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Abstract: In this paper, we consider the three-dimensional non-autonomous micropolar equations
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1. Introduction

In this paper, we study the following 3D non-autonomous micropolar equations with a damping
term 

ut + (u · ∇)u − (ν + κ)∆u + σ|u|β−1u + ∇p = 2κ∇ × w + f (x, t),
wt + (u · ∇)w + 4κw − γ∆w − µ∇∇ · w = 2κ∇ × u + g(x, t),
∇ · u = 0,
u(x, t)|t=τ = uτ,w(x, t)|t=τ = wτ,

(1.1)

where (x, t) ∈ T3 × [τ,+∞) and τ ∈ R. T3 ⊂ R3 is a periodic domain. In system (1.1), the fluid
velocity and the micro-rotational velocity are represented by u = u(x, t) and w = w(x, t), respectively.
p = p(x, t) is the scalar pressure. f = f (x, t) and g = g(x, t) denote the given external forces. ν, κ and
σ denote kinematic viscosity, micro-rotational viscosity and damping coefficient, respectively, which
are all positive constants. β ≥ 1 is a constant. γ and µ, representing the angular viscosities, are also
positive constants. For convenience, let ν = κ = γ = µ = σ = 1.
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Eringen firstly introduced microfluids in [4] and showed a complete theory for micropolar fluids in
[5]. For physical background and mathematical theory, we can refer [12] and [18]. Galdi and Rionero
proved the existence and uniqueness of weak solutions for the micropolar equations in [6]. In [24], the
existence of strong solution for 3D micropolar equations was proved for β = 3 and 4σ(ν + κ) > 1 or
β > 3. And there were also many works with magneto-micropolar equations, we can refer [9–11, 20].
In [20], global well-posedness of a 3D MHD system was studied in porous media.

As w = 0, Eqs (1.1) are Navier-Stokes equations. Cai and Jiu [1] firstly considered 3D incompress-
ible Navier-Stokes equations with damping α|u|β−1u and they proved the existence of weak solution
with β ≥ 1 as well as strong solution with β ≥ 7

2 , and uniqueness for strong solution with 7
2 ≤ β ≤ 5.

In [25], the regularity and uniqueness for three-dimensional incompressible Navier-Stokes system with
damping term were studied. The generalized Navier-Stokes equations with damping were researched
in [13] and the existence of weak solution was proved in Rn, n ≥ 2. The uniform global attractor
and trajectory attractor for 3D Navier-Stokes equations were considered in [3]. In [8], L2 decay of
weak solutions for β > 2 with α > 0 and the asymptotic stability of the solution to incompressible
Navier-Stokes equations with damping for β > 3 with α > 0 or β = 3 with α ≥ 3

2 were proved.
In this paper, we devote to research pullback attractors for three-dimensional non-autonomous

micropolar equations (1.1) with damping term. Recently, attractors have been interested many au-
thors [2, 7, 10, 17, 19, 21–23]. Caraballo, Lukaszewicz and Real considered pullback attractors of
two-dimensional Navier-Stokes system in [2]. In [7], the existence of pullback attractors for nonau-
tonomous reaction-diffusion equation was proved in Rn, n ≥ 3. In [17], the existence of pullback
attractors for 3D Navier-Stokes problem with damping was proved in V and H2 for 3 < β ≤ 5. In [19],
Sun and Li have studied global pullback attractors and pullback exponential attractors for the 2D non-
autonomous micropolar fluid system. Global attractor of the 3D magnetohydrodynamics equations
with damping was considered in [10]. However, the existence of pullbackD-attractors for Eqs (1.1) is
not obtained in V1 × V2 and H2 × H2.

To obtain our main results, we need to deal with nonlinear terms (u · ∇)u, (u · ∇)w and σ|u|β−1u.
Hence, we should show some estimates by using Sobolev and uniform Gronwall inequalities. To prove
the existence of pullbackD-attractors, we should restrict 3 < β < 5 from (3.20) and (3.47).

In this paper, the structure is organized as follows. In section 2, some definitions as well as notions
are recalled and our main results are given. In section 3, we show some estimates to overcome the
difficulties of nonlinear terms. In section 4, the existence of pullback D-attractors for Eqs (1.1) is
proved in V1 × V2 and H2 × H2 with 3 < β < 5.

2. Preliminaries

In this section, we will show some definitions and lemmas. We also give some notions and assump-
tions which we will use in the following. Finally, we give our main results.

Firstly, assumed X is a complete metric space, P(X) represents the family of all nonempty subsets
of X andD is a nonempty class of parameterized sets D̂ = {D(t) : t ∈ R} ⊂ P(X). In the following, we
give the definition of pullbackD-attractor which we can refer [17] to get.

Definition 2.1. A family Â = {A(t) : t ∈ R} ⊂ P(X) is called a pullback D-attractor for the process
{U(t, τ)}t≥τ in X, if
(1) A(t) is compact for every t ∈ R,
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(2) Â is invariant, that is, U(t, τ)A(τ) = A(t), for −∞ < τ ≤ t < +∞,
(3) Â is pullbackD-attracting, that is,

lim
τ→−∞

dist(U(t, τ)D(τ), A(t)) = 0, ∀D̂ ∈ D and ∀t ∈ R.

And Â is said to be minimal if A(t) ⊂ C(t) for any family Ĉ = {C(t); t ∈ R} ⊂ P(X) of closed sets
such that for any B̂ ∈ D,

lim
τ→−∞

dist(U(t, τ)B(τ),C(t)) = 0.

In following, we give lemmas and definitions which we can refer [17], and these play important
roles in the proof of our main results.

Definition 2.2. Assumed X is a complete metric space, a two-parameter family {U(t, τ) : −∞ < τ ≤
t < +∞} of mapping U(t, τ) : X → X, t ≥ τ, τ ∈ R is called evolutionary process if
(1) U(t, s)U(s, τ) = U(t, τ), for all τ ≤ s ≤ t,
(2) U(τ, τ) = Id is identity operator for all τ ∈ R.

Lemma 2.3. Assume {U(t, τ)}t≥τ is a process in X satisfying the following conditions
(1) {U(t, τ)}t≥τ is norm-to-weak continuous in X,
(2) there exists a family B̂ of pullbackD-absorbing sets {B(t); t ∈ R} in X,
(3) {U(t, τ)}t≥τ is pullbackD-asymptotically compact.
Then there exists a minimal pullbackD-attractor Â = {A(t) : t ∈ R} in X given by

A(t) =
⋂
s≤t

⋃
τ≤s

U(t, τ)B(τ).

Definition 2.4. It is said that a process U(t, τ) is norm-to-weak continuous on X if for all t, τ ∈ R with
t ≥ τ and for any sequence xn ∈ X,

xn → x strongly in X ⇒ U(t, τ)xn ⇀ U(t, τ)x weakly in X,

where→ and⇀ represent strong convergence and weak convergence, respectively.

And we can easily get that it is norm-to-weak continuous process as it is a continuous process.
Next, we give the following lemma which can help us complete the proof of norm-to-weak contin-

uous.

Lemma 2.5. Assume X, Y are two Banach spaces. Let X∗, Y∗ be dual spaces of X and Y, respectively.
Suppose that X is dense in Y, the injection i : X → Y is continuous, its adjoint i∗ : Y∗ → X∗ is
dense, and {U(t, τ)}t≥τ is a norm-to-weak continuous process on Y. Then {U(t, τ)}t≥τ is a norm-to-weak
continuous process on X if and only if U(t, τ) maps compact sets of X into bounded sets of X, for every
τ ∈ R and t ≥ τ.

Definition 2.6. B̂ ∈ D is said to be pullbackD-absorbing for the process {U(t, τ)}t≥τ, if for every t ∈ R
and D̂ ∈ D, there exists a τ0(t, D̂) ≤ t such that U(t, τ)D(τ) ⊂ B(t) for every τ ≤ τ0(t, D̂).
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Definition 2.7. It is said that the process {U(t, τ)}t≥τ is a pullback D-asymptotically compact, if se-
quence {U(t, τn)xn}

∞
n=1 is relatively compact in X for all t ∈ R, D̂ ∈ D and every sequence τn → −∞ as

well as xn ∈ D(τn).

In the following, we give notions of function spaces

V1 = {u ∈ (C∞(T3))3 : divu = 0,
∫
T3

udx = 0},

V2 = {w ∈ (C∞(T3))3 :
∫
T3

wdx = 0},

H1 = the closure of V1 in (L2(T3))3,

H2 = the closure of V2 in (L2(T3))3,

V1 = the closure of V1 in (H1(T3))3,

V2 = the closure of V2 in (H1(T3))3.

Let the norm of the space (Lp(T3))3 be represented by ∥ · ∥p, particularly, ∥ · ∥ represents the norm
of the space H1 and the space H2. H s means the usual Sobolev space and its norm ∥ · ∥Hs = ∥A

s
2 · ∥,

particularly, as s = 2, ∥ · ∥H2 = ∥A · ∥.
In the periodic space, we recall that

Lemma 2.8. [14] The Leray projector P on the torus and on the whole space commutes with any
derivative:

P(∂ ju) = ∂ jPu, j = 1, 2, 3, (2.1)

for all u ∈ Ḣ1.

In the following, let

Au = −P∆u = −∆u, Aw = −∆w, ∀(u,w) ∈ H2 × H2,

B(u) = B(u, u) = P((u · ∇)u), B(u,w) = (u · ∇)w, ∀(u,w) ∈ V1 × V2,

where P represents the Helmholtz-Leray orthogonal projection from (L2(T3))3 onto H1 and Pu = u on
the torus. Then we can rewrite the Eqs (1.1) as following

ut + B(u) + 2Au +G(u) = 2∇ × w + f ,
wt + B(u,w) + 4w + Aw − ∇∇ · w = 2∇ × u + g,
∇ · u = 0,
u(x, t)|t=τ = uτ,w(x, t)|t=τ = wτ,

(2.2)

where let G(u) = P|u|β−1u.
In this paper, to complete our proof, we should assume

f ∈ L2
loc(R; H1), g ∈ L2

loc(R; H2),

and

∂ f
∂t
= ft ∈ L2

b(R; H1),
∂g
∂t
= gt ∈ L2

b(R; H2),
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where L2
b(R; H1) represents the collection of functions that are translation bounded in L2

loc(R; H1). Note
that function f (t) is translation bounded in L2

loc(R; H1) if

∥ f ∥2L2
b
= ∥ f ∥2L2

b(R;H1) = sup
t∈R

∫ t+1

t
∥ f (s)∥2ds < ∞.

And for L2
b(R; H2), we have similar definition.

We also assume f (x, t) is uniformly bounded in H1, g(x, t) is uniformly bounded in H2, that is, there
exists a positive constant C such that

sup
t∈R

(∥ f (t)∥2 + ∥g(t)∥2) ≤ C.

Please note that C is a positive constant and it could mean different numbers in different places.
Further suppose that f (x, t) and g(x, t) satisfy following inequalities

G1(t) :=
∫ t

−∞

eλs(∥ f (s)∥2 + ∥g(s)∥2)ds < ∞, (2.3)

G2(t) :=
∫ t

−∞

∫ s

−∞

eλr(∥ f (r)∥2 + ∥g(r)∥2)drds < ∞, (2.4)

for any t ∈ R, where λ is given in the following.
Next, letD be the class of all families D̂ = {D(t) : t ∈ R} ⊂ P((H1(T3))3) such that

lim
t→−∞

eλt[D(t)] = 0, (2.5)

where [D(t)] = sup{∥u(t)∥2V1
+ ∥w(t)∥2V2

: u,w ∈ D(t)} and λ > 0 is given in the following.
And we can use the Poincaré inequality, i.e., there exists a constant λ > 0 such that

λ(∥u(t)∥2 + ∥w(t)∥2) ≤ ∥∇u(t)∥2 + ∥∇w(t)∥2, ∀(u,w) ∈ V1 × V2, (2.6)

where λ is the minimum of the first eigenvalues of Stokes operators Au and Aw.
Then, we give our main theorems.

Theorem 2.9. Suppose (2.3)-(2.5) hold, f ∈ L2
loc(R; H1), g ∈ L2

loc(R; H2), ft ∈ L2
b(R; H1) and gt ∈

L2
b(R; H2). Let 3 < β < 5 and τ ∈ R, then there exists a pullback D-attractor A1 of the process
{U(t, τ)}t≥τ for system (1.1) in V1 × V2.

Theorem 2.10. Suppose (2.3)-(2.5) hold, f ∈ L2
loc(R; H1), g ∈ L2

loc(R; H2), ft ∈ L2
b(R; H1) and gt ∈

L2
b(R; H2). Let 3 < β < 5 and τ ∈ R, then {U(t, τ)}t≥τ for system (1.1) has a pullbackD-attractorA2 in

H2 × H2.

Now, let recall the existence of weak and strong solutions for Eqs (1.1).

Theorem 2.11. Suppose f ∈ L2
b(R; H1), g ∈ L2

b(R; H2), uτ ∈ H1, wτ ∈ H2 and β ≥ 1. Then for every
given T > τ, there exist at least one solution (u,w) of (2.2),

u ∈ L∞(τ,T ; H1) ∩ L2(τ,T ; V1) ∩ Lβ+1(τ,T ; (Lβ+1(T3))3), (2.7)
w ∈ L∞(τ,T ; H2) ∩ L2(τ,T ; V2). (2.8)
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Proof. In [1], the existence of weak solution for Navier-Stoke equations with damping has been proved,
we can use the similar proof to get the existence of weak solutions for Eqs (2.2) and omit it. □

We say that (u,w) is a strong solution of (1.1), if it is a weak solution of (1.1), and satisfies

u ∈ L∞(τ,T ; V1) ∩ L2(τ,T ; H2) ∩ L∞(τ,T ; (Lβ+1(T3))3), (2.9)
w ∈ L∞(τ,T ; V2) ∩ L2(τ,T ; H2). (2.10)

Theorem 2.12. Suppose β > 3, f ∈ L2
b(R; H1), g ∈ L2

b(R; H2), uτ ∈ V1 ∩ (Lβ+1(T3))3 and wτ ∈ V2. Then
there exists a strong solution (u,w) of Eqs (1.1),

u ∈ L∞(τ,T ; V1) ∩ L2(τ,T ; H2) ∩ L∞(τ,T ; (Lβ+1(T3))3), (2.11)
w ∈ L∞(τ,T ; V2) ∩ L2(τ,T ; H2), (2.12)

∇u|u|
β−1

2 ∈ L2(τ,T ; H1), ut ∈ L2(τ,T ; H1), wt ∈ L2(τ,T ; H2). (2.13)

Proof. Due to [24], we can take similar method to prove the existence of strong solution for Eqs (1.1)
and omit it. □

3. Estimates of solutions

In this section, some estimates will be given. These estimates play an important role in the proof of
our main results. In the following, we give some lemmas we will use.

Lemma 3.1. Assume (2.3)-(2.5) hold, f ∈ L2
loc(R; H1) and g ∈ L2

loc(R; H2). Let 3 < β < 5 and
τ ∈ R, and (u,w) be the solution of system (1.1). For every t ∈ R and D̂ ∈ D, there exists a constant
τ0 = τ0(t, D̂) < t such that

∥u(t)∥2 + ∥w(t)∥2 ≤ Ce−λtG1(t), (3.1)

and ∫ t

τ

eλs(∥∇u(s)∥2 + ∥∇w(s)∥2 + ∥∇ · w(s)∥2 + ∥u(s)∥β+1
β+1)ds ≤ C(G1(t) +G2(t)), (3.2)

for every uτ ∈ D(τ), wτ ∈ D(τ) and τ ≤ τ0(t, D̂).

Proof. Multiplying the first equation and the second equation of (2.2) by u and w, respectively, and
integrating over T3, we can have

1
2

d
dt

(∥u(t)∥2 + ∥w(t)∥2) + 2∥∇u(t)∥2 + ∥∇w(t)∥2 + 4∥w(t)∥2

+ ∥∇ · w(t)∥2 + ∥u(t)∥β+1
β+1)

≤
3
2
∥∇u(t)∥2 +

1
2
∥∇w(t)∥2 + 4∥w(t)∥2 +

1
2λ

(∥ f (t)∥2 + ∥g(t)∥2).

(3.3)

So, we easily get

d
dt

(∥u(t)∥2 + ∥w(t)∥2) + ∥∇u(t)∥2 + ∥∇w(t)∥2 + 2∥∇ · w(t)∥2 + 2∥u(t)∥β+1
β+1

≤
1
λ

(∥ f (t)∥2 + ∥g(t)∥2),
(3.4)
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and
d
dt

(∥u(t)∥2 + ∥w(t)∥2) + λ(∥u(t)∥2 + ∥w(t)∥2) ≤
1
λ

(∥ f (t)∥2 + ∥g(t)∥2). (3.5)

Multiplying (3.5) by eλt and integrating over [τ, t], then we obtain

eλt(∥u(t)∥2 + ∥w(t)∥2) ≤ eλτ(∥uτ∥2 + ∥wτ∥2) +
1
λ

∫ t

−∞

eλs(∥ f (s)∥2 + ∥g(s)∥2)ds. (3.6)

Due to uτ ∈ D(τ) and wτ ∈ D(τ), for any t ∈ R, we can have there exists a constant τ0 ≤ t such that

eλτ(∥uτ∥2 + ∥wτ∥2) ≤
1
λ

G1(t), ∀τ ≤ τ0, (3.7)

where τ0 =
1
λ

ln
∫ t
−∞

eλs(∥ f (s)∥2+∥g(s)∥2)ds
λ(∥uτ∥2+∥wτ∥2) .

So we easily get

∥u(t)∥2 + ∥w(t)∥2 ≤
2
λ

e−λtG1(t). (3.8)

Integrating (3.6) over [τ, t], we have∫ t

τ

eλs(∥u(s)∥2 + ∥w(s)∥2)ds ≤
2
λ

G2(t). (3.9)

Multiplying (3.4) by eλt and integrating over [τ, t], then using (3.9), we can get∫ t

τ

eλs(∥∇u(s)∥2 + ∥∇w(s)∥2 + ∥∇ · w(s)∥2 + ∥u(s)∥β+1
β+1)ds ≤ C(G1(t) +G2(t)). (3.10)

By (3.8) and (3.10), the proof of Lemma 3.1 is completed. □

Lemma 3.2. Under the assumption of Lemma 3.1. For every t ∈ R and D̂ ∈ D, then there exists a
constant τ1 = τ1(t, D̂) such that for every τ ≤ τ1 and uτ ∈ D(τ), wτ ∈ D(τ),∫ t

t−1
eλs(∥u(s)∥2 + ∥w(s)∥2)ds ≤ CG2(t), (3.11)

and ∫ t

t−1
eλs(∥∇u(s)∥2 + ∥∇w(s)∥2 + ∥∇ · w(s)∥2 + ∥u(s)∥β+1

β+1)ds ≤ C(G1(t) +G2(t)). (3.12)

Proof. Multiplying (3.5) by eλt and integrating over [τ, s], then we can have for any s ∈ [t − 1, t], there
exists a constant τ1 ≡ τ0 − 1 < t − 1, such that for every τ ≤ τ1,

eλs(∥u(s)∥2 + ∥w(s)∥2)

≤eλτ(∥uτ∥2 + ∥wτ∥2) +
1
λ

∫ s

τ

eλr(∥ f (r)∥2 + ∥g(r)∥2)dr

≤eλτ(∥uτ∥2 + ∥wτ∥2) +
1
λ

∫ t

−∞

eλs(∥ f (s)∥2 + ∥g(s)∥2)ds

≤
2
λ

G1(t).

(3.13)
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Integrating (3.13) over [t − 1, t] with respect to s, we can obtain∫ t

t−1
eλs(∥u(s)∥2 + ∥w(s)∥2)ds ≤

2
λ

G2(t). (3.14)

Multiplying (3.4) by eλt and integrating over [t − 1, t], then using (3.14), we can have for every
τ ≤ τ1, ∫ t

t−1
eλs(∥∇u(s)∥2 + ∥∇w(s)∥2 + ∥∇ · w(s)∥2 + ∥u(s)∥β+1

β+1)ds

≤C(G1(t) +G2(t)).
(3.15)

This completes the proof of Lemma 3.2. □

Lemma 3.3. Under the hypothesis of Lemma 3.2, for every t ∈ R and D̂ ∈ D, we have∫ t

t−1
(∥u(s)∥2 + ∥w(s)∥2)ds ≤ Ce−λtG2(t), (3.16)

and ∫ t

t−1
(∥∇u(s)∥2 + ∥∇w(s)∥2 + ∥∇ · w(s)∥2 + ∥u(s)∥β+1

β+1)ds

≤Ce−λt(G1(t) +G2(t)),
(3.17)

for τ ≤ τ1 and uτ ∈ D(τ), wτ ∈ D(τ).

Proof. By using Lemma 3.2, we can directly get the result. □

Lemma 3.4. Assume (2.3)-(2.5) hold, f ∈ L2
loc(R; H1) and g ∈ L2

loc(R; H2). Let 3 < β < 5 and τ ∈ R,
and (u,w) be the solution of system (1.1). For every t ∈ R and D̂ ∈ D, then there exists a constant
τ3 = τ3(t, D̂), such that for any τ ≤ τ3 and uτ ∈ D(τ), wτ ∈ D(τ),

∥∇u(t)∥2 +
∫ t

t−1
(∥Au(s)∥2 + ∥|u|

β−1
2 ∇u∥2 + ∥∇|u|

β+1
2 ∥2)ds

≤Ce−λt(G1(t) +G2(t)),
(3.18)

and

∥∇w(t)∥2 +
∫ t

t−1
(∥Aw(s)∥2 + ∥∇∇ · w(s)∥2)ds ≤ Ce−λt(G1(t) +G2(t)). (3.19)

Proof. Inspired by [24], we can get for β > 3,

d
dt
∥∇u(t)∥2 + ∥Au(t)∥2 + ∥|u|

β−1
2 ∇u∥2 + ∥∇|u|

β+1
2 ∥2

≤C(∥∇u(t)∥2 + ∥∇w(t)∥2 + ∥ f (t)∥2),
(3.20)
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then by using uniform Gronwall Lemma on [t − 1, t], we can obtain that there exists a constant τ2 ≡

τ1 − 1, for any τ ≤ τ2,

∥∇u(t)∥2 +
∫ t

t−1
(∥Au(s)∥2 + ∥|u|

β−1
2 ∇u∥2 + ∥∇|u|

β+1
2 ∥2)ds

≤Ce−λt(G1(t) +G2(t)),
(3.21)

where we use the following inequality∫ t

t−1
∥ f (s)∥2ds = e−λ(t−1)

∫ t

t−1
eλ(t−1)∥ f (s)∥2ds

≤ Ce−λ(t−1)
∫ t

t−1
eλs∥ f (s)∥2ds

≤ Ce−λtG1(t).

Multiplying the second equation of (2.2) by Aw and integrating over T3, then we can get

1
2

d
dt
∥∇w(t)∥2 + ∥Aw(t)∥2 + 4∥∇w(t)∥2 + ∥∇∇ · w(t)∥2

≤|

∫
T3

u · ∇wAwdx| + 2|
∫
T3
∇ × uAwdx| + (g(t), Aw(t))

≤
1
2
∥Aw(t)∥2 +C(∥B(u,w)∥2 + ∥∇u(t)∥2 + ∥g(t)∥2).

(3.22)

Since

C∥B(u,w)∥2 ≤ C∥u(t)∥2∞∥∇w(t)∥2

≤ C∥∇u(t)∥∥∆u(t)∥∥∇w(t)∥2

≤ C(∥∇u(t)∥2 + ∥Au(t)∥2)∥∇w(t)∥2.
(3.23)

By using above inequalities, we easily get

d
dt
∥∇w(t)∥2 + ∥Aw(t)∥2 + 2∥∇∇ · w(t)∥2

≤C(∥∇u(t)∥2 + ∥Au(t)∥2)∥∇w(t)∥2 +C(∥∇u(t)∥2 + ∥g(t)∥2).
(3.24)

Then by using uniform Gronwall inequality on [t − 1, t], we can obtain there has a constant τ3 ≡

τ2 − 1, for any τ ≤ τ3,

∥∇w(t)∥2 +
∫ t

t−1
(∥Aw(s)∥2 + ∥∇∇ · w(s)∥2)ds ≤ Ce−λt(G1(t) +G2(t)). (3.25)

Hence, we complete the Lemma 3.4. □

Lemma 3.5. Under the hypothesis of Lemma 3.4. Then for any t ∈ R and D̂ ∈ D,

∥u(t)∥β+1
β+1 ≤ Ce−λt(G1(t) +G2(t)), (3.26)

and

∥∇ · w(t)∥2 ≤ Ce−λt(G1(t) +G2(t)), (3.27)

for every τ ≤ τ3 and uτ ∈ D(τ), wτ ∈ D(τ).
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Proof. Multiplying the first equation of (2.2) by ut and integrating over T3, then we can obtain

∥ut(t)∥2 +
d
dt

(∥∇u(t)∥2 +
1
β + 1

∥u(t)∥β+1
β+1)

≤
1
2
∥ut(t)∥2 +C(∥B(u)∥2 + ∥∇w(t)∥2 + ∥ f (t)∥2).

(3.28)

For 3 < β < 5, we can have the following inequality

C∥B(u)∥2 ≤ C
∫
T3
|u|2|∇u|

4
β−1 |∇u|2−

4
β−1 dx

≤ C(∥|u|
β−1

2 ∇u∥2 + ∥∇u(t)∥2).
(3.29)

Taking (3.29) into (3.28), we can have

d
dt

(∥∇u(t)∥2 +
1
β + 1

∥u(t)∥β+1
β+1)

≤C(∥|u|
β−1

2 ∇u∥2 + ∥∇u(t)∥2 + ∥∇w(t)∥2 + ∥ f (t)∥2).
(3.30)

For (3.30), using uniform Gronwall Lemma, we get

∥∇u(t)∥2 +
σ

β + 1
∥u(t)∥β+1

β+1

≤C[
∫ t

t−1
(∥∇u(s)∥2 + ∥u(s)∥β+1

β+1)ds

+

∫ t

t−1
(∥|u|

β−1
2 ∇u∥2 + ∥∇w(s)∥2 + ∥ f (s)∥2)ds]

≤Ce−λt(G1(t) +G2(t)).

(3.31)

Next, multiplying the second equation of (2.2) by wt and integrating over T3, we have

∥wt(t)∥2 +
d
dt

(2∥w(t)∥2 +
1
2
∥∇w(t)∥2 +

1
2
∥∇ · w(t)∥2)

≤
1
2
∥wt(t)∥2 +C(∥B(u,w)∥2 + ∥∇u(t)∥2 + ∥g(t)∥2)

≤
1
2
∥wt(t)∥2 +C(∥∇u(t)∥2 + ∥Au(t)∥2)∥∇w(t)∥2

+C(∥∇u(t)∥2 + ∥g(t)∥2),

(3.32)

where we use inequality (3.23). Then applying uniform Gronwall Lemma, we obtain

2∥w(t)∥2 +
1
2
∥∇w(t)∥2 +

1
2
∥∇ · w(t)∥2

≤eC
∫ t

t−1(∥∇u(s)∥2+∥Au(s)∥2)ds[
∫ t

t−1
(∥w(s)∥2 + ∥∇w(s)∥2

+ ∥∇ · w(s)∥2)ds +C
∫ t

t−1
(∥∇u(s)∥2 + ∥g(s)∥2)ds]

≤Ce−λt(G1(t) +G2(t)).

So, the proof of Lemma 3.5 is finished. □
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Lemma 3.6. Assume (2.3)-(2.5) hold, f ∈ L2
loc(R; H1), g ∈ L2

loc(R; H2), ft ∈ L2
b(R; H1) and gt ∈

L2
b(R; H2). Let 3 < β < 5 and τ ∈ R and (u,w) be the solution of Eqs (1.1). Then for every t ∈ R and

D̂ ∈ D, there exists a constant τ4 = τ4(t, D̂), such that for any τ ≤ τ4 and uτ ∈ D(τ), wτ ∈ D(τ),

∥ut(t)∥2 + ∥wt(t)∥2 ≤ r1(t), (3.33)

where r1(t) is a positive constant which is independent of the initial data.

Proof. According to (3.28), (3.29) and (3.32), we have

∥ut(t)∥2 + ∥wt(t)∥2 +
d
dt

(2∥∇u(t)∥2 + ∥∇w(t)∥2 +
2
β + 1

∥u(t)∥β+1
β+1

+ 4∥w(t)∥2 + ∥∇ · w(t)∥2)
≤C(1 + ∥∇u(t)∥2 + ∥Au(t)∥2)(∥∇u(t)∥2 + ∥∇w(t)∥2)

+C(∥|u|
β−1

2 ∇u∥2 + ∥ f (t)∥2 + ∥g(t)∥2),

(3.34)

then integrating over [t − 1, t], we can get there has a constant τ4 ≡ τ3 − 1, for every τ ≤ τ4,∫ t

t−1
(∥us(s)∥2 + ∥ws(s)∥2)ds

≤2∥∇u(t − 1)∥2 + ∥∇w(t − 1)∥2 +
2
β + 1

∥u(t − 1)∥β+1
β+1

+ 4∥w(t − 1)∥2 + ∥∇ · w(t − 1)∥2 +C
∫ t

t−1
(1 + ∥∇u(s)∥2

+ ∥Au(s)∥2)(∥∇u(s)∥2 + ∥∇w(s)∥2)ds

+C
∫ t

t−1
(∥|u|

β−1
2 ∇u∥2 + ∥ f (s)∥2 + ∥g(s)∥2)ds

≤r2
0(t) + r0(t),

(3.35)

where r0(t) = Ce−λt(G1(t) +G2(t)).
Applying ∂t to the first and the second equations of system (2.2), and multiplying ut and wt, respec-

tively, we have

1
2

d
dt

(∥ut∥
2 + ∥wt∥

2) + 2∥∇ut∥
2 + ∥∇wt∥

2 + 4∥wt∥
2 + ∥∇ · wt∥

2

= −

∫
T3

G′(u)ututdx −
∫
T3

ut · ∇uutdx −
∫
T3

ut · ∇wwtdx

+ 2
∫
T3
∇ × wtutdx + 2

∫
T3
∇ × utwtdx + ( ft, ut) + (gt,wt)

:=
7∑

i=1

Ii.

(3.36)

For I1, according to the Lemma 2.4 of [16], we obtain that I1 ≤ 0.
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For I2, by using Hölder and Young inequalities, we easily get

I2 ≤ C∥ut∥
1
2 ∥∇ut∥

3
2 ∥∇u(t)∥ ≤

1
2
∥∇ut∥

2 +C∥ut∥
2∥∇u(t)∥4. (3.37)

Similarly, we have

I3 ≤ C∥ut∥4∥wt∥4∥∇w(t)∥

≤ C∥ut∥
1
4 ∥∇ut∥

3
4 ∥wt∥

1
4 ∥∇wt∥

3
4 ∥∇w(t)∥

≤
1
4

(∥∇ut∥
2 + ∥∇wt∥

2) +C(∥ut∥
2 + ∥wt∥

2)∥∇w(t)∥4,

(3.38)

and

I4 + I5 ≤
1
4

(∥∇ut∥
2 + ∥∇wt∥

2) +C(∥ut∥
2 + ∥wt∥

2), (3.39)

I6 + I7 ≤ C(∥ut∥
2 + ∥wt∥

2 + ∥ ft∥
2 + ∥gt∥

2). (3.40)

By using above inequalities, we can get

d
dt

(∥ut∥
2 + ∥wt∥

2) + ∥∇ut∥
2 + ∥∇wt∥

2 + ∥∇ · wt∥
2

≤C(1 + ∥∇u(t)∥4 + ∥∇w(t)∥4)(∥ut∥
2 + ∥wt∥

2) +C(∥ ft∥
2 + ∥gt∥

2).
(3.41)

Then using uniform Gronwall Lemma, we can obtain

∥ut(t)∥2 + ∥wt(t)∥2

≤eC(t)[
∫ t

t−1
(∥us(s)∥2 + ∥ws(s)∥2)ds +C

∫ t

t−1
(∥ fs(s)∥2 + ∥gs(s)∥2)ds]

≤C[r2
0(t) + r0(t) +

∫ t

t−1
(∥ fs(s)∥2 + ∥gs(s)∥2)ds]

:=r1(t),

(3.42)

where we let C(t) = C
∫ t

t−1
(1 + ∥∇u(s)∥4 + ∥∇w(s)∥4)ds.

By inequality (3.42), the proof of Lemma 3.6 is completed. □

Lemma 3.7. Under the assumption of Lemma 3.6. Then for every t ∈ R and D̂ ∈ D, we obtain that for
any τ ≤ τ4 and uτ ∈ D(τ), wτ ∈ D(τ),

∥Au(t)∥2 ≤ r2(t), (3.43)

and

∥Aw(t)∥2 ≤ r3(t), (3.44)

where r2(t) and r3(t) are all positive constants which are independent of the initial data.
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Proof. Here, applying Minkowshi inequality to the first equation of system (2.2), then we can obtain

∥Au(t)∥ ≤ C(∥ut(t)∥ + ∥B(u)∥ + ∥|u|β−1u∥ + ∥∇w(t)∥ + ∥ f (t)∥). (3.45)

For term ∥B(u)∥, using similar method of (3.23), we have

C∥B(u)∥ ≤ C∥∇u(t)∥
3
2 ∥Au(t)∥

1
2 ≤

1
4
∥Au(t)∥ +C∥∇u(t)∥3. (3.46)

For term ∥|u|β−1u∥, using Sobolev Lemma, we get for 3 < β < 5,

C∥|u|β−1u∥ ≤ C∥∆u(t)∥
β−3

2 ∥∇u(t)∥
β+3

2 ≤
1
4
∥Au(t)∥ +C∥∇u(t)∥

β+3
5−β . (3.47)

Taking (3.46) and (3.47) into (3.45), we obtain

∥Au(t)∥2 ≤ C(∥ut(t)∥2 + ∥∇u(t)∥6 + ∥∇u(t)∥
2(β+3)

5−β + ∥∇w(t)∥2 + ∥ f (t)∥2)

≤ C(r1(t) + r3
0(t) + r

β+3
5−β

0 (t) + r0(t) + ∥ f (t)∥2)
:= r2(t).

(3.48)

Inspired by [15], we let

Lw(t) = Aw(t) − ∇∇ · w(t), (3.49)

and we have

(Lw(t), Aw(t)) ≥ ∥Aw(t)∥2 −C∥∇w(t)∥2. (3.50)

Hence, multiplying the second equation of (2.2) by Aw, we have

∥Aw(t)∥2 ≤ C(∥wt(t)∥2 + ∥B(u,w)∥2 + ∥w(t)∥2 + ∥∇w(t)∥2 + ∥∇u(t)∥2 + ∥g(t)∥2). (3.51)

By using (3.23), we get

∥Aw(t)∥2 ≤C[∥wt(t)∥2 + ∥w(t)∥2 + ∥∇u(t)∥2 + ∥g(t)∥2

+ (1 + ∥∇u(t)∥2 + ∥Au(t)∥2)∥∇w(t)∥2]
≤C(r0(t) + r2

0(t) + r0(t)r2(t) + r1(t) + ∥g(t)∥2)
:=r3(t).

The proof of Lemma 3.7 is finished. □

Lemma 3.8. Under the hypothesis of Lemma 3.7, for any t ∈ R and D̂ ∈ D, then we get for every
τ ≤ τ4 and uτ ∈ D(τ), wτ ∈ D(τ),

∥∇ut(t + 1)∥2 + ∥∇wt(t + 1)∥2 ≤ r5(t), (3.52)

where r5(t) is a positive constant which is independent of the initial data.
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Proof. Integrating (3.41) over [t, t + 1], we have∫ t+1

t
(∥∇us(s)∥2 + ∥∇ws(s)∥2 + ∥∇ · ws(s)∥2)ds

≤∥ut(t)∥2 + ∥wt(t)∥2 +C
∫ t+1

t
(1 + ∥∇u(s)∥4 + ∥∇w(s)∥4)(∥us(s)∥2

+ ∥ws(s)∥2)ds +C
∫ t+1

t
(∥ fs(s)∥2 + ∥gs(s)∥2)ds

≤r1(t) + (1 + r2
0(t + 1))(r0(t + 1) + r2

0(t + 1)) +C
∫ t+1

t
(∥ fs(s)∥2 + ∥gs(s)∥2)ds

:=r4(t).

(3.53)

Then using Sobolev inequality and Lemma 3.7, we get

∥u(t)∥2∞ ≤ C∥∇u(t)∥∥Au(t)∥ ≤ C∥Au(t)∥2 ≤ r2(t), (3.54)

similarly,

∥w(t)∥2∞ ≤ C∥∇w(t)∥∥Aw(t)∥ ≤ C∥Aw(t)∥2 ≤ r3(t). (3.55)

Applying ∂t to the first and second equations of (2.2), then multiplying them by Aut and Awt,
respectively, we obtain

1
2

d
dt

(∥∇ut∥
2 + ∥∇wt∥

2) + 2∥Aut∥
2 + ∥Awt∥

2 + 4∥∇wt∥
2 + ∥∇∇ · wt∥

2

≤|

∫
T3

ut · ∇uAutdx| + |
∫
T3

u · ∇utAutdx| + |
∫
T3

ut · ∇wAwtdx|

+ |

∫
T3

u · ∇wtAwtdx| + 2|
∫
T3
∇ × wtAutdx| + 2|

∫
T3
∇ × utAwtdx|

+ ( ft, Aut) + (gt, Awt) + |
∫
T3

G′(u)utAutdx|

:=
9∑

i=1

Ji.

(3.56)

Next, we estimate right terms of inequality.
For J1, using Sobolev embedding Lemma, we have

J1 ≤ C∥ut∥∞∥∇u(t)∥∥Aut∥

≤ C∥∇ut∥
1
2 ∥Aut∥

3
2 ∥∇u(t)∥

≤
1
2
∥Aut∥

2 +C∥∇u(t)∥4∥∇ut∥
2.

(3.57)

For J3, we can apply the similar method and obtain

J3 ≤ C∥∇ut∥
1
2 ∥Aut∥

1
2 ∥∇w(t)∥∥Awt∥

≤
1
8

(∥Aut∥
2 + ∥Awt∥

2) +C∥∇w(t)∥4∥∇ut∥
2.

(3.58)
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For others, using Hölder and Young inequalities, we get

J2 ≤ C∥u(t)∥∞∥∇ut∥∥Aut∥ ≤
1
2
∥Aut∥

2 +C∥u(t)∥2∞∥∇ut∥
2, (3.59)

J4 ≤ C∥u(t)∥∞∥∇wt∥∥Awt∥ ≤
1
8
∥Awt∥

2 +C∥u(t)∥2∞∥∇wt∥
2, (3.60)

J5 + J6 ≤
1
8

(∥Aut∥
2 + ∥Awt∥

2) +C(∥∇ut∥
2 + ∥∇wt∥

2), (3.61)

J7 + J8 ≤
1
8

(∥Aut∥
2 + ∥Awt∥

2) +C(∥ ft∥
2 + ∥gt∥

2), (3.62)

and

J9 ≤ C∥u(t)∥β−1
∞ ∥ut∥∥Aut∥ ≤

1
8
∥Aut∥

2 +C∥u(t)∥2(β−1)
∞ ∥ut∥

2. (3.63)

Taking (3.57)-(3.63) into (3.56), we deduce
d
dt

(∥∇ut∥
2 + ∥∇wt∥

2) + ∥Aut∥
2 + ∥Awt∥

2

≤C(1 + ∥∇u(t)∥4 + ∥∇w(t)∥4 + ∥u(t)∥2∞)(∥∇ut∥
2 + ∥∇wt∥

2)
+C(∥u(t)∥2(β−1)

∞ ∥ut∥
2 + ∥ ft∥

2 + ∥gt∥
2).

Then by using uniform Gronwall Lemma over [t, t + 1], we obtain

∥∇ut(t + 1)∥2 + ∥∇wt(t + 1)∥2

≤CeC2(t)[
∫ t+1

t
(∥∇us(s)∥2 + ∥∇ws(s)∥2)ds

+C
∫ t+1

t
(∥u(s)∥2(β−1)

∞ ∥us(s)∥2 + ∥ fs(s)∥2 + ∥gs(s)∥2)ds]

≤r4(t) + rβ−1
2 (t + 1)(r0(t + 1) + r2

0(t + 1)) +C
∫ t+1

t
(∥ fs(s)∥2 + ∥gs(s)∥2)ds

:=r5(t),

where let C2(t) =
∫ t+1

t
(1 + ∥∇u(s)∥4 + ∥∇w(s)∥4 + ∥u(s)∥2∞)ds.

Hence, the proof of Lemma 3.8 is finished. □

4. Existence of pullbackD-attractors

In this section, we devote to prove the existence of pullback D-attractors in V1 × V2 and H2 × H2

for Eqs (2.2).
Firstly, we give the following lemma.

Lemma 4.1. Assume (u1,w1) and (u2,w2) are two solutions of Eqs (2.2) with the initial data (uiτ,wiτ) ∈
V1 × V2, i = 1, 2 and the external forces ( fi, gi), where ( fi, gi) ∈ L2

loc(R; H1) × L2
loc(R; H2), i = 1, 2. Let

(ũ, w̃) = (u1 − u2,w1 − w2), then for every t ≥ τ, it holds

∥∇ũ(t)∥2 + ∥∇w̃(t)∥2 ≤eC(τ,t)[∥∇ũτ∥2 + ∥∇w̃τ∥2

+

∫ t

τ

(∥ f1(s) − f2(s)∥2 + ∥g1(s) − g2(s)∥2)ds].
(4.1)

Electronic Research Archive Volume 30, Issue 1, 314–334.



329

Proof. By using (2.2), we can get

1
2

d
dt

(∥∇ũ(t)∥2 + ∥∇w̃(t)∥2) + 2∥Aũ(t)∥2 + ∥Aw̃(t)∥2 + ∥∇∇ · w̃(t)∥2 + 4∥∇w̃(t)∥2

≤

∫
T3
||u1|

β−1u1 − |u2|
β−1u2||Aũ|dx +

∫
T3
|ũ · ∇u1 · Aũ|dx

+

∫
T3
|u2 · ∇ũ · Aũ|dx +

∫
T3
|ũ · ∇w1 · Aw̃|dx +

∫
T3
|u2 · ∇w̃ · Aw̃|dx

+ 2
∫
T3
|∇ × w̃ · Aũ|dx + 2

∫
T3
|∇ × ũ · Aw̃|dx

+ |( f1(t) − f2(t), Aũ(t))| + |(g1(t) − g2(t), Aw̃(t))|

:=
9∑

i=1

Ki.

(4.2)

Inspired by [16], we can have for 3 < β < 5,∫ t

τ

(∥u1(s)∥2(β−1)
3(β−1) + ∥∇u2(s)∥2(∥u1(s)∥2(β−2)

6(β−2) + ∥u2(s)∥2(β−2)
6(β−2)))ds ≤ C(τ, t). (4.3)

Then for K1, we can deduce

K1 ≤
1
8
∥Aũ(t)∥2 +C(∥u1(t)∥2(β−1)

3(β−1) + ∥∇u2(t)∥2(∥u1(t)∥2(β−2)
6(β−2)

+ ∥u2(t)∥2(β−2)
6(β−2)))∥∇ũ(t)∥2.

(4.4)

For other estimates, using Hölder inequality and Young inequality, we get

K2 ≤ C∥∇ũ(t)∥
1
2 ∥∆ũ(t)∥

1
2 ∥∇u1(t)∥∥Aũ(t)∥

≤ C∥∇ũ(t)∥
1
2 ∥Aũ(t)∥

3
2 ∥∇u1(t)∥

≤
1
8
∥Aũ(t)∥2 +C∥∇u1(t)∥4∥∇ũ(t)∥2, (4.5)

K3 ≤ C∥∇u2(t)∥
1
2 ∥Au2(t)∥

1
2 ∥∇ũ(t)∥∥Aũ(t)∥

≤
1
8
∥Aũ(t)∥2 +C(∥∇u2(t)∥2 + ∥Au2(t)∥2)∥∇ũ(t)∥2, (4.6)

K4 ≤ C∥∇ũ(t)∥
1
2 ∥Aũ(t)∥

1
2 ∥∇w1(t)∥∥Aw̃(t)∥

≤
1
8

(∥Aũ(t)∥2 + ∥Aw̃(t)∥2) +C∥∇w1(t)∥4∥∇ũ(t)∥2, (4.7)

K5 ≤ C∥∇u2(t)∥
1
2 ∥Au2(t)∥

1
2 ∥∇w̃(t)∥∥Aw̃(t)∥

≤
1
8
∥Aw̃(t)∥2 +C(∥∇u2(t)∥2 + ∥Au2(t)∥2)∥∇w̃(t)∥2, (4.8)

K6 + K7 ≤ 4∥Aũ∥∥∇w̃∥ ≤ ∥Aũ∥2 + 4∥∇w̃∥2, (4.9)

K8 + K9 ≤
1
8

(∥Aũ(t)∥2 + ∥Aw̃(t)∥2) +C(∥ f1(t) − f2(t)∥2 + ∥g1(t) − g2(t)∥2). (4.10)
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Summing above inequalities, we can obtain

d
dt

(∥∇ũ(t)∥2 + ∥∇w̃(t)∥2)

≤C[∥u1(t)∥2(β−1)
3(β−1) + ∥∇u2(t)∥2(∥u1(t)∥2(β−2)

6(β−2) + ∥u2(t)∥2(β−2)
6(β−2))

+ ∥∇u1(t)∥4 + ∥∇w1(t)∥4 + ∥∇u2(t)∥2 + ∥Au2(t)∥2](∥∇ũ(t)∥2

+ ∥∇w̃(t)∥2) +C(∥ f1(t) − f2(t)∥2 + ∥g1(t) − g2(t)∥2).

(4.11)

Then by using Gronwall Lemma on [τ, t], we can get

∥∇ũ(t)∥2 + ∥∇w̃(t)∥2 ≤eC(τ,t)[∥∇ũτ∥2 + ∥∇w̃τ∥2

+

∫ t

τ

(∥ f1(s) − f2(s)∥2 + ∥g1(s) − g2(s)∥2)ds],
(4.12)

where we use Lemma 3.4 and Lemma 3.7. Hence the proof of Lemma 4.1 is finished. □

According to Lemma 4.1, we know that {U(t, τ)}t≥τ is continuous in V1 × V2. So, it is also norm-to-
weak continuous in V1 × V2.

Proof of Theorem 2.9. By using Lemma 3.4 and Lemma 3.7, we obtain there exist pullback D-
absorbing sets in V1 × V2 and H2 × H2, respectively. According to compact embedding H2 × H2 ↪→

V1×V2, we can get {U(t, τ)}t≥τ is pullbackD-asymptotically compact in V1×V2. Finally, due to Lemma
2.3 and Lemma 4.1, we obtain that {U(t, τ)}t≥τ has a minimal pullbackD-attractorA1 in V1 × V2. □

Lemma 4.2. The process {U(t, τ)}t≥τ is norm-to-weak continuous in H2 × H2.

Proof. Firstly, let i : H2 × H2 ↪→ V1 × V2 and i∗ : V∗1 × V∗2 ↪→ (H2)∗ × (H2)∗. i and i∗ are dense. Then,
{U(t, τ)}t≥τ : V1 ×V2 → V1 ×V2 is norm-to-weak continuous which we can get from Lemma 4.1. Next,
Lemma 3.7 can show that the process {U(t, τ)}t≥τ has a pullbackD-absorbing set in H2 × H2. In other
words, {U(t, τ)}t≥τ maps a bounded set in V1 × V2 into a bounded set in H2 × H2. Hence, {U(t, τ)}t≥τ
maps a compact set in H2 × H2 into a bounded set in H2 × H2. By using Lemma 2.5, we can finish
Lemma 4.2. □

Proof of Theorem 2.10. Firstly, according to Lemma 3.7, we can assume B0 = {B(t) : t ∈ R} is a
pullbackD-absorbing set in H2 × H2. Let

un(τn) = u(t; τn, u0n) = U(t, τn)u0n, wn(τn) = w(t; τn,w0n) = U(t, τn)w0n. (4.13)

Then, we prove that for every t ∈ R, every τn → −∞ and (u0n,w0n) ∈ C(τn), {(un(τn),wn(τn))}∞n=0 is
precompact in H2 × H2.

By using the fact that V1 × V2 ↪→ H1 × H2 and H2 × H2 ↪→ V1 × V2 are compact and estimates in
section 3, we can have {(un(τn),wn(τn))}∞n=0 and {( ∂

∂t un(τn), ∂
∂t wn(τn))}∞n=0 are precompact in V1 × V2 and

H1 × H2, respectively.
Nextly, we will show that {(un(τn),wn(τn))}∞n=1 is a Cauchy sequence in H2 × H2. Let

Lwnk(τnk) := Awnk(τnk) − ∇∇ · wnk(τnk). (4.14)
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By using (2.2), we get

2(Aunk(τnk) − Aun j(τn j))

= −
d
dt

unk(τnk) +
d
dt

un j(τn j) − B(unk(τnk))

+ B(un j(τn j)) −G(unk(τnk)) +G(un j(τn j))
− 2∇ × wnk(τnk) + 2∇ × wn j(τn j),

(4.15)

and
Lwnk(τnk) − Lwn j(τn j)

= −
d
dt

wnk(τnk) +
d
dt

wn j(τn j) − B(unk(τnk),wnk(τnk))

+ B(un j(τn j),wn j(τn j)) − 4wnk(τnk) + 4wn j(τn j)
− 2∇ × unk(τnk) + 2∇ × un j(τn j).

(4.16)

Multiplying (4.15) and (4.16) by Aunk(τnk)−Aun j(τn j) and Awnk(τnk)−Awn j(τn j), respectively, we obtain

∥Aunk(τnk) − Aun j(τn j)∥2 + ∥Awnk(τnk) − Awn j(τn j)∥2

≤C[∥∇wnk(τnk) − ∇wn j(τn j)∥2 + ∥
d
dt

unk(τnk) −
d
dt

un j(τn j)∥2

+ ∥
d
dt

wnk(τnk) −
d
dt

wn j(τn j)∥2 + ∥B(unk(τnk)) − B(un j(τn j))∥2

+ ∥B(unk(τnk),wnk(τnk)) − B(un j(τn j),wn j(τn j))∥2 + ∥wnk(τnk) − wn j(τn j)∥2

+ ∥G(unk(τnk)) −G(un j(τn j))∥2 + ∥∇ × wnk(τnk) − ∇ × wn j(τn j)∥2

+ ∥∇ × unk(τnk) − ∇ × un j(τn j)∥2]
≤C[∥∇unk(τnk) − ∇un j(τn j)∥2 + ∥∇wnk(τnk) − ∇wn j(τn j)∥2

+ ∥
d
dt

unk(τnk) −
d
dt

un j(τn j)∥2 + ∥
d
dt

wnk(τnk) −
d
dt

wn j(τn j)∥2

+ ∥B(unk(τnk)) − B(un j(τn j))∥2 + ∥G(unk(τnk)) −G(un j(τn j))∥2

+ ∥B(unk(τnk),wnk(τnk)) − B(un j(τn j),wn j(τn j))∥2,

(4.17)

where we use (3.13) in [15].
By using Lemma 3.7 and Sobolev inequality, we have

∥unk(τnk)∥∞ + ∥wnk(τnk)∥∞ ≤ C. (4.18)

Inspired by [16], we get

∥G(unk(τnk)) −G(un j(τn j))∥2 ≤ C∥unk(τnk) − un j(τn j)∥2 → 0, as k, j→ +∞. (4.19)

By using Sobolev inequality, we have

∥B(unk(τnk)) − B(un j(τn j))∥2

≤C(∥B(unk(τnk), unk(τnk) − un j(τn j))∥2 + ∥B(unk(τnk) − un j(τn j), un j(τn j))∥2)
≤C(∥∇unk(τnk)∥2∥∇(unk(τnk) − un j(τn j))∥∥A(unk(τnk) − un j(τn j))∥
+ ∥∇(unk(τnk) − un j(τn j))∥2∥∇un j(τn j)∥∥Aun j(τn j)∥)

→0, as k, j→ +∞,
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and

∥B(unk(τnk),wnk(τnk)) − B(un j(τn j),wn j(τn j))∥2

≤C(∥B(unk(τnk),wnk(τnk) − wn j(τn j))∥2 + ∥B(unk(τnk) − un j(τn j),wn j(τn j))∥2)
≤C(∥∇unk(τnk)∥2∥∇(wnk(τnk) − wn j(τn j))∥∥A(wnk(τnk) − wn j(τn j))∥
+ ∥∇(unk(τnk) − un j(τn j))∥2∥∇wn j(τn j)∥∥Awn j(τn j)∥)

→0, as k, j→ +∞.

(4.20)

By using above inequalities, we can obtain

∥unk(τnk) − un j(τn j)∥2H2 + ∥wnk(τnk) − wn j(τn j)∥2H2

≤C(∥Aunk(τnk) − Aun j(τn j)∥2 + ∥Awnk(τnk) − Awn j(τn j)∥2)
→0, as k, j→ +∞.

(4.21)

Hence, {U(t, τ)}t≥τ is pullback D-asymptotically compact in H2 × H2. Finally, according to
Lemma 2.3, Lemma 3.7 and Lemma 4.2, the proof of Theorem 2.10 is completed. □
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