
Electronic  
Research Archive

http://www.aimspress.com/journal/era

ERA, 30(1): 90–115.
DOI: 10.3934/era.2022005
Received: 28 September 2021
Revised: 07 November 2021
Accepted: 21 November 2021
Published: 10 December 2021

Research article

Primal-dual active-set method for solving the unilateral pricing problem of
American better-of options on two assets

Yiyuan Qian1, Haiming Song1, Xiaoshen Wang2 and Kai Zhang1,∗

1 Department of Mathematics, Jilin University, Changchun 130012, China
2 Department of Mathematics and Statistics, University of Arkansas at Little Rock, Arkansas 72204,

USA

* Correspondence: Email: zhangkaimath@jlu.edu.cn; Tel: +8615143199887; Fax:
+86043185168672.

Abstract: In this paper, an efficient numerical algorithm is proposed for the valuation of unilat-
eral American better-of options with two underlying assets. The pricing model can be described as a
backward parabolic variational inequality with variable coefficients on a two-dimensional unbounded
domain. It can be transformed into a one-dimensional bounded free boundary problem by some con-
ventional transformations and the far-field truncation technique. With appropriate boundary conditions
on the free boundary, a bounded linear complementary problem corresponding to the option pricing
is established. Furthermore, the full discretization scheme is obtained by applying the backward Eu-
ler method and the finite element method in temporal and spatial directions, respectively. Based on
the symmetric positive definite property of the discretized matrix, the value of the option and the free
boundary are obtained simultaneously by the primal-dual active-set method. The error estimation is
established by the variational theory. Numerical experiments are carried out to verify the efficiency of
our method at the end.
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1. Introduction

Due to the increased awareness of risk aversion, the financial derivatives (e.g., options) have at-
tracted more and more attention. An option is a derivative, which can be exercised on the maturity
date (European option) or at any time prior to the maturity date (American option). Based on the ge-
ometric Brownian motion, the well-known Black-Scholes equation (BS equation) for pricing options
was established in 1973. Whereafter, a variety of closed-form expressions have been derived for most
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European options [1–3]. Up to now, there has been no similar results for American options yet. By
virtue of the flexibility in the choice of the exercise time, American options have been developed in the
option market rapidly. Originally, traders and researchers focused on single-asset options, which are
of simple structures [4]. With the development of the financial market and the increasing demand of
investors, plentiful multi-asset options have emerged, and the corresponding American options were
studied intensively. Although multi-asset American options can be divided into some categories, and
may cover any number of assets, the better-of option on two assets, which belongs to the rainbow
option family, is typical and popular because of its simplicity and practicality.

The better-of option was first named “option on the maximum of two risky assets” by Stulz in
1982 [5], and then was called its present name by Jiang [6]. By exploiting the relationship of the pricing
formulas for two single asset options, Stulz presented the closed-form solution for the European better-
of option. Jiang stated that the American better-of option satisfies a multi-dimensional BS equation
with a special payment function. In most instances, the underlying assets of the options pay dividends
or have other cash outflows. As is well known, the standard American option written on a single asset
that pays dividends can be exercised optimally before the maturity date [7]. And so are multi-asset
dividend paying options [8]. When the underlying assets pay continuous dividend yields, the set of
optimal prices of multi-asset options with respect to the time forms a continuous surface, which is
called the optimal exercise boundary. In this paper, we consider a special two-asset American better-
of option pricing problem, where only one underlying asset pays dividends. The optimal exercise
boundary for the concerned model divides the solving domain into two parts: one is the bounded
region called the holding domain, and the other is the unbounded one called the exercising domain.

In practice, various methods have been used to price options accurately and efficiently. They can
be classified into two categories: analytical approximations [9, 10] and numerical solutions [11]. On
account of no analytical formula, the pricing problem for American options has to be solved numeri-
cally. Binomial method (BM), Monte Carlo (MC) simulations, finite difference methods (FDM) and
finite element methods (FEM) [12] are commonly used numerical methods for pricing American op-
tions. BM is the most classic numerical technique for options. In 1979, Cox, Ross and Rubinstein first
applied the binomial model to price American options [13]. Five years later, Amin and Khanna proved
the convergence of this method [14]. With the increase in the number of the underlying assets, the high
computational cost and the slow convergence rate incurred by BM. Based on the pioneering works of
Boyle, Bossaerts and Tilley, MC simulations are frequently used to the American option pricing prob-
lems [15]. The advantage of MC is that it does not depend on the dimension of the problem and thus
does not suffer from the curse of dimensionality. As a generalization of BM, FDM is introduced to
solve the pricing problems and is widely used because of its simple form. The FDM is easy for imple-
mentation and efficient for problems with regular domain. While for problems with irregular domain,
FEM is more flexible. It can handle the irregular domain as well as complex boundary conditions
efficiently. Meanwhile, FEM has a solid theoretical framework with robust numerical performance.
Therefore, FEM has became more and more popular in classical option pricing problem [16], and has
been successfully used to deal with better-of options recently [17, 18]. In this paper, we shall adopt
FEM to discretize the two-asset American better-of option pricing problem when only one asset pays
dividend.

The concerned two-asset American better-of option in this paper satisfies a two-dimension parabolic
linear complementary problem (LCP) on an unbounded domain. To solve this model efficiently, we
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must think about the following issues: 1) In order to better characterize the singularity of the option
price near the maturity date, the design of the spatial mesh must be considered carefully. 2) Due
to the solution domain being unbounded, it is difficult to design algorithms directly. The truncation
method and the corresponding boundary condition, which can guarantee the accuracy of the solution,
are important. 3) For the dependency relationship of the option price and the exercise boundary, the
pricing model becomes a highly nonlinear problem. The efficiency of numerical algorithm used to
settle the option price and the optimal exercise boundary simultaneously is the key issue.

As regards the first difficulty, the geometric grid for dealing with the classical single asset American
options is adopted to guarantee the accuracy of the better-of option around the singularity. For the
second issue, there are two mainstream techniques: the transparent boundary condition method and
the far-field boundary condition method. The former one was proposed to solve classical American
options by Han and Wu in 2003 [19], and improved by Ehrhardt and Mickens in 2008 [20], which is
suitable for use in combination with FDM. The latter method was proposed by Kangro and Nicolaides
[21]. They presented a reasonable boundary condition along the truncation boundary, and established
the pointwise estimate of this truncation method via the comparison principle. Whereafter, many
works for pricing American options using this method have been published [16, 18]. We shall follow
this approach to deal with our problem. Regarding the third issue, the primal-dual active-set (PDAS)
method shall be used to solve it efficiently. The PDAS method is a special case of the generalized
Moreau-Yosida approximations [22], and is also proved to be a special case of the Newton-type method
under some moderate conditions [23]. It is efficient for quadratic programming problems and LCPs.
Moreover, the global convergence of PDAS method has been proved by Bergounioux et al. in [24].
For the applications of PDAS on option pricing problems, we refer to [17, 25] and references therein
for the rich literature.

The concerned model in this paper is the same as the problem in [18], but the numerical algorithm is
very different. Although both methods can be used to obtain the option price and the optimal exercise
boundary simultaneously. Compared with the Newton’s method in [18], our proposed algorithm has
obvious advantages in both theoretical analysis and numerical performance. Firstly, the convergence of
our method can be analysed, while the Newton’s method in [18] can not be. Secondly, PDAS method as
an active-set strategy could effectively reduce the number of the iterations in each time layer, and leads
to rapid convergence, which can be verified in the numerical simulations. Moreover, PDAS method is
faster than the projected successive overrelaxation method. Therefore, the proposed algorithm in this
paper is an efficient method for pricing two-asset American better-of options when only one asset pays
dividends.

The arrangement of this paper is as follows. In Section 2, the variational inequality (VI) model
for American better-of options is introduced firstly. Based on some conventional numeraire transfor-
mations and far-field technique, the bounded LCP corresponding to the VI is established. In Section
3, the full discretization model of the LCP is constructed by FDM with uniform partition in temporal
direction and FEM with geometric mesh in spatial direction, respectively. Then, the PDAS method is
adopted to solve the resulting discretized optimization system. The convergence analysis and numeri-
cal experiments are implemented in Section 4. The concluding remarks are given in Section 5.
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2. The pricing models

In this section, we shall introduce the VI model for American better-of options on two underlying
assets. Furthermore, based on some changes of variables and the far-field truncation technique, the
associated LCP shall be presented.

2.1. The variational inequality model

For the simplicity of the expression, we introduce some notations firstly. S i, σi and qi (i = 1, 2)
stand for the price, the volatility, and the dividend of the i-th underlying asset, respectively. The
correlation coefficient of these two assets is denoted by ρ. It needs to point out that we only consider
the case where only one underlying asset pays dividend, as the case in which both underlying assets pay
dividends have been discussed exhaustively [17]. Let r, t, and T be the interest rate, the arbitrary time,
and the maturity date, respectively. Assume that there is no transaction fee to pay and no arbitrage on
the market. Then, the VI model corresponding to the American better-of option price P = P(S 1, S 2, t)
with q1 = 0 and q2 > 0 can be described as

min
{
−
∂P
∂t
− LP, P − f (S 1, S 2)

}
= 0, (S 1, S 2, t) ∈ Σ,

P(S 1, S 2,T ) = f (S 1, S 2), (S 1, S 2) ∈ R2
+,

(2.1)

where the payoff function f (S 1, S 2) = max(S 1, S 2), the solution domain

Σ =
{
(S 1, S 2, t) | (S 1, S 2) ∈ R2

+, t ∈ [0,T )
}
,

and the operator

LP =
1
2

(
σ2

1S 2
1
∂2P
∂2S 2

1

+ 2ρσ1σ2S 1S 2
∂2P

∂S 1∂S 2
+ σ2

2S 2
2
∂2P
∂2S 2

2

)
+ rS 1

∂P
∂S 1

+ (r − q2)S 2
∂P
∂S 2
− rP.

here, R2
+ = {(S 1, S 2) | S i ∈ (0,+∞), i = 1, 2}.

The solution domain Σ of the pricing model (2.1) can be divided into two parts by the optimal
exercise boundary, where the payoff of an option holder reaches the maximum. Since q1 = 0 and
q2 > 0, the exercising domain denoted by Σ2 is on the left of the optimal exercise boundary. When
the prices of the underlying assets belong to Σ2, the price of the option is equal to the payoff value by
exercising the option, i.e., P(S 1, S 2, t) = f (S 1, S 2). Otherwise, the holders may suffer a loss. On the
other hand, the holding domain denoted by Σ1 is on the right of the optimal exercise boundary. On this
subdomain, the price of the option is unknown, and satisfies P(S 1, S 2, t) > f (S 1, S 2). Therefore, the
model (2.1) can be rewritten as

∂P
∂t

+LP = 0, P > f (S 1, S 2), (S 1, S 2, t) ∈ Σ1,

∂P
∂t

+LP ≤ 0, P = f (S 1, S 2), (S 1, S 2, t) ∈ Σ2.

(2.2)
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It is worth to notice that there is an unknown interface between Σ1 and Σ2. In this paper, we denote it
by Γ. Hence, the pricing model (2.1) is equivalent to a two-dimensional free boundary problem.

By means of traditional numeraire transformations

s =
S 1

S 2
, p(s, t) =

P(S 1, S 2, t)
S 2

, (2.3)

the pricing model (2.1) can be transformed into the following one-dimensional VI model
min

{
−
∂p
∂t
− L̂p, p − f (s, 1)

}
= 0, (s, t) ∈ Σ̂,

p(s,T ) = f (s, 1), s ∈ (0,+∞),
(2.4)

where the solution domain after the transformations

Σ̂ =
{
(s, t) | s ∈ (0,+∞), t ∈ [0,T )

}
,

and the simplified operator

L̂p =
1
2
σ̂2s2∂

2 p
∂s2 + q2s

∂p
∂s
− q2 p, σ̂2 = σ2

1 − 2ρσ1σ2 + σ2
2.

Similarly, Σ̂1, Σ̂2, and Γ̂ represent the corresponding holding domain, the exercising domain, and the
optimal exercise boundary, respectively. The one-dimensional VI model (2.4) can be reformulated as

∂p
∂t

+ L̂p = 0, p > f (s, 1), (s, t) ∈ Σ̂1,

∂p
∂t

+ L̂p ≤ 0, p = f (s, 1), (s, t) ∈ Σ̂2.

(2.5)

Here, Σ̂1 =
{
(s, t) | s ∈

(
γ(t),+∞

)
, t ∈ [0,T )

}
, Σ̂2 = Σ̂\Σ̂1 and Γ̂ = γ(t) is the corresponding un-

known free boundary. Based on the above discussions, we shall only solve the following unilateral free
boundary problem 

∂p
∂t

+ L̂p = 0, (s, t) ∈ Σ̂1,

p(s,T ) = f (s, 1), s ∈ (0,+∞),

p
(
γ(t), t

)
= 1, t ∈ [0,T ),

∂p
∂s

(
γ(t), t

)
= 0, t ∈ [0,T ),

lim
s→+∞

(
p(s, t) − s

)
= 0, t ∈ [0,T ).

(2.6)

Furthermore, let

W(s, t) = p(s, t) − s, (2.7)

Electronic Research Archive Volume 30, Issue 1, 90–115.



95

then the free boundary problem model (2.6) shall be transformed into a standard American put option
pricing problem 

∂W
∂t

+ L̂W = 0, (s, t) ∈ Σ̂1,

W(s,T ) = f (1 − s, 0), s ∈ (0,+∞),

W(γ(t), t) = 1 − γ(t), t ∈ [0,T ),

∂W
∂s

(
γ(t), t

)
= −1, t ∈ [0,T ),

lim
s→+∞

W(s, t) = 0, t ∈ [0,T ),

(2.8)

where the optimal exercise boundary γ(t) is a bounded and nondecreasing function [26], and satisfies

β
α1−1
α2−α1
1 β

1−α2
α2−α1
2 = γ0 := γ(0) < γ(t) < γ(T ) = 1. (2.9)

here, βi =
αi − 1
αi

(i = 1, 2), α1 < 0, and α2 > 0 are the solutions of the following equation

1
2
σ̂2α(α − 1) + q2α − q2 = 0.

2.2. The bounded linear complementary problem

In order to solve the free boundary problem model (2.8) numerically, the unbounded domain must be
truncated firstly. Following the ideas of Holmes and Yang [16], we shall introduce a far-field boundary
method to deal with this problem, by which accurate solutions can be obtained efficiently.

Lemma 1. For a given positive number ε ∈ (0, 1), let ψ =
1
2
σ̂2, α0 =

r − q
σ̂2 −

1
2

, then we have

W(s, t) ≤ ε, ∀ s ∈ [eẐ,+∞), t ∈ [0,T ),

where

Ẑ = −2ψTα0 + 2
√
α2

0ψ
2T 2 − ψT ln ε.

Proof. By applying the variable substitutions

w(z, η) = eαz+βηW(s, t), η = T − t, z = ln s, (2.10)

the free boundary problem model (2.8) can be transformed into

∂w
∂η
− ψ

∂2w
∂z2 + ν

∂W
∂z

+ µw = 0, z ∈
(
b(η),+∞

)
, η ∈ (0,T ],

w(z, 0) = h(z, 0), z ∈ (−∞,+∞),

w
(
b(η), η

)
= h

(
b(η), η

)
, η ∈ (0,T ],

∂w
∂z

(
b(η), η

)
=
∂g
∂z

(
b(η), η

)
, η ∈ (0,T ],

lim
z→+∞

e−αz−βηw(z, η) = 0, η ∈ (0,T ],

(2.11)
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where the coefficients ψ =
1
2
σ̂2, ν = 2αψ − q2, and µ = (α + 1)q2 − ψα

2 − β, and the functions

h(z, η) = eαz+βη max(1 − ez, 0), b(η) = ln
(
γ(T − η)

)
.

From the property of γ(t), we can infer that b(η) is a bounded and nonincreasing function with

ln γ0 < b(η) < b(0) = 0, η ∈ (0,T ]. (2.12)

Taking α = α0 and β = ψα2
0 + q2, yields ν = µ = 0. Therefore, the pricing problem model (2.11)

becomes a heat equation. By virtue of the property of b(η) in model (2.12), the first equality of model
(2.11) holds when z > 0. Consequently, by the Theorem 19.3.2 in [27], we obtain

w(z, η) =
z√
4ψπ

∫ η

0
(η − x)−

3
2 e−

z2
4ψ(η−x) w(0, x)dx, ∀ z > 0.

The pricing problem model (2.8) is equivalent to a standard American put option pricing problem with
the strike price K = 1. Based on the fact that the value of the American put option is always less than
or equal to the strike price and the transformations model (2.10), we can get w(0, η) ≤ eβη, which yields

w(z, η) ≤ zeβη√
4ψπ

∫ η

0
(η − x)−

3
2 e−

z2
4ψ(η−x) w(0, x)dx

≤ 2e
βη− z2

4ψη
√
π

∫ +∞

0
e−y2

dy = eβη−
z2

4ψη

≤ eβη−
z2

4ψT , ∀ z > 0.

Furthermore, by the inverse transformations of model (2.10), we have

W(s, t) = e−αz−βηw(z, η) ≤ e−αz− z2
4ψT .

Finally, from the definition of Ẑ = −2ψTα0 + 2
√
α2

0ψ
2T 2 − ψTlnε, it is easy to verify

e−αz− z2
4ψT ≤ ε, ∀ z ≥ Ẑ,

which implies the conclusion of this Lemma.

Now, using the error bound of Lemma 1, we truncate the solution domain. For a fixed ε ∈ (0, 1), let

L = max
{
− ln γ0, Ẑ

}
, (2.13)

then the free boundary problem model (2.8) can be approximated by the following LCP

(
∂W
∂t

+ L̂W
) (

W − f (1 − s, 0)
)

= 0, s ∈ [e−L, eL], t ∈ (0,T ],

W(s,T ) = f (1 − s, 0), s ∈ [e−L, eL],

W(e−L, t) = f (1 − e−L, 0), t ∈ (0,T ],

W(eL, t) = f (1 − eL, 0), t ∈ (0,T ],

(2.14)
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with constraints

∂W
∂t

+ L̂W ≥ 0, W ≥ f (1 − s, 0).

It needs to point out that the choice of L should ensure e−L ≤ γ(t) and eL ≥ eẐ, which makes sure that
the left boundary condition of model (2.14) is accurate, and the right boundary condition is reasonable.

The LCP model (2.14) is a backward variable coefficients problem on a bounded domain. To solve
it efficiently, we change it to a forward constant coefficient problem by the transformations

v(x, τ) = eax+bτW(s, t), τ =
σ̂2

2
(T − t), x = ln s, (2.15)

with a =
2q2 − σ̂

2

2σ̂2 , b =
1
2
σ̂2a2 + q2. The specific form of the bounded LCP is as follows

(BLCP)



(
∂v
∂τ
−
∂2v
∂x2

)
(v − q) = 0, x ∈ [−L, L], τ ∈ (0, T̃ ],

v(x, 0) = q(x, 0), x ∈ [−L, L],

v(−L, τ) = q(−L, τ), τ ∈ (0, T̃ ],

v(L, τ) = q(L, τ), τ ∈ (0, T̃ ],

(2.16)

with constraints

∂v
∂τ
−
∂2v
∂x2 ≥ 0, v ≥ q.

Here, q(x, τ) = eax+bτ f (1 − ex, 0) and T̃ =
σ̂2

2
T . It is easy to get that the relationship of the optimal

exercise boundaries between the linear complementary problems (2.14) and (2.16) is

B(τ) = ln
(
γ
(
T −

2τ
σ̂2

))
.

So far, we have transformed the original variable coefficients pricing model on a two-dimensional
unbounded domain into a BLCP on a one-dimensional bounded domain, on which we can design
numerical algorithms directly.

3. The numerical algorithm

In this section, the variational problem associated with the BLCP model (2.16) is presented firstly.
Then, the resulted problem shall be discretized by the FDM and the FEM in temporal direction and
spatial direction, respectively. Based on the properties of the discrete system, the PDAS method is pro-
posed to obtain the option price and the optimal exercise boundary simultaneously. The error estimates
of the proposed approach are also given at the end of the section.
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3.1. The variational problem

Before presenting the variational problem corresponding to the BLCP model (2.16), we ought to
introduce some function spaces and function sets for subsequent applications. L2(I) stands for the
space of square integrable functions on I = [−L, L], and define

H1(I) =
{
u ∈ L2(I) | ux ∈ L2(I)

}
,

H2(I) =
{
u ∈ L2(I) | ux ∈ L2(I), uxx ∈ L2(I)

}
,

H1
τ (I) =

{
u ∈ H1(I) | u ≥ q(x, τ), u(−L) = q(−L, τ), u(L) = q(L, τ)

}
,

H−1(I) : the dual space of H1(I).

Lemma 2. (cf. [28]) If v ∈ L2([0, T̃ ]; H2(I)
)

and vτ ∈ L2([0, T̃ ]; L2(I)
)
, then v is the solution of the

BLCP model (2.16) if and only if v is the solution of the following variational inequality
(VI) Find v(·, τ) ∈ H1

τ (I), such that v(x, 0) = q(x, 0) and

(vτ, u − v) + (vx, ux − vx) ≥ 0, ∀ u ∈ H1
τ (I), a.e. τ ∈ (0, T̃ ]. (3.1)

In order to apply FDM and FEM to the VI model (3.1), some notations must be introduced in
advance. The spatial partition of I = [−L, L] and the temporal partition of J = [0, T̃ ] are defined as
follows:

Ix : −L = x0 < x1 < · · · < xN = L,

Jτ : 0 = τ0 < τ1 < · · · < τM = T̃ .

Let Ii := (xi−1, xi) denote the spatial element and hi := xi − xi−1, i = 1, . . . ,N represent the interval
length. The grid size of the spatial partition is denoted by h := max

1≤i≤N
hi. In a similar way, for each

temporal element J j := (τ j−1, τ j),4τ j := τ j − τ j−1, j = 1, . . . ,M, and 4τ := max
1≤j≤M

4τj represent the

local and overall step size, respectively.
What we should pay attention to is that options are traded more frequently near the optimal exercise

boundary Γ. As regards this issue, the most desirable points for the option price are around the optimal
exercise boundary with S 1 = S 2. In other words, we ought to set most nodes near the point s = 1 or
x = 0 by the numeraire transformations models (2.3) and (2.15). Therefore, in the spatial direction, we
shall use a geometric grid partition and an even number of intervals N, which ensure the nodes should
be symmetrical about x N

2
= 0. And we resort an isometric subdivision in temporal direction. That is to

say,

xi = sign(2i − N)
(2i − N

N

)2
L, i = 0, 1, · · · ,N,

τ j = j4τ, 4τ =
T̃
M
, j = 0, 1, · · · ,M. (3.2)

3.2. The finite element method

The main goal of this subsection is to present the discretization scheme of the VI model (3.1). First,
we define the set of piecewise linear functions as follows

S 1
τ(I) =

{
u ∈ H1

τ (I) | u(xi) ≥ q(xi, τ), u(xi) |Ii∈ P1, i = 1, 2, . . . ,N
}
,
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where P1 represents the set of polynomials of degree less than or equal to 1. Thus, the semi-discretized
approximation of the VI model (3.1) by FEM can be described as

(SDA) Find vh(x, τ) ∈ S 1
τ(I), such that vh(x, 0) = qI(x, 0) and(

∂vh

∂τ
, uh − vh

)
+

(
(vh)x, (uh)x − (vh)x

)
≥ 0, ∀uh ∈ S 1

τ(I), τ ∈ (0, T̃ ]. (3.3)

Here, qI(x, 0) stands for the piecewise linear interpolation of q(x, 0) in S 1
0(I). Next, the backward

Euler method is applied to the SDA model (3.3) at a fixed τ = τ j, j = 1, . . . ,M, the full-discretized
approximation of VI model (3.1) is presented as

(FDA) Find v j
h(x) ∈ S 1

τ j
(I), such that v0

h(x) = qI(x, 0) and(
∂v j−1

h , uh − v j
h

)
+ b

(
v j

h, uh − v j
h

)
≥ 0, ∀uh ∈ S 1

τ j
(I), (3.4)

where v j
h(x) = vh(x, τ j), j = 1, . . . ,M, the operator ∂ and the bilinear function b(·, ·) are defined as

follows

∂u j :=
u j+1 − u j

4τ
, b(u, v) := (ux, vx).

For the convenience of algorithm design, we shall derive the matrix-vector form of the FDA model
(3.4). Suppose that the basis function set of S 1

τ(I) is {φ0, φ1, . . . , φN}, and the specific representations
of the basis are

φ0(x) =


x − x1

x0 − x1
, x ∈ [x0, x1),

0, x ∈ I\[x0, x1),

φi(x) =



x − xi−1

xi − xi−1
, x ∈ [xi−1, xi),

x − xi+1

xi − xi+1
, x ∈ [xi, xi+1),

0, x ∈ I\[xi−1, xi+1),

φN(x) =

 0, x ∈ I\[xN−1, xN),
x − xN−1

xN − xN−1
, x ∈ [xN−1, xN).

Then, the finite element solutions can be reformulated as

v j
h(x) =

N−1∑
i=1

v j
iφi(x) + q(−L, τ j)φ0(x) + q(L, τ j)φN(x), j = 0, 1, · · · ,M.

By substituting the variables v j
h in the FDA model (3.4) by the above formula, we obtain the following

inequality

(U − V j)T ((4τΨ +Φ)V j −ΦV j−1 + H j) ≥ 0, ∀ U ≥ Q j, (3.5)
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where j = 1, . . . ,M,

U = (u1, u2, · · · , uN−1)T ,

V j = (v j
1, v

j
2, · · · , v

j
N−1)T ,

Q j = (q(x1, τ j), · · · , q(xN−1, τ j))T ,

H j =

((h1

6
−
4τ

h1

)
q(−L, τ j) −

h1

6
q(−L, τ j−1), 0,

· · · , 0,
(hN

6
−
4τ

hN

)
q(L, τ j) −

hN

6
q(L, τ j−1)

)T

,

and

Φ =



h1 + h2

3
h2

6
0 0 0

h2

6
h2 + h3

3
h3

6
0 0

0 . . .
. . .

. . . 0

0 0
hN−2

6
hN−2 + hN−1

3
hN−1

6
0 0 0

hN−1

6
hN−1 + hN

3


,

Ψ =



1
h1

+
1
h2

−
1
h2

0 0 0

−
1
h2

1
h2

+
1
h3

−
1
h3

0 0

0 . . .
. . .

. . . 0

0 0 −
1

hN−2

1
hN−2

+
1

hN−1
−

1
hN−1

0 0 0 −
1

hN−1

1
hN−1

+
1

hN


.

Let C = 4τΨ +Φ and D j = ΦV j−1 − H j, therefore the inequality model (3.5) can be simplified as

(MVIP) (U − V j)T (CV j − D j) ≥ 0, ∀ U ≥ Q j, j = 1, · · · ,M. (3.6)

In the above matrix-vector inequality model (3.6), we can verify that the matrix C is positive definite

when
h2

4τ
is small enough.

3.3. The primal-dual active-set method

In this subsection, to get the option price and the optimal exercise boundary simultaneously, we
adopt PDAS method to solve the MVIP model (3.6). The detailed algorithm is presented in Algo-
rithm 1:

For j = 1, . . . ,M, when the numerical solution V j is obtained, we can get v j
h(x). By means of the

transformations models (2.15), (2.7), and (2.3), we can calculate the approximation of W(s, t j), p(s, t j),
and P(S 1, S 2, t j). Likewise, we obtain the optimal exercise boundary γh(t) at t = t j. We present the
whole process in Algorithm 2 as:
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Algorithm 1 Primal-Dual Active-Set algorithm.

Input: V j−1, Q j, D j;
Output: V j, x j.

1: The given parameters: εV > 0, δ > 0, λ ≥ 0.
2: Vpre := 0, Vcur := max{V j−1,Q j}.
3: while ‖Vcur − Vpre‖∞ > εV , do
4: Vpre = Vcur.
5: IS =

{
i ∈ S : λi + δ

(
Q j

i − V j
pre,i

)
≤ 0

}
,

6: AS =
{
i ∈ S : λi + δ

(
Q j

i − V j
pre,i

)
> 0

}
,

7: S = {1, . . . ,N − 1}.
8: Vcur(AS) = Q j(AS),
9: λ(IS) = 0,

10: CVcur − λ = D j.
11: end while
12: V j = Vcur.
13: l j = min(IS),
14: x j = xl j .

3.4. The error estimation

The error of our proposed method mainly comes twofold: (a) The error between the original prob-
lem model (2.1) and the BLCP model (2.16), which has been presented in Lemma 1. (b) The error of
the BLCP model (2.16) and the MVIP model (3.6). In this subsection, we focus on the error estimate
of (b). In order to obtain the result of estimation, we introduce some lemmas firstly.

Lemma 3. (cf. [29]) If u ∈ H2(I) and Ihu is the piecewise linear interpolation of u on the grid Ix, then
we have

‖u − Ihu‖s ≤ Ch2−s|u|2, s = 0, 1.

For any j = 0, 1, . . . ,M, let e j
1 = v j − v j

h, then the following results hold

‖e0
1‖0 = ‖v0 − v0

h‖0 = ‖v0 − Ihv0‖0 ≤ Ch2|v0|2,

‖e0
1‖1 = ‖v0 − v0

h‖1 = ‖v0 − Ihv0‖1 ≤ Ch|v0|2.

Lemma 4. (cf. [30]) Suppose that v ∈ L∞
(
J,H2(I)

)
,
∂v
∂τ
∈ L2(J,H1(I)

)
, and

∂v
∂τ
∈ L2(J, L∞(I)

)
. For any

j = 1, . . . ,M, let e j
2 = v j − Ihv j, then we have

E1 :=
M∑
j=1

|(∂e j−1
1 , e j

2)|4τ ≤
1
8

M∑
j=1

b(e j
1, e

j
1)4τ +

1
8
‖eM

1 ‖
2
0

+‖e0
1‖

2
0 + Ch2‖vτ‖2L2(J,H1(I)) + Ch2‖v‖2L∞(J,H1(I)),

E2 :=
M∑
j=1

|b(e j
1, e

j
2)|4τ ≤

1
8

M∑
j=1

b(e j
1, e

j
1)4τ + Ch2‖v‖2L∞(J,H2(I)),
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Algorithm 2 The whole algorithm.
1: Initial parameters setting: σ1, σ2, ρ, q2, M, N, T, r, ε.
2: Additional parameters calculating: a, b, T̃ .
3: Calculate the parameters about boundary: σ̂2, α1, α2, β1, β2, γ

0.
4: Truncate the solving domain: L := max{−lnγ0, Ẑ}.
5: Partition:
6: n := 0 : N, x := sign(2 ∗ n− N) ∗ L ∗

(
(2 ∗ n− N)/N

)2,
7: 4τ := T̃/M, τ := (0 : 4τ : T̃ )′, t := T − 2 ∗ τ/σ̂2, t := t(M : −1 : 0),
8: h := x(1 : 1 : N) − x(0 : 1 : N − 1), s := exp(x).
9: Setting:

10: V ∈ RM+1,N+1, B ∈ RM+1,
11: V(:, 0) := g(−L, τ, a, b), V(:,N) := g(L, τ, a, b),
12: V(0, :) := g(x, τ(0), a, b).
13: Calculate matrixes: Φ, Ψ , C.
14: for j = 1 : M, do
15: Calculate: Q j, H j, D j,
16: Solve: V j, x j by PDAS (Algorithm 1).
17: B( j) = exp(x j),
18: V( j, :) = V j.
19: end for
20: vh(x) = V, B(τ) = B.

21: Calculate: Wh(s) = e−ax−bτvh(x), γh(t) = eB(τ), s = ex, t = T −
2τ
σ̂2 ,

22: Calculate: ph(s) = Wh(s) + s,

23: Calculate: Ph(S 1, S 2) = S 2 · ph(s), s =
S 1

S 2
.
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E3 :=
M∑
j=1

|b(v j, e j
2) + (∂v j−1, e j

2)|4τ

≤ Ch2(‖vτ‖2L∞(J,L∞(I)) + ‖v‖2L∞(J,H2(I))

)
· ‖v‖2L∞(J,L∞(I)),

E4 :=
M∑
j=1

|(v j
τ − ∂v j−1, e j

1)|4τ

≤
1
4

M∑
j=1

b(e j
1, e

j
1)4τ + C(4τ)2‖vτ‖2L2(J,H1(I)).

Let vh,τ represent the linear interpolation of v j
h in the temporal direction, based on the Lemmas 3

and 4, we establish the following result.

Theorem 1. Under the assumptions of Lemma 4, if in addition,
∂v
∂τ

,
∂2v
∂τ2 ∈ L∞

(
J,H1(I)

)
, then we have

the error estimate as follows

‖v − vh,τ‖L2(J,H1(I)) ≤ C(4τ + h).

Proof. For j = 1, . . . ,M, we can calculate the following equality firstly

(∂e j−1
1 , e j

1) + b(e j
1, e

j
1)

= (∂e j−1
1 , v j − Ihv j + Ihv j − v j

h)

+b(e j
1, v

j − Ihv j + Ihv j − v j
h)

= (∂e j−1
1 , e j

2) + b(e j
1, e

j
2)

+(∂v j−1, Ihv j − v j
h) + b(v j, Ihv j − v j

h)

−(∂v j−1
h , Ihv j − v j

h) − b(v j
h, Ihv j − v j

h). (3.7)

Let u = v j
h at τ = τ j in VI model (3.1) and u = Ihv j in FDA model (3.4), then we obtain

(v j
τ, v

j
h − v j) + b(v j, v j

h − v j) ≥ 0,

(∂v j−1
h , Ihv j − v j

h) + b(v j
h, Ihv j − v j

h) ≥ 0. (3.8)

Next, we add the two inequalities in model (3.8) to both sides of model (3.7), we have

(∂e j−1
1 , e j

1) + b(e j
1, e

j
1)

≤ (∂e j−1
1 , e j

2) + b(e j
1, e

j
2) − b(v j, v j − Ihv j)

+(∂v j−1, Ihv j − v j
h) + (v j

τ, v
j
h − v j)

= (∂e j−1
1 , e j

2) + b(e j
1, e

j
2) − b(v j, e j

2)
−(∂v j−1, e j

2) − (v j
τ − ∂v j−1, e j

1). (3.9)

For j = 1, . . . ,M, define

A j
1 = (∂e j−1

1 , e j
2), A j

2 = b(e j
1, e

j
2),
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A j
3 = −b(v j, e j

2) − (∂v j−1, e j
2), A j

4 = −(v j
τ − ∂v j−1, e j

1),

then, we can simplify the inequality model (3.9) as below

(e j
1 − e j−1

1 , e j
1) + b(e j

1, e
j
1)4τ ≤

4∑
l=1

A j
l4τ.

Thus, we can get
M∑
j=1

(e j
1 − e j−1

1 , e j
1) +

M∑
j=1

b(e j
1, e

j
1)4τ ≤

4∑
l=1

M∑
j=1

|A j
l |4τ =

4∑
l=1

El, (3.10)

where El, l = 1, . . . , 4 are defined in Lemma 4. Therefore, the first part of the above inequality can be
estimated by

M∑
j=1

(e j
1 − e j−1

1 , e j
1) =

M∑
j=1

(e j
1, e

j
1) −

M∑
j=1

(e j−1
1 , e j

1)

≥

M∑
j=1

‖e j
1‖

2
0 −

1
2

M∑
j=1

‖e j
1‖

2
0 + ‖e j−1

1 ‖
2
0 =

1
2

(
‖eM

1 ‖
2
0 − ‖e

0
1‖

2
0

)
. (3.11)

Based on the inequalities (3.10) and (3.11), we have
M∑
j=1

b(e j
1, e

j
1)4τ ≤

4∑
l=1

El +
1
2
(
‖e0

1‖
2
0 − ‖e

M
1 ‖

2
0
)

≤ 3‖e0
1‖

2
0 −

3
4
‖eM

1 ‖
2
0 + C

(
h2 + (4τ)2)

≤ C
(
h2 + (4τ)2) + 3‖e0

1‖
2
0.

By virtue of Poincare inequality and e j
1 ∈ H1

0(I), the following result holds

M∑
j=1

‖e j
1‖

2
14τ ≤ C‖e0

1‖
2
0 + C

(
h2 + (4τ)2).

Moreover, by exploiting the complex trapezoidal formula, we can conclude that

‖v − vh,τ‖
2
L2(J;H1(I)) =

M∑
j=1

∫ τ j

τ j−1

‖v − vh,τ‖
2
1 dτ

≤
1
2

M∑
j=1

(
‖v j − v j

h‖
2
1 + ‖v j−1 − v j−1

h ‖
2
1

)
4τ + C(4τ)2

≤ C
(
h2 + (4τ)2

)
+ C‖e0

1‖
2
0 +

1
2
‖e0

1‖
2
14τ

≤ C
(
h2 + (4τ)2

)
+ Ch4|v0|22 +

1
2

C4τh2|v0|22

≤ C
(
h + 4τ

)2
,

which leads to the conclusion directly [31].
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4. Numerical experiments

In this section, numerical experiments are performed to illustrate the advantages of our proposed
algorithm. In order to show the superiority of our algorithm in computational accuracy and speed, we
shall compare it with the BM and the Newton’s method (NM) [18].

Let us consider a one-year (T = 1) American better-of option with r = 0.02. Without loss of
generality, the parameters of the first underlying asset are set to be q1 = 0, σ1 = 0.3/0.4, the parameters
of the other asset are set to be q2 = 0.02/0.03, σ2 = 0.4, the correlation coefficient of these two assets
is set to be ρ = 0.6/0.7. Suppose the truncation accuracy ε = 10−6 in model (2.14) via the definition
model (2.13), the estimate model (2.9), and Lemma 1, we obtain a table about the truncation length in
deferent cases.

Table 1. The truncated lengths calculated by model (2.13) with σ2 = 0.4.

ρ = 0.6 q2 = 0.02 q2 = 0.03 ρ = 0.7 q2 = 0.02 q2 = 0.03

σ1 0.3 0.4 0.3 0.4 σ1 0.3 0.4 0.3 0.4
L 2.7220 2.7812 2.6329 2.7167 L 2.6038 2.6822 2.4712 2.5776

For convenience, we choose L = 2.8 in all experiments, which can ensure the truncated domain
cover all the solution domains corresponding to Table 1. Because there are no closed-form solution
for American better-of options, we shall apply the solutions obtained by BM with 100,000 points in
temporal direction as the benchmarks. The parameters in PDAS method are set to be λ = 0, δ = 106,
εV = 10−6. All the experiments are implemented by Matlab R2014a and on a computer with Intel Core
i5 CPU of 2.2GHz.

4.1. The optimal exercise boundary

In this subsection, we mainly verify the superiority of PDAS method in computing the optimal
exercise boundaries. The error is measured by the L2-norm of γh(t) − γ(t), where γh(t) and γ(t) are the
numerical solutions and the benchmark solutions, respectively. With ρ = 0.6 and 0.7, Tables 2 and 3
compare the accuracies achieved by running BM, NM, and PDAS method for about the same amount
of time (±1% − ±0.1%). Similarly, Tables 4 and 5 list the computation costs of the using above three
methods in different cases.

Table 2. The error estimates on γ(t) of BM, NM, and PDAS with ρ = 0.6.

q2 σ1, σ2
M N Error /10−3 Time/s

BM NM PDAS BM NM PDAS BM NM PDAS BM NM PDAS

0.02
0.3,0.4 60 100 300 409 100 350 12.156 34.654 1.631 0.135 0.130 0.131
0.4,0.4 60 100 300 338 100 350 15.566 58.256 1.833 0.117 0.118 0.120

0.03
0.3,0.4 60 100 300 409 100 350 12.596 18.814 1.459 0.138 0.131 0.131
0.4,0.4 60 100 300 338 100 350 15.654 30.677 1.641 0.119 0.118 0.114

From the results listed in Tables 2–5, we can conclude that (a) with the similar computing time
(±1%), the errors computed by PDAS method are one order of magnitude smaller than BM and NM.
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Table 3. The error estimates on γ(t) of BM, NM, and PDAS with ρ = 0.7.

q2 σ1, σ2
M N Error /10−3 Time/s

BM NM PDAS BM NM PDAS BM NM PDAS BM NM PDAS

0.02
0.3,0.4 60 150 300 528 100 350 10.315 18.142 1.339 0.159 0.151 0.146
0.4,0.4 60 150 300 451 100 350 11.580 26.727 1.494 0.145 0.142 0.142

0.03
0.3,0.4 60 150 300 528 100 350 09.950 10.508 1.225 0.159 0.159 0.158
0.4,0.4 60 150 300 451 100 350 11.039 14.879 1.411 0.146 0.143 0.144

Table 4. The computation costs on γ(t) of BM, NM, and PDAS with ρ = 0.6.

q2 σ1, σ2
M N Error /10−3 Time/s

BM NM PDAS BM NM PDAS BM NM PDAS BM NM PDAS

0.02
0.3,0.4 3000 2000 300 2893 1500 350 1.496 1.678 1.631 48.069 4.225 0.131
0.4,0.4 3000 2000 300 2396 2500 350 1.779 1.786 1.833 40.545 6.665 0.120

0.03
0.3,0.4 3000 2000 300 2893 900 350 1.524 1.509 1.459 46.583 3.045 0.131
0.4,0.4 3000 2000 300 2396 1300 350 1.813 1.709 1.641 41.936 3.624 0.114

Table 5. The computation costs on γ(t) of BM, NM, and PDAS with ρ = 0.7.

q2 σ1, σ2
M N Error /10−3 Time/s

BM NM PDAS BM NM PDAS BM NM PDAS BM NM PDAS

0.02
0.3,0.4 3000 2000 300 3740 1000 350 1.199 1.270 1.333 58.381 3.233 0.142
0.4,0.4 3000 2000 300 3195 1300 350 1.375 1.458 1.518 49.031 3.883 0.142

0.03
0.3,0.4 3000 2000 300 3740 600 350 1.215 1.265 1.252 59.042 2.327 0.158
0.4,0.4 3000 2000 300 3195 800 350 1.387 1.325 1.429 50.168 2.789 0.144
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(b) with the similar computing time around (±0.1%), the computational efficiency of PDAS is almost
100 and 10 times of BM and NM, respectively. Figure 1 shows the optimal exercise boundaries solved
by PDAS and the benchmark BM. It is easy to find out that the numerical solutions approximate the
benchmarks very well. All of the results confirm that PDAS method is an efficient algorithm to obtain
the optimal exercise boundary. At the end of this subsection, to give the investors some intuitive and
valuable guidance, we present the original optimal exercise surfaces Γ of model (2.2) in Figure 2 with
different parameters, respectively.
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Figure 1. The optimal exercise boundaries γ(t) solved by PDAS method and the benchmark
BM with q2 = 0.02. ρ = 0.6, σ1 = 0.3, σ2 = 0.4 (top left), ρ = 0.6, σ1 = 0.4, σ2 = 0.4 (top
right), ρ = 0.7, σ1 = 0.3, σ2 = 0.4 (bottom left), ρ = 0.7, σ1 = 0.4, σ2 = 0.4 (bottom right).
Σ̂1 and Σ̂2 denote the holding domain and the exercising domain, respectively.

4.2. The option price

In this subsection, we illustrate the efficiency of the PDAS method for solving option prices. Similar
to the analysis in previous subsection, we compare the error estimates and computation costs in Tables
6–9.

The results about option prices listed in Tables 6–9 can fully illustrate the advantages of PDAS
method in computational accuracy and speed. In order to get a more intuitive sense of option pricing,

Electronic Research Archive Volume 30, Issue 1, 90–115.



108

Figure 2. The optimal exercise boundaries Γ solved by PDAS method with q2 = 0.02.
ρ = 0.6, σ1 = 0.3, σ2 = 0.4 (top left), ρ = 0.6, σ1 = 0.4, σ2 = 0.4 (top right), ρ = 0.7, σ1 =

0.3, σ2 = 0.4 (bottom left), ρ = 0.7, σ1 = 0.4, σ2 = 0.4 (bottom right).

Table 6. The error estimates on p(s, 0) of BM, NM, and PDAS with ρ = 0.6.

q2 σ1, σ2
M N Error /10−5 Time/s

BM NM PDAS BM NM PDAS BM NM PDAS BM NM PDAS

0.02
0.3,0.4 60 100 300 409 100 350 6.073 409.554 0.823 0.135 0.130 0.131
0.4,0.4 60 100 250 338 100 350 6.115 444.089 0.975 0.117 0.118 0.115

0.03
0.3,0.4 60 100 300 409 100 350 5.885 514.817 0.651 0.138 0.131 0.131
0.4,0.4 60 100 300 338 100 350 6.507 405.355 0.984 0.119 0.118 0.114
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Table 7. The error estimates on p(s, 0) of BM, NM, and PDAS with ρ = 0.7.

q2 σ1, σ2
M N Error /10−5 Time/s

BM NM PDAS BM NM PDAS BM NM PDAS BM NM PDAS

0.02
0.3,0.4 60 150 300 528 100 350 2.987 556.106 0.508 0.159 0.151 0.146
0.4,0.4 60 150 300 451 100 350 5.079 496.388 0.700 0.145 0.142 0.142

0.03
0.3,0.4 60 150 300 528 100 350 3.146 605.635 0.330 0.159 0.159 0.158
0.4,0.4 60 150 300 451 100 350 4.978 560.046 0.535 0.146 0.143 0.144

Table 8. The computation costs on p(s, 0) of BM, NM, and PDAS with ρ = 0.6.

q2 σ1, σ2
M N Error /10−6 Time/s

BM NM PDAS BM NM PDAS BM NM PDAS BM NM PDAS

0.02
0.3,0.4 3000 2000 2000 2893 6000 800 1.261 1.304 1.336 42.699 19.135 1.174
0.4,0.4 3000 2000 2000 2396 6000 800 1.169 1.187 1.817 41.764 18.460 1.189

0.03
0.3,0.4 3000 2000 2000 2893 6000 800 1.217 1.416 1.072 43.031 19.568 1.164
0.4,0.4 3000 2000 2000 2396 6000 800 1.284 1.254 1.613 41.936 18.877 1.168

Table 9. The computation costs on p(s, 0) of BM, NM and PDAS with ρ = 0.7.

q2 σ1, σ2
M N Error /10−6 Time/s

BM NM PDAS BM NM PDAS BM NM PDAS BM NM PDAS

0.02
0.3,0.4 1500 2000 1200 2644 6000 800 1.169 1.542 1.302 26.770 21.504 0.758
0.4,0.4 2000 2000 1200 2608 6000 800 1.130 1.391 1.797 28.930 20.657 0.735

0.03
0.3,0.4 1500 2000 1000 2644 6000 800 1.220 1.705 1.137 26.402 21.231 0.669
0.4,0.4 2000 2000 1000 2608 6000 800 1.192 1.522 1.613 29.734 20.606 0.625
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some images of the option price p(s, 0) after the transformation model (2.3) and the original option
price P(S 1, S 2, 0) are shown in Figures 3 and 4, which are the main concerns for financial institutions.
From the results in Figure 3, we confirm that the solutions of our proposed method approximate the
benchmarks very well, and are all larger than the payoff max{s, 1}, which further illustrate the efficiency
and rationality of our proposed PDAS method.
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Figure 3. The option price p(s, 0) after the transformation model (2.3) with q2 = 0.02.
ρ = 0.6, σ1 = 0.3, σ2 = 0.4 (top left), ρ = 0.6, σ1 = 0.4, σ2 = 0.4 (top right), ρ = 0.7, σ1 =

0.3, σ2 = 0.4 (bottom left), ρ = 0.7, σ1 = 0.4, σ2 = 0.4 (bottom right).

4.3. The convergence order

The practicability of PDAS method has been checked, now we shall verify the error estimates
obtained in Theorem 1. Taking the temporal direction as an example, suppose that the convergence
order in the temporal direction is r, then the logarithm of the error between the true and numerical
solutions is linear with respect to the logarithm of M, which is the degree of freedom in the temporal
direction. Therefore, we can conclude that the slope of the logarithm of the error with respect to log M
is equal to −r. According to the result in Theorem 1, we need to verify r = 1 in the temporal and spatial
direction, respectively. So as to reveal the relationship between the numbers N of the spatial nodes and
the spatial error, we choose M = 200 in temporal direction, which can ensure that the spatial error is
dominant. Likewise, to verify the relationship between the degrees of freedom M in temporal direction
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Figure 4. The option price P(S 1, S 2, 0) in the model (2.1) with q2 = 0.02. ρ = 0.6, σ1 =

0.3, σ2 = 0.4 (top left), ρ = 0.6, σ1 = 0.4, σ2 = 0.4 (top right), ρ = 0.7, σ1 = 0.3, σ2 = 0.4
(bottom left), ρ = 0.7, σ1 = 0.4, σ2 = 0.4 (bottom right).
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and the temporal error, we choose N = 2500. We also show blue line in each figure as the standard
lines to verify the conclusion of theorem. The convergence results of options in spatial and temporal
directions are shown in Figures 5 and 6.
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Figure 5. The convergence rates in spatial direction with q2 = 0.02/0.03, σ1 = 0.3/0.4,
σ2 = 0.4, ρ = 0.6 (left), ρ = 0.7 (right).
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Figure 6. The convergence rates in temporal direction with q2 = 0.02/0.03, σ1 = 0.3/0.4,
σ2 = 0.4, ρ = 0.6 (left), ρ = 0.7 (right).

It needs to be noted that we have shifted some lines for clarity, but the slopes remain the same,
which are the main concerns in our experiments. From Figures 5 and 6, we can conclude that the
convergence rates in spatial and temporal directions coincide with error estimate in Theorem 1 are all
of order 1.

5. Conclusions

In this paper, we propose an efficient numerical method for the unilateral pricing problem of Amer-
ican better-of options with two underlying assets. By some traditional numeraire transformations, the
far-field truncation technique and the known information about the free boundary, the original pricing
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model is approximated by a one-dimensional LCP on a bounded domain. In order to discretize the re-
sulting LCP, the FDM and the FEM are applied in temporal direction and spatial direction, respectively.
Based on the positive definite property of the discretized matrix, the discretized system is solved by
the PDAS method. Our algorithm can obtain the price and the optimal exercise boundary of American
better-of options simultaneously. Furthermore, we use some numerical experiments to verify the supe-
riority of the proposed algorithm on error estimates and computational costs, respectively. In the future
work, we shall apply our methods to different stochastic volatility models, regime switching models,
and fractional models [32–34] to price American better-of options, as well as some inverse problems,
such as the implied volatility of American options [35, 36].
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