|x|

(1 − n, 1) ,
(
0,

1
2

)
,
(
−
ψ

π
,
ψ

2π

)
(
1 − n

2
,

1
2

)
,
(
−
ψ

π
,
ψ

2π

)
 . (3.42)

Due to the similarities between g2 and g3 (and consequently between I2 and I3) we have that

I3 =
−ρ∗2 sin

(
γ∗2π

) (
A2 + B2

)− 1
2

π
n−3

2 (2 |x|)n sin (ψ)
H1,2

4,3


(
A2 + B2

)− 1
4

|x|

(1 − n, 1) ,
(
1,

1
2

)
,

(
0,

1
2

)
,
(
0,

ψ

2π

)
(
1,

1
2

)
,

(
1 − n

2
,

1
2

)
,
(
0,

ψ

2π

)


−

[
ρ∗2 c2

(
A sin

(
γ∗2π

)
− B cos

(
γ∗2π

))
+ Bd2

] (
A2 + B2

)−1

c2 π
n−3

2 (2 |x|)n sin (ψ)

× H0,2
3,2


(
A2 + B2

)− 1
4

|x|

(1 − n, 1) ,
(
0,

1
2

)
,
(
−
ψ

π
,
ψ

2π

)
(
1 − n

2
,

1
2

)
,
(
−
ψ

π
,
ψ

2π

)
 . (3.43)
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Finally, for the integral I4, taking into account Eqs (2.10), (3.18), (3.40) and (3.25), we obtain

I4 =
B

(
A2 + B2

)−1

π
n−3

2 (2 |x|)n sin (ψ)

1
2πi

∫ γ+i∞

γ−i∞

Γ (n − s) Γ
(
1 − s

2

)
Γ
(
−
ψ

π
+

ψs
2π

)
Γ
(

n+1
2 −

s
2

)
Γ
(
1 + ψ

π
−

ψs
2π

)

(
A2 + B2

)− 1
4

|x|


−s

ds

which is equivalent, by (2.13), to the following expression in terms of Fox H-functions

I4 =
B

(
A2 + B2

)−1

π
n−3

2 (2 |x|)n sin (ψ)
H0,2

3,2


(
A2 + B2

)− 1
4

|x|

(1 − n, 1) ,
(
0,

1
2

)
,
(
−
ψ

π
,
ψ

2π

)
(
1 − n

2
,

1
2

)
,
(
−
ψ

π
,
ψ

2π

)
 . (3.44)

From Eqs (3.41)–(3.44) we conclude that the representation (3.22) of the solution u (x, t) of Eqs (3.1)
and (3.2) corresponds to the sum of convolution integrals involving Fox H-functions.

In the next subsection we summarize our calculations in the main result of the paper.

3.3. Main result and corollary

Taking into account Eqs (3.22) and (3.41)–(3.44) we obtain our main result.

Theorem 3.3. The solution of the time-fractional telegraph equation of distributed order Eq (3.1)
subject to the conditions Eqs (3.3) and (3.2) and the additional assumption Eq (3.11) is given, in terms
of convolution integrals, by

u (x, t) =
∫
Rn

f (z) G1 (x − z, t) dz +
∫
Rn

g1 (z) G2 (x − z, t) dz

+

∫
Rn

g2 (z) G3 (x − z, t) dz +
∫
Rn

∫ t

0
q (z, w) G4 (x − z, t − w) dw dz, (3.45)

where the functions G1, G2, G3 and G4 are given by

G1 (x, t) =
1

π
n−1

2 (2 |x|)n

∫ +∞

0

ρ∗1

(
A2 + B2

)− 1
2 e−rt

sin (ψ)

×

sin
(
γ∗1π

)
H


(
A2 + B2

)− 1
4

|x|

 + [
A sin

(
γ∗1π

)
− B cos

(
γ∗1π

)] (
A2 + B2

)− 1
2
H∗


(
A2 + B2

)− 1
4

|x|


 dr,

G2 (x, t) =
−1

π
n−1

2 (2 |x|)n

∫ +∞

0

r
(
A2 + B2

)− 1
2 e−rt

sin (ψ)

ρ∗2 sin
(
γ∗2π

)
H


(
A2 + B2

)− 1
4

|x|


+

1
c2

[
ρ∗2 c2 (

A sin
(
γ∗2π

)
− B cos

(
γ∗2π

))
+ Bd2

] (
A2 + B2

)− 1
2
H∗


(
A2 + B2

)− 1
4

|x|


 dr,
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G3 (x, t) =
1

π
n−1

2 (2 |x|)n

∫ +∞

0

(
A2 + B2

)− 1
2 e−rt

sin (ψ)

ρ∗2 sin
(
γ∗2π

)
H


(
A2 + B2

)− 1
4

|x|


+

1
c2

[
ρ∗2 c2 (

A sin
(
γ∗2π

)
− B cos

(
γ∗2π

))
+ Bd2

] (
A2 + B2

)− 1
2
H∗


(
A2 + B2

)− 1
4

|x|


 dr,

G4 (x, t) =
−1

c2 π
n−1

2 (2 |x|)n

∫ +∞

0

B
(
A2 + B2

)−1
e−rt

sin (ψ)
H∗


(
A2 + B2

)− 1
4

|x|

 dr,

where ρ∗1, γ
∗
1, ρ∗2, and γ∗2, A and B, and ψ are given, respectively, by Eq (3.14), (3.18) and (3.30).

Moreover, the functionsH andH∗ are expressed in terms of the following Fox H-functions

H


(
A2 + B2

)− 1
4

|x|

 = H1,2
4,3


(
A2 + B2

)− 1
4

|x|

(1 − n, 1) ,
(
1,

1
2

)
,

(
0,

1
2

)
,
(
0,

ψ

2π

)
(
1,

1
2

)
,

(
1 − n

2
,

1
2

)
,
(
0,

ψ

2π

)
 ,

H∗


(
A2 + B2

)− 1
4

|x|

 = H0,2
3,2


(
A2 + B2

)− 1
4

|x|

(1 − n, 1) ,
(
0,

1
2

)
,
(
−
ψ

π
,
ψ

2π

)
(
1 − n

2
,

1
2

)
,
(
−
ψ

π
,
ψ

2π

)
 .

Remark 3.4. If we consider

f (x) = δ (x) =
n∏

i=1

δ (xi) , g (x) = q (x, t) = 0, a = c = 1, d =
√
λ

with λ ∈ R+ in Eqs (3.1) and (3.2), then the solution u (x, t) given by Eq (3.45) corresponds to the
eigenfunctions of the generalized time-fractional telegraph equation of distributed order in Rn × R+.
Moreover, if additionally b2 (β, ν) = 0 (resp. b1 (α, µ) = 0) we obtain the representation of the gen-
eralized eigenfunctions of the time-fractional diffusion (resp. wave) equation of distributed order in
Rn × R+.

Putting a = 0 in Theorem 3.3, we have the following simplifications

B1 (s) = B∗1 (s) = 0, A = ρ cos (γπ) , B = ρ sin (γπ) , A2 + B2 = ρ2, ψ = γπ,

which give the following result.

Corollary 3.5. The solution of the generalized time-fractional wave equation of distributed order in
Rn × R+ ∫ 1

0

∫ 2

1
b2 (β, ν) t∂

β,ν
0+ u (x, t) dβ dν − c2 ∆xu (x, t) + d2 u (x, t) = q (x, t)
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for a given density function b2 (β, ν), subject to the following initial and boundary conditions

(
tI

(1−ν)(2−β)
0+ u

) (
x, 0+

)
= g1 (x) ,

[
∂

∂t

(
tI

(1−ν)(2−β)
0+ u

)] (
x, 0+

)
= g2 (x) , lim

|x|→+∞
u (x, t) = 0,

is given, in terms of convolution integrals, by

u (x, t)=
∫
Rn

g1 (z) G2 (x − z, t) dz +
∫
Rn

g2 (z) G3 (x − z, t) dz +
∫
Rn

∫ t

0
q (z, w) G4 (x − z, t − w) dw dz,

where the functions G2, G3, and G4 are given by

G2 (x, t) =
−1

π
n−1

2 (2 |x|)n

∫ +∞

0

re−rt

ρ sin (γπ)

[
ρ∗ sin (γ∗π)H

(
1

|x|
√
ρ

)
+

d2

c2 sin (γπ) H∗
(

1
|x|
√
ρ

)]
dr,

G3 (x, t) =
1

π
n−1

2 (2 |x|)n

∫ +∞

0

e−rt

ρ sin (γπ)

[
ρ∗ sin (γ∗π)H

(
1

|x|
√
ρ

)
+

d2

c2 sin (γπ) H∗
(

1
|x|
√
ρ

)]
dr,

G4 (x, t) =
−1

c2 π
n−1

2 (2 |x|)n

∫ +∞

0

e−rt

ρ
H∗

(
1

|x|
√
ρ

)
dr

with ρ and γ, ρ∗ and γ∗ given by Eqs (3.13) and (3.14), respectively, and the functions H and H∗ are
expressed in terms of the following Fox H-functions

H

(
1

|x|
√
ρ

)
= H0,2

3,2


1

|x|
√
ρ

(1 − n, 1) ,
(
1,

1
2

)
,
(
0,
γ

2

)
(
1 − n

2
,

1
2

)
,
(
0,
γ

2

)
 ,

H∗
(

1
|x|
√
ρ

)
= H0,2

3,2


1

|x|
√
ρ

(1 − n, 1) ,
(
0,

1
2

)
,
(
−γ,

γ

2

)
(
1 − n

2
,

1
2

)
,
(
−γ,

γ

2

)
 .

Remark 3.6. If we consider ν = µ = 1 in Theorem 3.3 (i.e., the telegraph equation has only Caputo
fractional derivatives) we obtain the main result in [46]. For that we need to take into account Remarks
3.1 and 3.2 and to combine the first two integrals in Eq (3.45) into a unique integral. Hence, the
solution u (x, t) is given by

u (x, t) =
∫
Rn

f (z) (G1 (x − z, t) +G2 (x − z, t)) dz

+

∫
Rn

g2 (z) G3 (x − z, t) dz +
∫
Rn

∫ t

0
q (z, w) G4 (x − z, t − w) dw dz, (3.46)

where for ν = µ = 1
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G1 (x, t) +G2 (x, t)

=
−1

π
n−1

2 (2 |x|)n

∫ +∞

0

(
A2 + B2

)− 1
2 e−rt

r sin (ψ)

[ρ1 sin (γ1π) + ρ2 sin (γ2π)
]
H


(
A2 + B2

)− 1
4

|x|


+

[
A ρ1 sin (γ1π) − B ρ1 cos (γ1π) + A ρ2 sin (γ2π) − B ρ2 cos (γ2π)

] (
A2 + B2

)− 1
2
H∗


(
A2 + B2

)− 1
4

|x|


+

d2B
c2

(
A2 + B2

)− 1
2
H∗


(
A2 + B2

)− 1
4

|x|


 dr. (3.47)

By Eq (3.18) we have that

A ρ1 sin (γ1π) − B ρ1 cos (γ1π) + A ρ2 sin (γ2π) − B ρ2 cos (γ2π)

= A
[
ρ1 sin (γ1π) + ρ2 sin (γ2π)

]
− B

[
ρ1 cos (γ1π) + ρ2 cos (γ2π)

]
= AB − BA = 0,

and, hence, Eq (3.47) simplifies to

G1 (x, t) +G2 (x, t)

=
−1

π
n−1

2 (2 |x|)n

∫ +∞

0

B
(
A2 + B2

)− 1
2 e−rt

r sin (ψ)

H

(
A2 + B2

)− 1
4

|x|

 + d2

c2

(
A2 + B2

)− 1
2
H∗


(
A2 + B2

)− 1
4

|x|


 dr

which corresponds to the function G1 presented in the main result of [46]. Moreover, in Eq (3.46)

G3 (x, t) =
1

π
n−1

2 (2 |x|)n

∫ +∞

0

(
A2 + B2

)− 1
2 e−rt

r2 sin (ψ)

ρ2 sin (γ2π) H


(
A2 + B2

)− 1
4

|x|


+

1
c2

[
ρ2 c2 (A sin (γ2π) − B cos (γ2π)) + Bd2

] (
A2 + B2

)− 1
2
H∗


(
A2 + B2

)− 1
4

|x|


 dr,

G4 (x, t) =
1

c2 π
n−1

2 (2 |x|)n

∫ +∞

0

B
(
A2 + B2

)−1
e−rt

sin (ψ)
H∗


(
A2 + B2

)− 1
4

|x|

 dr

which correspond, respectively, to the functions G2 and G3 that appear in the main result of [46].
Therefore, we can claim that there is consistency in our results.

Remark 3.7. The telegraph equations studied in [38, 40] are particular cases of the equation studied
in this paper, for the choices ν = µ = 1, b2 (β, ν) = δ (β − β1) , b1 (α, µ) = δ (α − α1), with 1 < β1 ≤ 2
and 0 < α1 ≤ 1 d = 0, and q (x, t) = 0.
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The numerical implementation of Eq (3.45) is possible, however, depends substantially on the study
of the asymptotic behaviour of G1, G2,G3 and G4 through the study of the asymptotic behaviour of the
associated Fox H-functions. We would like to remark also that Eq (3.45) is a very general solution, but
for particular cases of the dimension, of the fractional parameters, and/or of the density functions, it is
possible to get simpler expressions.

4. Fractional moments

In this section we obtain the expression for some fractional moments of the first fundamental solu-
tion G1 of the time-fractional telegraph equation of distributed order Eq (3.1) with d = q (x, t) = 0,
and subject to the initial and boundary conditions

f (x) = g1 (x) = δ (x) =
n∏

j=1

δ
(
x j

)
and g2 (x) = 0. (4.1)

Then G1 is given by G1 (x, t) = G1 (x, t) +G2 (x, t), where G1 and G2 are given in Theorem 3.3.
It is well known that the Mellin transform (2.9) can be interpreted as the fractional moment of

order s − 1 of the function f (see [62]). Therefore, we can calculate the fractional moments Mα,µ;β,ν
n;,γ

of arbitrary order γ > 0 of G̃1, where G̃1 denotes the Laplace transform of G1. Denoting by s the
variable in the Laplace domain and by r the radial quantity |x|, we have, from the definition of the
Mellin transform, that

M̃α,µ;β,ν
n;,γ (s) =

∫ +∞

0
rγ G̃1 (r, s) dr =

∫ +∞

0
rγ−n+1−1 rnG̃1 (r, s) dr =M

{
rn G̃1 (r, s)

}
(γ − n + 1) . (4.2)

From Eq (3.5), we have that

G1 (r, t) = L−1
{
F −1

{̂
ũ1 (κ, s) + ̂̃u2 (κ, s)

∣∣∣∣
p=−1
−

d2

c2
̂̃u3 (κ, s)

∣∣∣∣
p=−1

}
(r, s)

}
(r, t)

which is equivalent to

G̃1 (r, s) = L {G1 (r, t)} (r, s) = F −1
{̂

ũ1 (κ, s) + ̂̃u2 (κ, s)
∣∣∣∣
p=−1
−

d2

c2
̂̃u3 (κ, s)

∣∣∣∣
p=−1

}
(r, s) .

To calculate the inverse Fourier transform we are going to use the Mellin transform, similarly as it was
done in Section 3. Taking into account Eq (3.21), we have that

F −1
{̂

ũ1 (κ, s) + ̂̃u2 (κ, s)
∣∣∣∣
p=−1
−

d2

c2
̂̃u3 (κ, s)

∣∣∣∣
p=−1

}
(r, s)

=
r1− n

2

(2π)
n
2

∫ +∞

0

[̂̃
u1 (κ, s) + ̂̃u2 (κ, s)

∣∣∣∣
p=−1
−

d2

c2
̂̃u3 (κ, s)

∣∣∣∣
p=−1

]
w

n
2 J n

2−1 (|x| w) dw (4.3)

= (g5 ∗M f )
(
1
r

)
,
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where ∗M denotes the Mellin convolution given by Eq (2.11) at the point 1
r with

g5 (w) = ̂̃u1 (κ, s) + ̂̃u2 (κ, s)
∣∣∣∣
p=−1
−

d2

c2
̂̃u3 (κ, s)

∣∣∣∣
p=−1

and

f (w) =
1

(2π)
n
2 |x|n w

n
2+1

J n
2−1

(
1
w

)
.

Denoting by I7 the integral in Eq (4.3), we have, by relations Eqs (2.12) and (2.11), that

M{I7} (s) =M
{

(g5 ∗M f )
(
1
r

)}
(s) =M{g5} (−s) M{ f } (−s)

which is equivalent to

M{I7} (−s) =M{g5} (s) M{ f } (s) . (4.4)

From Eq (3.25) we have that

M{ f } (s) =
1

π
n−1

2 |x|n 2n−1

Γ (n − s)

Γ
(

n+1−s
2

)
Γ
(

s
2

) . (4.5)

Now, we calculate the Mellin transform of the function g5. Taking into account Eqs (2.9) and (3.8)
with p = 0, Eqs (3.9) and (3.10) with p = −1, we get

M{g5} (s) =
∫ +∞

0
ws−1

[̂̃
u1 (κ, s) + ̂̃u2 (κ, s)

∣∣∣∣
p=−1
−

d2

c2
̂̃u3 (κ, s)

∣∣∣∣
p=−1

]
dw

=

[
B∗1 (s) +

s
c2

[
c2 B∗2 (s) − d2

]] ∫ +∞

0

ws−1

B2 (s) + B1 (s) + w2 dw.

The integral in the previous expression was already calculated in [46] (see formula (84)). Therefore,
we have that

M{g5} (s) =
[
B∗1 (s) +

s
c2

[
c2 B∗2 (s) − d2

]]
π
Γ (1 − s) Γ (s)

Γ
(

1+s
2

)
Γ
(

1−s
2

) (B2 (s) + B1 (s))
s
2−1 . (4.6)

From Eqs (4.5), (4.6), (4.4) and (4.2) we conclude that

M

{
rn F −1

{̂
ũ1 (κ, s) + ̂̃u2 (κ, s)

∣∣∣∣
p=−1
−

d2

c2
̂̃u3 (κ, s)

∣∣∣∣
p=−1

}
(r, s)

}
(γ − n + 1, s)

=

[
B∗1 (s) +

s
c2

[
c2 B∗2 (s) − d2

]] (B2 (s) + B1 (s))−
s
2−1

π
n−3

2 2n−1

Γ (n + s) Γ (1 + s) Γ (−s)

Γ
(

n+1+s
2

)
Γ
(
− s

2

)
Γ
(

1−s
2

)
Γ
(

1+s
2

) ∣∣∣∣∣∣
s=γ−n+1

. (4.7)

By the duplication formula of the Gamma function Γ (2z) = 22z−1
√
π
Γ (z) Γ

(
z + 1

2

)
, we have the following

equalities for the Gamma functions that appear in (4.7)

Γ (n + s)

Γ
(

1
2 +

n+s
2

) = 2n+s−1

√
π
Γ

(n + s
2

)
, (4.8)
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Γ (1 + s)

Γ
(

1+s
2

) = 2s

√
π
Γ

(
1 +

s
2

)
, (4.9)

Γ (−s)

Γ
(

1
2 −

s
2

) = 2−s−1

√
π
Γ

(
−

s
2

)
. (4.10)

Taking into account Eqs (4.8)–(4.10), expression Eq (4.7) simplifies to

M

{
rn F −1

{̂
ũ1 (κ, s) + ̂̃u2 (κ, s)

∣∣∣∣
p=−1
−

d2

c2
̂̃u3 (κ, s)

∣∣∣∣
p=−1

}
(r, s)

}
(γ − n + 1, s)

=

[
B∗1 (s) +

s
c2

[
B∗2 (s) − d2

]] (B2 (s) + B1 (s))−
s
2−1

π
n
2

2s−1 Γ

(n + s
2

)
Γ

(
1 +

s
2

) ∣∣∣∣∣∣
s=γ−n+1

and, consequently, the fractional moments of arbitrary order γ in the Laplace domain are given by

M̃α,µ;β,ν
n;γ (s) =

[
B∗1 (s) +

s
c2

[
c2 B∗2 (s) − d2

]] (B2 (s) + B1 (s))
−γ+n−3

2

π
n
2

2γ−n Γ

(
γ + 1

2

)
Γ

(
3 + γ − n

2

)
. (4.11)

If we restrict (4.11) to the time-fractional telegraph equation of distributed order with Caputo frac-
tional derivatives, i.e., if we consider µ = ν = 1 (which implies that B∗1 (s) = s−1B1 (s) and
B∗2 (s) − d2

c2 = s−2
[
B2 (s) − d2

c2

]
by Remark 3.1), then (4.11) becomes equal to

M̃α,1;β,1
n;γ (s) =

c2 B1 (s) + c2 B2 (s) − d2

π
n
2 c2 s

(B2 (s) + B1 (s))
−γ+n−3

2 2γ−n Γ

(
γ + 1

2

)
Γ

(
3 + γ − n

2

)
,

which coincides with the correspondent expression deduced in [46]. Let us now analyse expression Eq
(4.11) for some special cases:

• When γ = n − 2k − 3, with n > 2k + 3 and k ∈ N0, the correspondent moments in the Laplace
domain become infinite.
• When γ = 1 (mean value), we have

M̃α,µ;β,ν
n;1 (s) =

[
B∗1 (s) +

s
c2

[
c2 B∗2 (s) − d2

]] (B2 (s) + B1 (s))
n
2−2

π
n
2

21−n Γ

(
2 −

n
2

)
, (4.12)

which becomes infinite when n = 4 + 2k, with k ∈ N0.
• When γ = 2 (variance), we have

M̃α,µ;β,ν
n;2 (s) =

[
B∗1 (s) +

s
c2

[
c2 B∗2 (s) − d2

]] (B2 (s) + B1 (s))
n−5

2

π
n+1

2

23−n Γ

(
5 − n

2

)
, (4.13)

which becomes infinite when n = 5 + 2k, with k ∈ N0.

4.1. Tauberian analysis for the second-order moment (variance)

When the fundamental solution is a positive function, it is possible to classify the diffusion process
by analysing the correspondent second-order moment, also called the mean squared displacement of
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a particle. This is obtained by comparison with the variance in the normal diffusion process. In
this subsection we consider the particular case of double-order distributed fractional derivatives, and
we analyze the second-order moment for short and long-time. We separate our analysis between the
diffusion and the wave cases. The following Laplace inversion formulas will be needed in the sequel:

• Formula (2.1.1.1) in [63]

L−1
{

1
sν

}
(t) =

tν−1

Γ (ν)
, ν > 0. (4.14)

• Formula (5.1.26) in [61]

L−1
{

sαγ−β

(sα − λ)γ

}
(t) = tβ−1 Eγ

α,β (λtα) , Re (α) ,Re (β) > 0, λ ∈ C, (4.15)

where Eγ
α,β is the three parameter Mittag-Leffler function given by (2.14).

4.1.1. Two composite time-fractional derivatives in the diffusion case

Here we consider b2 (β, ν) = 0, which implies that B2 (s) = B∗2 (s) = 0. In this case, the second-order
moment in the Laplace domain becomes

M̃α,µ;−,−
n;2 (s) = M̃α,µ

n;2 (s) =
21−n Γ

(
5−n

2

)
π

n−1
2

B∗1 (s) (B1 (s))
n−5

2 , n , 5 + 2k, k ∈ N0. (4.16)

Further, we assume

b1 (α, µ) = k1 δ (α − α1) δ (µ − µ1) + k2 δ (α − α2) δ (µ − µ2) (4.17)

with 0 < α1 < α2 ≤ 1, 0 ≤ µ1, µ2 ≤ 1, µ2 < µ1
1−α1
1−α2

, k1, k2 > 0, and k1 + k2 = 1. For this b1 (α, µ) we get

B1 (s) =
ak1

c2 sα1 +
ak2

c2 sα2 and B∗1 (s) =
ak1

c2 s−µ1(1−α1) +
ak2

c2 s−µ2(1−α2). (4.18)

Considering Eq (4.18) in Eq (4.16) we get

M̃(α1,α2),(µ1,µ2)
n;2 (s) =

21−n a
n−3

2 Γ
(

5−n
2

)
π

n−1
2 cn−3

(
k1 s−µ1(1−α1) + k2 s−µ2(1−α2)

)
(k1 sα1 + k2 sα2)

n−5
2 . (4.19)

To invert the Laplace transform of M̃(α1,α2),(µ1,µ2)
n;2 we first rearrange the expression Eq (4.19):

M̃(α1,α2),(µ1,µ2)
n;2 (s) =

21−n (a k2)
n−3

2 Γ
(

5−n
2

)
π

n−1
2 cn−3

k1

k2

s
(α2−α1)(5−n)

2 +
α2(n−5)

2 −µ1(1−α1)(
sα2−α1 −

(
−

k1
k2

)) 5−n
2

+
21−n (a k2)

n−3
2 Γ

(
5−n

2

)
π

n−1
2 cn−3

s
(α2−α1)(5−n)

2 +
α2(n−5)

2 −µ2(1−α2)(
sα2−α1 −

(
−

k1
k2

)) 5−n
2

. (4.20)
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Taking into account Eq (4.15) with

α = α2 − α1, γ =
5 − n

2
, λ = −

k1

k2
,

β =
α2 (5 − n)

2
+ µ1 (1 − α1) (1st term), β =

α2 (5 − n)
2

+ µ2 (1 − α2) (2nd term),

we get from Eq (4.20) that

M(α1,α2),(µ1,µ2)
n;2 (t) =

21−n (a k2)
n−3

2 Γ
(

5−n
2

)
π

n−1
2 cn−3

k1

k2
t
α2(5−n)

2 +µ1(1−α1)−1 E
5−n

2

α2−α1,
α2(5−n)

2 +µ1(1−α1)

(
−

k1

k2
tα2−α1

)

+
21−n (a k2)

n−3
2 Γ

(
5−n

2

)
π

n−1
2 cn−3

t
α2(5−n)

2 +µ2(1−α2)−1 E
5−n

2

α2−α1,
α2(5−n)

2 +µ2(1−α2)

(
−

k1

k2
tα2−α1

)
. (4.21)

Remark 4.1. For n = 1, the expression Eq (4.21) reduces to the expression (28) in [51] with suitable
identification of the parameters, which indicates consistency in our results.

The graphical representation of M(α1,α2),(µ1,µ2)
n;2 as a function of t using Eq (4.21) is not an easy pro-

cedure due to the presence of the three parameter Mittag-Leffler function Eγ
α,β. The numerical imple-

mentation of this special function is possible for some range of the parameter α (see [64]), which do
not include all the cases studied in this work. Therefore, we will make an asymptotic analysis of (4.19)
using the Tauberian analysis. Since s−µ2(1−α2)+µ1(1−α1) → 0 and sα2−α1 → 0 as s → 0 then, we get the
following asymptotic behaviour of M̃(α1,α2),(µ1,µ2)

n;2 (s) as s→ 0 :

M̃(α1,α2),(µ1,µ2)
n;2 (s) =

21−n a
n−3

2 Γ
(

5−n
2

)
π

n−1
2 cn−3

(
k1 s−µ1(1−α1) + k2 s−µ2(1−α2)

)
(k1 sα1 + k2 sα2)

n−5
2

∼
21−n (a k1)

n−3
2 Γ

(
5−n

2

)
π

n−1
2 cn−3

s−µ1(1−α1)+ α1(n−5)
2 . (4.22)

Concerning the symbol ∼ in the previous and subsequent expressions, we say that f and g are asymp-
totically equivalent as w → ∞ (resp. as w → 0), i.e., f ∼ g, if and only if limw→∞

f (w)
g(w) = 1 (resp.

limw→0
f (w)
g(w) = 1).

Using (4.14) to invert the Laplace transform in (4.22), we obtain the asymptotic behavior of
M(α1,α2),(µ1,µ2)

n;2 for t → +∞, with 0 ≤ µ1 ≤ 1 and n and α1 according to the following cases:

M(α1,α2),(µ1,µ2)
n;2 (t) ∼



21−n (a k1)
n−3

2 Γ
(

5−n
2

)
π

n−1
2 cn−3

tµ1+
α1(5−n−2µ1)

2 −1

Γ
(
µ1 +

α1(5−n−2µ1)
2

) , α1 < α2, n = 1, 2, 3, 4

21−n (a k1)
n−3

2 Γ
(

5−n
2

)
π

n−1
2 cn−3

tµ1+
α1(5−n−2µ1)

2 −1

Γ
(
µ1 +

α1(5−n−2µ1)
2

) , α1 <
2µ1

2µ1 + n − 5
∧ α1 < α2, n = 6, 8, . . .

.

(4.23)
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To classify the type of diffusion process we need to compare M(α1,α2),(µ1,µ2)
n;2 with the moment of the

normal diffusion process which is given by

M(1,1),(µ1,µ2)
n;2 =

21−n(ak1)
n−3

2

π
n−1

2 cn−3
t

3−n
2 . (4.24)

According with the dimension n we have the following cases:

• n = 1, 2, 3: M(α1,α2),(µ1,µ2)
n;2 (t) /M(1,1),(µ1,µ2)

n;2 (t) → 0, as t → +∞, for all 0 ≤ µ1 < 1, and all admis-
sible α1 and n, which corresponds to a subdiffusion process in the long time. In the limit case,
µ1 = 1 (Caputo case), for n = 1, 2 we still have a subdiffusion process while for n = 3 holds
M(α1,α2),(µ1,µ2)

3;2 (t) /M(1,1),(µ1,µ2)
3;2 (t) → k > 0, as t → +∞, thus the process coincides with the normal

diffusion in the long time;
• n = 4: The classification of the type of diffusion depends on the type µ1.

▶ For 0 ≤ µ1 < 1/2 holds M(α1,α2),(µ1,µ2)
4;2 (t) /M(1,1),(µ1,µ2)

4;2 (t)→ 0, as t → +∞, thus corresponding
to a subdiffusion process in the long time;

▶ For µ1 = 1/2 holds M(α1,α2),(µ1,µ2)
4;2 (t) /M(1,1),(µ1,µ2)

4;2 (t) → k > 0, as t → +∞, thus the process
coincides with the normal diffusion in the long time;

▶ For 1/2 < µ1 ≤ 1 holds M(α1,α2),(µ1,µ2)
4;2 (t) /M(1,1),(µ1,µ2)

4;2 (t)→ +∞, as t → +∞, thus correspond-
ing to a superdiffusion process in the long time.

• n = 6+2k: The moment M(α1,α2),(µ1,µ2)
n;2 (t) is positive when n = 8+4k and negative when n = 6+4k,

k ∈ Z+. This is due to the change of sign of the gamma function in the numerator. In the second
case, a probabilistic interpretation is no longer possible.

Finally, we note a different behaviour of the monotonicity of the second-order moment along the
dimensions, depending on the values assumed by the several parameters in the expression. When
n = 1, 2, 3, 4, if we assume that c > 0, then the following conclusions about M(α1,α2),(µ1,µ2)

n;2 for large
values of t can be drawn:

• n = 1: M(α1,α2),(µ1,µ2)
n;2 is an increasing function when 1−µ1

2−µ1
< α1 ≤ 1, is constant when α1 =

1−µ1
2−µ1

,
and is a decreasing function when 0 < α1 <

1−µ1
2−µ1
≤ 0.5, with 0 ≤ µ1 ≤ 1.

• n = 2: M(α1,α2),(µ1,µ2)
n;2 is an increasing function when 2−2µ1

3−2µ1
< α1 ≤ 1, is constant when α1 =

2−2µ1
3−2µ1

,
and is a decreasing function when 0 < α1 <

2−2µ1
3−2µ1

≤ 2
3 , with 0 ≤ µ1 ≤ 1.

• n = 3: M(α1,α2),(µ1,µ2)
n;2 is a decreasing function when 0 < α1 < 1 and 0 ≤ µ1 < 1, and is constant

when α1 = 1 or 0 ≤ α1 ≤ 1 and µ1 = 1.
• n = 4: M(α1,α2),(µ1,µ2)

n;2 is a decreasing function for all 0 < α1 ≤ 1 and 0 ≤ µ1 < 1, and is constant
when α1 = 0 and µ1 = 1.

Now, we study the asymptotic behaviour of M(α1,α2),(µ1,µ2)
n;2 for small values of t. From Eq (4.19) we

have the following asymptotic behaviour when s→ +∞:

M̃(α1,α2),(µ1,µ2)
n;2 (s) =

21−n a
n−3

2 Γ
(

5−n
2

)
π

n−1
2 cn−3

(
k1 s−µ1(1−α1) + k2 s−µ2(1−α2)

)
(k2 sα1 + k2 sα2)

n−5
2

∼
21−n (a k2)

n−3
2 Γ

(
5−n

2

)
π

n−1
2 cn−3

s−µ2(1−α2)+ α2(n−5)
2 . (4.25)

Electronic Research Archive Volume 30, Issue 10, 3595–3631.



3620

Using Eq (4.14) to invert the Laplace transform in Eq (4.25), we obtain the asymptotic behavior of
M(α1,α2),(µ1,µ2)

n;2 for t → 0+, with 0 ≤ µ2 ≤ 1 and n and α2 according to the following cases:

M(α1,α2),(µ1,µ2)
n;2 (t) ∼



21−n (a k2)
n−3

2 Γ
(

5−n
2

)
π

n−1
2 cn−3

tµ2+
α2(5−n−2µ2)

2 −1

Γ
(
µ2 +

α2(5−n−2µ2)
2

) , α2 > α1, n = 1, 2, 3, 4

21−n (a k2)
n−3

2 Γ
(

5−n
2

)
π

n−1
2 cn−3

tµ2+
α2(5−n−2µ2)

2 −1

Γ
(
µ2 +

α2(5−n−2µ2)
2

) , α2 <
2µ2

2µ2 + n − 5
∧ α2 > α1, n = 6, 8, . . .

.

(4.26)

Comparing M(α1,α2),(µ1,µ2)
n;2 with M(1,1),(µ1,µ2)

n;2 when t → 0+, we have the following conclusions:

• n = 1, 2, 3: M(α1,α2),(µ1,µ2)
n;2 (t) /M(1,1),(µ1,µ2)

n;2 (t) → +∞, as t → 0+, for all 0 ≤ µ1 < 1, and all
admissible α1 and n, which corresponds to a superdiffusion process in the short time. In the limit
case, µ1 = 1 (Caputo case), for n = 1, 2 we still have a superdiffusion process while for n = 3
holds M(α1,α2),(µ1,µ2)

3;2 (t) /M(1,1),(µ1,µ2)
3;2 (t) → k > 0, as t → +∞, thus the process coincides with the

normal diffusion in the short time;
• n = 4: The classification of the type of diffusion depends on the parameter µ1.

▶ For 0 ≤ µ1 < 1/2 holds M(α1,α2),(µ1,µ2)
4;2 (t) /M(1,1),(µ1,µ2)

4;2 (t) → +∞, as t → 0+, thus correspond-
ing to a superdiffusion process in the short time;

▶ For µ1 = 1/2 holds M(α1,α2),(µ1,µ2)
4;2 (t) /M(1,1),(µ1,µ2)

4;2 (t) → k > 0, as t → 0+, thus the process
coincides with the normal diffusion in the short time;

▶ For 1/2 < µ1 ≤ 1 holds M(α1,α2),(µ1,µ2)
4;2 (t) /M(1,1),(µ1,µ2)

4;2 (t) → 0, as t → 0+, thus corresponding
to a subdiffusion process in the short time.

• n = 6 + 2k: As happen in the long time case the moment is not always positive, and hence also
here it is not possible to perform a probabilistic interpretation for all the values of n.

4.1.2. Two composite time-fractional derivatives in the wave case

Here we consider b1 (α, µ) = 0. Hence, B1 (s) = B∗1 (s) = 0 and the second-order moment in the
Laplace domain becomes

M−,−;β,ν
n;2 (s) =Mβ,ν

n;2 (s) =
21−n Γ

(
5−n

2

)
π

n−1
2

s B∗2 (s) (B2 (s))
n−5

2 , n , 5 + 2k, k ∈ N0. (4.27)

Let us now assume that

b2 (β, ν) = k1 δ (β − β1) δ (ν − ν1) + k2 δ (β − β2) δ (ν − ν2)

with 1 < β1 < β2 ≤ 2, 0 ≤ ν1, ν2 ≤ 1, ν2 < ν1
2−β1
2−β2

, k1, k2 > 0, and k1 + k2 = 1. For this b2 (β, ν) we get

B2 (s) =
k1

c2 sβ1 +
k2

c2 sβ2 and B∗2 (s) =
k1

c2 s−ν1(2−β1) +
k2

c2 s−ν2(2−β2). (4.28)
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Considering Eq (4.28) in Eq (4.27) we get

M̃(β1,β2),(ν1,ν2)
n;2 (s) =

21−n Γ
(

5−n
2

)
π

n−1
2 cn−3

s
(
k1 s−ν1(2−β1) + k2 s−ν2(2−β2)

) (
k1 sβ1 + k2 sβ2

) n−5
2
. (4.29)

Inverting the Laplace transform of M̃(β1,β2),(ν1,ν2)
n;2 (s) following the same steps of the deduction of Eq

(4.21) we get

M(β1,β2),(ν1,ν2)
n;2 (t) =

21−n k
n−3

2
2 Γ

(
5−n

2

)
π

n−1
2 cn−3

k1

k2
t
β2(5−n)

2 +ν1(2−β1)−2 E
5−n

2

β2−β1,
β2(5−n)

2 +ν1(2−β1)−1

(
−

k1

k2
tβ2−β1

)

+
21−n k

n−3
2

2 Γ
(

5−n
2

)
π

n−1
2 cn−3

t
β2(5−n)

2 +ν2(2−β2)−2 E
5−n

2

β2−β1,
β2(5−n)

2 +ν2(2−β2)−1

(
−

k1

k2
tβ2−β1

)
. (4.30)

First, we study the asymptotic behaviour of M(β1,β2),(ν1,ν2)
n;2 for large values of t. From Eq (4.19) we have

the following asymptotic behaviour when s→ 0 :

M̃(β1,β2),(ν1,ν2)
n;2 (s) =

21−n Γ
(

5−n
2

)
π

n−1
2 cn−3

s
(
k1 s−ν1(2−β1) + k2 s−ν2(2−β2)

) (
k1 sβ1 + k2 sβ2

) n−5
2

∼
21−n k

n−3
2

1 Γ
(

5−n
2

)
π

n−1
2 cn−3

s1−ν1(2−β1)+ β1(n−5)
2 . (4.31)

Using Eq (4.14) to invert the Laplace transform in Eq (4.31), we obtain the asymptotic behavior of
M(β1,β2),(ν1,ν2)

n;2 for t → +∞, with β1, ν1, and n according to the following cases:

M(β1,β2),(ν1,ν2)
n;2 (t) ∼



21−n k
n−3

2
1 Γ

(
5−n

2

)
π

n−1
2 cn−3

t2ν1+
β1(5−n−2ν1)

2 −2

Γ
(
2ν1 +

β1(5−n−2ν1)
2 − 1

) , β1 < β2, 0 ≤ ν1 ≤ 1, n = 1, 2, 3

21−n k
n−3

2
1 Γ

(
5−n

2

)
π

n−1
2 cn−3

t2ν1+
β1(5−n−2ν1)

2 −2

Γ
(
2ν1 +

β1(5−n−2ν1)
2 − 1

) , β1 < β2,
1
2 < ν1 ≤ 1, n = 4

.

(4.32)

To classify the type of diffusion-wave process we need to compare M(β1,β2),(ν1,ν2)
n;2 with the normal diffu-

sion process. The situation here depends on the dimension and we have the following cases:

• n = 1: M(β1,β2),(ν1,ν2)
1;2 (t) /M(1,1),(µ1,µ2)

1;2 (t) → +∞, as t → +∞, for 1 < 3−2ν1
2−ν1

< β1 < 2 and 0 ≤ ν1 ≤ 1,
which corresponds to a superdiffusion process in the long time and M(β1,β2),(ν1,ν2)

1;2 (t) /M(1,1),(µ1,µ2)
1;2 →

0, as t → +∞, for 1 < β1 <
3−2ν1
2−ν1

< 2 and 0 ≤ ν1 ≤ 1, which corresponds to a subdiffusion process
in the long time. In the special case β1 =

3−2ν1
2−ν1

the process coincides with the normal diffusion in
the long time.
• n = 2: M(β1,β2),(ν1,ν2)

n;2 (t) /M(1,1),(µ1,µ2)
2;2 (t) → +∞, as t → +∞, for 1 < 5−4ν1

3−2ν1
< β1 < 2

and 0 ≤ ν1 ≤ 1, which corresponds to a superdiffusion process in the long time and
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M(β1,β2),(ν1,ν2)
n;2 (t) /M(1,1),(µ1,µ2)

2;2 (t) → 0, as t → +∞, for 1 < β1 < 5−4ν1
3−2ν1

< 2 and 0 ≤ ν1 ≤ 1,
which corresponds to a subdiffusion process in the long time. In the special case β1 =

5−4ν1
3−2ν1

the
process coincides with the normal diffusion in the long time.
• n = 3 M(β1,β2),(ν1,ν2)

3;2 (t) /M(1,1),(µ1,µ2)
3;2 (t) → 0, as t → +∞, for all 1 < β1 ≤ 2 and 0 ≤ ν1 < 1,

thus corresponding to a subdiffusion process. For ν1 = 1 the process coincides with the normal
diffusion case.
• n = 4: M(β1,β2),(ν1,ν2)

4;2 (t) /M(1,1),(µ1,µ2)
4;2 (t) → 0, as t → +∞, for all 1 < β1 ≤ 2 and 1/2 < ν1 ≤ 1, thus

corresponding to a subdiffusion process.

Finally, we study the asymptotic behaviour of M(β1,β2),(ν1,ν2)
n;2 for small values of t knowing the asymptotic

behaviour of Eq (4.29) when s→ +∞. From (4.29), as s→ +∞, we have

M̃(β1,β2),(ν1,ν2)
n;2 (s) =

21−n Γ
(

5−n
2

)
π

n−1
2 cn−3

s
(
k2 s−ν1(2−β1) + k2 s−ν2(2−β2)

) (
k1 sβ1 + k2 sβ2

) n−5
2

∼
21−n k

n−3
2

1 Γ
(

5−n
2

)
π

n−1
2 cn−3

s1−ν2(2−β2)+ β2(n−5)
2 . (4.33)

Using Eq (4.14) to invert the Laplace transform in Eq (4.33), we obtain the asymptotic behavior of
M(β1,β2),(ν1,ν2)

n;2 for t → 0+, with β2, ν2, and n according to the following cases:

M(β1,β2),(ν1,ν2)
n;2 (t) ∼



21−n k
n−3

2
2 Γ

(
5−n

2

)
π

n−1
2 cn−3

t2ν2+
β2(5−n−2ν2)

2 −2

Γ
(
2ν2 +

β2(5−n−2ν2)
2 − 1

) , β2 > β1, 0 ≤ ν2 ≤ 1, n = 1, 2, 3

21−n k
n−3

2
2 Γ

(
5−n

2

)
π

n−1
2 cn−3

t2ν2+
β2(5−n−2ν2)

2 −2

Γ
(
2ν2 +

β2(5−n−2ν2)
2 − 1

) , β2 > β1,
1
2 < ν2 ≤ 1, n = 4

.

(4.34)

The analysis of Eq (4.34) is similar to the one performed for Eq (4.32). Regarding the classification of
the diffusion-wave process the following conclusions can be taken:

• n = 1: M(β1,β2),(ν1,ν2)
1;2 (t) /M(1,1),(µ1,µ2)

1;2 (t) → 0, as t → 0+, for 1 < 3−2ν1
2−ν1

< β2 < 2 and 0 ≤ ν2 ≤ 1,
while M(β1,β2),(ν1,ν2)

n;2 (t) /M(1,1),(µ1,µ2)
1;2 (t) → +∞, as t → 0+, for 1 < β2 <

3−2ν1
2−ν1

< 2 and 0 ≤ ν2 ≤ 1.
Hence, in the short time, the process is subdiffusive in the first case and is superdiffusive in the
second case. In the special case β1 =

3−2ν1
2−ν1

the process coincides with the normal diffusion in the
short time.
• n = 2: M(β1,β2),(ν1,ν2)

2;2 (t) /M(1,1),(µ1,µ2)
2;2 (t) → 0, as t → 0+, for 1 < 5−4ν1

3−2ν1
< β2 < 2

and 0 ≤ ν2 ≤ 1, which corresponds to a subdiffusion process in the short time, and
M(β1,β2),(ν1,ν2)

2;2 (t) /M(1,1),(µ1,µ2)
2;2 (t) → +∞, as t → 0+, for 1 < β2 < 5−4ν1

3−2ν1
< 2 and 0 ≤ ν2 ≤ 1,

thus corresponding to a superdiffusion process in the short time. In the special case β1 =
5−4ν1
3−2ν1

the
process coincides with the normal diffusion in the short time.
• n = 3: M(β1,β2),(ν1,ν2)

3;2 (t) /M(1,1),(µ1,µ2)
3;2 (t) → +∞, as t → 0+, for all 1 < β2 ≤ 2 and 0 ≤ ν2 < 1,

thus corresponding to a superdiffusion process. For ν2 = 1 the process coincides with the normal
diffusion case.
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• n = 4: M(β1,β2),(ν1,ν2)
4;2 (t) /M(1,1),(µ1,µ2)

4;2 (t)→ +∞, as t → 0+, for all 1 < β2 ≤ 2 and 1/2 < ν2 ≤ 1, thus
corresponding to a superdiffusion process in the short time.

Remark 4.2. If we consider the Caputo case in Sections 4.1.1 and 4.1.2, our analysis of the diffusion-
wave process for the double-order case improve the results presented in [46]. Moreover, considering
single order derivatives and the one-dimensional case, it was proved in [65] that the fundamental
solution corresponds to a probability density function only when the fractional derivatives are in the
Caputo sense.

4.1.3. Graphical representations of the second-order moment for the long time

In this section we present and analyse the plots of the asymptotic behaviour of M(α1,α2),(µ1,µ2)
n;2 (t),

when t → +∞, for some of the cases studied previously separating the diffusion and the wave cases.
The plots were generated using Mathematica software and the commands available in it.

The diffusion case: In the following figures, we show the graphical representation of Eq (4.23) for
n = 1, 2, 3, 4, α1 = 0.25, 0.50, 0.75, and different values µ1, using a logarithmic scale in the axes when
needed.
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Figure 1. Plots of the asymptotic behaviour of M(α1,α2),(µ1,µ2)
1;2 (t) when t → +∞ for

α1 = 0.25, 0.50, 0.75 (from left).
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Figure 2. Plots of the asymptotic behaviour of M(α1,α2),(µ1,µ2)
n;2 (t) when t → +∞ for n = 2 and

α1 = 0.25, n = 3 and α1 = 0.50, n = 4 and α1 = 0.75 (from left).

Looking at the plots we see that the classification of the diffusion process in each dimension agrees
with the analysis of Eq (4.23) performed previously. The plots show an interpolation between the
extreme cases µ1 = 0 and µ1 = 1, which correspond to the Riemann-Liouville (RL) and Caputo cases,
respectively. The extreme cases have different behaviour, e.g., the slope of the variance is different and
in the dimension, n = 3 the variance is constant in the Caputo case. In contrast, in the RL case, the
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variance decreases for large values of t. Moreover, for α1 = 0.25 we can observe a different behaviour
of the diffusion in dimensions n = 1 and n = 2 : in the RL case the variance decreases for large values
of t while in the Caputo case the variance increases.

The wave case: In the following figures, we show the graphical representation of Eq (4.32) for
n = 1, 2, 3, 4, β1 = 1.25, 1.50, 1.75 and different values ν1.
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Figure 3. Plots of the asymptotic behaviour of M(β1,β2),(ν1,ν2)
1;2 (t) when t → +∞ for

β1 = 1.25, 1.50, 1.75 (from left).
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Figure 4. Plots of the asymptotic behaviour of M(β1,β2),(ν1,ν2)
n;2 (t) when t → +∞ for n = 2 and

β1 = 1.25, n = 3 and β1 = 1.50, n = 4 and β1 = 1.75 (from left).

For each dimension and different values of the fractional parameters, the process classification
agrees with the analysis of Eq (4.32). The range of the plots increases with the increase of β1 and
ν1. Again it is interesting to observe the different behaviour of the variance for the extreme cases
ν1 = 0 (RL case) and ν1 = 1 (Caputo case) for the dimension n = 3. Also the slope of the variance is
different in the other dimensions.

4.1.4. Graphical representations of the second-order moment for the short time

In this section we present and analyse the graphical representation of the asymptotic behaviour of
M(α1,α2),(µ1,µ2)

n;2 (t), when t → 0+, for some of the cases studied previously separating the diffusion and
the wave cases. The plots were generated using Mathematica software and the commands available in
it.

The diffusion case: In the following figures, we show the graphical representation of (4.26) for
n = 1, 2, 3, 4, α2 = 0.25, 0.50, 0.75, and different values µ2.
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Figure 5. Plots of the asymptotic behaviour of M(α1,α2),(µ1,µ2)
1;2 (t) when t → 0+ for

α2 = 0.25, 0.50, 0.75 (from left).
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Figure 6. Plots of the asymptotic behaviour of M(α1,α2),(µ1,µ2)
n;2 (t) when t → 0+ for n = 2 and

α2 = 0.25, n = 3 and α2 = 0.50, n = 4 and α2 = 0.75 (from left).

Looking at the plots we see that the range of the plots decreases with the increase of α2 and µ2.
The type of process is in accordance with the conclusion made in the analysis of Eq (4.26). Again, we
can observe a different behaviour of the variance for small values of t in the extreme cases ν2 = 0 and
ν2 = 1, corresponding to the RL and Caputo cases, respectively. For α1 = 0.25 and the dimensions
n = 1 and n = 2 the variance decreases in the RL case and increases in the Caputo case, for small
values of t. In the case ν2 = 1 the plots coincide with the correspondent ones obtained in [46].

The wave case: In the following figures, we have the graphical representation of Eq (4.34) for
n = 1, 2, 3, 4, β2 = 1.25, 1.50, 1.75, and different values ν2 and n.
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Figure 7. Plots of the asymptotic behaviour of M(α1,α2),(µ1,µ2)
1;2 (t) when t → 0+ for

β2 = 1.25, 1.50, 1.75 (from left).
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Figure 8. Plots of the asymptotic behaviour of M(α1,α2),(µ1,µ2)
n;2 (t) when t → 0+ for n = 2 and

β2 = 1.25, n = 3 and β2 = 0.50, n = 4 and β2 = 0.75 (from left).

Looking at the plots we see that the conclusions are similar to those already exposed. The behaviour
of the functions is in accordance with the conclusions made in the analysis of (4.34). When ν2 = 1 the
plots coincide with those presented in [46].

5. Conclusions

The results presented here generalize those obtained in [46] by the introduction of the Hilfer deriva-
tive, that allows a smooth interpolation between the Riemann-Liouvile and the Caputo fractional
derivatives. The solution of the Cauchy problem associated with the telegraph equation was expressed
as convolutions with functions that are expressed by Laplace integrals involving Fox H-functions. For
particular cases of the equation the solution can be simplified and we showed that we can recover
known results presented in the literature, which reveals consistency of our results. The classification of
the diffusion-wave process depends, not only on the spatial dimension, but also on the order and type
of the derivatives. This is very different from previous works on the literature since in most cases the
telegraph equation is studied only for Caputo or Riemann-Liouville fractional derivatives. It would be
interesting to consider other types of density functions in addition to those considered in this article,
but the calculations would become cumbersome.
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