Electronic
Research Archive

Research article

The Hom-Long dimodule category and nonlinear equations

Shengxiang Wang ${ }^{1}$, Xiaohui Zhang ${ }^{2}$ and Shuangjian Guo ${ }^{3, *}$
${ }^{1}$ School of Mathematics and Finance, Chuzhou University, Chuzhou, 239000, China
${ }^{2}$ School of Mathematical Sciences, Qufu Normal University, Qufu, 273165, China
${ }^{3}$ School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang, 550025, China
* Correspondence: Email: shuangjianguo@126.com.

Abstract

In this paper, we construct a kind of new braided monoidal category over two Hom-Hopf algerbas (H, α) and (B, β) and associate it with two nonlinear equations. We first introduce the notion of an (H, B)-Hom-Long dimodule and show that the Hom-Long dimodule category ${ }_{H}^{B} \mathbb{L}$ is an autonomous category. Second, we prove that the category ${ }_{H}^{B} \mathbb{L}$ is a braided monoidal category if (H, α) is quasitriangular and (B, β) is coquasitriangular and get a solution of the quantum Yang-Baxter equation. Also, we show that the category ${ }_{H}^{B} \mathbb{L}$ can be viewed as a subcategory of the Hom-Yetter-Drinfeld category $\underset{H \otimes B}{H \otimes B H Y D}$. Finally, we obtain a solution of the Hom-Long equation from the Hom-Long dimodules.

Keywords: Hom-Long dimodule; Hom-Yetter-Drinfeld category; Yang-Baxter equation; Hom-Long equation

Introduction

The study of Hom-algebras can be traced back to Hartwig, Larsson and Silvestrov's work in [1], where the notion of Hom-Lie algebra in the context of q-deformation theory of Witt and Virasoro algebras [2] was introduced, which plays an important role in physics, mainly in conformal field theory. Hom-algebras and Hom-coalgebras were introduced by Makhlouf and Silvestrov [3] as generalizations of ordinary algebras and coalgebras in the following sense: the associativity of the multiplication is replaced by the Hom-associativity and similar for Hom-coassociativity. They also defined the structures of Hom-bialgebras and Hom-Hopf algebras, and described some of their properties extending properties of ordinary bialgebras and Hopf algebras in [4,5]. In [6], Caenepeel and Goyvaerts studied Hom-bialgebras and Hom-Hopf algebras from a categorical view point, and called them monoidal Hom-bialgebras and monoidal Hom-Hopf algebras respectively, which are different from the normal

Hom-bialgebras and Hom-Hopf algebras in [4]. Many more properties and structures of Hom-Hopf algebras have been developed, see [7-10] and references cited therein.

Later, Yau [11, 12] proposed the definition of quasitriangular Hom-Hopf algebras and showed that each quasitriangular Hom-Hopf algebra yields a solution of the Hom-Yang-Baxter equation. The Hom-Yang-Baxter equation reduces to the usual Yang-Baxter equation when the twist map is trivial. Several classes of solutions of the Hom-Yang-Baxter equation were constructed from different respects, including those associated to Hom-Lie algebras [11, 13-15], Drinfelds (co)doubles [16-18], and Hom-Yetter-Drinfeld modules [19-26].

It is well-known that classical nonlinear equations in Hopf algebra theory including the quantum Yang-Baxter equation, the Hopf equation, the pentagon equation, and the Long equation. In [27], Militaru proved that each Long dimodule gave rise to a solution for the Long equation. Long dimodules are the building stones of the Brauer-Long group. In the case where H is commutative, cocommutative and faithfully projective, the Yetter-Drinfeld category ${ }_{H}^{H} Y \mathbb{D}$ is precisely the Long dimodule category ${ }_{H}^{H} \mathbb{L}$. Of course, for an arbitrary H, the categories ${ }_{H}^{H} \mathbb{Y D}$ and ${ }_{H}^{H} \mathbb{L}$ are basically different. In [28], Chen et al. introduced the concept of Long dimodules over a monoidal Hom-bialgebra and discussed its relation with Hom-Long equations. Later, we [29] extended Chen's work to generalized Hom-Long dimodules over monoidal Hom-Hopf algebras and obtained a kind solution for the quantum Yang-Baxter equation. For more details about Long dimodules, see [30-33] and references cited therein.

The main purpose of this paper is to construct a new braided monoidal category and present solutions for two kinds of nonlinear equations. Different to our previous work in [29], in the present paper we do all the work over Hom-Hopf algebras, which is more unpredictable than the monoidal version. Since Hom-Hopf algebras and monoidal Hom-Hopf algebras are different concepts, it turns out that our definitions, formulas and results are also different from the ones in [29]. Most important, we associate quantum Yang-Baxter equations and Hom-Long equations to the Hom-Long dimodule categories.

This paper is organized as follows. In Section 1, we recall some basic definitions about Hom(co)modules and (co)quasitriangular Hom-Hopf algebras .

In Section 2, we first introduce the notion of (H, B)-Hom-Long dimodules over Hom-bialgebras (H, α) and (B, β), then we show that the Hom-Long dimodule category ${ }_{H}^{B} \mathbb{L}$ forms an autonomous category (see Theorem 2.6) and prove that the category is equivalent to the category of left $B^{* o p} \otimes H$-Hommodules (see Theorem 2.7).

In Section 3, for a quasitriangular Hom-Hopf algebra (H, R, α) and a coquasitriangular Hom-Hopf algebra ($B,\langle\mid\rangle, \beta$), we prove that the Hom-Long dimodule category ${ }_{H}^{B} \mathbb{L}$ is a subcategory of the Hom-Yetter-Drinfeld category ${ }_{H \otimes B B}^{H \otimes H Y \mathcal{H}}$ (see Theorem 3.5), and show that the braiding yields a solution for the quantum Yang-Baxter equation (see Corollary 3.2).

In Section 4, we prove that the category ${ }_{H} \mathbb{M}$ over a triangular Hom-Hopf algebra (resp., ${ }^{H} \mathbb{M}$ over a cotriangular Hom-Hopf algebra) is a Hom-Long dimodule subcategory of ${ }_{H}^{B} \mathbb{L}$ (see Propositions 4.1 and 4.2). We also show that the Hom-Long dimodule category ${ }_{H}^{B} \mathbb{L}$ is symmetric in case (H, R, α) is triangular and ($B,\langle\mid\rangle, \beta$) is cotriangular (see Theorem 4.3).

In Section 5, we introduce the notion of (H, α)-Hom-Long dimodules and obtain a solution for the Hom-Long equation (see Theorem 5.10).

1. Preliminaries

Throughout this paper, k is a fixed field. Unless otherwise stated, all vector spaces, algebras, modules, maps and unadorned tensor products are over k. For a coalgebra C, the coproduct will be denoted by Δ. We adopt a Sweedler's notation $\Delta(c)=c_{1} \otimes c_{2}$, for any $c \in C$, where the summation is understood. We refer to $[34,35]$ for the Hopf algebra theory and terminology.

We now recall some useful definitions in [3-5, 12, 36, 37].
Definition 1.1. A Hom-algebra is a quadruple $\left(A, \mu, 1_{A}, \alpha\right)(\operatorname{abbr} .(A, \alpha))$, where A is a k-linear space, $\mu: A \otimes A \longrightarrow A$ is a k-linear map, $1_{A} \in A$ and α is an endmorphism of A, such that

$$
\begin{array}{ll}
\text { (HA1) } & \alpha\left(a a^{\prime}\right)=\alpha(a) \alpha\left(a^{\prime}\right) ; \quad \alpha\left(1_{A}\right)=1_{A}, \\
(H A 2) & \alpha(a)\left(a^{\prime} a^{\prime \prime}\right)=\left(a a^{\prime}\right) \alpha\left(a^{\prime \prime}\right) ; a 1_{A}=1_{A} a=\alpha(a)
\end{array}
$$

are satisfied for $a, a^{\prime}, a^{\prime \prime} \in A$. Here we use the notation $\mu\left(a \otimes a^{\prime}\right)=a a^{\prime}$.
Definition 1.2. Let (A, α) be a Hom-algebra. A left (A, α)-Hom-module is a triple (M, \triangleright, v), where M is a linear space, $\triangleright: A \otimes M \longrightarrow M$ is a linear map, and v is an endmorphism of M, such that

$$
\begin{array}{ll}
(H M 1) & v(a \triangleright m)=\alpha(a) \triangleright v(m), \\
(H M 2) & \alpha(a) \triangleright\left(a^{\prime} \triangleright m\right)=\left(a a^{\prime}\right) \triangleright v(m) ; \quad 1_{A} \triangleright m=v(m)
\end{array}
$$

are satisfied for $a, a^{\prime} \in A$ and $m \in M$.
Let $\left(M, \triangleright_{M}, v_{M}\right)$ and $\left(N, \triangleright_{N}, v_{N}\right)$ be two left (A, α)-Hom-modules. Then a linear morphism f : $M \longrightarrow N$ is called a morphism of left (A, α)-Hom-modules if $f\left(h \triangleright_{M} m\right)=h \triangleright_{N} f(m)$ and $v_{N} \circ f=f \circ v_{M}$.

Definition 1.3. A Hom-coalgebra is a quadruple $(C, \Delta, \epsilon, \beta)$ (abbr. (C, β)), where C is a k-linear space, $\Delta: C \longrightarrow C \otimes C, \epsilon: C \longrightarrow k$ are k-linear maps, and β is an endmorphism of C, such that
(HC1) $\quad \beta(c)_{1} \otimes \beta(c)_{2}=\beta\left(c_{1}\right) \otimes \beta\left(c_{2}\right) ; \epsilon \circ \beta=\epsilon ;$
(HC2) $\quad \beta\left(c_{1}\right) \otimes c_{21} \otimes c_{22}=c_{11} \otimes c_{12} \otimes \beta\left(c_{2}\right) ; \quad \epsilon\left(c_{1}\right) c_{2}=c_{1} \epsilon\left(c_{2}\right)=\beta(c)$
are satisfied for $c \in C$.
Definition 1.4. Let (C, β) be a Hom-coalgebra. A left (C, β)-Hom-comodule is a triple (M, ρ, μ), where M is a linear space, $\rho: M \longrightarrow C \otimes M$ (write $\left.\rho(m)=m_{(-1)} \otimes m_{(0)}, \forall m \in M\right)$ is a linear map, and μ is an endmorphism of M, such that

$$
\begin{array}{ll}
(H C M 1) & \mu(m)_{(-1)} \otimes \mu(m)_{(0)}=\beta\left(m_{(-1)}\right) \otimes \mu\left(m_{(0)}\right), \epsilon\left(m_{(-1)}\right) m_{(0)}=\mu(m) ; \\
(H C M 2) & \beta\left(m_{(-1)}\right) \otimes m_{(0)(-1)} \otimes m_{(0)(0)}=m_{(-1) 1} \otimes m_{(-1) 2} \otimes \mu\left(m_{(0)}\right)
\end{array}
$$

are satisfied for all $m \in M$.
Let $\left(M, \rho^{M}, \mu_{M}\right)$ and $\left(N, \rho^{N}, \mu_{N}\right)$ be two left (C, β)-Hom-comodules. Then a linear map $f: M \longrightarrow N$ is called a map of left (C, β)-Hom-comodules if $f(m)_{(-1)} \otimes f(m)_{(0)}=m_{(-1)} \otimes f\left(m_{(0)}\right)$ and $\mu_{N} \circ f=f \circ \mu_{M}$.

Definition 1.5. A Hom-bialgebra is a sextuple $\left(H, \mu, 1_{H}, \Delta, \epsilon, \gamma\right)($ abbr. $(H, \gamma))$, where $\left(H, \mu, 1_{H}, \gamma\right)$ is a Hom-algebra and $(H, \Delta, \epsilon, \gamma)$ is a Hom-coalgebra, such that Δ and ϵ are morphisms of Hom-algebras, i.e.,

$$
\Delta\left(h h^{\prime}\right)=\Delta(h) \Delta\left(h^{\prime}\right) ; \Delta\left(1_{H}\right)=1_{H} \otimes 1_{H} ; \epsilon\left(h h^{\prime}\right)=\epsilon(h) \epsilon\left(h^{\prime}\right) ; \epsilon\left(1_{H}\right)=1 .
$$

Furthermore, if there exists a linear map $S: H \longrightarrow H$ such that

$$
S\left(h_{1}\right) h_{2}=h_{1} S\left(h_{2}\right)=\epsilon(h) 1_{H} \text { and } S(\gamma(h))=\gamma(S(h)),
$$

then we call $\left(H, \mu, 1_{H}, \Delta, \epsilon, \gamma, S\right)$ (abbr. (H, γ, S)) a Hom-Hopf algebra.
Definition 1.6. ([36]) Let (H, β) be a Hom-bialgebra, (M, \triangleright, μ) a left (H, β)-module with action $\triangleright: H \otimes M \longrightarrow M, h \otimes m \mapsto h \triangleright m$ and (M, ρ, μ) a left (H, β)-comodule with coaction $\rho: M \longrightarrow$ $H \otimes M, m \mapsto m_{(-1)} \otimes m_{(0)}$. Then we call $(M, \triangleright, \rho, \mu)$ a (left-left) Hom-Yetter-Drinfeld module over (H, β) if the following condition holds:

$$
(H Y D) \quad h_{1} \beta\left(m_{(-1)}\right) \otimes\left(\beta^{3}\left(h_{2}\right) \triangleright m_{(0)}=\left(\beta^{2}\left(h_{1}\right) \triangleright m\right)_{(-1)} h_{2} \otimes\left(\beta^{2}\left(h_{1}\right) \triangleright m\right)_{(0)},\right.
$$

where $h \in H$ and $m \in M$.
When H is a Hom-Hopf algebra, then the condition (HYD) is equivalent to

$$
(H Y D)^{\prime} \quad \rho\left(\beta^{4}(h) \triangleright m\right)=\beta^{-2}\left(h_{11} \beta\left(m_{(-1)}\right)\right) S\left(h_{2}\right) \otimes\left(\beta^{3}\left(h_{12}\right) \triangleright m_{0}\right) .
$$

Definition 1.7. ([36]) Let (H, β) be a Hom-bialgebra. A Hom-Yetter-Drinfeld category ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$ is a pre-braided monoidal category whose objects are left-left Hom-Yetter-Drinfeld modules, morphisms are both left (H, β)-linear and (H, β)-colinear maps, and its pre-braiding $C_{-,-}$is given by

$$
\begin{equation*}
C_{M, N}(m \otimes n)=\beta^{2}\left(m_{(-1)}\right) \triangleright v^{-1}(n) \otimes \mu^{-1}\left(m_{0}\right), \tag{1.1}
\end{equation*}
$$

for all $m \in(M, \mu) \in{ }_{H}^{H} \mathbb{Y} \mathbb{D}$ and $n \in(N, v) \in{ }_{H}^{H} \mathbb{Y} \mathbb{D}$.
Definition 1.8. A quasitriangular Hom-Hopf algebra is a octuple ($H, \mu, 1_{H}, \Delta, \epsilon, S, \beta, R$) (abbr. (H, β, R)) in which ($H, \mu, 1_{H}, \Delta, \epsilon, S, \beta$) is a Hom-Hopf algebra and $R=R^{(1)} \otimes R^{(2)} \in H \otimes H$, satisfying the following axioms (for all $h \in H$ and $R=r$):

$$
\begin{aligned}
& \left(\text { QHA1) } \epsilon\left(R^{(1)}\right) R^{(2)}=R^{(1)} \epsilon\left(R^{(2)}\right)=1_{H},\right. \\
& \left(\text { QHA2) } \Delta\left(R^{(1)}\right) \otimes \beta\left(R^{(2)}\right)=\beta\left(R^{(1)}\right) \otimes \beta\left(r^{(1)}\right) \otimes R^{(2)} r^{(2)},\right. \\
& \left(\text { QHA3) } \beta\left(R^{(1)}\right) \otimes \Delta\left(R^{(2)}\right)=R^{(1)} r^{(1)} \otimes \beta\left(r^{(2)}\right) \otimes \beta\left(R^{(2)}\right),\right. \\
& \left(\text { QHA4) } \Delta^{c o p}(h) R=R \Delta(h),\right. \\
& \left(\text { QHA5) } \beta\left(R^{(1)}\right) \otimes \beta\left(R^{(2)}\right)=R^{(1)} \otimes R^{(2)},\right.
\end{aligned}
$$

where $\Delta^{c o p}(h)=h_{2} \otimes h_{1}$ for all $h \in H$. A quasitriangular Hom-Hopf algebra (H, R, β) is called triangular if $R^{-1}=R^{(2)} \otimes R^{(1)}$.

Definition 1.9. A coquasitriangular Hom-Hopf algebra is a Hom-Hopf algebra (H, β) together with a bilinear form $\langle\mid\rangle$ on (H, β) (i.e., $\langle\mid\rangle \in \operatorname{Hom}(H \otimes H, k)$) such that the following axioms hold:

$$
\begin{aligned}
& \text { (CHA1) }\langle h g \mid \beta(l)\rangle=\left\langle\beta(h) \mid l_{2}\right\rangle\left\langle\beta(g) \mid l_{1}\right\rangle, \\
& \text { (CHA2) }\langle\beta(h) \mid g l\rangle=\left\langle h_{1} \mid \beta(g)\right\rangle\left\langle h_{2} \mid \beta(l)\right\rangle, \\
& \text { (CHA3) }\left\langle h_{1} \mid g_{1}\right\rangle g_{2} h_{2}=h_{1} g_{1}\left\langle h_{2} \mid g_{2}\right\rangle, \\
& \text { (CHA4) }\langle 1 \mid h\rangle=\langle h \mid 1\rangle=\epsilon(h), \\
& \text { (CHA5) }\langle\beta(h) \mid \beta(g)\rangle=\langle h \mid g\rangle,
\end{aligned}
$$

for all $h, g, l \in H$. A coquasitriangular Hom-Hopf algebra $(H,\langle\mid\rangle, \beta)$ is called cotriangular if $\langle\mid\rangle$ is convolution invertible in the sense of $\left\langle h_{1} \mid g_{1}\right\rangle\left\langle g_{2} \mid h_{2}\right\rangle=\epsilon(h) \epsilon(g)$, for all $h, g \in H$.

2. Hom-Long dimodules over Hom-bialgebras

In this section, we will introduce the notion of Hom-Long dimodules and prove that the Hom-Long dimodule category is an autonomous category.
Definition 2.1. Let (H, α) and (B, β) be two Hom-bialgebras. A left-left (H, B)-Hom-Long dimodule is a quadruple (M, \cdot, ρ, μ), where (M, \cdot, μ) is a left (H, α)-Hom-module and (M, ρ, μ) is a left (B, β)-Homcomodule such that

$$
\begin{equation*}
\rho(h \cdot m)=\beta\left(m_{(-1)}\right) \otimes \alpha(h) \cdot m_{(0)}, \tag{2.1}
\end{equation*}
$$

for all $h \in H$ and $m \in M$. We denote by ${ }_{H}^{B} \mathbb{L}$ the category of left-left (H, B)-Hom-Long dimodules, morphisms being H-linear B-colinear maps.
Example 2.2. Let (H, α) and (B, β) be two Hom-bialgebras. Then $(H \otimes B, \alpha \otimes \beta)$ is an (H, B)-Hom-Long dimodule with left (H, α)-action $h \cdot(g \otimes x)=h g \otimes \beta(x)$ and left (B, β)-coaction $\rho(g \otimes x)=x_{1} \otimes\left(\alpha(g) \otimes x_{2}\right)$, where $h, g \in H, x \in B$.
Proposition 2.3. Let $(M, \mu),(N, v)$ be two (H, B)-Hom-Long dimodules, then $(M \otimes N, \mu \otimes v)$ is an (H, B)-Hom-Long dimodule with structures:

$$
\begin{aligned}
& h \cdot(m \otimes n)=h_{1} \cdot m \otimes h_{2} \cdot n, \\
& \rho(m \otimes n)=\beta^{-2}\left(m_{(-1)} n_{(-1)}\right) \otimes m_{(0)} \otimes n_{(0)},
\end{aligned}
$$

for all $m \in M, n \in N$ and $h \in H$.
Proof. From Theorem 4.8 in [21], $(M \otimes N, \mu \otimes v)$ is both a left (H, α)-Hom-module and a left (B, β) -Hom-comodule. It remains to check that the compatibility condition (2.1) holds. For any $m \in M, n \in N$ and $h \in H$, we have

$$
\begin{aligned}
\rho(h \cdot(m \otimes n)) & =\beta\left(\left(h_{1} \cdot m\right)_{(-1)}\left(h_{2} \cdot n\right)_{(-1)}\right) \otimes\left(h_{1} \cdot m\right)_{(0)} \otimes\left(h_{2} \cdot n\right)_{(0)} \\
& =\beta^{-1}\left(m_{(-1)} n_{(-1)}\right) \otimes \alpha\left(h_{1}\right) \cdot m_{(0)} \otimes \alpha\left(h_{2}\right) \cdot n_{(0)} \\
& =\beta\left((m \otimes n)_{(-1)}\right) \otimes \alpha(h) \cdot\left((m \otimes n)_{(0)}\right),
\end{aligned}
$$

as desired. This completes the proof.
Proposition 2.4. The Hom-Long dimodule category ${ }_{H}^{B} \mathbb{L}$ is a monoidal category, where the tensor product is given in Proposition 2.3, the unit $I=(k, i d)$, the associator and the constraints are given as follows:

$$
\begin{aligned}
& a_{U, V, W}:(U \otimes V) \otimes W \rightarrow U \otimes(V \otimes W),(u \otimes v) \otimes w \rightarrow \mu^{-1}(u) \otimes(v \otimes \omega(w)), \\
& l_{V}: k \otimes V \rightarrow V, k \otimes v \rightarrow k v(v), r_{V}: V \otimes k \rightarrow V, v \otimes k \rightarrow k v(v),
\end{aligned}
$$

for $u \in(U, \mu) \in{ }_{H}^{B} \mathbb{L}, v \in(V, v) \in{ }_{H}^{B} \mathbb{L}, w \in(W, \omega) \in{ }_{H}^{B} \mathbb{L}$.
Proof. Straightforward.
Proposition 2.5. Let H and B be two Hom-Hopf algebras with bijective antipodes. For any HomLong dimodule (M, μ) in ${ }_{H}^{B} \mathbb{L}$, set $M^{*}=\operatorname{Hom}_{k}(M, k)$, with the (H, α)-Hom-module and the (B, β)-Homcomodule structures:

$$
\theta_{M^{*}}: H \otimes M^{*} \longrightarrow M^{*}, \quad(h \cdot f)(m)=f\left(S_{H} \alpha^{-1}(h) \cdot \mu^{-2}(m)\right),
$$

$$
\rho_{M^{*}}: M^{*} \longrightarrow B \otimes M^{*}, \quad f_{(-1)} \otimes f_{(0)}(m)=S_{B}^{-1} \beta^{-1}\left(m_{(-1)}\right) \otimes f\left(\mu^{-2}\left(m_{(0)}\right)\right),
$$

and the Hom-structure map μ^{*} of M^{*} is $\mu^{*}(f)(m)=f\left(\mu^{-1}(m)\right)$. Then M^{*} is an object in ${ }_{H}^{B} \mathbb{L}$. Moreover, ${ }_{H}^{B} \mathbb{L}$ is a left autonomous category.

Proof. It is not hard to check that $\left(M^{*}, \theta_{M^{*}}, \mu^{*}\right)$ is an (H, α)-Hom-module and ($\left.M^{*}, \rho_{M^{*}}, \mu^{*}\right)$ is a (B, β) -Hom-comodule. Further, for any $f \in M^{*}, m \in M, h \in H$, we have

$$
\begin{aligned}
(h \cdot f)_{(-1)} \otimes(h \cdot f)_{(0)}(m) & =S_{B}^{-1} \beta^{-1}\left(m_{(-1)}\right) \otimes(h \cdot f)\left(\mu^{-2}\left(m_{(0)}\right)\right) \\
& =S_{B}^{-1} \beta^{-1}\left(m_{(-1)}\right) \otimes f\left(S_{H} \alpha^{-1}(h) \cdot \mu^{-4}\left(m_{(0)}\right)\right), \\
\beta\left(f_{(-1)}\right) \otimes\left(\alpha(h) \cdot f_{(0)}\right)(m) & =\beta\left(f_{(-1)}\right) \otimes f_{(0)}\left(S_{H}(h) \cdot \mu^{-2}(m)\right) \\
& =\beta\left(S_{B}^{-1} \beta^{-2}\left(m_{(-1)}\right)\right) \otimes f\left(\mu^{-2}\left(S_{H} \alpha(h) \cdot \mu^{-2}\left(m_{(0)}\right)\right)\right) \\
& =S_{B}^{-1} \beta^{-1}\left(m_{(-1)}\right) \otimes f\left(S_{H} \alpha^{-1}(h) \cdot \mu^{-4}\left(m_{(0)}\right)\right) .
\end{aligned}
$$

Thus $M^{*} \in{ }_{H}^{B} \mathbb{L}$.
Moreover, for any $f \in M^{*}$ and $m \in M$, one can define the left evaluation map and the left coevaluation map by

$$
e v_{M}: f \otimes m \longmapsto f(m), \operatorname{coev}_{M}: 1_{k} \longmapsto \sum e_{i} \otimes e^{i},
$$

where e_{i} and e^{i} are dual bases in M and M^{*} respectively. Next, we will show that $\left(M^{*}, e v_{M}, \operatorname{coev}_{M}\right)$ is the left dual of M.

It is easy to see that $e v_{M}$ and coev_{M} are morphisms in ${ }_{H}^{B} \mathbb{L}$. For this, we need the following computation

$$
\begin{aligned}
& \left(r_{M} \circ\left(i d_{M} \otimes e v_{M}\right) \circ a_{M, M^{*}, M} \circ\left(\operatorname{coev}_{M} \otimes i d_{M}\right) \circ l_{M}^{-1}\right)(m) \\
= & \left(r_{M} \circ\left(i d_{M} \otimes e v_{M}\right) \circ a_{M, M^{*}, M}\right)\left(\sum_{i}\left(e_{i} \otimes e^{i}\right) \otimes \mu^{-1}(m)\right) \\
= & \left(r_{M} \circ\left(i d_{M} \otimes e v_{M}\right)\right)\left(\sum_{i} \mu^{-1}\left(e_{i}\right) \otimes\left(e^{i} \otimes m\right)\right) \\
= & r_{M}\left(\sum_{i} \mu^{-1}\left(e_{i}\right) \otimes e^{i}(m)\right) \\
= & r_{M}\left(\mu^{-1}(m) \otimes 1_{k}\right)=m .
\end{aligned}
$$

Similarly, we get

$$
\begin{aligned}
& \left(l_{M^{*}} \circ\left(e v_{M} \otimes i d_{M^{*}}\right) \circ a_{M^{*}, M, M^{*}}^{-1} \circ\left(i d_{M^{*}} \otimes \operatorname{coev}_{M}\right) \circ r_{M^{*}}^{-1}\right)(f) \\
= & \left(l_{M^{*}} \circ\left(e v_{M} \otimes i d_{M^{*}}\right) \circ a_{M^{*}, M, M^{*}}^{-1}\right)\left(\sum_{i} \mu^{*-1}(f) \otimes\left(e_{i} \otimes e^{i}\right)\right) \\
= & \left.\left(l_{M^{*}} \circ\left(e v_{M} \otimes i d_{M^{*}}\right)\right)\left(\sum_{i} f \otimes e_{i}\right) \otimes \mu^{*-1}\left(e^{i}\right)\right) \\
= & l_{M^{*}}\left(\sum_{i} f\left(e_{i}\right) \otimes \mu^{*-1}\left(e^{i}\right)\right) \\
= & l_{M^{*}}\left(1_{k} \otimes \mu^{*-1}(f)\right)=f .
\end{aligned}
$$

$\mathrm{So}_{H}^{B} \mathbb{L}$ admits the left duality. The proof is finished.
Theorem 2.6. The Hom-Long dimodule category ${ }_{H}^{B} \mathbb{L}$ is an autonomous category.
Proof. By Proposition 2.5, it is sufficient to show that ${ }_{H}^{B} \mathbb{L}$ is also a right autonomous category. In fact, for any $(M, \mu) \in{ }_{H}^{B} \mathbb{L}$, its right dual ($\left.{ }^{*} M, \widetilde{c o e v}_{M}, \widetilde{e v}_{M}\right)$ is defined as follows:

- ${ }^{*} M=\operatorname{Hom}_{k}(M, k)$ as k-modules, with the Hom-module and Hom-comodule structures:

$$
\begin{gathered}
(h \cdot f)(m)=f\left(S_{H}^{-1} \alpha^{-1}(h) \cdot \mu^{-2}(m)\right), \\
f_{(-1)} \otimes f_{(0)}(m)=S_{B} \beta^{-1}\left(m_{(-1)}\right) \otimes f\left(\mu^{-2}\left(m_{(0)}\right)\right),
\end{gathered}
$$

where $f \in{ }^{*} M, m \in M$, and the Hom-structure map μ^{*} of ${ }^{*} M$ is $\mu^{*}(f)(m)=f\left(\mu^{-1}(m)\right)$;

- The right evaluation map and the right coevaluation map are given by

$$
\widetilde{e v}_{M}: m \otimes f \longmapsto f(m), \widetilde{\operatorname{coe}}_{M}: 1_{k} \longmapsto \sum a^{i} \otimes a_{i}
$$

where a_{i} and a^{i} are dual bases of M and ${ }^{*} M$ respectively. By similar verification in Proposition 2.5, one may check that ${ }_{H}^{B} \mathbb{L}$ is a right autonomous category, as required. This completes the proof.

Recall from [17] that for any finite dimensional Hom-Hopf algebra B, B^{*} is also a Hom-Hopf algebra with the following structures

$$
\begin{gathered}
(f * g)(y):=f\left(\beta^{-2}\left(y_{1}\right)\right) g\left(\beta^{-2}\left(y_{2}\right)\right), \quad \Delta_{B^{*}}(f)(x y):=f\left(\beta^{-2}(x y)\right), \\
1_{B^{*}}:=\epsilon, \quad \epsilon_{B^{*}}(f):=f\left(1_{H}\right), \quad S_{B^{*}}:=S^{*}, \quad \alpha_{B^{*}}(f):=f \circ \beta^{-1},
\end{gathered}
$$

where $x, y \in H, f, g \in B^{*}$.
Theorem 2.7. If B is a finite dimensional Hom-Hopf algebra, then the Hom-Long dimodule category ${ }_{H}^{B} \mathbb{L}$ is identified to the category of left $B^{* o p} \otimes H$-Hom-modules, where $B^{* o p} \otimes H$ means the usual tensor product Hom-Hopf algebra.
Proof. Define the functor Ψ from $B^{*=p_{\otimes H}} \mathbb{M}$ to ${ }_{H}^{B} \mathbb{L}$ by

$$
\Psi(M):=M \text { as } k \text {-module }, \quad \Psi(f):=f,
$$

where $(M, \mu, \rightharpoondown)$ is a $B^{* o p} \otimes H$-Hom-module, $f: M \rightarrow N$ is a morphism of $B^{* o p} \otimes H$-Hom-modules. Further, the H-action on M is defined by

$$
h \cdot m:=\left(\epsilon_{B} \otimes h\right) \rightharpoondown m, \quad \text { for all } m \in M, \quad h \in H,
$$

and the B-coaction on M is given by

$$
m_{(-1)} \otimes m_{(0)}:=\sum e_{i} \otimes\left(e^{i} \otimes 1_{H}\right) \rightharpoondown m,
$$

where e_{i} and e^{i} are dual bases of B and B^{*} respectively.
First, we will show (M, μ, \cdot) is a left (H, α)-Hom-module. Actually, for any $m \in M, h, g \in H$, we have $1_{H} \cdot m=\left(\epsilon_{B} \otimes 1_{H}\right) \rightharpoondown m=\mu(m)$, and

$$
\alpha(h) \cdot(g \cdot m)=\left(\epsilon_{B} \otimes \alpha(h)\right) \rightharpoondown\left(\left(\epsilon_{B} \otimes g\right) \rightharpoondown m\right)
$$

$$
=\left(\epsilon_{B} \otimes h g\right) \rightharpoondown \mu(m)=(h g) \cdot \mu(m)
$$

which implies $(M, \mu, \cdot) \in_{H} \mathbb{M}$.
Second, one can show that $(M, \mu) \in{ }^{B} \mathbb{M}$ in a similar way.
At last, for any $m \in M, h \in H$, we have

$$
\begin{aligned}
(h \cdot m)_{(-1)} \otimes(h \cdot m)_{(0)} & =\sum e_{i} \otimes\left(e^{i} \otimes 1_{H}\right) \rightharpoondown(h \cdot m) \\
& =\sum e_{i} \otimes\left(e^{i} \otimes \alpha(h)\right) \rightharpoondown \mu(m) \\
& =\sum \beta\left(e_{i}\right) \otimes\left(\left(\epsilon_{B} \otimes 1_{H}\right)\left(e^{i} \otimes h\right) \rightharpoondown \mu(m)\right. \\
& =\sum \beta\left(e_{i}\right) \otimes\left(\left(\epsilon_{B} \otimes h\right)\left(e^{i} \otimes 1_{H}\right) \rightharpoondown \mu(m)\right. \\
& =\sum \beta\left(e_{i}\right) \otimes \alpha(h) \cdot\left(\left(e^{i} \otimes 1_{H}\right) \rightharpoondown \mu(m)\right) \\
& =\beta\left(m_{(-1)}\right) \otimes \alpha(h) \cdot m_{(0)},
\end{aligned}
$$

which implies $(M, \mu) \in{ }_{H}^{B} \mathbb{L}$.
Conversely, for any object $(M, \mu),(N, v)$, and morphism $f: U \rightarrow V$ in ${ }_{H}^{B} \mathbb{L}$, one can define a functor Φ from ${ }_{H}^{B} \mathbb{L}$ to ${ }_{B^{* o p} \otimes H} \mathbb{M}$

$$
\Phi(M):=M \text { as } k \text {-modules }, \quad \Phi(f):=f
$$

where the $\left(B^{* o p} \otimes H, \beta^{*} \otimes \alpha\right)$-Hom-module structure on M is given by

$$
(p \otimes h) \rightharpoondown m=p\left(m_{(-1)}\right) h \cdot \mu^{-1}\left(m_{(0)}\right)
$$

for all $p \in B^{*}, h \in H, m \in M$. It is straightforward to check that $(M, \mu, \rightharpoondown)$ is an object in ${ }_{H}^{B} \mathbb{L}$ to $B_{B^{* o p} \otimes H} \mathbb{M}$, and hence Φ is well defined.

Note that Φ and Ψ are inverse with each other. Hence the conclusion holds.

3. New braided momoidal categories over Hom-Long dimodules

In this section, we will prove that the Hom-Long dimodule category ${ }_{H}^{B} \mathbb{L}$ over a quasitriangular Hom-Hopf algebra (H, R, α) and a coquasitriangular Hom-Hopf algebra $(B,\langle\mid\rangle, \beta)$ is a braided monoidal subcategory of the Hom-Yetter-Drinfeld category ${ }_{H \otimes B}^{H \otimes B} \mathbb{H} Y \mathbb{Y}$.

Theorem 3.1. Let (H, R, α) be a quasitriangular Hom-Hopf algebra and $(B,\langle\mid\rangle, \beta)$ a coquasitriangular Hom-Hopf algebra. Then the category ${ }_{H}^{B} \mathbb{L}$ is a braided monoidal category with braiding

$$
\begin{equation*}
C_{M, N}: M \otimes N \rightarrow N \otimes M, m \otimes n \rightarrow\left\langle m_{(-1)} \mid n_{(-1)}\right\rangle R^{(2)} \cdot v^{-2}\left(n_{(0)}\right) \otimes R^{(1)} \cdot \mu^{-2}\left(m_{(0)}\right), \tag{3.1}
\end{equation*}
$$

for all $m \in(M, \mu) \in{ }_{H}^{B} \mathbb{L}$ and $n \in(N, v) \in{ }_{H}^{B} \mathbb{L}$.
Proof. We will first show that the braiding $C_{M, N}$ is a morphism in ${ }_{H}^{B} \mathbb{L}$. In fact, for any $m \in M, n \in N$ and $h \in H$, we have

$$
\begin{aligned}
& C_{M, N}\left(h_{1} \cdot m \otimes h_{2} \cdot n\right) \\
=\quad & \left\langle\left(h_{1} \cdot m\right)_{(-1)} \mid\left(h_{2} \cdot n\right)_{(-1)}\right\rangle R^{(2)} \cdot v^{-2}\left(h_{2} \cdot n\right)_{(0)} \otimes R^{(1)} \cdot \mu^{-2}\left(h_{1} \cdot m\right)_{(0)}
\end{aligned}
$$

$$
\begin{array}{cl}
\stackrel{(2.1)}{=} & \left\langle\beta\left(m_{(-1)}\right) \mid \beta\left(n_{(-1)}\right)\right\rangle R^{(2)} \cdot v^{-2}\left(\alpha\left(h_{2}\right) \cdot n_{(0)}\right) \otimes R^{(1)} \cdot \mu^{-2}\left(\alpha\left(h_{1}\right) \cdot m_{(0)}\right) \\
\stackrel{(H M 2)}{=} & \left\langle m_{(-1)} \mid n_{(-1)}\right\rangle \alpha^{-1}\left(R^{(2)} h_{2}\right) \cdot v^{-1}\left(n_{(0)}\right) \otimes \alpha^{-1}\left(R^{(1)} h_{1}\right) \cdot \mu^{-1}\left(m_{(0)}\right), \\
& h \cdot C_{M, N}(m \otimes n) \\
= & \left\langle m_{(-1)} \mid n_{(-1)}\right\rangle h \cdot\left(R^{(2)} \cdot v^{-2}\left(n_{(0)}\right) \otimes R^{(1)} \cdot \mu^{-2}\left(m_{(0)}\right)\right) \\
= & \left\langle m_{(-1)} \mid n_{(-1)}\right\rangle h_{1} \cdot\left(\alpha^{-1}\left(R^{(2)}\right) \cdot v^{-2}\left(n_{(0)}\right)\right) \otimes h_{2} \cdot\left(\alpha^{-1}\left(R^{(1)}\right) \cdot \mu^{-2}\left(m_{(0)}\right)\right) \\
(H M 2) & \left\langle m_{(-1)} \mid n_{(-1)}\right\rangle \alpha^{-1}\left(h_{1} R^{(2)}\right) \cdot v^{-1}\left(n_{(0)}\right) \otimes \alpha^{-1}\left(h_{2} R^{(1)}\right) \cdot \mu^{-1}\left(m_{(0)}\right) \\
\stackrel{(Q H A 4)}{=} & \left\langle m_{(-1)} \mid n_{(-1)}\right\rangle \alpha^{-1}\left(R^{(2)} h_{2}\right) \cdot v^{-1}\left(n_{(0)}\right) \otimes \alpha^{-1}\left(R^{(1)} h_{1}\right) \cdot \mu^{-1}\left(m_{(0)}\right) .
\end{array}
$$

The third equality holds since $\langle\mid\rangle$ is β-invariant and the fifth equality holds since R is α-invariant. So $C_{M, N}$ is left (H, α)-linear. Similarly, one may check that $C_{M, N}$ is left (B, β)-colinear.

Now we prove that the braiding $C_{M, N}$ is natural. For any $(M, \mu),\left(M^{\prime}, \mu^{\prime}\right),(N, v),\left(N^{\prime}, v^{\prime}\right) \in{ }_{H}^{B} \mathbb{L}$, let $f: M \rightarrow M^{\prime}$ and $g: N \rightarrow N^{\prime}$ be two morpshisms in ${ }_{H}^{B} \mathbb{L}$, it is sufficient to verify the identity $(g \otimes f) \circ C_{M, N}=C_{M^{\prime}, N^{\prime}} \circ(f \otimes g)$. For this purpose, we take $m \in M, n \in N$ and do the following calculation:

$$
\begin{aligned}
(g \otimes f) \circ C_{M, N}(m \otimes n) & =\left\langle m_{(-1)} \mid n_{(-1)}\right\rangle(g \otimes f)\left(R^{(2)} \cdot v^{-2}\left(n_{(0)}\right) \otimes R^{(1)} \cdot \mu^{-2}\left(m_{(0)}\right)\right) \\
& =\left\langle m_{(-1)} \mid n_{(-1)}\right\rangle g\left(R^{(2)} \cdot v^{-2}\left(n_{(0)}\right)\right) \otimes f\left(R^{(1)} \cdot \mu^{-2}\left(m_{(0)}\right)\right) \\
& =\left\langle m_{(-1)} \mid n_{(-1)}\right\rangle R^{(2)} \cdot g\left(v^{-2}\left(n_{(0)}\right)\right) \otimes R^{(1)} \cdot f\left(\mu^{-2}\left(m_{(0)}\right)\right), \\
C_{M^{\prime}, N^{\prime}} \circ(f \otimes g)(m \otimes n) & =C_{M^{\prime}, N^{\prime}}(f(m) \otimes g(n)) \\
& =\left\langle f(m)_{(-1)} \mid g(n)_{(-1)}\right\rangle R^{(2)} \cdot v^{-2}\left(g(n)_{(0)}\right) \otimes\left(R^{(1)} \cdot \mu^{-2}\left(f(m)_{(0)}\right)\right. \\
& =\left\langle m_{(-1)} \mid n_{(-1)}\right\rangle R^{(2)} \cdot v^{-2}\left(g\left(n_{(0)}\right)\right) \otimes R^{(1)} \cdot \mu^{-2}\left(f\left(m_{(0)}\right)\right) \\
& =\left\langle m_{(-1)} \mid n_{(-1)}\right\rangle R^{(2)} \cdot g\left(v^{-2}\left(n_{(0)}\right)\right) \otimes R^{(1)} \cdot f\left(\mu^{-2}\left(m_{(0)}\right)\right) .
\end{aligned}
$$

The sixth equality holds since f, g are left (B, β)-colinear. So the braiding $C_{M, N}$ is natural, as needed.
Next, we will show that the braiding $C_{M, N}$ is an isomorphsim with inverse map

$$
C_{M, N}^{-1}: N \otimes M \rightarrow M \otimes N, n \otimes m \rightarrow\left\langle S^{-1}\left(m_{(-1)}\right) \mid n_{(-1)}\right\rangle S\left(R^{(1)}\right) \cdot \mu^{-2}\left(m_{(0)}\right) \otimes R^{(2)} \cdot v^{-2}\left(n_{(0)}\right) .
$$

For any $m \in M, n \in N$, we have

$$
\begin{array}{cl}
& C_{M, N}^{-1} \circ C_{M, N}(m \otimes n) \\
= & \left\langle m_{(-1)} \mid n_{(-1)}\right\rangle C_{M, N}^{-1}\left(R^{(2)} \cdot v^{-2}\left(n_{(0)}\right) \otimes R^{(1)} \cdot \mu^{-2}\left(m_{(0)}\right)\right) \\
= & \left\langle m_{(-1)} \mid n_{(-1)}\right\rangle\left\langle S^{-1}\left(\beta^{-1}\left(m_{(0)(-1)}\right)\right) \mid \beta^{-1}\left(n_{(0)(-1)}\right)\right\rangle \\
& S\left(r^{(1)}\right) \cdot \mu^{-2}\left(\alpha\left(R^{(2)}\right) \cdot \mu^{-2}\left(m_{(0)(0)}\right)\right) \otimes r^{(2)} \cdot v^{-2}\left(\alpha\left(R^{(1)}\right) \cdot v^{-2}\left(n_{(0)(0)}\right)\right) \\
\stackrel{(H C M 2)}{=} & \left\langle\beta^{-1}\left(m_{(-1) 1}\right) \mid \beta^{-1}\left(n_{(-1) 1}\right)\right\rangle\left\langleS ^ { - 1 } \left(\beta^{-1}\left(m_{(-1) 2)}\right)\left|\beta^{-1}\left(n_{(-1) 2}\right)\right\rangle\right.\right. \\
& S\left(r^{(1)}\right) \cdot\left(\alpha^{-1}\left(R^{(2)}\right) \cdot \mu^{-3}\left(m_{(0)}\right)\right) \otimes r^{(2)} \cdot\left(\alpha^{-1}\left(R^{(1)}\right) \cdot v^{-3}\left(n_{(0)}\right)\right) \\
\stackrel{(H M 2)}{=} & \left\langle m_{(-1) 1} \mid n_{(-1) 1}\right\rangle\left\langle S^{-1}\left(m_{(-1) 2}\right) \mid n_{(-1) 2}\right\rangle \\
& \alpha^{-1}\left(S\left(r^{(1)}\right) R^{(2)}\right) \cdot \mu^{-2}\left(m_{(0)}\right) \otimes \alpha^{-1}\left(r^{(2)} R^{(1)}\right) \cdot v^{-2}\left(n_{(0)}\right) \\
\stackrel{(C H A 1)}{=} & \left\langle S^{-1}\left(\beta^{-1}\left(m_{(-1) 2}\right)\right) \beta^{-1}\left(m_{(-1) 1}\right) \mid \beta\left(n_{(-1)}\right)\right\rangle 1_{H} \cdot \mu^{-2}\left(m_{(0)}\right) \otimes 1_{H} \cdot v^{-2}\left(n_{(0)}\right)
\end{array}
$$

$$
\begin{aligned}
& =\quad\left\langle\beta^{-2}\left(S^{-1}\left(m_{(-1) 2}\right) m_{(-1) 1}\right) \mid n_{(-1)}\right\rangle 1_{H} \cdot \mu^{-2}\left(m_{(0)}\right) \otimes 1_{H} \cdot v^{-2}\left(n_{(0)}\right) \\
& =\quad\left\langle\epsilon\left(m_{(-1)}\right) 1_{H} \mid n_{(-1)}\right\rangle \mu^{-1}\left(m_{(0)}\right) \otimes v^{-1}\left(n_{(0)}\right) \\
& =\quad \epsilon\left(m_{(-1)}\right) \epsilon\left(n_{(-1)}\right) \mu^{-1}\left(m_{(0)}\right) \otimes v^{-1}\left(n_{(0)}\right) \\
& =\quad m \otimes n .
\end{aligned}
$$

The second equality holds since $\rho\left(R^{(2)} \cdot v^{-2}\left(n_{(0)}\right)\right)=\beta^{-1}\left(n_{(0)(-1)}\right) \otimes \alpha\left(R^{(2)}\right) \cdot n_{(0)(0)}$ and the fifth equality holds since $R^{-1}=S\left(r^{(1)}\right) \otimes r^{(2)}$.

Now let us verify the hexagon axioms $\left(H_{1}, H_{2}\right)$ from Section XIII. 1.1 of [38]. We need to show that the following diagram $\left(H_{1}\right)$ commutes for any $(U, \mu),(V, v),(W, \omega) \in{ }_{H}^{B} \mathbb{L}$:

For this purpose, let $u \in U, v \in V, w \in W$, then we have

$$
\begin{array}{cc}
& a_{V, U, W} \circ C_{U, V \otimes W} \circ a_{U, V, W}((u \otimes v) \otimes w) \\
= & a_{V, U, W} \circ C_{U, V \otimes W}\left(\mu^{-1}(u) \otimes(v \otimes \omega(w))\right) \\
= & \left\langle\beta^{-1}\left(u_{(-1)}\right) \beta^{-2}\left(v_{(-1)}\right) \beta^{-1}\left(w_{(-1)}\right)\right\rangle a_{V, U, W} \\
= & \left(R^{(2)} \cdot\left(v^{-2} \otimes \omega^{-2}\right)\left(v_{(0)} \otimes \omega\left(w_{(0)}\right)\right) \otimes R^{(1)} \cdot \mu^{-3}\left(u_{(0)}\right)\right) \\
= & \left\langle\beta\left(u_{(-1)}\right) \mid v_{(-1)} \beta\left(w_{(-1)}\right)\right\rangle a_{V, U, W} \\
= & \quad\left(R^{(2)} \cdot\left(v^{-2}\left(v_{(0)}\right) \otimes \omega^{-1}\left(w_{(0)}\right)\right) \otimes R^{(1)} \cdot \mu^{-3}\left(u_{(0)}\right)\right) \\
& \left.\quad \alpha_{(-1)}\right)\left|v_{(-1)} \beta\left(w_{(-1)}\right)\right\rangle \\
\stackrel{Q H A B)}{=} & \left.\left.\left\langle\beta\left(u_{(-1)}\right)\right| v_{(-1)}\right) \beta\left(w_{(-1)}\right)\right\rangle \\
& \left.r^{(2)} \cdot v^{-3}\left(v_{(0)}\right) \otimes\left(\alpha\left(R^{(2)}\right) \cdot \omega^{-1}\left(w_{(0)}\right)\right) \otimes\left(R^{(1)} r^{(1)}\right) \cdot \mu^{-2}\left(u_{(0)}\right)\right)
\end{array}
$$

and

$$
\begin{array}{cc}
& \left(i d_{V} \otimes C_{U, W}\right) \circ a_{V, U, W} \circ\left(C_{U, V} \otimes i d_{W}\right)((u \otimes v) \otimes w) \\
= & \left\langle u_{(-1)} \mid v_{(-1)}\right\rangle\left(i d_{V} \otimes C_{U, W}\right) \circ a_{V, U, W}\left(\left(R^{(2)} \cdot v^{-2}\left(v_{(0)}\right) \otimes R^{(1)} \cdot \mu^{-2}\left(u_{(0)}\right)\right) \otimes w\right) \\
= & \left\langle u_{(-1)} \mid v_{(-1)}\right\rangle\left(i d_{V} \otimes C_{U, W}\right) \alpha^{-1}\left(R^{(2)}\right) \cdot v^{-3}\left(v_{(0)}\right) \otimes\left(R^{(1)} \cdot \mu^{-2}\left(u_{(0)}\right) \otimes \omega(w)\right) \\
= & \left\langle u_{(-1)} \mid v_{(-1)}\right\rangle\left\langle\beta^{-1}\left(u_{(0)(-1)}\right) \mid \beta\left(w_{(-1)}\right)\right\rangle \\
& \alpha^{-1}\left(R^{(2)}\right) \cdot v^{-3}\left(v_{(0)}\right) \otimes\left(r^{(2)} \cdot \omega^{-1}\left(w_{(0)}\right) \otimes r^{(1)} \cdot \mu^{-2}\left(\alpha\left(R^{(1)}\right) \cdot \mu^{-2}\left(u_{(0)(0)}\right)\right)\right) \\
\stackrel{(H C M 2)}{=} & \left\langle\beta^{-1}\left(u_{(-1) 1}\right) \mid v_{(-1)}\right\rangle\left\langle\beta^{-1}\left(u_{(-1) 2}\right) \mid \beta\left(w_{(-1)}\right)\right\rangle \\
& \alpha^{-1}\left(R^{(2)}\right) \cdot v^{-3}\left(v_{(0)}\right) \otimes\left(r^{(2)} \cdot \omega^{-1}\left(w_{(0)}\right) \otimes \alpha^{-1}\left(r^{(1)} R^{(1)}\right) \cdot \mu^{-2}\left(u_{(0)}\right)\right) \\
\stackrel{(C H A 2)}{=} & \left\langle u_{(-1)} \mid \beta^{-1}\left(v_{(-1)}\right) w_{(-1)\rangle}\right\rangle \\
& \alpha^{-1}\left(R^{(2)}\right) \cdot v^{-3}\left(v_{(0)}\right) \otimes\left(r^{(2)} \cdot \omega^{-1}\left(w_{(0)}\right) \otimes \alpha^{-1}\left(r^{(1)} R^{(1)}\right) \cdot \mu^{-2}\left(u_{(0)}\right)\right) \\
= & \left\langle\beta\left(u_{(-1)}\right) \mid v_{(-1)} \beta\left(w_{(-1)}\right)\right\rangle
\end{array}
$$

$$
R^{(2)} \cdot v^{-3}\left(v_{(0)}\right) \otimes\left(\alpha\left(r^{(2)}\right) \cdot \omega^{-1}\left(w_{(0)}\right) \otimes\left(r^{(1)} R^{(1)}\right) \cdot \mu^{-2}\left(u_{(0)}\right)\right)
$$

Since $r=R$, it follows that $a_{V, U, W} \circ C_{U, V \otimes W} \circ a_{U, V, W}=\left(i d_{V} \otimes C_{U, W}\right) \circ a_{V, U, W} \circ\left(C_{U, V} \otimes i d_{W}\right)$, that is, the diagram $\left(H_{1}\right)$ commutes.

Now we check that the diagram $\left(H_{2}\right)$ commutes for any $(U, \mu),(V, v),(W, \omega) \in{ }_{H}^{B} \mathbb{L}$:

In fact, for any $u \in U, v \in V, w \in W$, we obtain

$$
\begin{array}{cc}
& a_{W, U, V}^{-1} \circ C_{U \otimes V, W} \circ a_{U, V, W}^{-1}(u \otimes(v \otimes w)) \\
= & a_{W, U, V}^{-1} \circ C_{U \otimes V, W}\left((\mu(u) \otimes v) \otimes \omega^{-1}(w)\right) \\
= & \left\langle\beta^{-1}\left(u_{(-1)}\right) \beta^{-1}\left(v_{(-2)}\right) \mid \beta^{-1}\left(w_{(-1)}\right)\right\rangle a_{W, V, V}^{-1} \\
= & \left(R^{(2)} \cdot \omega^{-3}\left(w_{(0)}\right) \otimes R^{(1)} \cdot\left(\mu^{-1}\left(u_{(0)}\right) \otimes v^{-2}\left(v_{(0)}\right)\right)\right) \\
= & \left\langle\beta\left(u_{(-1)}\right) v_{(-1)} \mid \beta\left(w_{(-1)}\right)\right\rangle a_{W, U, V}^{-1} \\
= & \left\langle\beta\left(u_{(-1)}\right) v_{(-1)} \mid \beta\left(w_{(-1)}\right)\right\rangle \\
= & \left(\omega\left(R^{(2)} \cdot \omega^{-2}\left(w_{(0)}\right)\right) \otimes R_{1}^{(1)} \cdot \mu^{-1}\left(u_{(0)}\right)\right) \otimes \alpha^{-1}\left(R_{2}^{(1)}\right) \cdot v^{-3}\left(v_{(0)}\right) \\
= & \left\langle\beta\left(u_{(-1)}\right) v_{(-1)} \mid \beta\left(w_{(-1)}\right)\right\rangle \\
& \left(\alpha^{-1}\left(R^{(2)}\right) \cdot \omega^{-2}\left(w_{(0)}\right) \otimes R_{1}^{(1)} \cdot \mu^{-1}\left(u_{(0)}\right)\right) \otimes \alpha\left(R_{2}^{(1)}\right) \cdot v\left(v_{(0)}\right) \\
\stackrel{Q H A 2)}{=} & \left\langle\beta\left(u_{(-1)}\right) v_{(-1)} \mid \beta\left(w_{(-1)}\right)\right\rangle \\
& \left(\alpha^{-1}\left(R^{(2)} r^{(2)}\right) \cdot \omega^{-2}\left(w_{(0)}\right) \otimes R^{(1)} \cdot \mu^{-1}\left(u_{(0)}\right)\right) \otimes \alpha^{-1}\left(r^{(1)}\right) \cdot v^{-3}\left(v_{(0)}\right) .
\end{array}
$$

Also we can get

$$
\begin{array}{cc}
& \left(C_{U, W} \otimes i d_{V}\right) \circ a_{U, W, V}^{-1} \circ\left(i d_{U} \otimes C_{V, W}\right)(u \otimes(v \otimes w)) \\
= & \left\langle v_{(-1)}\right)\left|w_{(-1)}\right\rangle\left(C_{U, W} \otimes i d_{V}\right) \circ a_{U, W, V}^{-1}\left(u \otimes\left(R^{(2)} \cdot \omega^{-2}\left(w_{(0)}\right) \otimes R^{(1)} \cdot v^{-2}\left(v_{(0)}\right)\right)\right) \\
= & \left\langle v_{(-1)}\right)\left|w_{(-1)}\right\rangle\left(C_{U, W} \otimes i d_{V}\right)\left(\left(\mu(u) \otimes R^{(2)} \cdot \omega^{-2}\left(w_{(0)}\right)\right) \otimes \alpha^{-1}\left(R^{(1)}\right) \cdot v^{-3}\left(v_{(0)}\right)\right) \\
= & \left\langle v_{(-1)}\right)\left|w_{(-1)}\right\rangle\left\langle\beta\left(u_{(-1)}\right) \mid \beta^{-1}\left(w_{(0)(-1)}\right)\right\rangle \\
& \left(r^{(2)} \cdot \omega^{-2}\left(\alpha\left(R^{(2)}\right) \cdot \omega^{-2}\left(w_{(0)(0)}\right)\right) \otimes r^{(1)} \cdot \mu^{-1}\left(u_{(0)}\right)\right) \otimes \alpha^{-1}\left(R^{(1)}\right) \cdot v^{-3}\left(v_{(0)}\right) \\
\stackrel{(H C M 2)}{=} & \left\langle v_{(-1)}\right)\left|\beta^{-1}\left(w_{(-1) 1}\right)\right\rangle\left\langle\beta\left(u_{(-1)}\right) \mid \beta^{-1}\left(w_{(-1) 2)}\right)\right\rangle \\
& \left(r^{(2)} \cdot\left(\alpha^{-1}\left(R^{(2)}\right) \cdot \omega^{-3}\left(w_{(0)}\right)\right) \otimes r^{(1)} \cdot \mu^{-1}\left(u_{(0)}\right)\right) \otimes \alpha^{-1}\left(R^{(1)}\right) \cdot v^{-3}\left(v_{(0)}\right) \\
\stackrel{(C H A A)}{=} & \left\langle u_{(-1)} \beta^{-1}\left(v_{(-1)}\right) \mid w_{(-1)}\right\rangle \\
& \left(\alpha^{-1}\left(r^{(2)} R^{(2)}\right) \cdot \omega^{-2}\left(w_{(0)}\right) \otimes r^{(1)} \cdot \mu^{-1}\left(u_{(0)}\right)\right) \otimes \alpha^{-1}\left(R^{(1)}\right) \cdot v^{-3}\left(v_{(0)}\right) .
\end{array}
$$

So the diagram $\left(\mathrm{H}_{2}\right)$ commutes since $r=R$. This ends the proof.
Corollary 3.2. Under hypotheses of Theorem 3.1, the braiding C is a solution of the quantum YangBaxter equation

$$
\left(i d_{W} \otimes C_{U, V}\right) \circ a_{W, U, V} \circ\left(C_{U, W} \otimes i d_{V}\right) \circ a_{W, V, U}^{-1} \circ\left(i d_{U} \otimes C_{V, W}\right) \circ a_{U, V, W}
$$

$$
=a_{W, V, U} \circ\left(C_{W, V} \otimes i d_{U}\right) \circ a_{W, V, U}^{-1} \circ\left(i d_{V} \otimes C_{U, W}\right) \circ a_{V, U, W} \circ\left(C_{U, V} \otimes i d_{W}\right) .
$$

Proof. Straightforward.
Lemma 3.3. Let (H, R, α) be a quasitriangular Hom-Hopf algebra and $(B,\langle\mid\rangle, \beta)$ a coquasitriangular Hom-Hopf algebra. Define a linear map

$$
(H \otimes B) \otimes M \rightarrow M,(h \otimes x) \rightharpoonup m=\left\langle x \mid m_{(-1)}\right\rangle \alpha^{-3}(h) \cdot \mu^{-1}\left(m_{(0)}\right),
$$

for any $h \in H, x \in B$ and $m \in(M, \mu) \in{ }_{H}^{B} \mathbb{L}$. Then (M, μ) becomes a left $(H \otimes B)$-Hom-module.
Proof. It is sufficient to show that the Hom-module action defined above satisfies Definition 1.2. For any $h, g \in H, x, y \in B$ and $m \in M$, we have

$$
\left(1_{H} \otimes 1_{B}\right) \rightharpoonup m=\left\langle 1_{B} \mid m_{(-1)}\right\rangle 1_{H} \cdot \mu^{-1}\left(m_{(0)}\right)=\epsilon\left(m_{(-1)}\right) m_{(0)}=\mu(m) .
$$

That is, $\left(1_{H} \otimes 1_{B}\right) \rightharpoonup m=\mu(m)$. For the equality $\mu((h \otimes x) \rightharpoonup m)=(\alpha(h) \otimes \beta(x)) \rightharpoonup \mu(m)$, we have

$$
\begin{aligned}
(\alpha(h) \otimes \beta(x)) \rightharpoonup \mu(m) & =\left\langle\beta(x) \mid \beta\left(m_{(-1)}\right)\right\rangle \alpha^{-2}(h) \cdot m_{(0)} \\
& =\left\langle x \mid m_{(-1)}\right\rangle \alpha^{-2}(h) \cdot m_{(0)}=\mu((h \otimes x) \rightharpoonup m),
\end{aligned}
$$

as required. Finally, we check the expression $((h \otimes x)(g \otimes y)) \rightharpoonup \mu(m)=(\alpha(h) \otimes \beta(x)) \rightharpoonup((g \otimes y) \rightharpoonup m)$. For this, we calculate

$$
\begin{aligned}
& (\alpha(h) \otimes \beta(x)) \rightharpoonup((g \otimes y) \rightharpoonup m) \\
= & \left\langle y \mid m_{(-1)}\right\rangle(\alpha(h) \otimes \beta(x)) \cdot\left(\alpha^{-3}(g) \cdot \mu^{-1}\left(m_{(0)}\right)\right) \\
= & \left\langle y \mid m_{(-1)}\right\rangle\left\langle\beta(x) \mid m_{(0)(-1)}\right\rangle \alpha^{-2}(h) \cdot\left(\alpha^{-3}(g) \cdot \mu^{-2}\left(m_{(0)(0)}\right)\right) \\
\left.{ }_{(\text {HCM2 }}\right) & \left\langle y \mid \beta^{-1}\left(m_{(-1) 1}\right)\right\rangle\left\langle x \mid \beta^{-1}\left(m_{(-1) 2}\right)\right\rangle \alpha^{-3}(h g) \cdot m_{(0)} \\
\stackrel{(C H A 1)}{=} & \left\langle x y \mid \beta\left(m_{(-1)}\right)\right\rangle \alpha^{-3}(h g) \cdot m_{(0)} \\
= & ((h \otimes x)(g \otimes y)) \rightharpoonup \mu(m) .
\end{aligned}
$$

So (M, μ) is a left $(H \otimes B)$-Hom-module. The proof is completed.
Lemma 3.4. Let (H, R, α) be a quasitriangular Hom-Hopf algebra and $(B,\langle\mid\rangle, \beta)$ a coquasitriangular Hom-Hopf algebra. Define a linear map

$$
\bar{\rho}: M \rightarrow(H \otimes B) \otimes M, \bar{\rho}(m)=m_{[-1]} \otimes m_{[0]}=R^{(2)} \otimes \beta^{-3}\left(m_{(-1)}\right) \otimes R^{(1)} \cdot \mu^{-1}\left(m_{(0)}\right),
$$

for any $m \in(M, \mu)$. Then (M, μ) becomes a left $(H \otimes B)$-Hom-comodule.
Proof. We first show that $\bar{\rho}$ satisfies Eq (HCM2). On the one side, we have

$$
\begin{aligned}
& \Delta\left(m_{[-1]}\right) \otimes \mu\left(m_{[0]}\right) \\
= & \left(R_{1}^{(2)} \otimes \beta^{-3}\left(m_{(-1) 1}\right)\right) \otimes\left(R_{2}^{(2)} \otimes \beta^{-3}\left(m_{(-1) 2}\right)\right) \otimes \alpha\left(R^{(1)}\right) \cdot m_{(0)} \\
= & \left(\alpha\left(r^{(2)}\right) \otimes \beta^{-2}\left(m_{(-1)}\right)\right) \otimes\left(\alpha\left(R^{(2)}\right) \otimes \beta^{-3}\left(m_{(0)(-1)}\right)\right) \otimes \alpha\left(R^{(1)}\right)\left(r^{(1)} \cdot \mu^{-2}\left(m_{(0)(0)}\right)\right) .
\end{aligned}
$$

On the other side, we have

$$
(\alpha \otimes \beta)\left(m_{[-1]}\right) \otimes \bar{\rho}\left(m_{[0]}\right)
$$

$$
\begin{aligned}
& =\left(\alpha\left(r^{(2)}\right) \otimes \beta^{-2}\left(m_{(-1)}\right)\right) \otimes\left(R^{(2)} \otimes \beta^{-3}\left(\left(r^{(1)} \cdot \mu^{-1}\left(m_{(0)}\right)\right)_{(-1)}\right) \otimes R^{(1)}\right. \\
& \quad \cdot \mu^{-1}\left(\left(r^{(1)} \cdot \mu^{-1}\left(m_{(0)}\right)\right)_{(0)}\right) \\
& =\left(\alpha\left(r^{(2)}\right) \otimes \beta^{-2}\left(m_{(-1)}\right)\right) \otimes\left(R^{(2)} \otimes \beta^{-3}\left(m_{(0)(-1)}\right)\right) \otimes R^{(1)} \cdot\left(r^{(1)} \cdot \mu^{-2}\left(m_{(0)(0)}\right)\right) .
\end{aligned}
$$

Since R is α-invariant, we have $\Delta\left(m_{[-1]}\right) \otimes \mu\left(m_{[0]}\right)=(\alpha \otimes \beta)\left(m_{[-1]}\right) \otimes \bar{\rho}\left(m_{[0]}\right)$, as needed.
For Eq (HCM1), we have

$$
\begin{aligned}
\left(\epsilon_{H} \otimes \epsilon_{B}\right)\left(m_{[-1]}\right) m_{[0]} & =\epsilon_{H}\left(R^{(2)}\right) \epsilon_{B}\left(m_{(-1)}\right) R^{(1)} \cdot \mu^{-1}\left(m_{(0)}\right) \\
& =1_{H} \cdot m=\mu(m) \\
(\alpha \otimes \beta)\left(m_{[-1]}\right) \otimes \mu\left(m_{[0]}\right) & =\left(\alpha\left(R^{(2)}\right) \otimes \beta^{-2}\left(m_{(-1)}\right)\right) \otimes \mu\left(R^{(1)} \cdot \mu^{-1}\left(m_{(0)}\right)\right) \\
& =R^{(2)} \otimes \beta^{-3}\left(\beta\left(m_{(-1)}\right)\right) \otimes R^{(1)} \cdot \mu^{-1}\left(\mu\left(m_{(0)}\right)\right) \\
& =\bar{\rho}(\mu(m))
\end{aligned}
$$

as desired. And this finishes the proof.
Theorem 3.5. Let (H, R, α) be a quasitriangular Hom-Hopf algebra and $(B,\langle\mid\rangle, \beta)$ a coquasitriangular Hom-Hopf algebra. Then the Hom-Long dimodules category ${ }_{H}^{B} \mathbb{L}$ is a monoidal subcategory of Hom-Yetter-Drinfeld category ${ }_{H \otimes B}^{H \otimes B} \mathbb{Y} \mathbb{D}$.
Proof. Let $m \in(M, \mu) \in{ }_{H}^{B} \mathcal{L}$ and $h \in H$. Here we first note that $\rho\left(h \cdot \mu^{-1}\left(m_{(0)}\right)\right)=m_{(0)(-1)} \otimes \alpha(h)$. $\mu^{-1}\left(m_{(0)(0)}\right)$. It is sufficient to show that the left $(H \otimes B)$-Hom-module action in Lemma 3.3 and the left $(H \otimes B)$-Hom-comodule structure in Lemma 3.4 satisfy the compatible condition Eq (HYD). Indeed, for any $h \in H, x \in B, m \in M$, we have

$$
\begin{aligned}
& \left(h_{1} \otimes x_{1}\right)(\alpha \otimes \beta)\left(m_{[-1]}\right) \otimes\left(\alpha^{3}\left(h_{2}\right) \otimes \beta^{3}\left(x_{2}\right)\right) \rightharpoonup m_{[0]} \\
= & h_{1} \alpha\left(R^{(2)}\right) \otimes x_{1} \beta^{-2}\left(m_{(-1)}\right) \otimes\left\langle\beta^{3}\left(x_{2}\right)\left(\left(R^{(1)} \cdot \mu^{-1}\left(m_{(0)}\right)\right)_{(-1)}\right\rangle h_{2} \cdot \mu^{-1}\left(\left(R^{(1)} \cdot \mu^{-1}\left(m_{(0)}\right)\right)_{(0)}\right)\right. \\
= & h_{1} \alpha\left(R^{(2)}\right) \otimes x_{1} \beta^{-3}\left(m_{(-1) 1}\right) \otimes\left\langle\beta^{3}\left(x_{2}\right) \mid m_{(-1) 2}\right\rangle h_{2} \cdot\left(R^{(1)} \cdot \mu^{-1}\left(m_{(0)}\right)\right) \\
= & h_{1} \alpha\left(R^{(2)}\right) \otimes x_{1} \beta^{-3}\left(m_{(-1) 1}\right) \otimes\left\langle x_{2}\right| \beta^{-3}\left(m_{(-1) 2)}\right\rangle \alpha^{-1}\left(h_{2} \alpha\left(R^{(1)}\right)\right) \cdot m_{(0)} \\
= & R^{(2)} h_{2} \otimes \beta^{-3}\left(m_{(-1) 2}\right) x_{2}\left\langle x_{1} \mid \beta^{-3}\left(m_{(-1) 1)}\right)\right\rangle \otimes\left(\alpha^{-1}\left(R^{(1)}\right) \alpha^{-1}\left(h_{1}\right)\right) \cdot m_{(0)} \\
= & \left\langle\alpha^{2}\left(x_{1}\right) \mid m_{(-1)}\right\rangle R^{(2)} h_{2} \otimes \beta^{-3}\left(m_{(0)(-1)}\right) x_{2} \otimes\left(\alpha^{-1}\left(R^{(1)}\right) \alpha^{-1}\left(h_{1}\right)\right) \cdot \mu^{-1}\left(m_{(0)(0))}\right) \\
= & \left\langle\alpha^{2}\left(x_{1}\right) \mid m_{(-1)}\right\rangle\left(R^{(2)} \otimes \beta^{-3}\left(\alpha^{-1}\left(h_{1}\right) \cdot \mu^{-1}\left(m_{(0)}\right)_{(-1)}\right)\right)\left(h_{2} \otimes x_{2}\right) \\
& \otimes R^{(1)} \cdot \mu^{-1}\left(\alpha^{-1}\left(h_{1}\right) \cdot \mu^{-1}\left(m_{(0)}\right)_{(0)}\right) \\
= & \left(\alpha^{2}\left(h_{1}\right) \otimes \beta^{2}\left(x_{1}\right)\right) \rightharpoonup m_{[-1]}\left(h_{2} \otimes x_{2}\right) \otimes\left(\alpha^{2}\left(h_{1}\right) \otimes \beta^{2}\left(x_{1}\right)\right) \rightharpoonup m_{[0]} .
\end{aligned}
$$

So $(M, \mu) \in \underset{H \otimes B}{H \otimes B Y \mathcal{D}}$. The proof is completed.
Proposition 3.6. Under hypotheses of Theorem 3.5, ${ }_{H}^{B} \mathbb{L}$ is a braided monoidal subcategory of ${ }_{H \otimes B}^{H \otimes B H \mathbb{H} \mathbb{D} \text {. }}$

Proof. It is sufficient to show that the braiding in the category ${ }_{H}^{B} \mathbb{L}$ is compatible to the braiding in ${ }_{H \otimes B}^{H \otimes B H Y D}$. In fact, for any $m \in(M, \mu)$ and $n \in(N, \nu)$, we have

$$
\begin{aligned}
C_{M, N}(m \otimes n) & =\left(\alpha^{2}\left(R^{(2)}\right) \otimes \beta^{-1}\left(m_{(-1)}\right)\right) \rightharpoonup v^{(-1)}(n) \otimes \alpha^{-1}\left(R^{(1)}\right) \cdot \mu^{-2}\left(m_{(0)}\right) \\
& =\left\langle\beta^{-1}\left(m_{(-1)}\right) \mid \beta^{-1}\left(n_{(-1)}\right)\right\rangle \alpha^{-1}\left(R^{(2)}\right) \cdot v^{-2}\left(n_{(0)}\right) \otimes \alpha^{-1}\left(R^{(1)}\right) \cdot \mu^{-2}\left(m_{(0)}\right) \\
& =\left\langle m_{(-1)} \mid n_{(-1)}\right\rangle R^{(2)} \cdot v^{-2}\left(n_{(0)}\right) \otimes R^{(1)} \cdot \mu^{-2}\left(m_{(0)}\right),
\end{aligned}
$$

as desired.This finishes the proof.

4. Symmetries in Hom-Long dimodule categories

In this section, we obtain a sufficient condition for the Hom-Long dimodule category ${ }_{H}^{B} \mathbb{L}$ to be symmetric.

Let C be a monoidal category and C a braiding on C. The braiding C is called a symmetry $[38,39]$ if $C_{Y, X} \circ C_{X, Y}=i d_{X \otimes Y}$ for all $X, Y \in C$, and the category C is called symmetric.

Proposition 4.1. Let (H, R, α) be a triangular Hom-Hopf algebra and (B, β) a Hom-Hopf algebra. Then the category ${ }_{H} \mathbb{M}$ of left (H, α)-Hom-modules is a symmetric subcategory of ${ }_{H}^{B} \mathbb{L}$ under the left (B, β)-comodule structure $\rho(m)=1_{B} \otimes \mu(m)$, where $m \in(M, \mu) \in_{H} \mathbb{M}$, and the braiding is defined as

$$
C_{M, N}: M \otimes N \rightarrow N \otimes M, m \otimes n \rightarrow R^{(2)} \cdot v^{-1}(n) \otimes R^{(1)} \cdot \mu^{-1}(m),
$$

for all $m \in(M, \mu) \in_{H} \mathbb{M}, n \in(N, v) \in_{H} \mathbb{M}$.
Proof. It is clear that (M, ρ, μ) is a left (B, β)-Hom-comodule under the left (B, β)-comodule structure given above. Now we check that the left (B, β)-comodule structure satisfies the compatible condition Eq (2.1). For this purpose, we take $h \in H, m \in(M, \mu) \in_{H} \mathbb{M}$, and calculate

$$
\rho(h \cdot m)=1_{B} \otimes \mu(h \cdot m)=1_{B} \otimes \alpha(h) \cdot \mu(m)=\beta\left(m_{(-1)}\right) \otimes \alpha(h) \cdot m_{(0)} .
$$

So, Eq (2.1) holds. That is, (M, ρ, μ) is an (H, B)-Hom-Long dimodule.
Next we verify that any morphism in ${ }_{H} \mathbb{M}$ is left (B, β)-colinear, too. Indeed, for any $m \in(M, \mu) \in$ ${ }_{H} \mathbb{M}$ and $n \in(N, v) \in{ }_{H} \mathbb{M}$. Assume that $f:(M, \mu) \rightarrow(N, v)$ is a morphism in ${ }_{H} \mathbb{M}$, then

$$
\left(i d_{B} \otimes f\right) \rho(m)=1_{B} \otimes f(\mu(m))=1_{B} \otimes v(f(m))=\rho(f(m)) .
$$

So f is left (B, β)-colinear, as desired. Therefore, ${ }_{H} \mathbb{M}$ is a subcategory of ${ }_{H}^{B} \mathbb{L}$.
Finally, we prove that ${ }_{H} \mathbb{M}$ is a symmetric subcategory of ${ }_{H}^{B} \mathbb{L}$. Since $C_{M, N}(m \otimes n)=R^{(2)} \cdot v^{-1}(n) \otimes$ $R^{(1)} \cdot \mu^{-1}(m)$, for all $m \in(M, \mu) \in_{H} \mathbb{M}$ and $n \in(N, v) \in_{H} \mathbb{M}$, we have

$$
\begin{aligned}
C_{N, M} \circ C_{M, N}(m \otimes n) & =C_{N, M}\left(R^{(2)} \cdot v^{-1}(n) \otimes R^{(1)} \cdot \mu^{-1}(m)\right) \\
& =r^{(2)} \cdot \mu^{-1}\left(R^{(1)} \cdot \mu^{-1}(m)\right) \otimes r^{(1)} \cdot v^{-1}\left(R^{(2)} \cdot v^{-1}(n)\right) \\
& =r^{(2)} \cdot\left(\alpha^{-1}\left(R^{(1)}\right) \cdot \mu^{-2}(m)\right) \otimes r^{(1)} \cdot\left(\alpha^{-1}\left(R^{(2)}\right) \cdot v^{-2}(n)\right) \\
& =\alpha^{-1}\left(r^{(2)} R^{(1)}\right) \cdot \mu^{-1}(m) \otimes \alpha^{-1}\left(r^{(1)} R^{(2)}\right) \cdot v^{-1}(n) \\
& =1_{H} \cdot \mu^{-1}(m) \otimes 1_{H} \cdot v^{-1}(n)=m \otimes n .
\end{aligned}
$$

It follows that the braiding $C_{M, N}$ is symmetric. The proof is completed.
Proposition 4.2. Let $(B,\langle\mid\rangle, \beta)$ be a cotriangular Hom-Hopf algebra and (H, α) a Hom-Hopf algebra. Then the category ${ }^{B} \mathbb{M}$ of left (B, β)-Hom-comodules is a symmetric subcategory of ${ }_{H}^{B} \mathbb{L}$ under the left (H, α)-module action $h \cdot m=\epsilon(h) \mu(m)$, where $h \in H, m \in(M, \mu) \in^{B} \mathbb{M}$, and the braiding is given by

$$
C_{M, N}: M \otimes N \rightarrow N \otimes M, m \otimes n \rightarrow\left\langle m_{(-1)} \mid n_{(-1)}\right\rangle \nu^{-2}\left(n_{(0)}\right) \otimes \mu^{-2}\left(m_{(0)}\right),
$$

for all $m \in(M, \mu) \in{ }^{B} \mathbb{M}, n \in(N, v) \in{ }^{B} \mathbb{M}$.

Proof. We first show that the left (H, α)-module action defined above forces (M, μ) to be a left (H, α) module, but this is easy to check. For the compatible condition Eq (2.1), we take $h \in H, m \in(M, \mu) \in$ ${ }^{B} \mathbb{M}$ and calculate as follows:

$$
\rho(h \cdot m)=1_{B} \otimes \mu(h \cdot m)=1_{B} \otimes \epsilon(h) \mu(m)=\beta\left(m_{(-1)}\right) \otimes \alpha(h) \cdot m_{(0)} .
$$

So, Eq (2.1) holds, as required. Therefore, (M, ρ, μ) is an (H, B)-Hom-Long dimodule.
Now we verify that any morphism in ${ }^{B} \mathbb{M}$ is left (H, α)-linear, too. Indeed, for any $m \in(M, \mu) \in{ }^{B} \mathbb{M}$ and $n \in(N, v) \in{ }^{B} \mathbb{M}$. Assume that $f:(M, \mu) \rightarrow(N, v)$ is a morphism in ${ }^{B} \mathbb{M}$, then

$$
f(h \cdot m)=f(\epsilon(h) \mu(m))=\epsilon(h) \mu(f(m))=h \cdot f(m) .
$$

So f is left (H, α)-linear, as desired. Therefore, ${ }^{B} \mathbb{M}$ is a subcategory of ${ }_{H}^{B} \mathbb{L}$.
Finally, we show that ${ }^{B} \mathbb{M}$ is a symmetric subcategory of ${ }_{H}^{B} \mathbb{L}$. Since $C_{M, N}(m \otimes n)=$ $\left\langle m_{(-1)} \mid n_{(-1)}\right\rangle v^{-1}\left(n_{(0)}\right) \otimes \mu^{-1}\left(m_{(0)}\right)$, for all $m \in(M, \mu) \in{ }^{B} \mathbb{M}$ and $n \in(N, v) \in{ }^{B} \mathbb{M}$, then

$$
\begin{aligned}
& C_{N, M} \circ C_{M, N}(m \otimes n) \\
= & \left\langle m_{(-1)} \mid n_{(-1)}\right\rangle C_{N, M}\left(v^{-1}\left(n_{(0)}\right) \otimes \mu^{-1}\left(m_{(0)}\right)\right) \\
= & \left\langle m_{(-1)} \mid n_{(-1)}\right\rangle\left\langle\beta^{-1}\left(n_{(0)(-1)}\right) \mid \beta^{-1}\left(m_{0(-1)}\right)\right\rangle\left(\mu^{-2}\left(m_{(0)(0)}\right) \otimes v^{-2}\left(n_{(0)(0)}\right)\right. \\
= & \left\langle\beta^{-1}\left(m_{(-1) 1}\right) \mid \beta^{-1}\left(n_{(-1) 1}\right)\right\rangle\left\langle\beta^{-1}\left(n_{(-1) 2}\right) \mid \beta^{-1}\left(m_{(-1) 2}\right)\right\rangle \mu^{-1}\left(m_{(0)}\right) \otimes v^{-1}\left(n_{(0)}\right) \\
= & \epsilon\left(m_{(-1)}\right) \epsilon\left(n_{(-1)}\right) \mu^{-1}\left(m_{(0)}\right) \otimes v^{-1}\left(n_{(0)}\right)=m \otimes n,
\end{aligned}
$$

where the fourth equality holds since $\langle\mid\rangle$ is β-invariant. It follows that the braiding $C_{M, N}$ is symmetric. The proof is completed.

Theorem 4.3. Let (H, α) be a triangular Hom-Hopf algebra and $(B,\langle\mid\rangle, \beta)$ a cotriangular Hom-Hopf algebra. Then the category ${ }_{H}^{B} \mathbb{L}$ is symmetric.

Proof. For any $m \in(M, \mu) \in{ }_{H}^{B} \mathbb{L}$ and $n \in(N, v) \in{ }_{H}^{B} \mathbb{L}$, we have

$$
\begin{aligned}
& C_{N, M} \circ C_{M, N}(m \otimes n) \\
= & \left\langle m_{(-1)} \mid n_{(-1)}\right\rangle C_{N, M}\left(R^{(2)} \cdot v^{-2}\left(n_{(0)}\right) \otimes R^{(1)} \cdot \mu^{-2}\left(m_{(0)}\right)\right) \\
= & \left\langle m_{(-1)} \mid n_{(-1)}\right\rangle\left\langle\beta\left(n_{(0)(-1)}\right) \mid \beta\left(m_{(0)(-1)}\right)\right\rangle \\
& \quad r^{(2)} \cdot \mu^{-2}\left(\alpha\left(R^{(1)}\right) \cdot \mu^{-2}\left(m_{(0)(0)}\right)\right) \otimes r^{(1)} \cdot v^{-2}\left(\alpha\left(R^{(2)}\right) \cdot v^{-2}\left(n_{(0)(0)}\right)\right) \\
= & \left\langle\beta ^ { - 1 } \left(m_{(-1) 1}\left|\beta^{-1}\left(n_{(-1) 1)}\right)\right\rangle\left\langle\beta^{-1}\left(n_{(-1) 2}\right) \mid \beta^{-1}\left(m_{(-1) 2}\right)\right\rangle\right.\right. \\
& \quad \alpha^{-1}\left(r^{(2)} R^{(1)}\right) \cdot \mu^{-2}\left(m_{(0)}\right) \otimes \alpha^{-1}\left(r^{(1)} R^{(2)}\right) \cdot v^{-2}\left(n_{(0)}\right) \\
= & \epsilon\left(m_{(-1)}\right) \epsilon\left(n_{(-1)}\right) 1_{H} \cdot \mu^{-2}\left(m_{(0)}\right) \otimes 1_{H} \cdot v^{-2}\left(n_{(0)}\right) \\
= & \epsilon\left(m_{(-1)}\right) \epsilon\left(n_{(-1)}\right) \mu^{-1}\left(m_{(0)}\right) \otimes v^{-1}\left(n_{(0)}\right) \\
= & m \otimes n,
\end{aligned}
$$

as desired. This finishes the proof.

5. New solutions of the Hom-Long equation

In this section, we will present a kind of new solutions of the Hom-Long equation.
Definition 5.1. Let (H, α) be a Hom-bialgebra and (M, μ) a Hom-module over (H, α). Then $R \in$ $\operatorname{End}(M \otimes M)$ is called the solution of the Hom-Long equation if it satisfies the nonlinear equation:

$$
\begin{equation*}
R^{12} \circ R^{23}=R^{23} \circ R^{12} \tag{5.1}
\end{equation*}
$$

where $R^{12}=R \otimes \mu, R^{23}=\mu \otimes R$.
Example 5.2. If $R \in \operatorname{End}(M \otimes M)$ is invertible, then it is easy to see that R is a solution of the Hom-Long equation if and only if R^{-1} is too.

Example 5.3. Let (M, μ) be an (H, α)-Hom-module with a basis $\left\{m_{1}, m_{2}, \cdots, m_{n}\right\}$. Assume that μ is given by $\mu\left(m_{i}\right)=a_{i} m_{i}$, where $a_{i} \in k, i=1,2, \cdots, n$. Define a map

$$
R: M \otimes M \rightarrow M \otimes M, \quad R\left(m_{i} \otimes m_{j}\right)=b_{i j} m_{i} \otimes m_{j}
$$

where $b_{i j} \in k, i, j=1,2,, \cdots, n$. Then R is a solution of Eq (5.1). Furthermore, if $a_{i}=1$, for all $i=1,2, \cdots, n$, then R is a solution of the classical Long equation.
Proposition 5.4. Let (M, μ) be an (H, α)-Hom-module with a basis $\left\{m_{1}, m_{2}, \cdots, m_{n}\right\}$. Assume that $R, S \in \operatorname{End}\left(M \otimes M, \mu \otimes \mu^{-1}\right)$ given by the matrix formula

$$
R\left(m_{k} \otimes m_{l}\right)=x_{k l}^{i j} m_{i} \otimes \mu^{-1}\left(m_{j}\right), \quad S\left(m_{k} \otimes m_{l}\right)=y_{k l}^{i j} m_{i} \otimes \mu^{-1}\left(m_{j}\right),
$$

and $\mu\left(m_{l}\right)=z_{l}^{i} m_{i}$, where $x_{k l}^{i j}, y_{k l}^{i j}, z_{l}^{i} \in k$. Then $S^{12} \circ R^{23}=R^{23} \circ S^{12}$ if and only if

$$
z_{u}^{i} x_{v w}^{j k} v_{i j}^{p q}=z_{i}^{p} x_{j w}^{q k} v_{u v}^{q j},
$$

for all $k, p, q, u, v, w=1,2, \cdots, n$. In particular, R is a solution of the Hom-Long equation if and only if

$$
z_{u}^{i} x_{v w}^{j k}{ }_{i j}^{p q}=z_{i}^{p} x_{j w}^{q k} x_{u v}^{i j} .
$$

Proof. According to the definition of R, S, μ, we have

$$
\begin{aligned}
S^{12} \circ R^{23}\left(m_{u} \otimes m_{v} \otimes m_{w}\right) & =S^{12}\left(z_{u}^{i} m_{i} \otimes x_{v w}^{j k} m_{j} \otimes \mu^{-1}\left(m_{k}\right)\right) \\
& =z_{u}^{i} x_{v w}^{j k} y_{i j}^{p q}\left(m_{p} \otimes \mu^{-1}\left(m_{q}\right) \otimes m_{k}\right), \\
R^{23} \circ S^{12}\left(m_{u} \otimes m_{v} \otimes m_{w}\right) & =R^{23}\left(y_{u v}^{i j} m_{i} \otimes \mu^{-1}\left(m_{j}\right) \otimes m_{w}\right) \\
& =y_{u v}^{i j} z_{i}^{p} x_{j w}^{q k}\left(m_{p} \otimes \mu^{-1}\left(m_{q}\right) \otimes m_{k}\right) .
\end{aligned}
$$

It follows that $S^{12} \circ R^{23}=R^{23} \circ S^{12}$ if and only if $z_{u}^{i} x_{v w}^{j k} y_{i j}^{p q}=z_{i}^{p} x_{j w}^{q k} y_{u v}^{i j}$. Furthermore, $R^{12} \circ R^{23}=R^{23} \circ R^{12}$ if and only if $z_{u}^{i} x_{v w}^{j k} x_{i j}^{p q}=z_{i}^{p} x_{j w}^{q k} x_{u v}^{i j}$. The proof is completed.

In the following proposition, we use the notation: for any $F \in \operatorname{End}(M \otimes M)$, we denote $F^{12}=$ $F \otimes \mu, F^{23}=\mu \otimes F, F^{13}=(i d \otimes \tau) \circ(F \otimes \mu) \circ(i d \otimes \tau)$, and $\tau^{(123)}(x \otimes y \otimes z)=(z, x, y)$.

Proposition 5.5. Let (M, μ) be an (H, α)-Hom-module and $R \in \operatorname{End}(M \otimes M)$. The following statements are equivalent:
(1) R is a solution of the Hom-Long equation.
(2) $U=\tau \circ R$ is a solution of the equation:

$$
U^{13} \circ U^{23}=\tau^{(123)} \circ U^{13} \circ U^{12} .
$$

(3) $T=R \circ \tau$ is a solution of the equation:

$$
T^{12} \circ T^{13}=T^{23} \circ T^{13} \circ \tau^{(123)} .
$$

(4) $W=\tau \circ R \circ \tau$ is a solution of the equation:

$$
\tau^{(123)} \circ W^{23} \circ W^{13}=W^{12} \circ W^{13} \circ \tau^{(123)} .
$$

Proof. We just prove(1) \Leftrightarrow (2), and similar for (1) \Leftrightarrow (3) and (1) \Leftrightarrow (4). Since $R=\tau \circ U, R$ is a solution of the Hom-Long equation if and only if $R^{12} \circ R^{23}=R^{23} \circ R^{12}$, that is,

$$
\begin{equation*}
\tau^{12} \circ U^{12} \circ \tau^{23} \circ U^{23}=\tau^{23} \circ U^{23} \circ \tau^{12} \circ U^{12} \tag{5.2}
\end{equation*}
$$

While $\tau^{12} \circ U^{12} \circ \tau^{23}=\tau^{23} \circ \tau^{13} \circ U^{13}$ and $\tau^{23} \circ U^{23} \circ \tau^{12}=\tau^{23} \circ \tau^{12} \circ U^{13},(5.2)$ is equivalent to

$$
\tau^{23} \circ \tau^{13} \circ U^{13} \circ U^{23}=\tau^{23} \circ \tau^{12} \circ U^{13} \circ U^{12}
$$

which is equivalent to $U^{13} \circ U^{23}=\tau^{(123)} \circ U^{13} \circ U^{12}$ from the fact $\tau^{23} \circ \tau^{12}=\tau^{(123)}$.
Next we will present a new solution for Hom-Long equation by the Hom-Long dimodule structures. For this, we give the notion of (H, α)-Hom-Long dimodules.
Definition 5.6. Let (H, α) be a Hom-bialgebra. A left-left (H, α)-Hom-Long dimodule is a quadruple (M, \cdot, ρ, μ), where (M, \cdot, μ) is a left (H, α)-Hom-module and (M, ρ, μ) is a left (H, α)-Hom-comodule such that

$$
\begin{equation*}
\rho(h \cdot m)=\alpha\left(m_{(-1)}\right) \otimes \alpha(h) \cdot m_{0}, \tag{5.3}
\end{equation*}
$$

for all $h \in H$ and $m \in M$.
Remark 5.7. Clearly, left-left (H, α)-Hom-Long dimodules is a special case of (H, B)-Hom-Long dimodules in Definition 2.1 by setting $(H, \alpha)=(B, \beta)$.

Example 5.8. Let (H, α) be a Hom-bialgebra and (M, \cdot, μ) be a left (H, α)-Hom-module. Define a left (H, α)-Hom-module structure and a left (H, α)-Hom-comodule structure on $(H \otimes M, \alpha \otimes \mu$) as follows:

$$
h \cdot(g \otimes m)=\alpha(g) \otimes h \cdot \mu(m), \quad \rho(g \otimes m)=g_{1} \otimes g_{2} \otimes \mu(m),
$$

for all $h, g \in H$ and $m \in M$. Then $(H \otimes M, \alpha \otimes \mu)$ is an (H, α)-Hom-Long dimodule.
Example 5.9. Let (H, α) be a Hom-bialgebra and (M, ρ, μ) be a left ($H, \alpha)$-Hom-comodule. Define a left (H, α)-Hom-module structure and be a left (H, α)-Hom-comodule structure on $(H \otimes M, \alpha \otimes \mu)$ as follows:

$$
h \cdot(g \otimes m)=h g \otimes \mu(m), \quad \rho(g \otimes m)=m_{(-1)} \otimes \alpha(g) \otimes m_{0},
$$

for all $h, g \in H$ and $m \in M$. Then $(H \otimes M, \alpha \otimes \mu)$ is an (H, α)-Hom-Long dimodule.
Theorem 5.10. Let (H, α) be a Hom-bialgebra and (M, \cdot, ρ, μ) be a (H, α)-Hom-Long dimodule. Then the map

$$
\begin{equation*}
R_{M}: M \otimes M \rightarrow M \otimes M, \quad m \otimes n \mapsto n_{(-1)} \cdot m \otimes n_{0}, \tag{5.4}
\end{equation*}
$$

is a solution of the Hom-Long equation, for any $m, n \in M$.
Proof. For any $l, m, n \in M$, we calculate

$$
\begin{aligned}
R_{M}^{12} \circ R_{M}^{23}(l \otimes m \otimes n) & =R_{M}^{12}\left(\mu(l) \otimes n_{(-1)} \cdot m \otimes n_{0}\right) \\
& =\left(n_{(-1)} \cdot m\right)_{(-1)} \cdot \mu(l) \otimes\left(n_{(-1)} \cdot m\right)_{0} \otimes \mu\left(n_{0}\right) \\
& =\alpha\left(m_{(-1)}\right) \cdot \mu(l) \otimes \alpha\left(n_{(-1)}\right) \cdot m_{0} \otimes \mu\left(n_{0}\right), \\
R_{M}^{23} \circ R_{M}^{12}(l \otimes m \otimes n) & =R_{M}^{23}\left(m_{(-1)} \cdot l \otimes m_{0} \otimes \mu(n)\right) \\
& \left.=\mu\left(m_{(-1)} \cdot l\right) \otimes \alpha\left(n_{(-1)}\right)\right) \cdot m_{0} \otimes \mu\left(n_{0}\right) \\
& =\alpha\left(m_{(-1)}\right) \cdot \mu(l) \otimes \alpha\left(n_{(-1)}\right) \cdot m_{0} \otimes \mu\left(n_{0}\right) .
\end{aligned}
$$

So we have $R_{M}^{12} \circ R_{M}^{23}=R_{M}^{23} \circ R_{M}^{12}$, as desired. And this finishes the proof.

Acknowledgement

The work of S. Wang is supported by the Anhui Provincial Natural Science Foundation (No. 1908085MA03) and the Key University Science Research Project of Anhui Province (No. KJ2020A0711). The work of X. Zhang is supported by the NSF of China (No. 11801304) and the Young Talents Invitation Program of Shandong Province. The work of S. Guo is supported by the NSF of China (No. 12161013) and Guizhou Provincial Science and Technology Foundation (No. [2019]1050).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. J. Hartwig, D. Larsson, S. Silvestrov, Deformations of Lie algebras using σ-derivations, J. Algebra, 295 (2006), 314-361. https://doi.org/10.1016/j.jalgebra.2005.07.036
2. N. Hu, q-Witt algebras, q-Lie algebras, q-holomorph structure and representations, Algebr. Colloq, 6 (1999), 51-70.
3. A. Makhlouf, S. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl., 2 (2008), 51-64. https://doi.org/10.4303/jglta/S070206
4. A. Makhlouf, S. Silvestrov, Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras, J. Gen. Lie Theory in Mathematics, Physics and beyond., Springer-Verlag, Berlin, 2009, pp. 189-206. https://doi.org/10.1007/978-3-540-85332-9-17
5. A. Makhlouf, S. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra Appl., 9 (2010), 553589. https://doi.org/10.1142/S0219498810004117
6. S. Caenepeel, I. Goyvaerts, Monoidal Hom-Hopf algebras, Comm. Algebra, 39 (2011), 22162240. https://doi.org/10.1080/00927872.2010.490800
7. Y. Chen, X. Zhou, Separable and Frobenius monoidal Hom-algebras, Colloq. Math., 137 (2014), 229-251. https://doi.org/10.4064/cm137-2-8
8. A. Gohr, On hom-algebras with surjective twisting, J. Algebra, 324 (2010), 1483-1491. https://doi.org/10.1016/j.jalgebra.2010.05.003
9. T. Ma, H. Li, T. Yang, Cobraided smash product Hom-Hopf algebras, Colloq. Math., 134 (2014), 75-92. https://doi.org/10.4064/cm134-1-3
10. X. Zhang, L. Dong, Braided mixed datums and their applications on Hom-quantum groups, Glasg. Math. J., 2018, 60 (2018), 231-251. https://doi.org/10.1017/S0017089517000088
11. D. Yau, The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras, J. Phys. A, 42 (2009), 165202. https://doi.org/10.1088/1751-8113/42/16/165202
12. D. Yau, Hom-quantum groups I: Quasi-triangular Hom-bialgebras, J. Phys. A, 45 (2012), 065203. https://doi.org/10.1088/1751-8113/45/6/065203
13. X. Fang, W. Liu, Solutions of the BiHom-Yang-Baxter equation, Sbornik: Mathematics, 209 (2018), 901-918. https://doi.org/10.1070/SM8863
14. S. Wang, S. Guo, BiHom-Lie superalgebra structures and BiHom-Yang-Baxter equations, $A d v$. Appl. Clifford Algebr., 30 (2020), Art. 35, 18 pp. https://doi.org/10.1007/s00006-020-01060-0
15. D. Yau, The Hom-Yang-Baxter equation and Hom-Lie algebras, J. Math. Phys., 52 (2011), 053502. https://doi.org/10.1063/1.3571970
16. Y. Chen, Z. Wang, L. Zhang, Quasitriangular Hom-Hopf algebras, Colloq. Math., 137 (2014), 67-88. https://doi.org/10.4064/cm137-1-5
17. X. Zhang, S. Guo, S. Wang, Drinfeld codoubles of Hom-Hopf algebras, Adv. Appl. Clifford Algebr., 29 (2019), Art. 36, 26 pp. https://doi.org/10.1007/s00006-019-0949-0
18. X. Zhang, W. Wang, X. Zhao, Smash coproducts of monoidal comonads and Hom-entwining structures, Rocky Mountain J. Math., 49 (2019), 2063-2105. https://doi.org/10.1216/RMJ-2019-49-6-2063
19. L. Liu, B. Shen, Radford's biproducts and Yetter-Drinfeld modules for monoidal Hom-Hopf algebras, J. Math. Phys., 55 (2014), 031701. https://doi.org/10.1063/1.4866760
20. T. Ma, L. Liu, L. Chen, Symmetries of (m, n)-Yetter-Drinfeld categories, J. Algebra Appl., 17 (2018), 1850135. https://doi.org/10.1142/S0219498818501359
21. T. Ma, Y. Wang, L. Liu, Generalized Radford biproduct Hom-Hopf algebras and related braided tensor categories, J. Math., 37 (2017), 1161-1172.
22. T. Ma, H. Yang, L. Liu, Q. Chen, On unified Hom-Yetter-Drinfeld categories, J. Geom. Phys., 144 (2019), 81-107. https://doi.org/10.1016/j.geomphys.2019.05.015
23. A. Makhlouf, F. Panaite, Yetter-Drinfeld modules for Hom-bialgebras, J. Math. Phys., 55 (2014), 013501. https://doi.org/10.1063/1.4858875
24. M. You, S. Wang, Constructing new braided T-categories over monoidal Hom-Hopf algebras, J. Math. Phys., 2014, 55 (2014), 111701. https://doi.org/10.1063/1.4900824
25. Z. Wang, Y. Chen, L. Zhang, The antipode and Drinfel'd double of Hom-Hopf algebras, Sci. Sin. Math., 42 (2012), 1079-1093. https://doi.org/10.1360/012011-138
26. Y. Chen, L. Zhang, The category of Yetter-Drinfel'd Hom-modules and the quantum Hom-YangBaxter equation, J. Math. Phys., 55 (2014), 031702. https://doi.org/10.1063/1.4868964
27. G. Militaru, The Long dimodules category and nonlinear equations, Algebr. Represet. Theor., 1999, 2 (1999), 177-200. https://doi.org/10.1023/A:1009905324871
28. Y. Chen, Z. Wang, L. Zhang. The FRT-type theorem for the Hom-Long equation. Comm. Algebra, 41 (2013), 3931-3948. https://doi.org/10.1080/00927872.2013.781614
29. S. Wang, N. Ding, New braided monoidal categories over monoidal Hom-Hopf algebras, Colloq. Math., 146 (2017), 77-97. https://doi.org/10.4064/cm6706-11-2015
30. S. Wang, New Turaev braided group categories and group Schur-Weyl duality, Appl. Categor. Struct., 21 (2013), 141-166. https://doi.org/10.1007/s10485-011-9263-2
31. F. Long, The brauer group of dimodule algebras, J. Algebra, 1974, 30 (1974), 559-601. https://doi.org/10.1016/0021-8693(74)90224-5
32. D. Lu, Braided Yang-Baxter operators, Comm. Algebra, 27 (1999), 2503-2509. https://doi.org/10.1080/00927879908826576
33. L. Zhang, Long bialgebras, dimodule algebras and quantum Yang-Baxter modules over Long bialgebras, Acta Math. Sin., 22 (2006), 1261-1270. https://doi.org/10.1007/s10114-005-0683-5
34. D. Radford, Hopf Algebras, K \& E Series on Knots and Everything, Vol. 49, World Scientific, New Jersey, 2012.
35. M. E. Sweedler, Hopf algebras, Benjamin, New York, 1969.
36. H. Li, T. Ma, A construction of the Hom-Yetter-Drinfeld category, Colloq. Math., 2014, 137 (2014), 43-65. https://doi.org/10.4064/cm137-1-4
37. D. Yau, Module Hom-algebras, arXiv:0812.4695v1.
38. C. Kassel, Quantum groups, Springer-Verlag, New York, 1995.
39. A. Joyal, R. Street, Braided tensor categories, Adv. Math., 102 (1993), 20-78. https://doi.org/10.1006/aima.1993.1055
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
