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Abstract: The periodic measures are investigated for a class of reaction-diffusion lattice systems
driven by superlinear noise defined on Zk. The existence of periodic measures for the lattice systems
is established in l2 by Krylov-Bogolyubov’s method. The idea of uniform estimates on the tails of
solutions is employed to establish the tightness of a family of distribution laws of the solutions.
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1. Introduction

This paper deals with periodic measures of the following reaction-diffusion lattice systems driven
by superlinear noise defined on the integer set Zk :

dui(t) + λ(t)ui(t)dt − ν(t)(u(i1−1,i2,...,ik)(t) + ui1,i2−1,...,ik(t) + . . . + ui1,i2,...,ik−1(t)
− 2ku(i1,i2,...,ik)(t) + u(i1+1,i2,...,ik)(t) + u(i1,i2+1,...,ik)(t) + . . . + u(i1,i2,...,ik+1)(t))dt

= fi(t, ui(t))dt + gi(t)dt +
∞∑
j=1

(hi, j(t) + δi, jσ̂i, j(t, ui(t)))dW j(t),
(1.1)

along with initial conditions:
ui(0) = u0,i, (1.2)

where i = (i1, i2, . . . , ik) ∈ Zk, λ(t), ν(t) are continuous functions, λ(t) > 0, ( fi)i∈Zk and (σ̂i, j)i∈Zk , j∈N

are two sequences of continuously differentiable nonlinearities with arbitrary and superlinear growth
rate from R × R → R, respectively, g = (gi)i∈Zk and h = (hi, j)i∈Zk , j∈N are two time-dependent ran-
dom sequences, and δ = (δi, j)i∈Zk , j∈N is a sequence of real numbers. The sequence of independent
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two-sided real-valued Wiener processes (W j) j∈N is defined on a complete filtered probability space
(Ω,F , {Ft}t∈R,P). Furthermore, we assume that system (1.1) is a time periodic system; more precisely,
there exists T > 0 such that the time-dependent functions λ, ν, fi, g, h, σi, j(i ∈ Zk, j ∈ N) in (1.1) are all
T -periodic in time.

Lattice systems are gradually becoming a large and evolving interdisciplinary research field, due to
wide range of applications in physics, biology and engineering such as pattern recognition, propagation
of nerve pulses, electric circuits, and so on, see [1–6] and the references therein for more details. The
well-posedness and the dynamics of these equations have been studied by many authors, [7–10] for
deterministic systems and [11–19] for stochastic systems where the existence of random attractors and
probability measures have been examined. Especially, the authors research the limiting behavior of
periodic measures of lattice systems in [15].

Nonlinear noise was proposed and studied for the first time in [19], the authors researches the long-
term behavior of lattice systems driven by nonlinear noise in terms of random attractors and invariant
measures. Before that, the research on noise was limited to additive noise and linear multiplicative
noise, which can be transformed into a deterministic system. However, if the diffusion coefficients are
nonlinear, then one cannot convert the stochastic system into a pathwise deterministic one, and thereby
this problem cannot be studied under the frameworks of deterministic systems aforementioned. As an
extension of [19], a class of reaction-diffusion lattice systems driven by superlinear noise, where the
noise has a superlinear growth order q ∈ [2, p), is studied by taking advantage of the dissipativeness of
the nonlinear drift function fi in (1.1) to control the superlinear noise in [20].

In the paper, we will study the existence of periodic measures of reaction-diffusion lattice systems
drive by superlinear noise. One of the main tasks in our analysis is to solve the superlinear noise terms.
We remark that if the noise grows linearly, then the estimates we need can be obtained by applying the
standard methods available in the literature. We adopt the ideas that take advantage of the nonlinear
drift terms’ the polynomical growth rate p (p ≥ 2) to control the noise polynomical rate q ∈ [2, p).
Furthermore, notice that l2 is an infinite-dimensional phase space and problem (1.1)–(1.2) is defined on
the unbounded set Zk. The unboundedness of Zk as well as the infinite-dimensionalness of l2 introduce a
major difficulty, because of the non-compactness of usual Sobolev embeddings on unbounded domains.
We will employ the dissipativeness of the drift function in (1.1) as well as a cutoff technique to prove
that the tails of solutions are uniformly small in L2(Ω, l2). Based upon this fact we obtain the tightness
of distribution laws of solutions, and then the existence of periodic measures.

In the next section, we discuss the well-poseness of solutions of (1.1) and (1.2). Section 3 is
devoted to the uniform estimates of solutions including the uniform estimates on the tails of solutions.
In Section 4, we show the existence of periodic measures of (1.1) and (1.2).

2. Global well-posedness of reaction-diffusion lattice systems with superlinear noise

In this section, we prove the existence and uniqueness of solutions to system (1.1) and (1.2). We
first discuss the assumptions on the nonlinear drift and diffusion terms in (1.1).

We begin with the following Banach space:

lr = {u = (ui)i∈Zk :
∑
i∈Zk

|ui|
r < +∞} with norm ∥u∥r =

(∑
i∈Zk

|ui|
r
) 1

r
,∀r ≥ 1.
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The norm and inner product of l2 are denoted by (·, ·) and ∥ · ∥, respectively. For the nonlinear drift
function fi ∈ C1(R × R,R) in the equation we assume that for all s ∈ R and i ∈ Zk,

fi(t, s)s ≤ −γ1|s|p + ϕ1,i, ϕ1 = {ϕ1,i}i∈Zk ∈ l1, (2.1)
| fi(t, s)| ≤ ϕ2,i|s|p−1 + ϕ3,i, ϕ2 = {ϕ2,i}i∈Zk ∈ l∞, ϕ3 = {ϕ3,i}i∈Zk ∈ l2, (2.2)

| f
′

i (t, s)| ≤ ϕ4,i|s|p−2 + ϕ5,i, ϕ4 = {ϕ4,i}i∈Zk ∈ l∞, ϕ5 = {ϕ5,i}i∈Zk ∈ l∞, (2.3)

where p > 2 and γ1 > 0 are constants. For the sequence of continuously differentiable diffusion
functions σ̂ = (σ̂i, j)i∈Zk , j∈N, we assume, for all s ∈ R and j ∈ N,

|σ̂i, j(t, s)| ≤ φ1,i|s|
q
2 + φ2,i, φ1 = {φ1,i}i∈Zk ∈ l

2p
p−q , φ2 = {φ2,i}i∈Zk ∈ l2, (2.4)

|σ̂
′

i, j(t, s)| ≤ φ3,i|s|
q
2−1 + φ4,i, φ3 = {φ3,i}i∈Zk ∈ lq, φ4 = {φ4,i}i∈Zk ∈ l∞, (2.5)

where q ∈ [2, p) is a constant. For processes g(t) = (gi(t))i∈Zk and h(t) = (hi, j)i∈Zk , j∈N are both continuous
in t ∈ R, which implies that for all t ∈ R,

∥g(t)∥2 =
∑
i∈Zk

|gi(t)|2 < ∞ and ∥h(t)∥2 =
∑
i∈Zk

∑
j∈N

|hi, j(t)|2 < ∞. (2.6)

In addition, we assume δ = (δi, j)i∈Zk , j∈N satisfies

cδ :=
∑
j∈N

∑
i∈Zk

|δi, j|
2 < ∞. (2.7)

We will investigate the periodic measures of system (1.1)–(1.2) for which we assume that all given
time-dependent functions are T-periodic in t ∈ R for some T > 0; that is, for all t ∈ R, i ∈ Zk and k ∈ N.

λ(t + T ) = λ(t), ν(t + T ) = ν(t), h(t + T ) = h(t),
g(t + T ) = g(t), f (t + T, ·) = f (t, ·), σ(t + T, ·) = σ(t, ·).

If m : R→ R is a continuous T-periodic function, we denote

m = max
0≤t≤T

m(t), m = min
0≤t≤T

m(t).

We want to reformulate problem (1.1)–(1.2) as an abstract one in l2. Given 1 ≤ j ≤ k, u = (ui)i∈Zk ∈ l2

and i = (i1, i2, . . . , ik) ∈ Zk. Let us define the operators from l2 to l2 by

(B ju)i = u(i1,...,i j+1,...,ik) − u(i1,...,i j,...,ik),

(B∗ju)i = u(i1,...,i j−1,...,ik) − u(i1,...,i j,...,ik),

(A ju)i = −u(i1,...,i j+1,...,ik) + 2u(i1,...,i j,...,ik) − u(i1,...,i j−1,...,ik),

and

(Aku)i = − u(i1−1,i2,...,ik) − u(i1,i2−1,...,ik) − . . . − u(i1,i2,...,ik−1)

+ 2ku(i1,i2,...,ik) − u(i1+1,i2,...,ik) − u(i1,i2+1,...,ik) − . . . − u(i1,i2,...,ik+1).
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For all 1 ≤ j ≤ k, u = (ui)i∈Zk ∈ l2 and v = (vi)i∈Zk ∈ l2 we see

∥B ju∥ ≤ 2∥u∥, (B∗ju, v) = (u, B jv), A j = B jB∗j and Ak =

k∑
j=1

A j. (2.8)

Again, define the operators f , σ j : R × l2 → l2 by

f (t, u) = ( fi(t, ui))i∈Zk and σ j(t, u) = (δi, jσ̂i, j(t, ui))i∈Zk ,∀t ∈ R,∀u = (ui)i∈Zk ∈ l2.

It follows from (2.3) that there exists θ ∈ (0, 1) such that for p > 2 and u, v ∈ l2,

∑
i∈Zk

| fi(t, ui) − fi(t, vi)|2 =
∑
i∈Zk

| f
′

i (θui + (1 − θ)vi)|2|ui − vi|
2

≤
∑
i∈Zk

(|ϕ4,i||θui + (1 − θ)vi|
p−2 + |ϕ5,i|)2|ui − vi|

2

≤
∑
i∈Zk

(22p−4|ϕ4,i|
2(|ui|

2p−4 + |vi|
2p−4) + 2|ϕ5,i|

2)|ui − vi|
2

≤ (22p−4∥ϕ4∥
2
l∞(∥u∥2p−4 + ∥v∥2p−4) + 2∥ϕ5∥

2
l∞)∥u − v∥2.

(2.9)

This together with f (t, 0) ∈ l2 by (2.2) yields f (t, u) ∈ l2 for all u ∈ l2, and thereby f : R × l2 → l2 is
well-defined. In addition, we deduce from (2.9) that f : R × l2 → l2 is a locally Lipschitz continuous
function, that is, for every n ∈ N, we can find a constant c1(n) > 0 satisfying, for all u, v ∈ l2 with
∥u∥ ≤ n and ∥v∥ ≤ n,

∥ f (u) − f (v)∥ ≤ c1(n)∥u − v∥. (2.10)

For q ∈ [2, p) and u ∈ l2, one can deduce from(2.4), (2.7) and Young’s inequality that for all ϖ > 0,

ϖ
∑
j∈N

∥σ j(t, u)∥2 = ϖ
∑
j∈N

∑
i∈Zk

|δi, jσ̂i, j(t, ui)|2

≤ 2ϖ
∑
j∈N

∑
i∈Zk

|δi, j|
2(|φ1,i|

2|ui|
q + |φ2,i|

2) ≤ 2ϖcδ
∑
i∈Zk

(|φ1,i|
2|ui|

q + |φ2,i|
2)

≤
γ1

2

∑
i∈Zk

|ui|
p +

p − q
p

( pγ1

2q

)− q
p−q (2ϖcδ)

p
p−q

∑
i∈Zk

|φ1,i|
2p
p−q + 2ϖcδ

∑
i∈Zk

|φ2,i|
2

≤
γ1

2
∥u∥pp +

p − q
p

( pγ1

2q

)− q
p−q (2ϖcδ)

p
p−q ∥φ1∥

2p
p−q
2p
p−q

+ 2ϖcδ∥φ2∥
2,

(2.11)

where γ1 is the same number as in (2.1). From (2.11) and l2 ⊆ lp for p > 2, we find that σ j(t, u) ∈ l2

for all u ∈ l2. Then σ j : R × l2 → l2 is also well-defined. In addition, it yields from (2.5) and (2.7) that
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there exists η ∈ (0, 1) such that for q ∈ [2, p) and u, v ∈ l2,∑
j∈N

∑
i∈Zk

|δi, jσ̂i, j(t, ui) − δi, jσ̂i, j(t, vi)|2 =
∑
i∈Zk

∑
j∈N

|δi, j|
2|σ̂i, j(t, ui) − σ̂i, j(t, vi)|2

=
∑
i∈Zk

∑
j∈N

|δi, j|
2|σ̂

′

i, j(ηui + (1 − η)vi)|2|ui − vi|
2

≤ cδ
∑
i∈Zk

(|φ3,i||ηui + (1 − η)vi|
q
2−1 + |φ4,i|)2|ui − vi|

2

≤ cδ
∑
i∈Zk

(2q−2|φ3,i|
2(|ui|

q−2 + |vi|
q−2) + 2|φ4,i|

2)|ui − vi|
2

≤ cδ
∑
i∈Zk

(
2q−2

(4
q
|φ3,i|

q +
q − 2

q
|ui|

q +
q − 2

q
|vi|

q
)

+ 2|φ4,i|
2
)
|ui − vi|

2

≤ cδ(2q−1(∥φ3∥
q
q + ∥u∥

q + ∥v∥q) + 2∥φ4∥
2
l∞)∥u − v∥2.

(2.12)

This implies that σ j : R× l2 → l2 is also locally Lipschitz continuous, more precisely, for every n ∈ N,
one can find a constant c2(n) > 0 satisfying, for all u, v ∈ l2 with ∥u∥ ≤ n and ∥v∥ ≤ n,∑

j∈N

∥σ j(u)∥2 ≤ c2
2(n). (2.13)

and ∑
j∈N

∥σ j(u) − σ j(v)∥2 ≤ c2
2(n)∥u − v∥2. (2.14)

By above notations one is able to rewrite (1.1)–(1.2) as the following system in l2 for t > 0 :

du(t) + ν(t)Aku(t)dt + λ(t)u(t)dt = f (t, u(t))dt + g(t)dt +
∞∑
j=1

(h j(t) + σ j(t, u(t)))dW j(t), (2.15)

with initial condition:
u(0) = u0 ∈ l2, (2.16)

in the present article, the solutions of system (2.15)–(2.16) are interpreted in the following sense.

Definition 2.1. Suppose u0 ∈ L2(Ω, l2) is F0-measurable, a continuous l2-valued Ft-adapted stochas-
tic process u is called a solution of equations (2.15) and (2.16) if u ∈ L2(Ω,C([0,T ], l2)) ∩
Lp(Ω, Lp(0,T ; lp)) for all T > 0, and the following equation holds for all t ≥ 0 and almost all ω ∈ Ω:

u(t) =u0 +

∫ t

0
(−ν(s)Aku(s) − λ(s)u(s) + f (s, u(s)) + g(s))ds

+

∞∑
j=1

∫ t

0
(h j(s) + σ j(s, u(s)))dW j(s) in l2.

(2.17)

Similar to Ref. [20], we can get (2.15) and (2.16) exist global solutions in the sense of Definition 2.1.
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3. Uniform estimates

In this section, we derive the uniform estimates of solutions of (2.15)–(2.16). These estimates will
be used to establish the tightness of a set of probability distributions of u in l2.

We assume that
α(t) = λ(t) − 16k|ν(t)| > 0. (3.1)

Lemma 3.1. Let (2.1)–(2.7) and (3.1) hold. Then the solutions u(t, 0, u0) of system (2.15) and (2.16)
with initial data u0 at time 0 satisfy, for all t ≥ 0,

E(∥u(t, 0, u0)∥2) +
∫ t

0
eα(r−t)E(∥u(r, 0, u0)∥pp)dr

≤ L1

(
E(∥u0∥

2) +
∞∑
j=1

∥h j∥
2
+ ∥g∥

2
+ ∥φ1∥

2p
p−q
2p
p−q

+ ∥φ2∥
2 + ∥ϕ1∥1

)
,

(3.2)

where L1 > 0 is a positive constant which depends on α, p, q, γ, cδ, t, but indepentent of u0.

Proof. Applying Ito’s formula to (2.15) we get

d(∥u(t)∥2) + 2ν(t)
k∑

j=1

∥B ju(t)∥2dt + 2λ(t)∥u(t)∥2dt = 2( f (t, u(t)), u(t))dt

+ 2(g(t), u(t))dt +
∞∑
j=1

∥h j(t) + σ(t, u(t))∥2dt + 2
∞∑
j=1

u(t)(h j(t) + σ j(t, u(t)))dW j(t).

This implies

d
dt

E(∥u(t)∥2) + 2ν(t)
k∑

j=1

E(∥B ju(t)∥2) + 2λ(t)E(∥u(t)∥2)

≤ 2E( f (t, u(t)), u(t)) + 2E(g(t), u(t)) + 2
∞∑
j=1

E(∥h j(t)∥2) + 2
∞∑
j=1

E(∥σ(t, u(t))∥2).

(3.3)

For the second term on the left-hand side of (3.3), we have

2|ν(t)|
k∑

j=1

E(∥B ju(t)∥2) ≤ 8k|ν(t)|E(∥u(t)∥2). (3.4)

For the first term on the right-hand side of (3.3), we get from (2.1) that

2E( f (t, u(t)), u(t)) ≤ −2γ1E(∥u(t)∥pp) + 2∥ϕ1∥1. (3.5)

For the second term on the right-hand side of (3.3), we have

2E(g(t), u(t)) ≤ λ(t)E(∥u(t)∥2) +
1
λ(t)

E(∥g(t)∥2). (3.6)
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For the last term on the right-hand side of (3.3), we infer from (2.11) with ω = 2 that

2
∞∑
j=1

E(∥σ j(t, u(t))∥2) ≤
γ1

2
E(∥u(t)∥pp) +

p − q
p

( pγ1

2q

)− q
p−q (4cδ)

p
p−q ∥φ1∥

2p
p−q
2p
p−q

+ 4cδ∥φ2∥
2. (3.7)

By (3.3)–(3.7) we get

d
dt

E(∥u(t)∥2) + αE(∥u(t)∥2) +
3
2
γ1E(∥u(t)∥pp)

≤ E
( ∞∑

j=1

2∥h j(t)∥2 +
1
λ(t)
∥g(t)∥2

)
+C1,

(3.8)

implies that

d
dt

E(∥u(t)∥2) + αE(∥u(t)∥2) +
3
2
γ1E(∥u(t)∥pp)

≤ 2
∞∑
j=1

∥h j∥
2 +

1
λ
∥g∥2 +C1,

(3.9)

where C1 =
p−q

p

(
pγ1
2q

)− q
p−q (4cδ)

p
p−q ∥φ1∥

2p
p−q
2p
p−q

+ 4cδ∥φ2∥
2 + 2∥ϕ1∥1. Multiplying (3.9) by eαt and integrating

over (0, t) to obtain

E(∥u(t, 0,u0)∥2) +
3
2
γ1

∫ t

0
eα(r−t)E(∥u(r, 0, u0)∥pp)dr

≤ e−αtE(∥u0∥
2) +C2

∫ t

0
eα(r−t)dr,

(3.10)

where C2 = 2
∑∞

j=1 ∥h j∥
2 + 1

λ
∥g∥2 +C1. This completes the proof. □

Lemma 3.2. Let (2.1)–(2.7), and (3.1) be satisfied. Then for compact subset K of l2, one can find a
number N0 = N0(K) ∈ N such that the solutions u(t, 0, u0) of (2.15) and (2.16) satisfy, for all n ≥ N0

and t ≥ 0,

E
( ∑
∥i∥≥n

|ui(t, 0, u0)|2
)
+

∫ t

0
eα(r−t)E

( ∑
∥i∥≥n

|ui(r, 0, u0)|p
)
dr ≤ ε, (3.11)

where u0 ∈ K and ∥i∥ := maxi≤ j≤k |i j|.

Proof. Define a smooth function ξ : R→ [0, 1] such that

ξ(s) = 0 for |s| ≤ 1 and ξ(s) = 1 for |s| ≥ 2. (3.12)

Denote by

ξn =

(
ξ

(
∥i∥
n

))
i∈Zk

and ξnu =
(
ξ

(
∥i∥
n

)
ui

)
i∈Zk

,∀u = (ui)i∈Zk , n ∈ N. (3.13)
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Similar notations will also be used for other terms. It follows from (2.15) that

d(ξnu(t)) + ν(t)ξnAku(t)dt + λ(t)ξnu(t)dt

= ξn f (t, u(t))dt + ξng(t)dt +
∞∑
j=1

(ξnh j(t) + ξnσ j(t, u(t)))dW j(t).
(3.14)

By Ito’s formula and (3.14) we have

d∥ξnu(t)∥2 + 2ν(t)(Ak(u(t)), ξ2
nu(t))dt + 2λ(t)∥ξnu(t)∥2dt

= 2( f (t, u(t)), ξ2
nu(t))dt + 2(g(t), ξ2

nu(t))dt

+

∞∑
j=1

∥ξnh j(t) + ξnσ j(t, u(t))∥2dt + 2
∞∑
j=1

(h j(t) + σ j(t, u(t)), ξ2
nu(t))dW j.

(3.15)

This yields

d
dt

E(∥ξnu(t)∥2) + 2ν(t)E(Ak(u(t)), ξ2
nu(t)) + 2λ(t)E(∥ξnu(t)∥2) = 2E( f (t, u(t)), ξ2

nu(t))

+ 2E(g(t), ξ2
nu(t)) + 2

∞∑
j=1

E(∥ξnh j(t)∥2) + 2
∞∑
j=1

E(∥ξnσ j(t, u(t))∥2)dt.
(3.16)

For the second term on the left-hand side of (3.16), we have

2ν(t)E(Ak(u(t)), ξ2
nu(t)) = 2ν(t)

k∑
j=1

E(B ju(t), B j(ξ2
nu(t)))

= 2ν(t)E
( k∑

j=1

∑
i∈Zk

(ui1,...,i j+1,...,ik − ui)

×

(
ξ2

(∥(i1, . . . , i j + 1, . . . , ik)∥
n

)
u(i1,...,i j+1,...,ik) − ξ

2
(∥i∥

n

)
ui

))
= 2ν(t)E

( k∑
j=1

∑
i∈Zk

ξ2
(∥i∥

n

)
(ui1,...,i j+1,...,ik − ui)2

)
+ 2ν(t)E

( k∑
j=1

∑
i∈Zk

(
ξ2

(∥(i1, . . . , i j + 1, . . . , ik)∥
n

)
− ξ2

(∥i∥
n

))
× (u(i1,...,i j+1,...,ik) − ui)u(i1,...,i j+1,...,ik)

)
.

(3.17)
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We first deal with the first term on the right-hand side of (3.17). Notice that

2|ν(t)|E
( k∑

j=1

∑
i∈Zk

ξ2
(∥i∥

n

)
(ui1,...,i j+1,...,ik − ui)2

)
= 2|ν(t)|E

( k∑
j=1

∑
i∈Zk

∣∣∣∣ξ(∥i∥n )
u(i1,...,i j+1,...,ik) − ξ

(∥i∥
n

)
ui

∣∣∣∣2)
≤ 4|ν(t)|E

( k∑
j=1

∑
i∈Zk

∣∣∣∣(ξ(∥i∥n )
− ξ

(∥(i1, . . . , i j + 1, . . . , ik)∥
n

))
u(i1,...,i j+1,...,ik)

∣∣∣∣2)
+ 4|ν(t)|E

( k∑
j=1

∑
i∈Zk

∣∣∣∣ξ(∥(i1, . . . , i j + 1, . . . , ik)∥
n

)
u(i1,...,i j+1,...,ik) − ξ

(∥i∥
n

)
ui

∣∣∣∣2).

(3.18)

By the definition of function ξ, there exists a constant C3 > 0 such that |ξ
′

(s)| ≤ C3 for all s ∈ R. Then
the first term on the right-hand side of (3.18) is bounded by

4|ν(t)|E
( k∑

j=1

∑
i∈Zk

∣∣∣∣(ξ(∥i∥n )
− ξ

(∥(i1, . . . , i j + 1, . . . , ik)∥
n

))
u(i1,...,i j+1,...,ik)

∣∣∣∣2)
= 4|ν(t)|E

( k∑
j=1

∑
i∈Zk

∣∣∣∣ξ(∥i∥n )
− ξ

(∥(i1, . . . , i j + 1, . . . , ik)∥
n

)∣∣∣∣2∣∣∣u(i1,...,i j+1,...,ik)

∣∣∣2)
≤

4C2
3

n2 |ν(t)|E
( k∑

j=1

∑
i∈Zk

∣∣∣u(i1,...,i j+1,...,ik)

∣∣∣2) ≤ 4C2
3k

n2 |ν(t)|E(∥u∥2).

(3.19)

By the definition of |B ju|i, the last term on the right-hand side of (3.18) is bounded by

4|ν(t)|E
( k∑

j=1

∑
i∈Zk

∣∣∣∣ξ(∥(i1, . . . , i j + 1, . . . , ik)∥
n

)
u(i1,...,i j+1,...,ik) − ξ

(∥i∥
n

)
ui

∣∣∣∣2)
≤ 4|ν(t)|E

( k∑
j=1

∥B j(ξnu(t))∥2
)
≤ 16k|ν(t)|E(∥ξnu(t)∥2).

(3.20)

Then we find from (3.18) to (3.20) that the first term on the right-hand side of (3.17) is bounded by

2|ν(t)|E
( k∑

j=1

∑
i∈Zk

ξ2
(∥i∥

n

)
(u(i1,...,i j+1,...,ik) − ui)2

)
≤ 16k|ν(t)|E(∥ξnu(t)∥2) +

4C2
3k

n2 |ν(t)|E(∥u∥2).

(3.21)
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In addition, we find that the last term on the right-hand side of (3.17) can be bounded by

2
∣∣∣∣ν(t)E( k∑

j=1

∑
i∈Zk

(
ξ2

(∥(i1, . . . , i j + 1, . . . , ik)∥
n

)
− ξ2

(∥i∥
n

))
× (u(i1,...,i j+1,...,ik) − ui)u(i1,...,i j+1,...,ik)

)∣∣∣∣
≤ 2|ν(t)|E

( k∑
j=1

∑
i∈Zk

∣∣∣∣ξ2
(∥(i1, . . . , i j + 1, . . . , ik)∥

n

)
− ξ2

(∥i∥
n

)∣∣∣∣
× |u(i1,...,i j+1,...,ik) − ui||u(i1,...,i j+1,...,ik)|

)
≤ 4|ν(t)|E

( k∑
j=1

∑
i∈Zk

∣∣∣∣ξ(∥(i1, . . . , i j + 1, . . . , ik)∥
n

)
− ξ

(∥i∥
n

)∣∣∣∣
× |u(i1,...,i j+1,...,ik) − ui||u(i1,...,i j+1,...,ik)|

)
≤

4C3

n
|ν(t)|E

( k∑
j=1

∑
i∈Zk

|u(i1,...,i j+1,...,ik) − ui||u(i1,...,i j+1,...,ik)|

)
≤

8kC3

n
|ν(t)|E(∥u∥2).

(3.22)

By (3.21), (3.22) and (3.17), we infer that the second term on the left-hand side of (3.16) satisfied

2|ν(t)E(Ak(u(t)), ξ2
nu(t))| ≤ C4|ν(t)|

(1
n
+

1
n2

)
E(∥u∥2) + 16k|ν(t)|E(∥ξnu(t)∥2), (3.23)

where C4 = 4kC3(2 +C3). For the first term on the right-hand side of (3.16), we find from (2.1) that

2E( f (t, u(t)), ξ2
nu(t)) ≤ −2γ1E

(∑
i∈Zk

ξ2
(∥i∥

n

)
|ui(t)|p

)
+ 2E

(∑
i∈Zk

ξ2
(∥i∥

n

)
|ϕ1,i|

)
≤ −2γ1E

(∑
i∈Zk

ξ2
(∥i∥

n

)
|ui(t)|p

)
+ 2

∑
∥i∥≥n

|ϕ1,i|.

(3.24)

For the second term on the right-hand side of (3.16), we infer from Young’s inequality that

2E(g, ξ2
nu(t)) ≤ λE(∥ξnu(t)∥2) +

1
λ

E
(∑

i∈Zk

ξ2
(∥i∥

n

)
|gi|

2
)

≤ λE(∥ξnu(t)∥2) +
1
λ

∑
∥i∥≥n

|gi|
2.

(3.25)
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For the last term on the right-hand side (3.16), we infer from (2.4) and Young’s inequality that

2
∞∑
j=1

E
(
∥ξnσ j(t, u(t))∥2

)
= 2

∞∑
j=1

E
(∑

i∈Zk

∣∣∣∣ξ(∥i∥n )
δi, jσ̂i, j(t, ui(t))

∣∣∣∣2)
≤ 4

∞∑
j=1

E
(∑

i∈Zk

ξ2
(∥i∥

n

)
|δi, j|

2
(
|φ1,i|

2|ui(t)|q + |φ2,i|
2
))

≤ 4cδE
(∑

i∈Zk

ξ2
(∥i∥

n

)(
|φ1,i|

2|ui(t)|q + |φ2,i|
2
))

≤ γ1E
(∑

i∈Zk

ξ2
(∥i∥

n

)
|ui(t)|p

)
+

p − q
p

( pγ1

q

)− q
p−q (4cδ)

p
p−q

∑
i∈Zk

ξ2
(∥i∥

n

)
|φ1,i|

2p
p−q

+ 4cδ
∑
i∈Zk

ξ2
(∥i∥

n

)
|φ2,i|

2

≤ γ1E
(∑

i∈Zk

ξ2
(∥i∥

n

)
|ui(t)|p

)
+

p − q
p

( pγ1

q

)− q
p−q (4cδ)

p
p−q

∑
∥i∥≥n

|φ1,i|
2p
p−q

+ 4cδ
∑
∥i∥≥n

|φ2,i|
2.

(3.26)

Substituting (3.23)–(3.26) into (3.16) we get

d
dt

E(∥ξnu(t)∥2) + αE(∥ξnu(t)∥2) + γ1E
(∑

i∈Zk

ξ2
(∥i∥

n

)
|ui(t)|p

)
≤ C4|ν|

(1
n
+

1
n2

)
E(∥u∥2) +C5

( ∑
∥i∥≥n

(
|gi|

2
+ |φ1,i|

2p
p−q + |φ2,i|

2 + |ϕ1,i|
)
+

∑
∥i∥≥n

∞∑
j=1

|hi, j|
2
)
,

(3.27)

where C5 = 2 + 1
λ
+

p−q
p ( pγ1

q )−
q

p−q (4cδ)
p

p−q + 4cδ. One can multiply (3.27) by eαt and integrate over (0, t)
in order to obtain

E(∥ξnu(t, 0, u0)∥2) + γ1

∫ t

0
eα(r−t)E

(∑
i∈Zk

ξ2
(∥i∥

n

)
|ui(r, 0, u0)|p

)
dr

≤ e−αtE(∥ξnu0∥
2) +C4|ν|

(1
n
+

1
n2

) ∫ t

0
eα(r−t)E(∥u(r, 0, u0)∥2)dr

+
C5

α

( ∑
∥i∥≥n

(
|gi|

2
+ |φ1,i|

2p
p−q + |φ2,i|

2 + |ϕ1,i|
)
+

∑
∥i∥≥n

∞∑
j=1

|hi, j|
2
)
.

(3.28)

Since K is a compact subset of l2 we infer from (3.1) that

lim
n→∞

sup
u0∈K

sup
t≥0

e−αtE(∥ξnu0∥
2) ≤ lim

n→∞
sup
u0∈K

E(
∑
∥i∥≥n

|u0,i|
2) = 0. (3.29)
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By Lemma 3.1, we find that for all u0 ∈ K and t ≥ 0, as n→ ∞,(1
n
+

1
n2

) ∫ t

0
eα(r−t)E(∥u(r, 0, u0)∥2)dr

≤
L1

α

(1
n
+

1
n2

)(
E(∥u0∥

2) +
∞∑
j=1

∥h j∥
2
+ ∥g∥

2
+ ∥φ1∥

2p
p−q
2p
p−q

+ ∥φ2∥
2 + ∥ϕ1∥1

)
≤

L1

α

(1
n
+

1
n2

)(
C6 +

∞∑
j=1

∥h j∥
2
+ ∥g∥

2
+ ∥φ1∥

2p
p−q
2p
p−q

+ ∥φ2∥
2 + ∥ϕ1∥1

)
→ 0,

(3.30)

where L1 is the same number of (3.1) and C6 > 0 is a constant depending only on u0. By φ1 ∈ l
2p
p−q , φ2 ∈

l2, ϕ1 ∈ l1 , (2.6) and (3.1), we infer that∑
∥i∥≥n

(
|gi|

2
+ |φ1,i|

2p
p−q + |φ2,i|

2 + |ϕ1,i|
)
+

∑
∥i∥≥n

∞∑
j=1

|hi, j|
2
→ 0 as n→ ∞. (3.31)

It follows from (3.28) to (3.31) that as n→ ∞,

sup
u0∈K

sup
t≥0

(
E(∥ξnu(t, 0, u0)∥2) +

∫ t

0
eα(r−t)E

(∑
i∈Zk

ξ2
(∥i∥

n

)
|ui(r, 0, u0)|p

)
dr

)
→ 0. (3.32)

Then for every ε > 0 we can find a number N0 = N0(K) ∈ N satisfying, for all n ≥ N0 and t ≥ 0,(
E
( ∑
∥i∥≥2n

|ui(t, 0, u0)|2
)
+

∫ t

0
eα(r−t)E

( ∑
∥i∥≥2n

|ui(t, 0, u0)|p
)
dr

)
≤

(
E
(
∥ξnu(t, 0, u0)∥2

)
+

∫ t

0
eα(r−t)E

(∑
i∈Zk

ξ2
(∥i∥

n

)
|ui(t, 0, u0)|p

)
dr

)
≤ ε,

(3.33)

uniformly for u0 ∈ K and t ≥ 0. This concludes the proof. □

4. Existence of periodic measures

In the sequel, we use L(u(t, 0, u0)) to denote the probability distribution of the solution u(t, 0, u0) of
(2.15)–(2.16) which has initial condition u0 at initial time 0. Then we have the following tightness of a
family of distributions of solutions.

Lemma 4.1. Suppose (2.1)–(2.7) and (3.1) hold. Then the family {L(u(t, 0, u0)) : t ≥ 0} of the distri-
butions of the solutions of (2.15)–(2.16) is tight on l2.

Proof. For simplicity, we will write the solution u(t, 0, u0) as u(t) from now on. It follows from Lemma
3.1 that there exists a constant c1 > 0 such that

E
(
∥u(t)∥2

)
≤ c1, for all t ≥ 0. (4.1)

By Chebyshev’s inequality, we get from (4.1) that for all t ≥ 0,

P
(
∥u(t)∥2 ≥ R

)
≤

c1

R2 → 0 as R→ ∞.
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Hence for every ϵ > 0, there exists R1 = R1(ϵ) > 0 such that for all t ≥ 0,

P
{
∥u(t)∥2 ≥ R1

}
≤

1
2
ϵ. (4.2)

By Lemma 3.2, we infer that for each ϵ > 0 and m ∈ N, there exists an integer nm = nm(ϵ,m) such that
for all t ≥ 0,

E

∑
|i|>nm

|ui (t)|2
 < ϵ

22m+2 ,

and hence for all t ≥ 0 and m ∈ N,

P


∑
|i|>nm

|ui (r)|2 ≥
1

2m


 ≤ 2mE

∑
|i|>nm

|ui (r)|2
 < ϵ

2m+2 . (4.3)

It follows from (4.3) for all t ≥ 0,

P

 ∞∪m=1

∑
|i|>nm

|ui (t)|2 ≥
1

2m


 ≤ ∞∑

m=1

ϵ

2m+2 ≤
1
4
ϵ,

which shows that for all t ≥ 0,

P


∑
|i|>nm

|ui (t)|2 ≤
1

2m for all m ∈ N


 > 1 −

ϵ

2
. (4.4)

Given ϵ > 0, set

Y1,ϵ =
{
v ∈ l2 : ∥v∥ ≤ R1 (ϵ)

}
, (4.5)

Y2,ϵ =

v ∈ l2 :
∑
|i|>nm

|vi (r)|2 ≤
1

2m for all m ∈ N

 , (4.6)

and
Yϵ = Y1,ϵ ∩ Y2,ϵ . (4.7)

By (4.2) and (4.4) we get, for all t ≥ 0,

P ({u(t) ∈ Yϵ}) > 1 − ϵ. (4.8)

Now, we show the precompactness of {v : v ∈ Yϵ} in l2. Given κ > 0, choose an integer m0 = m0 (κ) ∈
N such that 2m0 > 8

κ2 . Then by (4.6) we obtain∑
|i|>nm0

|vi|
2
≤

1
2m0

<
κ2

8
, ∀v ∈ Yϵ . (4.9)

On the other hand, by (4.5) we see that the set
{
(vi)|i|≤m0 : v ∈ Yϵ

}
is bounded in the finite-dimensional

space R2m0+1 and hence precompact. Consequently, {v : v ∈ Yϵ} has a finite open cover of balls with
radius κ

2 , which along with (4.9) implies that the set {v : v ∈ Yϵ} has a finite open cover of balls with
radius κ in l2 . Since κ > 0 is arbitrary, we find that the set {v : v ∈ Yϵ} is precompact in l2. This
completes the proof. □
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If ϕ : l2 → R is a bounded Borel function, then for 0 ≤ r ≤ t and u0 ∈ l2, we set

(pr,tϕ)(u0) = E(ϕ(u(t, r, u0)))

and
p(r, u0; t,Γ) = (pr,t1Γ)(u0),

where Γ ∈ B(l2) and 1Γ is the characteristic function of Γ. The operators ps,t with 0 ≤ s ≤ t are called
the transition operators for the solutions of (2.15)–(2.16). Recall that a probability measure ν on l2 is
periodic for (2.15)–(2.16) if∫

l2
(p0,t+Tϕ)(u0)dν(u0) =

∫
l2

(p0,tϕ)(u0)dν(u0), ∀t ≥ 0.

Lemma 4.2. [21] Let ϱ(ψ,ω) be a scalar bounded measurable random function of ψ, independent of
Fs. Let ς be an Fs-measurable random variable. Then

E (ϱ (ς, ω) |Fs) = E (ϱ (ς, ω)) .

The transition operators {pr,t}0≤r≤t have the following properties.

Lemma 4.3. Assume that (2.1)–(2.7) and (3.1) hold. Then:
(i) {pr,t}0≤r≤t is Feller; that is, for every bounded and continuous ϕ : l2 → R, the function pr,tϕ :

l2 → R is also bounded and continuous for all 0 ≤ r ≤ t.
(ii) The family {pr,t}0≤r≤t is T-periodic; that is, for all 0 ≤ r ≤ t,

p(r, u0; t, ·) = p(r + T, u0; t + T, ·), ∀u0 ∈ l2.

(iii) {u(t, 0, u0)}t≥0 is a l2-valued Markov process.

Finally, we present our main result on the existence of periodic measures for problem (2.15)–(2.16).

Theorem 4.4. Assume that (2.1)–(2.7) and (3.1) hold. Then problem (2.15)–(2.16) has a periodic
measure on l2.

Proof. We apply Krylov-Bogolyubov’s method to prove the existence of periodic measures of (2.15)–
(2.16), define a probability measure µn by

µn =
1
n

n∑
l=1

p(0, 0; lT, ·). (4.10)

By Lemma 4.1 we see the sequence {µn}
∞
n=1 is tight on l2, and hence there exists a probability measure

µ on l2 such that, up to a subsequence,

µn → µ, as n→ ∞. (4.11)
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By (4.10)–(4.11) and Lemma 4.3, we infer that for every t ≥ 0 and every bounded and continuous
function ϕ : l2 → R,∫

l2

(
p0,tϕ

)
(u0) dµ (u0) =

∫
l2

(∫
l2
ϕ (y) p (0, u0; t, dy)

)
dµ (u0)

= lim
n→∞

1
n

n∑
l=1

∫
l2

(∫
l2
ϕ (y) p (0, u0; t, dy)

)
p (0, 0; lT, du0)

= lim
n→∞

1
n

n∑
l=1

∫
l2

(∫
l2
ϕ (y) p (kT, u0; t + lT, dy)

)
p (0, 0; kT, du0)

= lim
n→∞

1
n

n∑
l=1

∫
l2
ϕ (y) p (0, 0; t + lT, dy)

= lim
n→∞

1
n

n∑
l=1

∫
l2
ϕ (y) p (0, 0; t + lT + T, dy)

= lim
n→∞

1
n

n∑
k=1

∫
l2

(∫
l2
ϕ (y) p (0, u0; t + T, dy)

)
p (0, 0; lT, du0)

=

∫
l2

(∫
l2
ϕ (y) p (0, u0; t + T, dy)

)
dµ (u0)

=

∫
l2

(
p0,t+Tϕ

)
(u0) dµ (u0),

(4.12)

which shows that µ is a periodic measure of (2.15)–(2.16), as desired. □
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