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Abstract: In this paper, we consider a reaction-diffusion epidemic model with nonlocal diffusion and
free boundaries, which generalises the free-boundary epidemic model by Zhao et al. [1] by including
spatial mobility of the infective host population. We obtain a rather complete description of the long-
time dynamics of the model. For the reproduction number R0 arising from the corresponding ODE
model, we establish its relationship to the spreading-vanishing dichotomy via an associated eigenvalue
problem. If R0 ≤ 1, we prove that the epidemic vanishes eventually. On the other hand, if R0 > 1, we
show that either spreading or vanishing may occur depending on its initial size. In the case of spread-
ing, we make use of recent general results by Du and Ni [2] to show that finite speed or accelerated
spreading occurs depending on whether a threshold condition is satisfied by the kernel functions in the
nonlocal diffusion operators. In particular, the rate of accelerated spreading is determined for a general
class of kernel functions. Our results indicate that, with all other factors fixed, the chance of successful
spreading of the disease is increased when the mobility of the infective host is decreased, reaching a
maximum when such mobility is 0 (which is the situation considered by Zhao et al. [1]).
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1. Introduction

To model the 1973 cholera epidemic in the European Mediterranean region, Capasso and Paveri-
Fontana [3] proposed the following ODE system

u′(t) = −au(t) + cv(t), v′(t) = −bv(t) +G(u(t)), t > 0, (1.1)

where

• u(t) and v(t) represent respectively the average population concentration of the infectious agents
and the infective humans in the infected area at time t,
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• a, b, c are all positive constants such that 1/a represented the mean lifetime of the agents in the
environment, 1/b the mean infectious period of the infective humans, c the multiplicative factor
of the infectious agents due to the infective humans, and
• the function G(u) is the infection rate of the human population, assuming that the total number of

susceptible humans remain constant during the epidemic. The function G is assumed to satisfy
the following:

(G1) G ∈ C1([0,∞]),G(0) = 0,G′(z) > 0 for all z ≥ 0;
(G2)

(
G(z)

z

)′
< 0 for z > 0 and limz→+∞

G(z)
z < ab

c .

A simple example of such a function is given by G(z) = αz
1+z with α ∈ (0, ab/c).

They were able to establish the following result for the long-time dynamics of (1.1): Let R0 := cG′(0)
ab ;

then regardless of the positive initial values u(0) and v(0),

(i) the epidemic tends to extinction if R0 < 1, namely limt→∞(u(t), v(t))→ (0, 0) if R0 < 1,
(ii) the epidemic tends to a positive equilibrium state if R0 > 1, namely limt→∞(u(t), v(t)) → (u∗, v∗)

if R0 > 1, where u∗, v∗ are uniquely determined by

G(u∗)
u∗
=

ab
c

and v∗ =
a
c

u∗. (1.2)

To include the mobility of the infectious agents (assuming the mobility of the infective human
population is small and thus ignored), Capasso and Maddalena [4] proposed the following spatial
reaction-diffusion model with Robin (or Neumann) boundary conditions



u′(t) = d∆u − au + cv, t > 0, x ∈ Ω,
v′(t) = −bv +G(u), t > 0, x ∈ Ω,
∂u
∂n
+ αu = 0, t > 0, x ∈ ∂Ω,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.3)

where d denotes the diffusion rate of u, the epidemic region Ω ⊂ RN is a smooth bounded domain and
α ≥ 0. They proved that the long-time behaviour of (1.3) is similar to the ODE model (1.1) with R0

there replaced by R̃0 := cG′(0)
(a+dλ1)b , where λ1 is the first eigenvalue of the eigenvalue problem


∆ϕ = λϕ in Ω,
∂ϕ

∂n
+ αϕ = 0 on ∂Ω.

In the literature, R0 and R̃0 are often called the reproduction number of the epidemic being modelled.
To describe the spatial spreading of an epidemic, it is important to know how the front of the

epidemic propagates. In [5], Ahn, Baek, and Lin regarded the epidemic region as a changing interval
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and used the following free boundary problem to model the evolution and spreading of the epidemic:

ut = duxx − au + cv, t > 0, x ∈ (g(t), h(t)),
vt = −bv +G(u), t > 0, x ∈ (g(t), h(t)),
u(x, t) = v(x, t) = 0, t > 0, x ∈ {g(t), h(t)},
h′(t) = −µux(h(t), t), t > 0,
g′(t) = −µux(g(t), t), t > 0,
h(0) = −g(0) = h0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ [−h0, h0],

(1.4)

where h(t) and g(t) are the moving boundaries of the infected region, µ is a positive constant and the
initial data (u0, v0) satisfy

u0, v0 ∈ C([−h0, h0]), u0(±h0) = v0(±h0) = 0, and u0, v0 > 0 in (−h0, h0). (1.5)

The equations for h′(t) and g′(t) mean that the expanding rate of the infected region is proportional to
the spatial gradient of u at the front. This is known as the Stefan condition which was first used to
describe the melting of ice (see, e.g., [6]). It has been extensively used in the study of the spread of
population since Du and Lin [7].

The long-time dynamics of (1.4) can be described by a spreading-vanishing dichotomy; more pre-
cisely, Ahn et al. showed that the unique solution (u, v, g, h) to (1.4) satisfies either

(i) (vanishing) limt→∞(g(t), h(t)) = (g∞, h∞) is a finite interval, and
limt→∞(u(x, t), v(x, t)) = (0, 0) uniformly for x ∈ [g(t), h(t)],

or

(ii) (spreading) limt→∞(g(t), h(t)) = R, and
limt→∞(u(x, t), v(x, t)) = (u∗, v∗) locally uniformly for x ∈ R.

Furthermore, using the reproduction number of (1.1), namely

R0 :=
cG′(0)

ab
, (1.6)

the dichotomy is determined as follows: If R0 ≤ 1, then vanishing always happens; in the case where

R0 > 1, there exists a critical length, l∗ := π
2

√
d1

a(R0−1) , such that

• if h0 ≥ l∗ (i.e., the initial size of the infected region is no less than 2l∗), then spreading always
happens, and
• if h0 < l∗, then vanishing (resp. spreading) happens if the initial functions (u0, v0) are sufficiently

small (resp. large).
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In the case of an epidemic spreading predicted by (1.4), it was shown by Zhao, Li, and Ni [8] that
there exists a uniquely determined c0 > 0 such that

lim
t→∞

h(t)
t
= lim

t→∞

g(t)
−t
= c0,

which means the epidemic region [g(t), h(t)] expands with asymptotic speed c0.
In (1.4) (as well as in (1.3)), the spatial dispersal of the infectious agents is assumed to follow the

rules of random walk, which ignores any nonlocal effect in the dispersal process. Such nonlocal effect
can be included if the local diffusion operator is replaced by a nonlocal diffusion operator of the form

d
∫
R

J(x − y)[u(y, t) − u(x, t)]dy

with an appropriate kernel function J. Here J(x) can be interpreted as the probability that an individual
of the species moves from location 0 to x. A widely used class of kernel functions consists of J : R→ R
satisfying

(J): J ∈ C(R) ∩ L∞(R), J is even and nonnegative, J(0) > 0,
∫
R

J(x)dx = 1.

One recent paper by Cao, Du, Li, and Li [9] extended many basic results of [7] to the corresponding
nonlocal model with the above kernel. Following the fashion of [9], Zhao, Zhang, Li, and Du [1]
considered the corresponding nonlocal version of (1.4), which has the following form

ut = d
∫
R

J(x − y)[u(y, t) − u(x, t)]dy − au + cv, t > 0, x ∈ (g(t), h(t)),

vt = −bv +G(u), t > 0, x ∈ (g(t), h(t)),
u(x, t) = v(x, t) = 0, t > 0, x < (g(t), h(t)),

h′(t) = µ
∫ h(t)

g(t)

∫ ∞

h(t)
J(x − y)u(x, t)dydx, t > 0,

g′(t) = −µ
∫ h(t)

g(t)

∫ g(t)

−∞

J(x − y)u(x, t)dydx, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), h(0) = −g(0) = h0, |x| ≤ h0,

(1.7)

It was shown in [1] that (1.7) has a unique solution defined for all t > 0, and its long-time dynamics
is determined by a spreading-vanishing dichotomy, in a similar fashion to (1.4) (with some subtle
differences though). A striking difference of (1.7) to (1.4) is revealed by [2], which shows that the
spreading determined by (1.7) may have infinite asymptotic spreading speed, a phenomenon known as
“accelerated spreading”. More precisely, if the kernel function J satisfies∫ ∞

0
xJ(x) = ∞,

and spreading happens, then

lim
t→∞

h(t)
t
= lim

t→∞

g(t)
−t
= ∞.
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Moreover, if J(x) ≃ |x|−γ for some γ ∈ (1, 2] and all large |x| > 0, then for all large t > 0,−g(t), h(t) ≃ t ln t if γ = 2,
−g(t), h(t) ≃ t1/(γ−1) if γ ∈ (1, 2).

Here, and in what follows, η(t) ≃ ξ(t) means C1ξ(t) ≤ η(t) ≤ C2ξ(t) for some positive constants
C1 ≤ C2 and all t in the specified range.

In this paper, to understand the effect of the mobility of the infective host on the epidemic spreading,
we examine a full version of (1.7) *, where the dispersal of infective host is included. Before giving
this full version, let us note that, in (1.7), since u(x, t) = 0 for x < (g(t), h(t)) and

∫
R

J(x)dx = 1,∫
R

J(x − y)[u(y, t) − u(x, t)]dy =
∫ h(t)

g(t)
J(x − y)u(y, t)dy − u(x, t) for x ∈ (g(t), h(t)).

For i = 1, 2, suppose Ji : R→ R satisfy (J). Let a, b, c, d1, d2, µ1, µ2 and h0 be constants, all positive
except µ1 and µ2, which are assumed to be nonnegative with µ1 + µ2 > 0, and let the initial functions
u0(x) and v0(x) satisfy (1.5). Then the full version of (1.7) can be written in the following form

ut = d1

∫ h(t)

g(t)
J1(x − y)u(y, t)dy − d1u − au + cv, t > 0, x ∈ (g(t), h(t)),

vt = d2

∫ h(t)

g(t)
J2(x − y)v(y, t)dy − d2v − bv +G(u), t > 0, x ∈ (g(t), h(t)),

u(x, t) = v(x, t) = 0, t > 0, x ∈ {g(t), h(t)},

h′(t) =
∫ h(t)

g(t)

∫ ∞

h(t)

[
µ1J1(x − y)u(x, t) + µ2J2(x − y)v(x, t)

]
dydx, t > 0,

g′(t) = −
∫ h(t)

g(t)

∫ g(t)

−∞

[
µ1J1(x − y)u(x, t) + µ2J2(x − y)v(x, t)

]
dydx, t > 0,

h(0) = −g(0) = h0, u(x, 0) = u0(x), v(x, 0) = v0(x), |x| ≤ h0,

(1.8)

We will prove the following results.

Theorem 1.1 (Existence and Uniqueness). The problem (1.8) admits a unique positive solution
(u, v, g, h) defined for t ≥ 0.

Theorem 1.2 (Spreading-Vanishing Dichotomy). Let (u, v, g, h) be the solution to (1.8) and denote
h∞ := limt→∞ h(t) and g∞ := limt→∞ g(t). Then either

(i) (vanishing) (g∞, h∞) is a finite interval and

lim
t→∞

(u(x, t), v(x, t)) = (0, 0) uniformly for x ∈ [g(t), h(t)], or (1.9)

(ii) (spreading) (g∞, h∞) = R and

lim
t→∞

(u(x, t), v(x, t)) = (u∗, v∗) locally uniformly for x ∈ R.
*A full version of the local diffusion model (1.4) was recently investigated in [10], which showed that its long-time dynamics is

similar to that of (1.4) though some differences occur in the criteria governing the spreading-vanishing dichotomy. In particular, when
spreading happens, there exists a finite asymptotic spreading speed.
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Theorem 1.3 (Spreading-Vanishing Criteria). Let (u, v, g, h) be the solution of (1.8) and R0 be given
by (1.6).

(a) If R0 ≤ 1, then vanishing always occurs.
(b) If R0 > 1, then spreading always occurs if one of the following holds:

(I)
cG′(0)

(d1 + a)(d2 + b)
≥ 1,

(II)
cG′(0)

(d1 + a)(d2 + b)
< 1 and h0 ≥ L∗,

where L∗ > 0 is a certain critical length depending on a, b, c, d1, d2, J1, J2 but independent of the
initial data (u0, v0) .

(c) If R0 > 1 and
cG′(0)

(d1 + a)(d2 + b)
< 1 and h0 < L∗,

then

(i) for any given initial datum (u0, v0) satisfying (1.5), and any given constants σ0
1, σ

0
2 nonnega-

tive satisfying σ0
1 + σ

0
2 > 0, there exists µ∗ > 0 such that

(α) if (µ1, µ2) = (µσ0
1, µσ

0
2) and 0 < µ ≤ µ∗, then vanishing occurs, and

(β) if (µ1, µ2) = (µσ0
1, µσ

0
2) and µ > µ∗, then spreading occurs.

(ii) for fixed (µ1, µ2) and sufficiently small initial datum (u0, v0), vanishing occurs.

Remark 1.4. (i) The constant L∗ in Theorem 1.3 is uniquely determined by an eigenvalue problem; see
Proposition 3.4(iii) below.

(ii) In the case of (1.7) considered in [1], which is equivalent to (1.8) with d2 = µ2 = 0, the long-time
dynamics is also governed by a spreading-vanishing dichotomy, and the spreading-vanishing criteria
coincide with those in Theorem 1.3 but with d2 and µ2 replaced by 0.

(iii) If µ2 = 0 and all the other parameters in (1.8) are positive and fixed except d2, which is allowed
to vary in [0,∞), then from Lemmas 3.2 and 3.3 below it is easily seen that L∗ = L∗(d2) is strictly
increasing in d2. Therefore part (b) of Theorem 1.3 and the result in [1] indicate that the range of
parameters (a, b, c, d1, h0) for which spreading happens regardless of the size of the initial function
pare (u0, v0), i.e., (I) or (II) above holds, is enlarged as d2 is decreased, and such a range is maximized
when d2 = 0. Biologically, this means that reducing the mobility of the infective host increases the
chance of successful spreading of the disease, which appears counter-intuitive at first look. However,
such a phenomenon is not new; it arises in the local diffusion models considered in [4, 10] already.

When spreading happens, the spreading profile of (1.8) can be determined by using the general
results in [2]. For this purpose, we will need the following condition

(J1):
∫ ∞

0
xJi(x)dx < ∞ for i = 1, 2 with µi > 0.

Theorem 1.5 (Spreading Speed). In Theorem 1.2, if spreading happens, then

lim
t→∞

g(t)
−t
= lim

t→∞

h(t)
t
=

c0 if (J1) holds,

∞ if (J1) does not hold,
(1.10)
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where c0 > 0 is uniquely determined by the associated semi-wave problem to (1.8) (see [2, Section
1.2]).

Furthermore, in the case of accelerated spreading, we can determine the rate of accelerated spread-
ing for a rather general class of kernel functions.

Theorem 1.6 (Rate of Accelerated Spreading). In Theorem 1.5 suppose additionally that for i = 1, 2
with µi > 0, the kernel function Ji satisfies Ji(x) ≃ |x|−γ for some γ ∈ (1, 2] and |x| ≫ 1. Then for t ≫ 1,
we have

− g(t), h(t) ≃ t ln t if γ = 2,
− g(t), h(t) ≃ t1/(γ−1) if γ ∈ (1, 2).

(1.11)

Let us note that when Ji satisfies Ji(x) ≃ |x|−γ for |x| ≫ 1 and for i ∈ {1, 2} such that µi > 0,
(J1) holds if and only if γ > 2. Thus Theorem 1.6 covers the exact range of γ such that accelerated
spreading is possible. Note also that in condition (J1) as well as in Theorem 1.6, the condition only
applies to the kernel function Ji where µi > 0. For example, if µ2 = 0, then no extra condition on J2 is
needed apart from satisfying (J).

Problem (1.8) has an entire space version where no free boundary is involved, which has the form
ut = d1

∫
R

J1(x − y)u(y, t)dy − d1u − au + cv, t > 0, x ∈ R,

vt = d2

∫
R

J2(x − y)v(y, t)dy − d2v − bv +G(u), t > 0, x ∈ R,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ R.

(1.12)

Problem (1.12) has been successfully used to determine the spreading speed of the epidemic; see [11]
and the references therein for many interesting results on this and related problems. For the entire space
version of (1.7), see [2,12] and the references therein for more details. The local diffusion counterparts
of these entire space problems have been studied more extensively; see, for example, [13–15]. As
mentioned above, the corresponding free boundary models have the advantage of providing the exact
location of the spreading front of the concerned epidemics.

The rest of the paper is organized as follows. In Section 2, we introduce the preparatory results
relating to (1.8) and use them to prove Theorem 1.1. In Section 3, we gather the necessary results
associated with the corresponding fixed boundary problems, which will be used to determine the long-
time dynamical behavior of (1.8). In Section 4, we use the results of the previous sections to establish
the vanishing-spreading dichotomy as related to the reproduction number R0, proving Theorems 1.2
and 1.3. Finally, Section 5 is devoted to proving the assumptions required in [2] for Theorems 1.5 and
1.6.

We would like to point out that, although (1.8) has some significantly different features from the
West Nile virus model studied in [16], for example, the nature of the reaction terms in (1.8) makes any
nonnegative initial function admissible while the model in [16] only allows initial functions taken from
a certain bounded order interval, but many techniques of [16] can be adapted to treat (1.8), which has
helped to considerably reducing the length of the current paper. Here we only provide the details of
the proofs when they are very different from [16].
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2. Existence and uniqueness, and comparison principle

In this section, we prove the well-posedness of (1.8) and some associated comparison principles.
We first recall a maximum principle from [16, Lemma 3.1], which is more general than needed in

this paper, but in view of possible applications elsewhere, we state it in the general form as in [16].
Let T > 0 and ξ ∈ C([0,T ]). We define the set of strict local semi-maximum points of ξ by

Σ
ξ
max := {t ∈ (0,T ] : ∃ϵ > 0 such that ξ(t) > ξ(s) for s ∈ [t − ϵ, t)}.

Similarly, the set of strict local semi-minimum points of ξ is given by

Σ
ξ

min := {t ∈ (0,T ] : ∃ϵ > 0 such that ξ(t) < ξ(s) for s ∈ [t − ϵ, t)}.

If ξ is strictly increasing, then Σξmax = (0,T ]. If ξ is nondecreasing, then Σξmin = ∅.

Lemma 2.1 (Maximum Principle). Let T, h0 > 0, g, h ∈ C([0,T ]) satisfy g(t) < h(t) and −g(0) =
h(0) = h0. Denote DT := {(x, t) : t ∈ (0,T ], g(t) < x < h(t)} and suppose that for i, j ∈ {1, 2, ..., n},
ϕi, ∂tϕi ∈ C(DT ), di, ci j ∈ L∞(DT ), di ≥ 0, and

(ϕi)t ≥ di

∫ h(t)

g(t)
Ji(x − y)ϕi(y, t)dy − diϕi +

n∑
j=1

ci jϕ j, (x, t) ∈ DT ,

ϕi(g(t), t) ≥ 0, t ∈ Σg
min,

ϕi(h(t), t) ≥ 0, t ∈ Σh
max,

ϕi(x, 0) ≥ 0, |x| ≤ h0,

where Ji satisfies (J). Then the following holds:

(i) If ci j ≥ 0 on DT for i, j ∈ {1, 2, ...n} and i , j, then ϕi ≥ 0 on DT for i ∈ {1, 2, ..., n}.
(ii) If for some i0 ∈ {1, ..., n} we assume additionally that di0 > 0 in DT and ϕi0(x, 0) . 0 in [−h0, h0],

then ϕi0(x, t) > 0 in DT .

Lemma 2.2 (Comparison Principle I). For T ∈ (0,+∞), suppose that g, h ∈ C([0,T ]), D = {(x, t) : t ∈
(0,T ], g(t) < x < h(t)}, u, v ∈ C(D), u, v ≥ 0. If (u, v, g, h) satisfies

ut ≥ d1

∫ h(t)

g(t)
J1(x − y)u(y, t)dy − d1u − au + cv, t > 0, x ∈ (g(t), h(t)),

vt ≥ d2

∫ h(t)

g(t)
J2(x − y)v(y, t)dy − d2v − bv +G(u), t > 0, x ∈ (g(t), h(t)),

h
′

(t) ≥
∫ h(t)

g(t)

∫ ∞

h(t)

[
µ1J1(x − y)u(x, t) + µ2J2(x − y)v(x, t)

]
dydx, t > 0,

g′(t) ≤ −
∫ h(t)

g(t)

∫ g(t)

−∞

[
µ1J1(x − y)u(x, t) + µ2J2(x − y)v(x, t)

]
dydx, t > 0,

g(0) ≤ −h0, h(0) ≥ h0, u(x, 0) ≥ u0(x), v(x, 0) ≥ v0(x), |x| ≤ h0,

(2.1)

then the unique solution (u, v, g, h) of (1.8) satisfies

u(x, t) ≤ u(x, t), v(x, t) ≤ v(x, t), g(t) ≥ g(t), h(t) ≤ h(t), (2.2)

for 0 < t ≤ T and g(t) ≤ x ≤ h(t).
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Proof. By (G1), we have that G(u) = G′(ξ)u with ξ = ξ(x, t) ∈ (0, u(x, t)]. From (1.5) and Lemma 2.1,
we infer that u, v > 0, for 0 < t ≤ T and g(t) < x < h(t). Therefore, −g and h are strictly increasing.

For small ϵ > 0, let (uϵ , vϵ , gϵ , hϵ) denote the unique solution of (1.8) with h0 replaced by hϵ0 :=
h0(1 − ϵ), µi by µϵi := µi(1 − ϵ) for i = 1, 2, and (u0, v0) by (uϵ0, v

ϵ
0) satisfying

0 < uϵ0(x) < u0(x), 0 < vϵ0(x) < v0(x) in (−hϵ0, h
ϵ
0),

uϵ0(±hϵ0) = vϵ0(±hϵ0) = 0, and
(uϵ0( h0

hϵ0
x), vϵ0( h0

hϵ0
x))→ (u0(x), v0(x)) as ϵ → 0 in the C([−h0, h0]) norm.

(2.3)

We claim that hϵ(t) < h(t) and gϵ(t) > g(t) for all t ∈ (0,T ]. It is clear that these hold for small t > 0.
Suppose that there exists t1 ≤ T such that

hϵ(t) < h(t), gϵ(t) > g(t) for t ∈ (0, t1) and [hϵ(t1) − h(t1)][gϵ(t1) − g(t1)] = 0.

Without loss of generality, assume that hϵ(t1) = h(t1) and gϵ(t1) ≥ g(t1). Let w := u − uϵ and
z := v − vϵ; then (w, z) satisfies

wt ≥ d1

∫ hϵ (t)

gϵ (t)
J1(x − y)w(y, t)dy − d1w − aw + cz, 0 < t ≤ t1, x ∈ (gϵ(t), hϵ(t)),

zt ≥ d2

∫ hϵ (t)

gϵ (t)
J2(x − y)z(y, t)dy − d2z − bz +G′(η)w, 0 < t ≤ t1, x ∈ (gϵ(t), hϵ(t)),

w(x, t) ≥ 0, z(x, t) ≥ 0, 0 < t ≤ t1, x = gϵ(t) or hϵ(t),
w(x, 0) > 0, z(x, 0) > 0, x ∈ [gϵ(0), hϵ(0)],

(2.4)

where η = η(x, t) is between u(x, t) and uϵ(x, t). Therefore we can apply Lemma 2.1 to conclude that
w(x, t) > 0 and z(x, t) > 0 for 0 < t ≤ t1 and gϵ(t) < x < hϵ(t).

However, by definition of t1, we have h′ϵ(t1) ≥ h
′

(t1), giving us that

0 ≥ h
′

(t1) − h′ϵ(t1)

≥

∫ h(t1)

g(t1)

∫ ∞

h(t1)

[
µ1J1(x − y)u(x, t1) + µ2J2(x − y)v(x, t1)

]
dydx

−

∫ hϵ (t1)

gϵ (t1)

∫ ∞

hϵ (t1)

[
µϵ1J1(x − y)uϵ(x, t1) + µϵ2J2(x − y)vϵ(x, t1)

]
dydx

≥

∫ hϵ (t1)

gϵ (t1)

∫ ∞

hϵ (t1)
[µϵ1J1(x − y)w(x, t1) + µϵ2J2(x − y)z(x, t1)]dydx > 0.

This contradiction proves our claim, namely, hϵ(t) < h(t) and gϵ(t) > g(t) for all t ∈ (0,T ]. Hence
(2.4) holds with t1 replaced by T , which yields that u(x, t) > uϵ(x, t) and v(x, t) > vϵ(x, t) for 0 < t ≤ T
and gϵ(t) < x < hϵ(t). Letting ϵ → 0, we obtain the desired result from the continuous dependence of
(uϵ , vϵ , gϵ , hϵ) on ϵ. □

We introduce a second comparison principle where the boundaries are regarded as given.

Electronic Research Archive Volume 30, Issue 1, 289–313.



298

Lemma 2.3 (Comparison Principle II). Assume (J) holds, T > 0, g, h ∈ C([0,T ]) satisfying g(t) < h(t),
and DT defined as in Lemma 2.1. If for i = 1, 2, ui, ũi ∈ C(DT ) satisfy the following conditions:

(i) ϕt ∈ C(DT ) for ϕ ∈ {u1, u2, ũ1, ũ2},
(ii) for (x, t) ∈ DT , 

(ũ1)t ≥ d1

∫ h(t)

g(t)
J1(x − y)ũ1(y, t)dy − d1ũ1 − aũ1 + cũ2,

(ũ2)t ≥ d2

∫ h(t)

g(t)
J2(x − y)ũ2(y, t)dy − d2ũ2 − bũ2 +G(ũ1),

(2.5)

(iii) for (x, t) ∈ DT , (u1, u2) satisfies (2.5) but with the inequalities reversed,
(iv) at the boundary, ui(g(t), t) ≤ ũi(g(t), t) for t ∈ Σg

min,

ui(h(t), t) ≤ ũi(h(t), t) for t ∈ Σh
min,

(v) and at the initial time, ui(x, 0) ≤ ũi(x, 0) for x ∈ [g(0), h(0)] and i = 1, 2.

Then for i = 1, 2, we must have

ui(x, t) ≤ ũi(x, t) for (x, t) ∈ DT .

Proof. For i = 1, 2, define ϕi := ũi − ui and

c11 := −a, c12 := c, c21 :=
G(ũ1) −G(u1)

ũ1 − u1
, c22 := −b.

Then by the maximum principle in Lemma 2.1, we obtain that ϕi ≥ 0 in DT for i = 1, 2. □

Lemma 2.4 (A Priori Bound). For T ∈ (0,+∞), let (u, v, g, h) be a solution of (1.8) for t ∈ (0,T ]. Then
there exists constants C1 and C2 independent of T such that

u(x, t) ≤ C1 and v(x, t) ≤ C2 for g(t) < x < h(t), t ∈ (0,T ].

Proof. By assumption (G2), there exist C1 and C2 such that
G(C1)

C1
<

ab
c

and C1 ≥ u0(x) in [−h0, h0] (2.6)

and
G(C1)

b
< C2 <

a
c

C1 and C2 ≥ v0(x) in [−h0, h0]. (2.7)

Let (U1(x, t),U2(x, t)) ≡ (C1,C2). For i = 1, 2, let us denote

Li[w](x, t) :=
∫ h(t)

g(t)
Ji(x − y)w(y, t)dy − w(x, t).

Clearly Li[Ui](x, t) ≤ 0 and (Ui)t = 0. It now follows from (2.6) and (2.7) that
(U1)t > d1L1[U1] − aU1 + cU2, t > 0, x ∈ (g(t), h(t)),
(U2)t > d2L2[U2] − bU2 +G(U1), t > 0, x ∈ (g(t), h(t)),
U1(x, t) > u(x, t), U2(x, t) > v(x, t), t > 0, x ∈ {g(t), h(t)},
U1(x, 0) ≥ u0(x), U2(x, 0) ≥ v0(x), |x| ≤ h0.

By Lemma 2.3, we obtain u(x, t) ≤ C1 and v(x, t) ≤ C2 for all 0 < t ≤ T and g(t) ≤ x ≤ h(t). □
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Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let us first consider the following slightly modified problem, with C2 taken
from Lemma 2.4:

ut = d1

∫ h(t)

g(t)
J1(x − y)u(y, t)dy − d1u − au + c min{v,C2}, t > 0, x ∈ (g(t), h(t)),

vt = d2

∫ h(t)

g(t)
J2(x − y)v(y, t)dy − d2v − bv +G(u), t > 0, x ∈ (g(t), h(t)),

u(x, t) = v(x, t) = 0, t > 0, x ∈ {g(t), h(t)},

h′(t) =
∫ h(t)

g(t)

∫ ∞

h(t)

[
µ1J1(x − y)u(x, t) + µ2J2(x − y)v(x, t)

]
dydx, t > 0,

g′(t) = −
∫ h(t)

g(t)

∫ g(t)

−∞

[
µ1J1(x − y)u(x, t) + µ2J2(x − y)v(x, t)

]
dydx, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), h(0) = −g(0) = h0, |x| ≤ h0.

(2.8)

By taking f1(u, v) = −au + c min{v,C2} and f2(u, v) = −bv + G(u), in view of the conditions on G,
we see that they satisfy the conditions of Theorem 4.1 in [16]. Therefore (2.8) has a unique solution
(u, v, g, h) defined for all t > 0.

Since f1(u, v) ≤ −au + cv, from the proof of Lemma 2.4 we see that u(x, t) ≤ C1 and v(x, t) ≤ C2,
and therefore f1(u(x, t), v(x, t)) = −au(x, t) + cv(x, t). Thus (u, v, g, h) solves (1.8).

Conversely, by Lemma 2.4 any solution of (1.8) satisfies v(x, t) ≤ C2 and hence it solves (2.8). Thus
global existence and uniqueness holds for (1.8). □

3. Some associated fixed boundary problems

3.1. Eigenvalue problem

For any L > 0, we consider the eigenvalue problem
λϕ = −d1

∫ L

−L
J1(x − y)ϕ(y)dy + d1ϕ + aϕ − cψ, x ∈ (−L, L),

λψ = −d2

∫ L

−L
J2(x − y)ψ(y)dy + d2ψ + bψ −G′(0)ϕ, x ∈ (−L, L).

(3.1)

By Theorems 2.2 and 2.3 of [17], we have the following result:

Proposition 3.1. The eigenvalue problem (3.1) has a principal eigenvalue λ = λ1(L) with positive
eigenfunction pair (ϕ, ψ) = (ϕ1, ψ1) ∈ C([−L, L]) ×C([−L, L]).

Then by Lemma 2.2 and Proposition 2.3 of [16], we have the following two results on the properties
of the eigenvalue λ1(L).
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Lemma 3.2. Let λ1(L) be the principal eigenvalue of (3.1). Let Φ,Ψ ∈ C([−L, L]) be two functions
such that Φ,Ψ ≥ 0 and Φ,Ψ . 0 in [−L, L], and λ̃ be a constant such that

− d1

∫ L

−L
J1(x − y)Φ(y)dy + d1Φ + aΦ − cΨ ≥ (≤)λ̃Φ, x ∈ (−L, L),

− d2

∫ L

−L
J2(x − y)Ψ(y)dy + d2Ψ + bΨ −G′(0)Φ ≥ (≤)λ̃Ψ, x ∈ (−L, L),

(3.2)

then λ1(L) ≥ (≤)λ̃. Moreover, λ1(L) = λ̃ only if equalities hold in (3.2).

Lemma 3.3. Let λ1(L) be the principal eigenvalue of (3.1). Then

(i) λ1(L) is strictly decreasing with respect to L ∈ (0,∞),
(ii) λ1(L) is continuous for L ∈ (0,∞).

The following proposition is essential for establishing the spreading and vanishing criteria in Theo-
rem 1.3.

Proposition 3.4. The principal eigenvalue λ1(L) of (3.1) has the following properties:

(i) If R0 ≤ 1, then λ1(L) > 0 for any L > 0.
(ii) If R0 > 1 and

cG′(0)
(d1 + a)(d2 + b)

≥ 1, (3.3)

then λ1(L) < 0 for any L > 0.
(iii) If R0 > 1 and

cG′(0)
(d1 + a)(d2 + b)

< 1, (3.4)

then there exists L∗ such that

λ1(L∗) = 0 and (L − L∗)λ1(L) < 0 for L ∈ (0, L∗) ∪ (L∗,∞).

Proof. The proof follows that of [16, Proposition 2.4], and the details are omitted. □

Corollary 3.5. Let l1 < l2 and λ1(l1, l2) be the principal eigenvalue of (3.1) with [−L, L] replaced by
[l1, l2]. Then

(i) λ1(l1, l2) is strictly decreasing with respect to l2 − l1 and is continuous in l1 and l2.
(ii) If R0 ≤ 1, then λ1(l1, l2) > 0 for any l1 and l2.

(iii) If R0 > 1 and (3.3) holds, then λ1(l1, l2) < 0 for any l1 and l2.
(iv) If R0 > 1 and (3.4) holds, then λ1(l1, l2) = 0 for l2 − l1 = 2L∗ and

λ1(l1, l2) > 0 for l2 − l1 < 2L∗, λ1(l1, l2) < 0 for l2 − l1 > 2L∗, (3.5)

where L∗ > 0 is given by Proposition 3.4(iii).
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3.2. Fixed boundary problem

For L > 0, we define QL = (−L, L)× (0,∞) and consider the corresponding fixed boundary problem
of (1.8): 

ut = d1

∫ L

−L
J1(x − y)u(y, t)dy − d1u − au + cv, (x, t) ∈ QL,

vt = d2

∫ L

−L
J2(x − y)v(y, t)dy − d2v − bv +G(u), (x, t) ∈ QL,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ [−L, L],

(3.6)

where u0, v0 ∈ C([−L, L]) are nonnegative and not identically 0 simultaneously. It is well-known that
fixed boundary problems such as (3.6) has a unique positive solution which is defined for all t > 0 (see,
for example, Remark 4.3 in [16]).

The corresponding steady state problem of (3.6) is
− d1

∫ L

−L
J1(x − y)ũ(y)dy + d1ũ = −aũ + cṽ, x ∈ (−L, L),

− d2

∫ L

−L
J2(x − y)ṽ(y)dy + d2ṽ = −bṽ +G(ũ), x ∈ (−L, L).

(3.7)

Definition 3.6. A function pair (ϕ, ψ) ∈ C([−L, L])×C([−L, L]) is said to be an upper solution of (3.7)
if 

− d1

∫ L

−L
J1(x − y)ϕ(y)dy + d1ϕ ≥ −aϕ + cψ, x ∈ (−L, L),

− d2

∫ L

−L
J2(x − y)ψ(y)dy + d2ψ ≥ −bψ +G(ϕ), x ∈ (−L, L).

It is called a lower solution of (3.7) if these inequalities are reversed.

Proposition 3.7. Suppose that R0 > 1 and (u, v) is the unique positive solution of (3.6). Let λ1(L) be
the principal eigenvalue of (3.1) and (u∗, v∗) be as defined in (1.2). Then the following conclusions
hold:

(i) The fixed boundary problem (3.6) has a unique positive steady state solution (ũ, ṽ) ∈ C([−L, L])×
C([−L, L]) if λ1(L) < 0, and (0, 0) is the only nonnegative steady state when λ1(L) ≥ 0. Moreover,
0 < ũ(x) ≤ u∗ and 0 < ṽ(x) ≤ v∗ in [−L, L] when λ1(L) < 0.

(ii) If λ1(L) ≥ 0, then (u(x, t), v(x, t)) converges to (0, 0) as t → ∞ uniformly for x ∈ [−L, L].
(iii) If λ1(L) < 0, then (u(x, t), v(x, t)) converges to (ũ, ṽ) as t → ∞ uniformly for x ∈ [−L, L].

Proof. Due to the different nature of the reaction terms in (1.8) from the model in [16], our proof here
uses rather different techniques. In particular, we will make use of the monotonicity (in time t) of the
to-be-constructed lower and upper solutions and Dini’s theorem.

(i) Suppose that λ1(L) < 0. Then we easily see that (Mu∗,Mv∗) and (ϵϕ1, ϵψ1) are respectively
upper and lower solutions of (3.7) for small enough ϵ > 0 and any M ≥ 1, where (ϕ1, ψ1) is a positive
eigenfunction pair corresponding to λ1(L).

Let (u, v) be the unique positive solution of (3.6) with initial function pair (ϵϕ1, ϵψ1). Using
(ϵϕ1, ϵψ1) as a lower solution of (3.6), we can use the comparison principle in Lemma 2.3 with
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(g(t), h(t)) ≡ (−L, L) to conclude that (ϵϕ1(x), ϵψ1(x)) ≤ (u(x, t), v(x, t)) ≤ (u∗, v∗) for (x, t) ∈ QL.
In particular, for any fixed s > 0,

(ϵϕ1(x), ϵψ1(x)) = (u(x, 0), v(x, 0)) ≤ (u(x, s), v(x, s)) for x ∈ [−L, L].

It is easily seen that (û(x, t), v̂(x, t) := (u(x, s + t), v(x, s + t)) is a solution of (3.6) with initial data
(u(x, s), v(x, s)). Therefore we can use the comparison principle to deduce

(u(x, t), v(x, t)) ≤ (û(x, t), v̂(x, t)) = (u(x, s + t), v(x, s + t)) for (x, t) ∈ QL.

Since s > 0 is arbitrary, this implies that (u(x, t), v(x, t)) is nondecreasing in t and hence

(U(x),V(x)) := lim
t→∞

(u(x, t), v(x, t)) exists,

and (ϵϕ1(x), ϵψ1(x)) ≤ (U(x),V(x)) ≤ (u∗, v∗) in [−L, L]. Moreover, it is easily seen that (U,V) solves
(3.7). Thus there exists at least one positive steady state solution.

We show next that (U,V) as well as any other positive solution of (3.7) are continuous in [−L, L].
Indeed, from the continuity of J1 and J2, we easily see that

G1(x) := d1

∫ L

−L
J1(x − y)U(y)dy, G2(x) := d2

∫ L

−L
J2(x − y)V(y)dy

are continuous in [−L, L]. From (3.7), we obtainV(x) = a+d1
c U(x) − G1(x)

c ,
(a+d1)(b+d2)

c U(x) −G(U(x)) = G2(x) + b+d2
c G1(x).

From the conditions on G, we see that F(z) := (a+d1)(b+d2)
c z −G(z) satisfies

F′(z) =
(a + d1)(b + d2)

c
−G′(z) ≥

(a + d1)(b + d2)
c

−
ab
c
> 0 for z > 0.

Thus from F(U(x)) = G2(x) + b+d2
c G1(x), F′(z) > 0 and the fact that G1(x) and G2(x) are continuous,

we obtain U(x) is continuous, which in turn implies that V(x) = a+d1
c U(x) − G1(x)

c is continuous.
To prove uniqueness, let (Û, V̂) be another positive solution of (3.7). By choosing ϵ > 0 sufficiently

small, we may assume that (ϵϕ1(x), ϵψ1(x)) ≤ (Û(x), V̂(x)) in [−L, L]. Thus the above obtained (U,V)
satisfies (U,V) ≤ (Û, V̂).

We define
k∗ := inf{k > 0 : k(U,V) ≥ (Û, V̂) in [−L, L]}.

From (U,V) ≤ (Û, V̂) and the definition of k∗, we have immediately k∗(U,V) ≥ (Û, V̂) and k∗ ≥ 1. If
k∗ = 1, then we immediately obtain (U,V) = (Û, V̂) and the uniqueness is proved. If k∗ > 1, we show
that a contradiction arises. So suppose k∗ > 1. Since G(z)/z is decreasing by (G2), it is easily checked
that (k∗U, k∗V) is an upper solution of (3.7). We now consider (Φ(x),Ψ(x)) := (k∗U(x)− Û(x), k∗V(x)−
V̂(x)). It can be shown that it satisfies a pair of inequalities of the form in Lemma 2.1, and Φ(x) . 0,
Ψ(x) . 0 (due to k∗ > 1 and (U,V) ≤ (Û, V̂)). Thus, by Lemma 2.1 we deduce Φ(x) > 0 and Ψ(x) > 0
in [−L, L]. Since they are continuous functions on [−L, L], this implies that k(U,V) ≥ (Û, V̂) in [−L, L]
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for some k < k∗, which is a contradiction to the definition of k∗. Thus we must have that k∗ = 1, and
uniqueness is proved.

Now let us assume that (ũ, ṽ) is a positive steady state solution of (3.6) and λ1(L) ≥ 0. By (G2), we
see that (ũ, ṽ) satisfies

− d1

∫ L

−L
J1(x − y)ũ(y, t)dy + d1ũ + aũ − cṽ = 0, x ∈ (−L, L),

− d2

∫ L

−L
J2(x − y)ṽ(y, t)dy + d2ṽ + bṽ −G′(0)ũ < 0 x ∈ (−L, L).

(3.8)

By applying Lemma 3.2 with λ̃ = 0, we obtain that λ1(L) < 0. This contradicts our assumption,
proving the nonexistence.

Next we prove (ii) and (iii) simultaneously. By choosing ϵ > 0 sufficiently small and M > 1
sufficiently large, we can ensure that (ϵϕ1(x), ϵψ1(x)) ≤ (u(x, 1), v(x, 1)) ≤ (Mu∗,Mv∗) in [−L, L].
Let (u(x, t), v(x, t)) be the unique solution of (3.6) with initial data (Mu∗,Mv∗). Then an analogous
reasoning to that for (u(x, t), v(x, t)) shows that (u(x, t), v(x, t)) is non-increasing in t and hence

(Ũ(x), Ṽ(x)) := lim
t→∞

(u(x, t), v(x, t)) exists and is a nonnegative solution of (3.7).

If λ1(L) ≥ 0, then by (i) we know that necessarily (Ũ, Ṽ) = (0, 0). By Dini’s theorem, the monotonicity
in t implies that the convergence in the above limit is uniform in x ∈ [−L, L]. The comparison prin-
ciple implies that (0, 0) ≤ (u(x, t + 1), v(x, t + 1)) ≤ (u(x, t), v(x, t)). Letting t → ∞, we thus obtain
limt→∞(u(x, t), v(x, t)) = (0, 0) uniformly in [−L, L] when λ1(L) ≥ 0. This proves (ii).

Note that the comparison principle implies

(u(x, t), v(x, t)) ≤ (u(x, t + 1), v(x, t + 1)) ≤ (u(x, t), v(x, t)).

When λ1(L) < 0, letting t → ∞, we deduce (U,V) ≤ (Ũ, Ṽ), and the uniqueness result obtained in
(i) implies (U,V) = (Ũ, Ṽ). This in turn implies, by the above inequalities, limt→∞(u(x, t), v(x, t)) =
(U(x),V(x)). Moreover, this convergence is uniform in [−L, L] (by Dini’s theorem again) since the con-
vergences of (u(x, t), v(x, t)) and (u(x, t), v(x, t)) to (U(x),V(x)) are uniform due to their monotonicity
in t and the continuity of U(x) and V(x). □

Remark 3.8. By Proposition 3.4, if R0 > 1, then λ1(L) < 0 for large enough L. Thus the steady state
problem (3.7) has a unique positive solution for all large L, which we will denote by (ũL, ṽL) to stress
its dependence on L.

Following the proof of [16, Proposition 3.5], we have the following result.

Proposition 3.9. Assume (J) holds and that R0 > 1. Then

lim
L→+∞

(ũL(x), ṽL(x)) = (u∗, v∗) locally uniformly in R,

where (u∗, v∗) is defined in (1.2).
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4. Spreading-vanishing dichotomy and critera

In this section, we prove Theorems 1.2 and 1.3. It is clear that h(t) and g(t) are respectively mono-
tonically increasing and decreasing. Therefore, their limits

lim
t→∞

h(t) = h∞ ∈ (h0,+∞] and lim
t→∞

g(t) = g∞ ∈ [−∞,−h0)

are well-defined.

4.1. Vanishing

Here we look at cases where vanishing happens: either when the reproduction number R0 ≤ 1 or
for sufficiently small initial data (u0, v0).

Lemma 4.1. If h∞ − g∞ < ∞, then

lim
t→∞
∥u∥C[g(t),h(t)] = lim

t→∞
∥v∥C[g(t),h(t)] = 0 (4.1)

Proof. We claim that λ1(g∞, h∞) ≥ 0 where λ1(g∞, h∞) is the principal eigenvalue of (3.1) with [−L, L]
replaced by [g∞, h∞].

Suppose by contradiction that λ1(g∞, h∞) < 0. Then by Lemma 3.3, there exists a constant T > 0
large enough such that λ1(g(T ), h(T )) < 0. We may assume that g(T ) and h(T ) satisfy |g(T ) − g∞| < ϵ

and |h(T ) − h∞| < ϵ with ϵ ∈ (0, h0) small enough such that J1(x), J2(x) > 0 for x ∈ [−4ϵ, 4ϵ]. Clearly
[h(t) − 2ϵ, h(t) − ϵ] ⊂ [g(T ), h(T )] for t ≥ T .

Let (u1(x, t), v1(x, t)) be the solution of (3.6) with QL replaced by (g(T ), h(T )) × (0,∞), and initial
functions (u0, v0) = (u(x,T ), v(x,T )). By the comparison principle, we obtain that

u1(x, t) ≤ u(x, t + T ), v1(x, t) ≤ v(x, t + T ) for (x, t) ∈ (g(T ), h(T )) × (0,∞).

By Proposition 3.7(iii), we obtain uniform convergence of (u1, v1) for x ∈ [g(T ), h(T )], giving

0 < ũ1(x) := lim
t→∞

u1(x, t) ≤ lim inf
t→∞

u(t, x) and 0 < ṽ1(x) := lim
t→∞

v1(x, t) ≤ lim inf
t→∞

v(t, x).

Therefore, there exists T1 ≥ T such that

0 <
1
2

ũ1(x) < u(x, t) and 0 <
1
4

ṽ1(x) < v(x, t) for t ≥ T1, x ∈ [g(T ), h(T )].

Let c1, c2, c3 and c4 be constants as defined below

c1 := min
x∈[−4ϵ,4ϵ]

J1(x) > 0, c2 := min
x∈[−4ϵ,4ϵ]

J2(x) > 0,

c3 := min
x∈[g(T ),h(T )]

ũ1(x) > 0, c4 := min
x∈[g(T ),h(T )]

ṽ1(x) > 0.
(4.2)
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Then from the above, we can calculate that

h′(t) =
∫ h(t)

g(t)

∫ ∞

h(t)

[
µ1J1(x − y)u(x, t) + µ2J2(x − y)v(x, t)

]
dydx

≥

∫ h(t)

h(t)−2ϵ

∫ h(t)+2ϵ

h(t)

[
µ1J1(x − y)u(x, t) + µ2J2(x − y)v(x, t)

]
dydx

≥

∫ h(t)

h(t)−2ϵ

[
2µ1c1ϵu(x, t) + 2µ2c2ϵv(x, t)

]
dx

≥

∫ h(t)−ϵ

h(t)−2ϵ

[
µ1c1ϵũ(x) + µ2c2ϵṽ(x)

]
dx

≥ ϵ2 (µ1c1c3 + µ2c2c4) > 0 for t ≥ T1,

which implies h∞ = ∞, contradicting to h∞ < ∞. Therefore λ1(g∞, h∞) ≥ 0.
Now, let (u2(x, t), v2(x, t)) be the solution of (3.6) with QL replaced by (0,∞) × (g∞, h∞) and with

the same initial data (u0, v0) as (u, v). By the comparison principle, we have 0 ≤ u(x, t) ≤ u2(x, t) and
0 ≤ v(x, t) ≤ v2(x, t) for t > 0 and x ∈ [g(t), h(t)]. Since λ1(g∞, h∞) ≥ 0, Proposition 3.7(ii) gives that

lim
t→∞

(u2(x, t), v2(x, t)) = (0, 0) uniformly for x ∈ [g∞, h∞], (4.3)

which implies the vanishing result. □

Lemma 4.2. If R0 ≤ 1, then

h∞ − g∞ ≤ 2h0 +
µ1 + µ2

m0

∫ h0

−h0

[u0(x) +
c
b

v0(x)]dx, (4.4)

and hence vanishing happens, where m0 := min{d1,
d2c
b }.

Proof. Since
∫
R

Ji(x)dx = 1 and Ji(x) is even for i = 1, 2, a straightforward calculation shows that

−[h′(t) − g′(t)] =µ1

(∫ h(t)

g(t)

∫ h(t)

g(t)
J1(x − y)u(x, t)dydx −

∫ h(t)

g(x)
u(x, t)dx

)
+ µ2

(∫ h(t)

g(t)

∫ h(t)

g(t)
J2(x − y)v(x, t)dydx −

∫ h(t)

g(x)
v(x, t)dx

)
.

Moreover, we can calculate that∫ h(t)

g(t)

∫ h(t)

g(t)
J1(x − y)u(x, t)dydx −

∫ h(t)

g(x)
u(x, t)dx

= −

∫ h(t)

g(t)

∫ ∞

h(t)
J1(x − y)u(x, t)dydx −

∫ h(t)

g(t)

∫ g(t)

−∞

J1(x − y)u(x, t)dydx ≤ 0,

and the same holds when (u, J1) is replaced by (v, J2). By the above, we obtain that

d
dt

∫ h(t)

g(t)

[
u(x, t) +

c
b

v(x, t)
]

dx

Electronic Research Archive Volume 30, Issue 1, 289–313.



306

=

∫ h(t)

g(t)
[ut(x, t) +

c
b

vt(x, t)]dx + h′(t)[u +
c
b

v]
∣∣∣∣
(h(t),t)

+ g′(t)[u +
c
b

v]
∣∣∣∣
(g(t),t)

=

∫ h(t)

g(t)

[
d1

(∫ h(t)

g(t)
J1(x − y)u(y, t)dy − u(x, t)

)
− au(x, t)

+
cd2

b

(∫ h(t)

g(t)
J2(x − y)v(y, t)dy − v(x, t)

)
+

c
b

G(u(x, t))
]

dx

≤ −
min{d1, d2c/b}

µ1 + µ2
[h′(t) − g′(t)] +

∫ h(t)

g(t)

[
−au(x, t) +

c
b

G(u(x, t))
]

dx.

Using (G2), it follows from R0 ≤ 1 that −au(x, t)+ c
bG(u(x, t)) ≤ 0 for x ∈ [g(t), h(t)] and t ≥ 0. Hence,

d
dt

∫ h(t)

g(t)

[
u(x, t) +

c
b

v(x, t)
]

dx ≤ −
m0

µ1 + µ2
[h′(t) − g′(t)] for t > 0.

Integrating the above from 0 to t gives us (4.4). Then by Lemma 4.1, we obtain the vanishing result. □

Now for initial data (u0, v0) small enough, we show that vanishing also occurs.

Lemma 4.3. Let λ1(h0) be the principal eigenvalue of (3.1) with L = h0. If R0 > 1, λ1(h0) > 0 and
∥u0∥C([−h0,h0]) + ∥v0∥C([−h0,h0]) is sufficiently small, then vanishing happens.

Proof. Since λ1(h0) > 0, there exists h1 > h0 but close to h0 such that λ1(h1) > 0. Let (ϕ, ψ) be a
positive eigenfunction pair corresponding to λ1(h1) and

δ :=
λ1(h1)

2
, c := h1 − h0, and M := δc

(
µ1

∫ h1

−h1

ϕ(x)dx + µ2

∫ h1

−h1

ψ(x)dx
)−1

.

Then define, for t ≥ 0, x ∈ [−h1, h1],

h(t) := h0 + c[1 − e−δt], g(t) := −h(t),
u(x, t) := Me−δtϕ(x), v(x, t) := Me−δtψ(x).

We see that h(t) ∈ [h0, h1) for t ≥ 0 and if we let σ := min
{
minx∈[−h0,h0] ϕ(x),minx∈[−h0,h0] ψ(x)

}
and

∥u0∥C[−h0,h0] + ∥v0∥C[−h0,h0] ≤ σM,

then we have

u0(x) ≤ Mϕ(x) = u(x, 0), v0(x) ≤ Mψ(x) = v(x, 0) for x ∈ [−h0, h0]. (4.5)

Clearly, we can calculate

ut − d1

∫ h(t)

g(t)
J1(x − y)u(y, t)dy + d1u + au − cv

≥ −δu − d1

∫ h1

−h1

J1(x − y)u(y, t)dy + d1u + au − cv
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= Me−δt[λ1(h1) − δ]ϕ ≥ 0, for t > 0, x ∈ [g(t), h(t)].

By (G2), we obtain G(u) ≤ G′(0)u and hence

vt − d2

∫ h(t)

g(t)
J2(x − y)v(y, t)dy + d2v + bv −G(u)

≥ −δv − d2

∫ h1

−h1

J2(x − y)v(y, t)dy + d2v + bb −G′(0)u

= Me−δt[λ1(h1) − δ]ψ ≥ 0 for t > 0, x ∈ [g(t), h(t)].

Moreover, for x ∈ {g(t), h(t)}, we have that (u(x, t), v(x, t)) ≥ (0, 0) and

µ1

∫ h(t)

g(t)

∫ ∞

h(t)
J1(x − y)u(x, t)dydx + µ2

∫ h(t)

g(t)

∫ ∞

h(t)
J2(x − y)v(x, t)dydx

≤ µ1

∫ h(t)

g(t)
u(x, t)dx + µ2

∫ h(t)

g(t)
v(x, t)dydx

≤ Me−δt
[
µ1

∫ h1

−h1

ϕ(x)dx + µ2

∫ h1

−h1

ψ(x)dx
]

= δce−δt = h ′(t) for t > 0.

In view of g(t) = −h(t), we can now use the the comparison principle in Lemma 2.2 to conclude that
h(t) ≤ h(t) ≤ h1 for all t > 0, and hence vanishing happens. □

Remark 4.4. If (µ1, µ2) = (µσ0
1, µσ

0
2) with σ0

1 and σ0
2 fixed, nonnegative and σ0

1 + σ
0
2 > 0, then by the

proof of Lemma 4.3, we see that M → ∞ when µ → 0. Thus, for any given initial data (u0, v0), there
exists µ0 > 0 such that (4.5) holds for all µ ∈ (0, µ0). Thus if 0 < µ ≤ µ0, then vanishing must happen
for (1.8) for this given initial data (u0, v0).

We note that the following lemma implies that if h∞ − g∞ = ∞ holds, then we must have that
h∞ = −g∞ = +∞.

Lemma 4.5. The inequality h∞ < +∞ if and only if g∞ > −∞.

Proof. The proof of this lemma is similar to the proof of Lemma 4.10 in [16]. Since the modifications
are obvious, we omit the details. □

4.2. Spreading

In this section, we look at cases where spreading happens.

Lemma 4.6. If λ1(g(t0), h(t0)) < 0 for some t0 ≥ 0, then h∞ = −g∞ = +∞ and

lim
t→∞

u(x, t) = u∗ and lim
t→∞

v(x, t) = v∗ locally uniformly for x ∈ R, (4.6)

where λ1(g(t0), h(t0)) is the eigenvalue of (3.1) with [−L, L] replaced by [g(t0), h(t0)], and (u∗, v∗) are
as defined in (1.2).
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Remark 4.7. If for R0 > 1 and for some t0 > 0, we have h(t0)−g(t0) ≥ 2L∗, then by Proposition 3.4, we
obtain that λ1(h(t0), g(t0)) ≤ 0. Hence for any t1 > t0 we have λ1(h(t1), g(t1)) < 0. Then by Lemma 4.6,
we have that spreading occurs. This implies that when R0 > 1 and vanishing happens, we must have
h(t) − g(t) < 2L∗ for all t ≥ 0.

Proof of Lemma 4.6. We see that h∞ = −g∞ = ∞. Suppose by contradiction that h∞ − g∞ < ∞. Since
[g(t0), h(t0)] ⊂ [g(t), h(t)] for some t ≥ t0, by Corollary 3.5, we have λ1(g(t), h(t)) < 0 for t ≥ t0. Then
we derive the contradiction as in Lemma 4.1. By Lemma 4.5, we further obtain that −g∞ = h∞ = ∞.
Then by Lemma 4.2, we must have R0 > 1, which guarantees the existence of the positive equilibrium
(u∗, v∗). It remains to show (4.6).

Let us first consider the limit superior of the solution. Let (u, v) be the unique positive solution of
the following ODE problem: 

u ′ = −au + cv, t > 0,
v ′ = −bv +G(u), t > 0,
u(0) = ∥u0∥L∞([−h0,h0]),

v(0) = ∥v0∥L∞([−h0,h0]).

(4.7)

Since R0 > 1, we have limt→∞(u(t), v(t)) = (u∗, v∗). We then note that

d1

∫ h(t)

g(t)
J1(x − y)u(t)dy − d1u(t) ≤ 0,

d2

∫ h(t)

g(t)
J2(x − y)v(t)dy − d2v(t) ≤ 0,

and u(0) ≥ u0(x), v(0) ≥ v0(x); so by the comparison principle in Lemma 2.3, we have

(u(x, t), v(x, t)) ≤ (u(t), v(t)) for g(t) < x < h(t) and t > 0.

Thus we have that

lim sup
t→∞

(u(x, t), v(x, t)) ≤ (u∗, v∗) uniformly for x ∈ [g(t), h(t)].

Then following [16, Lemma 4.11], we can make use of Propositions 3.7 and 3.9 to show

lim inf
t→∞

(u(x, t), v(x, t)) ≥ (u∗, v∗) locally uniformly for x ∈ R.

Thus (4.6) holds. □

Lemma 4.8. If R0 > 1, h0 < L∗ and (µ1, µ2) = (µσ0
1, µσ

0
2) with σ0

1, σ
0
2 nonnegative and σ0

1 + σ
0
2 > 0,

then there exists µ0 > 0 depending on the initial data (u0, v0) such that spreading happens if µ > µ0.

Proof. Similar to the calculations in the proof of Lemma 4.2, by setting m0 := max{d1,
d2c
b }, we obtain

for t > 0,∫ h(t)

g(t)

[
u(x, t) +

c
b

v(x, t)
]

dx ≥
∫ h0

−h0

[
u0(x) +

c
b

v0(x)
]

dx +
m0

µ(σ0
1 + σ

0
2)

(
2h0 − [h(t) − g(t)]

)
.
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Suppose that h∞ − g∞ < ∞; then in view of Lemma 4.1 and Remark 4.7, by letting t → ∞ in the above
inequality, we get ∫ h0

−h0

[
u0(x) +

c
b

v0(x)
]

dx ≤
m0

µ(σ0
1 + σ

0
2)

(2L∗ − 2h0).

However, this is patently false in the case

µ > µ0 :=
2m0(L∗ − h0)

(σ0
1 + σ

0
2)

∫ h0

−h0

[
u0(x) + c

bv0(x)
]

dx
.

This completes the proof. □

4.3. Proof of Theorems 1.2 and 1.3

Proof of Theorem 1.2. If h∞−g∞ < ∞, then (1.9) holds by Lemma 4.2. On the other hand, if h∞−g∞ =
∞, then R0 > 1 by Lemma 4.2. By Corollary 3.5, we find that λ1(g(t0), h(t0)) < 0 for some large t0 > 0.
Hence (4.6) holds by Lemma 4.6. □

Proof of Theorem 1.3. (a) This follows from Lemma 4.2.
(b) By Proposition 3.4, we obtain that λ1(h0) ≤ 0. Since h(t) is strictly increasing in t and λ1(L) is

strictly decreasing in L, we obtain λ1(h(1)) < λ1(h0) ≤ 0. Thus by Lemma 4.6, we have that
spreading occurs.

(c) (i) It follows from Remark 4.7 that if vanishing occurs, then h∞ − g∞ ≤ 2L∗. Define

Γ := {µ > 0 : h∞ − g∞ ≤ 2L∗}.

Then by Remark 4.4 and Lemma 4.8, we respectively have that (0, µ0] ⊂ Γ and Γ∩ (µ0,∞) =
∅. Denoting by µ∗ := supΓ ∈ [µ0, µ

0], we have by definition that h∞ − g∞ > 2L∗ for µ > µ∗

and hence spreading happens for µ > µ∗ by Theorem 1.2.
Suppose that µ∗ < Γ. Then we have h∞ − g∞ = ∞ when µ = µ∗ and there exists a T > 0
such that h(T ) − g(T ) > 2L∗. Let us emphasis the dependence of the solution (u, v, g, h) of
(1.8) on µ by rewriting it as (uµ, vµ, gµ, hµ). Then we have hµ∗(T ) − gµ∗(T ) > 2L∗. By the
continuity of the solution in µ, hence there exists ϵ > 0 such that for |µ − µ∗| < ϵ, we have
hµ(T ) − gµ(T ) > 2L∗. Then for every µ such that |µ − µ∗| < ϵ, by the monotonicity of h(t)
and −g(t) in t, we have that limt→∞ hµ(t) − gµ(t) > hµ(T ) − gµ(T ) > 2L∗. Thus we get the
contradiction that supΓ ≤ µ∗ − ϵ. Hence we must have µ∗ ∈ Γ.
It remains to show that vanishing also occurs for µ < µ∗. For every µ ∈ (0, µ∗),
(uµ∗ , vµ∗ , gµ∗ , hµ∗) is an upper solution to (1.8). Thus by the comparison principle, we see
that hµ(t) ≤ hµ∗(t) and gµ(t) ≥ gµ∗(t) for t > 0. It follows that limt→∞(hµ(t) − gµ(t)) ≤
limt→∞(hµ∗(t) − gµ∗(t)) ≤ 2L∗. This proves our assertion.

(ii) From the assumptions, we obtain that λ1(h0) > 0. Thus the assertion follows directly from
Lemma 4.3.

The proof is now complete. □
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5. Spreading speed

In this section, we consider the asymptotic spreading speed when spreading happens in our system
(1.8). As such, we necessarily have that R0 > 1.

Let F(u, v) = ( f1(u, v), f2(u, v)) with f1(u, v) := −au + cv and f2(u, v) := −bv +G(u). We now check
that F satisfies the assumptions (f1) − (f4) in [2] with û = ∞ and m = n = 2, namely

(f1): F(u, v) = (0, 0) has only two nonnegative solutions (0, 0) and (u∗, v∗), and the Jacobian matrix
of F evaluated at (0,0), denoted by ∇F(0, 0), is irreducible with principal eigenvalue positive.

(f2): F(ku, kv) ≥ kF(u, v) for k ∈ [0, 1] and all u, v ≥ 0.
(f3): ∇F(u∗, v∗) is invertible, (u∗, v∗)∇F(u∗, v∗) ≤ (0, 0) component wise, and for i ∈ {1, 2},

either ∂u fi(u∗, v∗)u∗ + ∂v fi(u∗, v∗)v∗ < 0

or

∂u fi(u∗, v∗)u∗ + ∂v fi(u∗, v∗)v∗ = 0 and
fi(u, v) is linear for u < u∗ close to u∗ and v < v∗ close to v∗.

(f4): The solution of the corresponding problem (1.12) with initial function pair (u0, v0) nonnegative,
bounded and not identically (0, 0) is positive and globally defined, and as time t → ∞, it converges to
(u∗, v∗) locally uniformly for x ∈ R.

It is straightforward to check that (f1), (f2) and (f3) are satisfied. It now remains for us to prove (f4),
namely the following lemma.

Lemma 5.1. Let (U(x, t),V(x, t)) satisfy
Ut = d1

∫
R

J1(x − y)U(y, t)dy − dU − aU + cV for all t > 0, x ∈ R,

Vt = d2

∫
R

J2(x − y)V(y, t)dy − dV − bV +G(U) for all t > 0, x ∈ R.
(5.1)

If (U(·, 0),V(·, 0)) ∈ L∞(R)2 ∩ C(R)2 is nonnegative, then (U(x, t),V(x, t)) ∈ [0,∞) × [0,∞) for every
t > 0 and x ∈ R. Moreover, it holds that limt→∞(U(x, t),V(x, t)) = (u∗, v∗) in L∞loc(R) if additionally
(U(x, 0),V(x, 0)) . (0, 0).

Proof. Let (U(·, 0),V(·, 0)) ∈ L∞(R)2∩C(R)2 be nonnegative. If (U(x, 0),V(x, 0)) ≡ (0, 0), then clearly
(U,V) ≡ (0, 0) is the unique solution of (5.1). In the following we assume that (U(x, 0),V(x, 0)) .
(0, 0). For L > 0, let (uL(x, t), vL(x, t)) be the solution to (3.6) with initial data (uL(x, 0), vL(x, 0)) =
(U(x, 0),V(x, 0))|[−L,L]. By the comparison principle in Lemma 2.3, we get that

(0, 0) ≤ (uL(x, t), vL(x, t)) ≤ (U(x, t),V(x, t)) for (x, t) ∈ [−L, L] × (0,∞).

Let (u(t), v(t)) be the unique positive solution of the following system of ordinary differential equations:
u ′ = −au + cv, t > 0,
v ′ = −bv +G(u), t > 0,
u(0) = ∥U(·, 0)∥L∞(R),

v(0) = ∥V(·, 0)∥L∞(R).

(5.2)
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By the comparison principle in Lemma 2.3, we obtain (U(x, t),V(x, t)) ≤ (u(t), v(t)) for (x, t) ∈
[−L, L] × (0,∞). Since L ≥ L0 is arbitrary, this and the earlier estimates imply that

(U(x, t),V(x, t)) ∈ [0,∞) × [0,∞) for every t > 0 and x ∈ R.

Moreover, it follows from R0 > 1 that limt→∞(u(t), v(t)) = (u∗, v∗). Therefore we must have

lim sup
t→∞

(U(x, t),V(x, t)) ≤ (u∗, v∗) uniformly for x ∈ R. (5.3)

Since (U(x, 0),V(x, 0)) . (0, 0) for x ∈ R, there exists L0 > L∗ large enough such that

(U(x, 0),V(x, 0))|[−L,L] . (0, 0) for x ∈ [−L, L] when L ≥ L0.

By Proposition 3.7(iii), we obtain

lim
t→∞

(uL(x, t), vL(x, t)) = (ũL(x), ṽL(x)) uniformly for x ∈ [−L, L], L ≥ L0 > L∗,

where (ũL, ṽL) is the unique positive steady-state of (3.6). It follows that

lim inf
t→∞

(U(x, t),V(x, t)) ≥ (ũL(x), ṽL(x)) uniformly for x ∈ [−L, L], L ≥ L0 > L∗.

Letting L→ ∞, by Proposition 3.9, we obtain

lim inf
t→∞

(U(x, t),V(x, t)) ≥ (u∗, v∗) locally uniformly in R.

This and (5.3) imply

lim
t→∞

(U(x, t),V(x, t)) = (u∗, v∗) locally uniformly in R.

The proof is complete. □

Since F = ( f1, f2) satisfies (f1) − (f4) in [2], Theorems 1.3 and 1.5 (as well as two results on the
associated semi-wave problem: Theorems 1.1 and 1.2) in [2] can be applied to obtain Theorems 1.5
and 1.6 here.
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