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Abstract: The generic double-Hopf bifurcation is presented in detail in literature in textbooks like
references. In this paper we complete the study of the double-Hopf bifurcation with two degenerate
(or nongeneric) cases. In each case one of the generic conditions is not satisfied. The normal form and
the corresponding bifurcation diagrams in each case are obtained. New possibilities of behavior which
do not appear in the generic case were found.
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1. Introduction

The theory of bifurcations is crucial in understanding qualitative properties of differential systems
depending on one or more parameters. Bifurcations of codimension one and two are well-addressed in
the literature [1–3] when they are non-degenerate, but many open problems emerge when they become
degenerate [4] or the codimension is beyond 2.

The classical normal form of the double-Hopf bifurcation in differential systems of dimension 4 is
based on six generic conditions (HH.0)–(HH.5) [1]. Some of the pioneering papers reporting results
on non-degenerate double-Hopf bifurcation are references [5–8].

If one or more generic conditions fail to be satisfied, a degeneracy arises and, thus, the generic
results are not valid anymore. In this work we study two degenerate double-Hopf bifurcations. The
degeneracy we refer at is related to generic conditions which are necessary in obtaining normal forms.

Another added value of our results is that we discovered new bifurcation diagrams and new phase
portraits and, thus, new properties of double-Hopf bifurcation which, to our knowledge, were not
previously reported in the literature. The results emerged from the analysis of a new system which
appeared due to degeneracy.
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Our study is performed in a general framework and produces generic results which can be applied in
particular systems exhibiting this bifurcation. The double-Hopf bifurcation (degenerate or not) can be
often met in practical models based on differential systems and having a large number of equations (at
least four) [4, 9–12]. Interesting results on discrete time systems undergoing double-Hopf bifurcations
are presented in [11]. Thus, understanding better this bifurcation and obtaining new generic properties
of it is desirable and important for particular models describing real-world phenomena. This is the
purpose of the present work.

The paper is organized as follows. In Section 2 the classical normal form obtained in [1] using
six generic conditions (HH.0)–(HH.5) is presented and a new normal form up to order 3 in polar
coordinates is obtained as two of the generic conditions, namely (HH.1) and (HH.3) fail. In Section
3, the dynamics and bifurcation of this normal form, around the origin, is analyzed as the condition
(HH.3) is not satisfied, but (HH.1) is valid, while in Section 4 a similar study is done when the condition
(HH.1) is not fulfilled, but (HH.3) is satisfied. In Section 5 some conclusions and the relationship
between the dynamics of the 2D amplitude system and the dynamics of the 4D truncated normal form
are given.

2. About the double-Hopf bifurcation

Consider a differential system of the form

ẋ = f (x, α) , x ∈ R4, α = (α1, α2) ∈ R2, (2.1)

with f smooth, ẋ = dx
dt , and assume that x = 0 is an equilibrium point of the system for all α with

|α| =

√
α2

1 + α2
1 small enough, that is, f (0, α) ≡ 0; x = 0 stands for x = (0, 0, 0, 0) and α = 0 for

α = (0, 0). The system (2.1) can be written as

ẋ = A (α) x + F (x, α) (2.2)

where F (x, α) = O
(
|x|2

)
is a smooth function denoting Taylor rest with terms of order at least 2.

Assume the matrix A(α) has two pairs of simple complex-conjugate eigenvalues λ1, λ1, λ2, λ2,

λ1 (α) = µ1 (α) + iω1 (α) , λ2 (α) = µ2 (α) + iω2 (α)

for all sufficiently small |α| , where µ1,2 (α) and ω1,2 (α) are smooth functions of α such that µ1 (0) =

µ2 (0) = 0, respectively, ω1 (0) = ω10 > 0 and ω2 (0) = ω20 > 0. When these conditions are satisfied,
the origin of system (2.1) is called a double-Hopf or Hopf-Hopf singularity, and, under supplementary
conditions, a double-Hopf bifurcation occurs at α = 0.

In complex coordinates, the system (2.2) can be further reduced to the form{
ż1 = λ1 (α) z1 + g (z1, z1, z2, z2, α)
ż2 = λ2 (α) z2 + h (z1, z1, z2, z2, α)

(2.3)

where
g (z1, z1, z2, z2, α) =

∑
j+k+l+m≥2

g jklm (α) z j
1zk

1zl
2zm

2
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and
h (z1, z1, z2, z2, α) =

∑
j+k+l+m≥2

h jklm (α) z j
1zk

1zl
2zm

2 .

Other two equations are the conjugates of system (2.3) and are omitted in what follows.
A first normal form corresponding to system(2.3) is described in the following lemma, reported

in [1].

Lemma 2.1. Assume that the following conditions take place [1]

(HH.0) kω10 , lω20, k, l > 0, k + l ≤ 5.

Then, there exists a locally defined, smooth and smoothly parameter-dependent, invertible transforma-
tion of the complex variables that reduces system (2.3) for all sufficiently small |α| into the following
form: 

ẇ1 = λ1w1 + w1 |w1|
2 (a1 + ib1) + w1 |w2|

2 (a2 + ib2) + w1 |w1|
4 (a3 + ib3)

+w1 |w1|
2
|w2|

2 (a4 + ib4) + w1 |w2|
4 (a5 + ib5) + O

(
‖(w1,w1,w2,w2)‖6

)
ẇ2 = λ2w2 + w2 |w1|

2 (c1 + id1) + w2 |w2|
2 (c2 + id2) + w2 |w1|

4 (c3 + id3)
+w2 |w1|

2
|w2|

2 (c4 + id4) + w2 |w2|
4 (c5 + id5) + O

(
‖(w1,w1,w2,w2)‖6

) (2.4)

where w1,2 are complex-valued functions, ‖(w1,w1,w2,w2)‖2 = |w1|
2 + |w2|

2 .

In system (2.4) we used the following notations: a1 + ib1 = G2100 (α) , a2 + ib2 = G1011 (α) , a3 +

ib3 = G3200 (α) , a4 + ib4 = G2111 (α) and a5 + ib5 = G1022 (α) , respectively, c1 + id1 = H1110 (α) ,
c2 + id2 = H0021 (α) , c3 + id3 = H2210 (α) , c4 + id4 = H1121 (α) and c5 + id5 = H0032 (α) , where
ai = ai (α) , bi = bi (α) , ci = ci (α) and di = di (α) , i = 1, 5, are real smooth functions of α which
depend on the coefficients gi jkl (α) and hi jkl (α) . The coefficients of third order terms in system (2.4)
are given explicitly in [1].

The system (2.4) has been transformed further in [1] to a normal form based on six generic condi-
tions.

In polar coordinates w1 = r1eiϕ1 and w2 = r2eiϕ2 , the system (2.4) becomes
ṙ1 = r1

(
µ1 + a1r2

1 + a2r2
2 + a3r4

1 + a4r2
1r2

2 + a5r4
2

)
+ Φ1 (r1, r2, ϕ1, ϕ2, α)

ṙ2 = r2

(
µ2 + c1r2

1 + c2r2
2 + c3r4

1 + c4r2
1r2

2 + c5r4
2

)
+ Φ2 (r1, r2, ϕ1, ϕ2, α)

ϕ̇1 = ω1 + Ψ1 (r1, r2, ϕ1, ϕ2, α)
ϕ̇2 = ω2 + Ψ2 (r1, r2, ϕ1, ϕ2, α)

, (2.5)

where the real functions Φk, Ψk are smooth functions of their arguments and are 2π-periodic in ϕ j,

Φk = O
((

r2
1 + r2

2

)3
)
, Ψk (0, 0, ϕ1, ϕ2) = 0.

The main dynamics of the system (2.5) is given by its first two equations
ṙ1 = r1

(
µ1 + a1r2

1 + a2r2
2 + a3r4

1 + a4r2
1r2

2 + a5r4
2

)
+ O

((
r2

1 + r2
2

)3
)

ṙ2 = r2

(
µ2 + c1r2

1 + c2r2
2 + c3r4

1 + c4r2
1r2

2 + c5r4
2

)
+ O

((
r2

1 + r2
2

)3
) , (2.6)

the other two describing only the rate of rotation of an orbit, and, because ω1,2 (0) , 0, they can be
approximated by

ϕ̇1 = ω10, ϕ̇2 = ω20.
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Changing to ρi = r2
i , i = 1, 2, and truncating the higher order terms, system (2.6) leads to the planar

system  ρ̇1 = 2ρ1

(
µ1 + a1ρ1 + a2ρ2 + a3ρ

2
1 + a4ρ1ρ2 + a5ρ

2
2

)
ρ̇2 = 2ρ2

(
µ2 + c1ρ1 + c2ρ2 + c3ρ

2
1 + c4ρ1ρ2 + c5ρ

2
2

) , (2.7)

referred as the amplitude equations; ρ̇i =
dρi
dt , i = 1, 2.

In the hypotheses

(HH.0) kω1 (0) , lω2 (0) , k, l > 0, k + l ≤ 5;
(HH.1) p11 (0) = Re (G2100 (0)) , 0;
(HH.2) p12 (0) = Re (G1011 (0)) , 0;
(HH.3) p21 (0) = Re (H1110 (0)) , 0;
(HH.4) p22 (0) = Re (H0021 (0)) , 0;
(HH.5) the map α −→ µ (α) is regular at α = 0, (2.8)

in [1], the system (2.4) has been transformed further into the following normal form
ṙ1 = r1

(
µ1 + p11r2

1 + p12r2
2 + s1r4

2

)
+ Φ1 (r1, r2, ϕ1, ϕ2, α)

ṙ2 = r2

(
µ2 + p21r2

1 + p22r2
2 + s2r4

1

)
+ Φ2 (r1, r2, ϕ1, ϕ2, α)

ϕ̇1 = ω1 + Ψ1 (r1, r2, ϕ1, ϕ2, α)
ϕ̇2 = ω2 + Ψ2 (r1, r2, ϕ1, ϕ2, α)

, (2.9)

where the real functions Φk, Ψk are smooth functions of their arguments and are 2π-periodic in ϕ j,

Φk = O
((

r2
1 + r2

2

)3
)
, Ψk (0, 0, ϕ1, ϕ2) = 0.

Consequently, the truncated amplitude system obtained in [1] reads: ρ̇1 = 2ρ1

(
µ1 + p11ρ1 + p12ρ2 + s1ρ

2
2

)
ρ̇2 = 2ρ2

(
µ2 + p21ρ1 + p22ρ2 + s2ρ

2
1

) . (2.10)

This system is analyzed in two cases, the “simple case” as p11(0)p22(0) > 0 and the “difficult case”
as p11(0)p22(0) < 0.

The study of the generic Hopf-Hopf bifurcation is also done in [2], starting with the amplitude
system (2.6), truncated up to third order terms, in the nondegeneracy hypotheses

a1(0) , 0, a2(0) , 0, c1(0) , 0, c2(0) , 0, (2.11)

and
a1(0)c2(0) − a2(0)c1(0) , 0. (2.12)

In this paper we study the degenerate Hopf-Hopf bifurcation when conditions (HH.1) and (HH.3)
are not satisfied. In order to do this, we derive a new normal form for the amplitude system.
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Theorem 2.2. Assume that the following three generic conditions are satisfied:
(HH.2) a2 (0) = Re [G1011 (0)] , 0,
(HH.4) c2 (0) = Re [H0021 (0)] , 0,
(HH.5) the map α 7→ (µ1 (α) , µ2 (α)) is regular at α = 0.

Then, system (2.6) is locally topologically equivalent around the origin O, for all sufficiently small |α|,
to the following system dρ1

dτ = 2ρ1

[
µ1 + p11ρ1 + p12ρ2 + p13ρ

2
1 + p14ρ1ρ2

]
+
√
ρ1O

(
(ρ1 + ρ2)3

)
dρ2
dτ = 2ρ2

[
µ2 + p21ρ1 + p22ρ2 + p23ρ

2
1 + p25ρ

2
2

]
+
√
ρ2O

(
(ρ1 + ρ2)3

) , (2.13)

where
p11 = a1 + µ1n1, p12 = a2 + µ1n2, p13 = a3 + a1n1, p14 = a4 + a1n2 + a2n1

and
p21 = c1 + µ2n1, p22 = c2 + µ2n2, p23 = c3 + c1n1, p25 = c5 + c2n2,

with n2 (µ) = −
a5(µ)
a2(µ) and n1 (µ) = −

c4(µ)+c1(µ)n2(µ)
c2(µ) , where pi j = pi j (µ) for i = 1, 2 and j = 1, 5, are

well-defined and smooth functions for all |µ| small enough.

Proof. We rescale the time by
dt = (1 + n1ρ1 + n2ρ2) dτ

where ni = ni (α) , i = 1, 2, are smooth functions which will be determined later. Then, system (2.6) is
orbitally equivalent to the system dρ1

dτ = 2ρ1

[
µ1 + p11ρ1 + p12ρ2 + p13ρ

2
1 + p14ρ1ρ2 + p15ρ

2
2

]
+
√
ρ1O

(
|ρ|3

)
dρ2
dτ = 2ρ2

[
µ2 + p21ρ1 + p22ρ2 + p23ρ

2
1 + p24ρ1ρ2 + p25ρ

2
2

]
+
√
ρ2O

(
|ρ|3

) ,

where p11 = a1 + µ1n1, p12 = a2 + µ1n2, p13 = a3 + a1n1, p14 = a4 + a1n2 + a2n1, and p15 = a5 + a2n2,
respectively p21 = c1 +µ2n1, p22 = c2 +µ2n2, p23 = c3 +c1n1, p24 = c4 +c1n2 +c2n1 and p25 = c5 +c2n2.

Since a2 (0) , 0 and c2 (0) , 0, one can nullify the coefficients p15 and p24 by taking n2 (α) = −
a5(α)
a2(α)

and n1 (α) = −
c4(α)+c1(α)n2(α)

c2(α) . Notice that n1 (α) and n2 (α) are well-defined for all |α| small enough, and
so are pi j (α) .

Assume the map α 7→ (µ1 (α) , µ2 (α)) is regular at α = 0, that is,

∂µ1

∂α1

∂µ2

∂α2
−
∂µ1

∂α2

∂µ2

∂α1

∣∣∣∣∣
α=0
, 0.

From the Inverse Function Theorem this condition ensures that for any µ1, µ2 ∈ R with |µ| =√
µ2

1 + µ2
2 small enough, there exist α1 = α1 (µ) and α2 = α2 (µ) which are obtained locally from

the system

µ1,2 =
∂µ1,2

∂α1
(0, 0)α1 +

∂µ1,2

∂α2
(0, 0)α2.

This implies that, one can consider further µ = (µ1, µ2) as the parameter of the system. Thus,
ω1,2 = ω1,2 (µ) , ai = ai (µ) , bi = bi (µ) , ci = ci (µ) , di = di (µ) , pi j = pi j (µ) , i = 1, 2, j = 1, 5. Since
µ1,2 (0) = 0, the properties ω1 (0) = ω10 > 0 and ω2 (0) = ω20 > 0 are preserved. The theorem is
proved. �
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Remark that the coefficients pi j in system (2.13) are not the same as the ones in system (2.10), but
the values p11 (0) , p12 (0) , p21 (0) , p22 (0) are the same as in system (2.8).

The truncated 4D system of system (2.13) reads
dρ1
dτ = 2ρ1

[
µ1 + p11ρ1 + p12ρ2 + p13ρ

2
1 + p14ρ1ρ2

]
,

dρ2
dτ = 2ρ2

[
µ2 + p21ρ1 + p22ρ2 + p23ρ

2
1 + p25ρ

2
2

]
,

dϕ1
dτ = ω10,

dϕ2
dτ = ω20,

(2.14)

where p12(0)p22(0) , 0, because p12(0) = a2(0) , 0, from (HH.2) and p22(0) = c2 (0) , 0, from
(HH.4).

We aim to tackle in this work the normal form system (2.13), truncated up to third order terms,
when a2 (0) c2 (0) > 0.

Assume p12 (0) = a2 (0) < 0 and p22 (0) = c2 (0) < 0. Make the changes

ξ1 = −p12 (µ) ρ1, ξ2 = −p22 (µ) ρ2, t = 2τ. (2.15)

The transformation (ρ1, ρ2) 7−→ (ξ1, ξ2) is well defined for all |µ| small enough, because p12 (0) , 0
and p22 (0) , 0 are satisfied from (HH.2) and (HH.4), and it is nonsingular as a2 (0) c2 (0) , 0. Since
dξ1
dt = −p12 (µ) dρ1

dτ
dτ
dt and dξ2

dt = −p22 (µ) dρ2
dτ

dτ
dt , the form system (2.13) in its lowest terms in (ξ1, ξ2),

known as the truncated form, becomes ξ̇1 = ξ1

[
µ1 − θ (µ) ξ1 − γ (µ) ξ2 + M (µ) ξ1ξ2 + N (µ) ξ2

1

]
ξ̇2 = ξ2

[
µ2 − δ (µ) ξ1 − ξ2 + S (µ) ξ2

1 + P (µ) ξ2
2

] , (2.16)

where θ (µ) =
p11
p12

(µ) , γ (µ) =
p12
p22

(µ) , M (µ) =
p14

p12 p22
(µ) , N (µ) =

p13

p2
12

(µ) , δ (µ) =
p21
p12

(µ) , S (µ) =
p23

p2
12

(µ)

and P (µ) =
p25

p2
22

(µ). However, in what follows, some of these expressions are needed only at µ = 0.
The dot over quantities stands now for the derivatives with respect to the new time. Denote also by

f the smooth vector field associated with system (2.16).

Remark 1. Due to the transformation system (2.15), the stability of an equilibrium point in the 2D
system (2.16) is preserved in the 4D system (2.14); see also [1].

Remark 2. 1) Notice that θ(0) =
a1(0)
a2(0) , γ(0) =

a2(0)
c2(0) and δ(0) =

c1(0)
a2(0) are well-defined from (HH.2),

(HH.4). Moreover, γ(0) > 0 while θ(0)δ(0) can be 0.
2) When p12 (0) > 0 and p22 (0) > 0, the change ξ1 = p12 (µ) ρ1, ξ2 = p22 (µ) ρ2, t = −2τ lead to ξ̇1 = ξ1

[
−µ1 − θ (µ) ξ1 − γ (µ) ξ2 − M (µ) ξ1ξ2 − N (µ) ξ2

1

]
ξ̇2 = ξ2

[
−µ2 − δ (µ) ξ1 − ξ2 − S (µ) ξ2

1 − P (µ) ξ2
2

] , (2.17)

that can be reduced to system (2.16).

As ρi = r2
i ≥ 0, i = 1, 2, taking into account system (2.15) and the fact that p12 (0) < 0, p22 (0) < 0,

it follows that the system (2.16) must be studied only on the set (the first quadrant)

D =
{
(ξ1, ξ2) ∈ R2, ξ1 ≥ 0, ξ2 ≥ 0

}
.

Thus, only the equilibria of system (2.16) situated in D will be analyzed.
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Remark 3. The lines ξ1 = 0 and ξ2 = 0 are invariant curves for system (2.16), thus the set D is invariant
with respect to the dynamical system associated to system (2.16).

In the following we analyze the truncated amplitude system (2.16) in two cases when the Hopf-Hopf
bifurcation degenerates, namely (i) δ (0) = 0, θ(0) , 0; (ii) θ (0) = 0, δ(0) , 0.

Remind that system (2.16) which is analyzed in the next two sections was obtained in the hypotheses
(HH.0), (HH.2), (HH.4), (HH.5), and, as p12(0) < 0, p22(0) < 0, we have γ(0) > 0.

In addition, our study is done for µ in a neighborhood of the origin Vε given by |µ| < ε, for ε > 0
sufficiently small.

As all the coefficients are smooth functions depending on the parameter µ, for µ ∈ Vε we can write

θ(µ) = θ(0) +
∂θ

∂µ1
(0) µ1 +

∂θ

∂µ2
(0) µ2 + O(|µ|2),

and similar for the other coefficients. In all the expressions below only the significant lower order
terms in µ1, µ2 will be considered, as necessary. Also, in order to save symbols, if, for instance we have
N(0) , 0 we shall denote N = N(0), thus, close to µ = 0, we have N(µ) = N + O(|µ|), and so on for the
other coefficients.

3. Analysis of system (2.16) when δ(0) = 0 and θ(0) , 0

Assume that δ(0) = 0, θ(0) , 0. This means that condition (HH.3) is not satisfied, but (HH.1) is
valid.

Then δ(µ) = δ1µ1 + δ2µ2 + O(|µ|2), with δ1 = ∂δ
∂µ1

(0) , δ2 = ∂δ
∂µ2

(0) . One of the equilibria of system
(2.16) is E0 = (0, 0) . Two more equilibria

E1 =

(
1
θ
µ1 + O

(
µ2

1

)
, 0

)
and E2 =

(
0, µ2 + O

(
µ2

2

))
where θ = θ(0), bifurcate from E0 as soon as µ1 , 0, respectively, µ2 , 0, i.e. at the bifurcation lines

Y− = {(µ1, µ2), µ1 = 0, µ2 < 0}, Y+ = {(µ1, µ2), µ1 = 0, µ2 > 0},

and
X− = {(µ1, µ2), µ2 = 0, µ1 < 0}, X+ = {(µ1, µ2), µ2 = 0, µ1 > 0},

respectively. Their stability is described by Lemma 3.1.

Lemma 3.1. (1) The eigenvalues of E0 are µ1 and µ2.

(2) The eigenvalues of E1 are −µ1 + O
(
µ2

1

)
and

(
µ2 + S−δ1θ

θ2 µ2
1

)
(1 + O (µ1)), thus, whenever E1 lies in D,

E1 is either (i) a saddle as µ1

(
µ2 + S−δ1θ

θ2 µ2
1

)
> 0, (ii) an unstable node as µ2 + S−δ1θ

θ2 µ2
1 > 0, µ1 < 0, (iii)

a stable node as µ2 + S−δ1θ
θ2 µ2

1 < 0, µ1 > 0.
(3) The eigenvalues of E2 are µ1 − γµ2 + O(µ2

2) and −µ2 + O(µ2
2). Therefore, for |µ| sufficiently small,

E2 is (i) a saddle as µ1 − γµ2 > 0, (ii) a stable node as µ1 − γµ2 < 0, whenever it exists in D.

On the other hand, system (2.16) has the nontrivial equilibrium E3 =
(
ξ∗1, ξ

∗
2

)
, with{

ξ∗1 = 1
θ
µ1 (1 + O(|µ|) − γ

θ
µ2 (1 + O(|µ|)

ξ∗2 = µ2 (1 + O(|µ|) + S−δ1θ
θ2 µ2

1 (1 + O (|µ|))
.
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The associated eigenvalues satisfy

λ1λ2 = ξ∗1ξ
∗
2
[
θ + O (|µ|)

]
, (3.1)

λ1 + λ2 = −µ1 + (γ − 1)µ2 + O
(
|µ|2

)
.

When θ > 0, E3 lies in D for parameters in the region

R1 =

{
(µ1, µ2) ∈ Vε, µ1 − γµ2 > 0, µ2 +

S − δ1θ

θ2 µ2
1 > 0

}
.

It is easy to see that for µ ∈ R1, with |µ| sufficiently small, we have λ1λ2 > 0 and the curve λ1 + λ2 = 0
does not cross region R1, thus λ1 + λ2 < 0, and E3 is stable.

When θ < 0, E3 lies in D for parameters in region

R2 =

{
(µ1, µ2) ∈ Vε, µ1 − γµ2 < 0, µ2 +

S − δ1θ

θ2 µ2
1 > 0

}
.

By system (3.1), it follows λ1λ2 < 0, for sufficiently small |µ| . Thus, E3 is a saddle. The following
result is proved.

Lemma 3.2. If θ < 0, then E3 is a saddle, while if θ > 0, the equilibrium E3 is a hyperbolic attractor,
for all sufficiently small |µ| , for which E3 lies in D.

Consequently there can be no Hopf bifurcation at E3.

As the term δ2 does not influence the topological type of equilibria, we may restrict our attention
only to the (θ, δ1)− plane.

Regions R1 and R2 are delimitated by the curves

T1 =
{
(µ1, µ2) ∈ Vε, µ1 = γµ2 + O

(
µ2

2

)
, µ2 > 0

}
, (3.2)

T2 =

{
(µ1, µ2) ∈ Vε, µ2 = −

S − δ1θ

θ2 µ2
1 + O

(
µ3

1

)}
. (3.3)

We notice that E3 collides with E2 on T1, and it collides with E1 on T2.

Proposition 3.3. System (2.16) experiences the following transcritical bifurcations:
(i) at the point E0 as the parameter µ1 varies through the bifurcation value µ1 = 0, for a fixed µ2 , 0
(when E0 = E1);
(ii) at the point E0 as the parameter µ2 varies through the bifurcation value µ2 = 0, for a fixed µ1 , 0
(when E0 = E2);
(iii) at the point E1 as the parameter (µ1, µ2) crosses the curve T2 (when E1 = E3);
(iv) at the point E2 as the parameter (µ1, µ2) crosses the curve T1 (when E2 = E3).

Proof. We apply Sotomayor Theorem ( [13, 14], to prove these statements.
(i) The Jacobian matrix D f (E0, µ0) at µ0 = (0, µ2) , µ2 , 0, has a zero eigenvalue with the right

eigenvector v = (1, 0)T and the left eigenvector w = (1, 0)T . It follows

wT fµ1 (E0, µ0) = 0, wT D fµ1(E0, µ0) = 1 , 0, wT [D2 f (E0, µ0)(v, v)] = −2θ , 0,

thus the transcritical bifurcation conditions are satisfied.
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Figure 1. Four regions in the (θ, δ1) plane, γ > 0, and S > 0.

(ii) The Jacobian matrix D f (E0, µ0) at µ0 = (µ1, 0) , µ1 , 0, has a zero eigenvalue with the right
eigenvector v = (0, 1)T and the left eigenvector w = (0, 1)T . It follows

wT fµ2 (E0, µ0) = 0, wT D fµ2(E0, µ0) = 1 , 0, wT [D2 f (E0, µ0)(v, v)] = −2 , 0,

ensuring the existence of a transcritical bifurcation.
(iii) Consider µ0 ∈ T2, µ1 , 0, and µ2 as a bifurcation parameter. We find that v = (−γ, θ)T and w =

(0, 1)T are right and left eigenvectors of the Jacobian matrix D f (E1, µ0), respectively, corresponding to
the zero eigenvalue, and

wT fµ2 (E1, µ0) = 0, wT D fµ2(E1, µ0) = θ , 0,
wT [D2 f (E1, µ0)(v, v)] = 2θ(δγ − θ) − 4S γµ1 , 0,

consequently, for sufficiently small |µ| , the conditions are satisfied.
(iv) Finally, consider µ0 ∈ T1, µ2 , 0, and µ1 as a bifurcation parameter, thus µ0 = (γµ2, µ2). We

find the eigenvectors v = (1,−δ)T and w = (1, 0)T , and

wT fµ1 (E2, µ0) = 0, wT D fµ1(E2, µ0) = 2(δγ − θ) + 2Mµ2 , 0,
wT [D2 f (E1, µ0)(v, v)] = 1 , 0,

for sufficiently small |µ| . �

For a fixed γ > 0, and S > 0, the curves S − δ1θ = 0, θ = 0, determine four regions in the (θ, δ1)−
plane, illustrated in Figure 1, corresponding to the following cases:

Iδ: θ > 0, S − δ1θ < 0;
IIδ: θ > 0, S − δ1θ > 0;
IIIδ: θ < 0, S − δ1θ > 0;
IVδ: θ < 0, S − δ1θ < 0.
For each region Iδ-IVδ, in the parametric portraits in the (µ1, µ2)- plane, the parameter strata are

determined by the origin and the bifurcation curves X−, X+, Y−, Y+, T1, and T2. Consequently, the
following result is obtained.
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Figure 2. Parametric portraits in the case δ = 0.
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Figure 3. Generic phase portraits in the case δ = 0. Legend: a black disc for an attractor, a
black square for a repeller, a diamond for a saddle equilibrium.

Theorem 3.4. For all γ > 0, S > 0, in the (θ, δ1)− plane, the bifurcation curves consist of

O ∪ T1 ∪ T2 ∪ X− ∪ X+ ∪ Y− ∪ Y+.

The four parameter portraits for (θ, δ1) in regions Iδ, IIδ, IIIδ, IVδ are shown in Figure 2. The 14 generic
phase portraits are given in Figure 3.

In Figure 3 we used the following markers to emphasize the topological type of the equilibria: a
black disc for an attractor, a black square for a repeller and a diamond for a saddle point. All of these
phase portraits are also found in the nondegenerate double-Hopf bifurcation case [1, 2]. As S ≤ 0, a
similar study can be done.

Remark 4. As proved in Proposition 3.3, each of the curves X−, X+, Y−, Y+, T1, T2 consists of values
of transcritical bifurcation (for which two of the four equilibria collide and change topological type),
separating two parameter strata, one where both equilibria involved in the transcritical bifurcation lie
on D and one where only one of them lies on D. Although for parameters on a bifurcation curve the
corresponding equilibrium is a saddle-node, the generic phase portrait is equivalent to the one of the
stratum where only one of the two equilibria is in D.

4. Analysis of system (2.16) when θ(0) = 0 and δ(0) , 0

Assume θ(0) = 0, δ(0) , 0. In this case the condition (HH.1) is not satisfied, and (HH.3) is valid.
Then θ(µ) = θ1µ1 + θ2µ2 + O(|µ|2).
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In this case, two trivial equilibria of system (2.16) are E0 = (0, 0) , with the eigenvalues µ1 and µ2,

and E2 =
(
0, µ2 + O

(
µ2

2

))
with eigenvalues µ1 − γµ2 + O(|µ|2) and −µ2 + Pµ2

2(1 + O(|µ|)). Remark that
these equilibria keep the same form as in the case treated in the previous section, and their stability
remains as described by Lemma 3.1.

As ξ2 = 0, the equation giving the equilibrium points reads:

µ1 − θ(µ)ξ1 + N(µ)ξ2
1 = 0. (4.1)

Assume that N(0) , 0, thus N (µ) , 0 for sufficiently small |µ| . If ∆(µ) = θ2(µ) − 4N(µ)µ1 ≥ 0, Eq
(4.1) has two real solutions

ξ11 (µ) =
θ (µ) −

√
∆ (µ)

2N (µ)
, ξ12 (µ) =

θ (µ) +
√

∆ (µ)
2N (µ)

, ξ11 ≤ ξ12.

Thus, as µ1N > 0, two equilibrium points, E11 = (ξ11, 0) and E12 = (ξ12, 0) , are lying on the positive
ξ1−axis, provided that (µ1, µ2) ∈ R3, where R3 is a region in the parametric plane given by

R3 = {(µ1, µ2) ∈ Vε |∆ (µ) > 0, µ1N > 0, θN > 0 } . (4.2)

Obviously, as ∆ (µ) = 0, we have E11 = E12 = θ
2N .

As µ1N < 0, we have ξ11 < 0 < ξ12, thus, only the equilibrium E12 lies in D for parameters in region

R4 = {(µ1, µ2) ∈ Vε |∆(µ) > 0, µ1N < 0 } . (4.3)

As µ1 = 0, we have E11 = E0 if θ2µ2N > 0, while E12 = E0 if θ2µ2N < 0. Using the Implicit
Functions Theorem, we find that, for sufficiently small |µ| , ∆ (µ) = 0 for parameters on the curve,
denoted also by ∆, given as

∆ =

{
(µ1, µ2) ∈ Vε, µ1 =

θ2
2

4N
µ2

2 + O(µ3
2), θ2µ2N > 0

}
.

The eigenvalues of E11 = (ξ11, 0) satisfy λE11
1 = −ξ11

√
∆ (µ) ≤ 0, and

λE11
2 = µ2 −

S
N
µ1 + ξ11

(
θS
N
− δ

)
.

For E12 = (ξ12, 0) we have λE12
1 = ξ12

√
∆ (µ) ≥ 0 and

λE12
2 = µ2 −

S
N
µ1 + ξ12

(
θS
N
− δ

)
.

An important relation for studying the behavior of E11 and E12 is

λE11
2 λE12

2 =
1
N
δ2µ1(1 + O(|µ|)) +

1
N

(N − θ2δ)µ2
2(1 + O(|µ|). (4.4)

Note that as λE11
2 λE12

2 = 0, we get

λE11
2 + λE12

2 =
1
N

(2N − θ2δ)µ2 + O(µ2
2).
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Lemma 4.1. As the parameter µ crosses the curve ∆, a saddle-node bifurcation takes place. In addi-
tion, if N > 0, for parameter sufficiently small, close to the curve ∆, we have:
(i) E11 is an attractor and E12 is a saddle as µ2 (2N − δθ2) < 0;
(ii) E11 is a saddle and E12 is a repeller as µ2 (2N − δθ2) > 0.

Proof. Consider µ0 ∈ ∆. Then ξ11 = ξ12 = θ2
2Nµ2 + O(µ2

2), and the eigenvalues of equilibrium E11 are
λ1 = 0, λ2 = 2N−δθ2

2N µ2 + O(µ2
2). The Jacobian matrix D f (E11, µ0), has for the zero eigenvalue the right

eigenvector v = (1, 0)T and the left eigenvector w = (2N − δθ2, γθ2)T . It follows

wT fµ1 (E0, µ0) =
θ2

2N
µ2 , 0, wT [D2 f (E0, µ0)(v, v)] = θ2µ2 + O(µ2

2) , 0,

for sufficiently small |µ| . Thus, according to Sotomayor Theorem, a saddle-node bifurcation takes
place.

For parameters close to the bifurcation curve we have sign(λE11
1 ) = −sign(N), sign(λE12

1 ) = sign(N),
and sign(λE11

2 ) = sign(λE12
2 ) = sign( 2N−δθ2

2N µ2).Consequently, if N > 0, the equilibrium E11 is an attractor
and E12 is a saddle as µ2 (2N − δθ2) < 0, while as µ2 (2N − δθ2) > 0, the equilibrium E11 is a saddle
and E12 is a repeller. �

Denote by
∆+ = {(µ1, µ2) ∈ ∆, µ2 (2N − δθ2) > 0}

and
∆− = {(µ1, µ2) ∈ ∆, µ2 (2N − δθ2) < 0} .

As a consequence of Lemma 4.1, for a parameter µ in ∆+, sufficiently small, the equilibrium E11(= E12)
is a saddle-node, with one attractive direction and three repelling directions, while for a parameter µ in
∆−, the equilibrium E11 is a saddle-node, with one repelling direction and three attractive ones.

Consider the curves

Y ′− = {(µ1, µ2) ∈ Vε, µ1 = 0, θ2Nµ2 < 0} ,
Y ′+ = {(µ1, µ2) ∈ Vε, µ1 = 0, θ2Nµ2 > 0} .

Proposition 4.2. The following statements hold:
(i) for µ ∈ Y ′+, equilibria E0 and E11 coincide; when parameters cross this curve, a transcritical
bifurcation takes place, and E0 and E11 interchange the topological type;
(ii) for µ ∈ Y ′−, equilibria E0 and E12 coincide and are saddle-nodes. A transcritical bifurcation takes
place when parameters are crossing the curve Y ′−, and E0 and E12 interchange the topological type.
(iii) for µ ∈ {(µ1, µ2) , µ2 = 0, µ1 , 0} , equilibria E0 and E2 coincide and a transcritical bifurcation
takes place when parameters are crossing this curve.

Proof. As in Proposition 3.3, we apply Sotomayor Theorem ( [13]) to prove these statements.
(i) Consider µ0 ∈ Y ′+. As µ1 = 0 and θ2µ2N > 0, it follows that E11 = E0. The Jacobian matrix

D f (E0, µ0) at µ0 = (0, µ2) , µ2 , 0, has a zero eigenvalue with the right eigenvector v = (1, 0)T and the
left eigenvector w = (1, 0)T . It follows

wT fµ1 (E0, µ0) = 0, wT D fµ1(E0, µ0) = 1 , 0,
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wT [D2 f (E0, µ0)(v, v)] = −2θ2µ2 , 0,

for sufficiently small |µ| , thus the transcritical bifurcation conditions are satisfied.
(ii) Consider µ0 ∈ Y ′−. As µ1 = 0 and θ2µ2N < 0, it follows that ξ12 = 0, thus E12 = E0. We obtain

the same values for the quantities involved in the transcritical bifurcation conditions as in case (i) .
(iii) The Jacobian matrix D f (E0, µ0) at µ0 = (µ1, 0) , µ1 , 0, has a zero eigenvalue with the right

eigenvector v = (0, 1)T and the left eigenvector w = (0, 1)T . It follows

wT fµ2 (E0, µ0) = 0, wT D fµ2(E0, µ0) = 1 , 0, wT [D2 f (E0, µ0)(v, v)] = −2 , 0,

ensuring the existence of a transcritical bifurcation. �

For E3 =
(
ξ∗1, ξ

∗
2

)
, solution of system{

µ1 − (θ1µ1 + θ2µ2)ξ1 − γ(µ)ξ2 + M(µ)ξ1ξ2 + N(µ)ξ2
1 = 0,

µ2 − δ(µ)ξ1 − ξ2 + S (µ)ξ2
1 + P(µ)ξ2

2 = 0,

we obtain

ξ∗1 = −
1
γδ

(µ1 − γµ2) + O(|µ|2),

ξ∗2 =
1
γ
µ1(1 + O(|µ|)) +

N − θ2δ

δ2γ
µ2

2 (1 + O (|µ|)) .

Thus, E3 is a nontrivial equilibrium for system (2.16) provided

µ ∈ R5 =
{
(µ1, µ2) ∈ Vε, δ(µ1 − γµ2) < 0, δ2µ1 + (N − θ2δ) µ2

2 > 0
}
.

Denote by

T3 =

{
(µ1, µ2) ∈ Vε, µ1 =

θ2δ − N
δ2 µ2

2 + O(µ3
2)
}

the parameter curve for which ξ∗2 = 0. Thus R5 is delimited by T1 and T3.
The eigenvalues of E3 satisfy

λ1λ2 = ξ∗1ξ
∗
2 (−γδ + O (|µ|)) and λ1 + λ2 =

1
γδ2 p (µ) , (4.5)

where p(µ) = −δ2µ1 (1 + O (|µ|)) + k1µ
2
2 (1 + O (|µ|)) and k1 = (θ2δ − N) + γ (2N − θ2δ) .

Applying Implicit Functions Theorem to the implicit equation p (µ1, µ2) = 0, the following lemma
is obtained.

Lemma 4.3. If (θ2δ−N) + γ(2N − θ2δ) , 0, there exists a neighborhood U of 0 in the parameter plane
such that p (µ) = 0 in U iff µ ∈ U ∩ H, where

H =

{
(µ1, µ2) , µ1 =

(θ2δ − N) + γ(2N − θ2δ)
δ2 µ2

2 + O
(
µ3

2

)}
(4.6)

for |µ| sufficiently small.
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As a consequence we obtain the following result concerning the topological type of the nontrivial
equilibrium E3.

Lemma 4.4. Assume N > 0. For sufficiently small |µ| , the following statements hold:
(1) If δ > 0, then E3 is a saddle.
(2) If δ < 0, θ2δ − 2N ≥ 0, then E3 is a hyperbolic attractor.
(3) If δ < 0, θ2δ − 2N < 0, then the equilibrium E3 is a hyperbolic repeller as δ2µ1 < [γ(2N − θ2δ) +

(θ2δ − N)]µ2
2, and a hyperbolic attractor for the other parameters in R5\H,

A similar result can be obtained if N < 0. We explore next the local bifurcations at the equilibrium
E3.

Proposition 4.5. The following statements hold:
(i) For µ0 ∈ T1, equilibria E2 and E3 coincide. When parameter µ crosses T1 a transcritical bifurcation
takes place at E3.

(ii) For µ0 ∈ T3, E3 coincides either with E11 if 2N−θ2δ
2Nδ µ2 < 0, or with E12 if 2N−θ2δ

2Nδ µ2 > 0.
(iii) Assume 2N − δθ2 , 0, and ∂δ

∂µ1
, 0. Then, when parameter µ crosses T3, a transcritical bifurcation

takes place at E3.

Proof. (i) Consider µ0 ∈ T1, µ0 = (γµ2 + O(µ2
2), µ2), with µ2 > 0. Applying Sotomayor theorem, we

obtain the right eigenvector v = (1,−δ)T and the left eigenvector w = (1, 0)T , and

wT fµ1 (E3, µ0) = 0, wT D fµ1(E3, µ0) = 2γδ + O(µ2) , 0,
wT [D2 f (E0, µ0)(v, v)] = 1 , 0,

for |µ0| sufficiently small. Thus the transcritical bifurcation conditions are satisfied.
(ii) Consider µ0 ∈ T3, sufficiently small. Then µ0 =

(
θ2δ−N
δ2 µ2

2 + O(µ3
2), µ2

)
, µ2 , 0. We obtain

ξ∗1 = 1
δ
µ2 + O(µ2

2) , 0, ξ∗2 = 0, and

ξ∗1 −
θ1µ1 + θ2µ2

2N
=

2N − θ2δ

2Nδ
µ2 + O(µ2

2),

consequently, E3 = E12 if 2N−θ2δ
2Nδ µ2 > 0, and E3 = E11 if 2N−θ2δ

2Nδ µ2 < 0.
(iii) Consider µ0 ∈ T3, sufficiently small. In order to prove the existence of a transcritical bifurcation,

we choose µ1 as the bifurcation parameter. Write δ as

δ(µ) = δ(0) + δ1µ1 + δ2µ2 + O(|µ|2).

The Jacobian matrix D f (E3, µ0) has a zero eigenvalue with the right eigenvector

v =
(
γδ − Mµ2 + O(µ2

2), (2N − θ2δ)µ2 + O(µ2
2)
)T

and the left eigenvector w = (0, 1)T . It follows

wT fµ1 (E3, µ0) = 0, wT D fµ1(E3, µ0) =
δ1

δ
(2N − δθ2)µ2

2 (1 + O (µ2)) , 0,

wT [D2 f (E3, µ0)(v, v)] = 2γδ2(2N − δθ2)µ2 (1 + O (µ2)) , 0,

for sufficiently small |µ| , ensuring the existence of a transcritical bifurcation. �
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From Lemma 4.4 it follows that system (2.16) may exhibit a Hopf bifurcation at E3.

Remark 5. The above analysis shows that the term θ1 does not influence the topological type of the
equilibria, and only the coefficients γ, δ, θ2 and N are significant, for sufficiently small |µ| .

For a fixed γ > 0, and N > 0, the curves δ = 0, θ2 = 0, θ2δ − N = 0, θ2δ − 2N = 0 determine eight
regions in the (θ2, δ)− plane (see Figure 4), corresponding to the following cases:

Iθ: θ2 > 0, δ > 0, θ2δ − 2N > 0;

IIθ: θ2 > 0, δ > 0, θ2δ − N > 0, θ2δ − 2N < 0;

IIIθ: θ2 > 0, δ > 0, θ2δ − N < 0;

IVθ: θ2 < 0, δ > 0, θ2δ − N < 0;

Vθ: θ2 < 0, δ < 0, θ2δ − 2N > 0;

VIθ: θ2 < 0, δ < 0, θ2δ − N > 0, θ2δ − 2N < 0;

VIIθ: θ2 < 0, δ < 0, θ2δ − N < 0;

VIIIθ: θ2 > 0, δ < 0, θ2δ − N < 0.

�
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 III

IV

V

VI
VII

VIII
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Figure 4. Eight regions in the (θ2, δ) plane, γ > 0, and N > 0.
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Figure 5. Parametric portraits in the case θ = 0, regions corresponding to δ > 0.
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Theorem 4.6. For all γ > 0,N > 0, respectively, (θ2, δ) in regions Iθ, IIθ, IIIθ, IVθ,Vθ in the (θ2, δ)−
plane, the bifurcation curves consist of

O ∪ T1 ∪ T3 ∪ ∆± ∪ X− ∪ X+ ∪ Y ′− ∪ Y ′+.

The generic parameter portraits are shown in Figures 5 and 7, and the corresponding generic phase
portraits in Figures 6 and 8.

A Hopf bifurcation may occur when (µ1, µ2) crosses the curve H and (θ2, δ) is situated in regions
VIθ, VIIθ, VIIIθ. In the case when the first Lyapunov is non-zero, a limit cycle surrounding the equi-
librium E3 appear. This cycle is stable if the Hopf bifurcation is supercritical (the first Lyapunov
coefficient is negative) or is unstable if the Hopf bifurcation is subcritical (i.e., the first Lyapunov co-
efficient is positive). As the first Lyapunov coefficient is zero, the equilibrium E3 may be a nonlinear
centre.

Remark that, as the parameters move away from H, towards the region containing the limit cycle
generated by the Hopf bifurcation, the cycle may disappear, either by transforming into a homoclinic
loop or by becoming too large, and no longer inside the visible neighborhood of the origin. In such
cases there should exist a bifurcation curve L originating at µ = 0, along which those situations may
occur. The position of the curve L depends on the type of the Hopf bifurcation. These situations also
appear in the “difficult case” in the nondegenerate double-Hopf bifurcation. The existence and location
of the curve L can be proved following the lines in [1, 2].
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Theorem 4.7. For all γ > 0,N > 0, and (θ2, δ) in regions VIθ, VIIθ, VIIIθ in the (θ2, δ)− plane, the
bifurcation curves consist of

O ∪ T1 ∪ T3 ∪ ∆± ∪ X− ∪ X+ ∪ Y ′− ∪ Y ′+ ∪ H ∪ L.

The generic parameter portraits are shown in Figure 7, in the hypothesis that the Lyapunov coeffi-
cient is negative. The corresponding generic phase portraits are given in Figure 8. Many of the phase
portraits in Figures 6 and 8 cannot be found in the nondegenerate double-Hopf bifurcation.

The effect of adding higher-order terms to the truncated normal form system (2.16) and the corre-
spondence between the properties of the 2D amplitude system (2.16) and the 4D system (2.1), have
been described, for example, in [1, 2, 15–18]. However, the study of nonsymmetric general perturba-
tions of the truncated normal forms is far from complete, as pointed out in [1].

Thus, we remark that the study of adding higher order terms to the truncated normal form is a
complex open problem which is outside the aim of this article.

5. Conclusions

The classical normal form of the Hopf-Hopf bifurcation, in differential systems of dimension four
and having minimum two independent parameters, is based on six generic conditions (2.8).

In this work we have studied two degenerate Hopf-Hopf bifurcations, namely:
1) the case when the generic condition (HH.3) in system (2.8) is not fulfilled, treated in Section 3;
2) the case when the generic condition (HH.1) in system (2.8) is not fulfilled, treated in Section 4.
In our study we have obtained new bifurcation diagrams and new phase portraits which were not

previously reported in generic studies on double-Hopf bifurcation. Such an example is a saddle-node
bifurcation in the amplitude system which corresponds to a fold bifurcation of cycles in the four di-
mensional system and which is present only in the degenerate case θ = 0.

The results describing the dynamics, contribute to a better understanding of the behavior of a system
presenting a Hopf-Hopf singularity.

Finally, we summarize in the Table 1 the correspondence of equilibria, cycles and bifurcations
between the 2D amplitude system (2.16) and the 4D normal form system (2.14):

Table 1. The correspondence of equilibria, cycles and bifurcations.

2D 4D
E0 origin
E3 2D torus

cycle 3D torus
X+, X−,Y+,Y−,Y ′+,Y

′
− Hopf bifurcation

T1,T2,T3 Neimark-Sacker bifurcation of cycles
∆+,∆− fold bifurcation of cycles

Hopf bifurcation H branching of 3D torus from a 2D torus
cycle blow up L blow-up of a 3D torus
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