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Abstract. In this paper, we study a couple of NLS equations characterized

by mixed cubic and super-linear sub-cubic power laws. Classification as well as

existence and uniqueness of the steady state solutions have been investigated.
Numerical simulations have been also provided illustrating graphically the the-

oretical results. Such simulations showed that possible chaotic behaviour seems

to occur and needs more investigations.

1. Brief highlights. In the last recent decades, interests have been directed to-
wards PDE systems. Theoretical and numerical developments as well as practical
studies have shown that these systems are better descriptors of several physical and
natural phenomena than modelling with a single equation. Among these models
nonlinear Schrödinger’s systems of equations have taken a crucial role. Such types
are applied in several fields such as optics, plasma, fluid mechanics, solitons’ physics,
chaos, fractals, ... etc.

However, we have noticed that most of the nonlinear Schrödinger system models
developed revolve around cubic nonlinearities for both single and mixed nonlinear-
ities composed of two or more terms. Few works have dealt with mixed terms with
non-cubic parts. This may be due to the fact that in the cubic nonlinear Schrodinger
equation the general form of the solution is the well known soliton type

u(x, t) =
√

2a exp
(
i
(1

2
cx− θt+ ϕ

))
sech

(√
a(x− ct) + φ

)
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where a, c, θ, ϕ and φ are some appropriate constants. It consists in fact of a
soliton-type disturbance which travels with the speed c.

In our work we consider a mixed nonlinear term composed of two parts, a super-
linear part and a cubic part. It may be understood as a perturbation of the cubic
system. We propose to develop a classification of solutions, their behaviour, ex-
istence and uniqueness. We also noticed during this study that some chaotic be-
haviour can take place. Consequently, we have considered some types of dynamical
systems from the Schrödinger system and we have carried out some numerical sim-
ulations of the chaotic behaviour of these systems. The chaotic behaviour in our
knowledge is not yet investigated. This may be due to the perturbation of the cubic
system.

2. Introduction. Schrödinger equation since its discovery constitutes a challeng-
ing concept in physics as it models many phenomena in optics, plasma, fluid me-
chanics, etc. Enormous studies have investigated such an equation and the exact
determination of solutions remains a complex task in the nonlinear case. In such a
case even if we know some solutions, the linear combination may not be one also.
Many types of solutions have been discovered in the nonlinear case such as solitons.

Recently, studies have been focused on the extension of such single equation to
the case of a system of coupled equations of Schrödinger type and proved that such
systems may describe better many phenomena in different fields such as simultane-
ous solitons, interaction of solitons, etc.

The present paper is subscribed in this last case and focuses on a special type
of nonlinear coupled Schrödinger equations in one dimension space. We study a
couple of NLS equations characterized by mixed nonlinearities involving convex and
concave parts such as cubic, super-linear and sub-cubic power laws. Classification
of the solutions as well as existence and uniqueness of the steady state solutions
have been investigated. Numerical simulations illustrating the effects of the problem
parameters on the solution are provided. We stress here on the fact that, in our
knowledge, no previous study has investigated the present mixed case, but instead
the majority of studies dealing with mixed nonlinearities have been conducted for
the cubic-cubic special case.

The paper is devoted to the study of some nonlinear systems of PDEs of the form{
L1(u) + f1(u, v) = 0,
L2(v) + f2(u, v) = 0

(1)

where u = u(x, t), v = v(x, t) on R × (t0,+∞), t0 ∈ R with suitable initial and
boundary conditions. The operators L1 and L2 are linear Schrödinger-type opera-
tors of the form

Li(u(x, t)) = iut + σiuxx, i = 1, 2

leading to a nonlinear Schrödinger system. uxx is the second order partial derivative
relatively to x, ut is the first order partial derivative in time, σi, i = 1, 2 are
constant real positive parameters. f1 and f2 are nonlinear continuous functions of
two variables.

Remark that for σ1 = σ2 = 1, u = v = ϕ and f1 = f2 = f , we come back to the
original Schrödinger equation

iϕt + ∆ϕ = f(ϕ). (2)

On the other hand, this last equation itself may lead to a system of PDEs of real
valued functions satisfying a Heat system. Indeed, assume that u = v and let
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ϕ = u+ iv = (1 + i)u, we get a system of coupled Heat ones{
ut −∆u+ f1(u, v) = 0.
vt + ∆v + f2(u, v) = 0,

(3)

where f1 and f2 are issued from the real and imaginary parts of f(ϕ).
Return again to the system (1) in the simple case σi = 1 and denote ϕ = u+ iv

and f(ϕ) = f1(u, v) + if2(u, v), we come back to the classical NLS equation where
u and v may be seen as real and imaginary parts of the solution ϕ of an equation
of the form (2).

As related to many physical/natural phenomena such as plasma, optics, con-
densed matter physics, etc, nonlinear Schrödinger systems have attracted the in-
terest of researchers in different fields such as pure and applied mathematics, pure
and applied physics, quantum mechanics, mathematical physics, and continue to
attract researchers nowadays with the discovery of nano-physics, fractal domains,
planets understanding, etc. For instance, in hydrodynamics, the NLS system may
be a good model to describe the propagation of packets of waves according to some
directions where a phenomenon of overlapping group velocity projection may occur
[16]. In optics also, the propagation of short pulses has been investigated via a
system of NLS equations [25]. See also [33].

The most known solutions in the case of NLS equation are the so-called solitons.
These are special wave functions characterized by a self-reinforcing wave packet
and maintaining their shape along their propagation direction while their velocity
is maintained constant. However, a rigorous and complete definition is no longer
determined. Therefore, researches are always growing up to approach such waves.
For example, it is well known in particle physics that solitons may interact to
yield other forms of solitons as well as other physical particles. In [14] interactions
of multi-soliton solutions have been studied with an asymptotic expansion. In [19]
soliton type solutions are discovered for a couple of NLS equations in the framework
of intensity redistribution leading to particles’ collision. In [25] solitons solutions
have been investigated in the case of propagation of short pulses in birefringent
single-mode fibers governed by an NLS model. More about soliton solutions for
single as well as coupled nonlinear Schrödinger equations may be found in [27, 32,
36, 37].

In single NLS equation, studies have been well developed from both theoretical
and numerical aspects. Recently, a mixed model has been developed in [4, 5, 6, 7,
8, 9, 10, 15, 20, 21, 24, 26, 34, 35] with a general form

f(u) = |u|p−1u+ λ|u|q−1u, (4)

which coincides for u = v with the two variable extending interesting model

f(u, v) = (|u|p−1 + λ|v|q−1)u, p, q, λ ∈ R. (5)

In the literature, few works are done on the general model (5). The major studies
have focused on the mixed cubic-cubic (p = q = 3)

f(u, v) = (|u|2 + λ|v|2)u.

For example, in [36], (2+1)-dimensional coupled NLS equations have been studied
based on symbolic computation and Hirota method via the cubic-cubic nonlinear
system {

iut + uxx + σ(|u|2 + α|v|2)u = 0,
ivt + vxx + σ(|v|2 + α|u|2)v = 0,

(6)
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where α and σ are real parameters. The same system has been also studied by
many authors such as [1, 14, 18, 19, 27, 32]. In [37], the following more general
system has been investigated for the asymptotic time behavior of the solutions,{

i∂tu+ α∂2xu+A(|u|2 + |v|2)u = 0,
i∂tv + α∂2xv +A(|u|2 + |v|2)v = 0

(7)

See also [17]. In [13] the following p-Laplacian stationary system has been discussed
for necessary and sufficient conditions for the existence of the solutions{

−∆pu = µ1Γ1(x, u, v) in RN
−∆pv = µ2Γ2(x, u, v) in RN , (8)

where ∆pu = div(|∇u|p−2∇u) is the p-Laplacian (1 < p < N). In [11], solutions of
the type

u(x, t) = u(x)eiwt, (9)

where u is a real function known as standing wave or steady state and w ∈ R has
been investigated leading to the time-independent problem

−∆u+ (m2
0 − ω2)u− |u|p−2u = 0 (10)

See also [33]. Already with the familiar cubic-cubic case, numerical solutions have
been developed in [38] for the one-dimensional system i∂u∂t + 1

2
∂2u
∂x2 + (|u|2 + β|v|2)u = 0,

i∂v∂t + 1
2
∂2v
∂x2 + (β|u|2 + |v|2)v = 0,

u(x, 0) = u0(x) v(x, 0) = v0(x).

(11)

on R, where u and v stand for the wave amplitude considered in two polarizations.
The parameter β is related to phase modulation. u0 and v0 are fixed functions
assumed to be sufficiently regular.

Coupled NLS system has been analyzed for symmetries and exact solutions in
[23]. The problem studied is related to atmospheric gravity waves governed by the
following general coupled NLS system.{

iut + α1uxx + (σ1|u|2 + Γ1|v|2)u = 0,
ivt + iCvx + α2vxx + (Γ2|u|2 + σ2|v|2)v = 0.

(12)

It is noticed that such a problem may be transformed to the well known Boussinesq
equation.

In [2] novel effective approach for systems of coupled NLS equations has been
developed for the model problem{

iut + iux + uxx + u+ v + σ1f(u, v)u = 0,
ivt − ivx + vxx + u− v + σ2g(u, v)v = 0,

(13)

where f and g are smooth nonlinear real-valued functions depending on (|u|2, |v|2)
and σ1, σ2 are real parameters. In [29] the following nonlinear cubic-quintic and
coupling quintic system of NLS equations has been examined,{

ut +m1uxx = (α+ iβ)u+ f1|u|2u+ f2|u|4u+ f3|v|2u+ f4|u|2|v|2u,
vt +m2vxx = (γ + iδ)v + g1|v|2v + g2|v|4v + g3|u|2v + g4|u|2|v|2v,

(14)

where u and v describe the complex envelopes of an electric field in a co-moving
frame. α and γ are potentials. β and δ are amplifications. The functions fj
and gj , j = 1, 2, 3, 4 describe the cubic, quintic and coupling quintic nonlinearities
coefficients, respectively. m1 and m2 stand for the dispersion parameters.
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In [22] existence of ground state solutions has been studied for the NLS system −i
∂
∂tψ1 = ∆ψ1 − v1(x)ψ1 + µ1|ψ1|2ψ1 + β|ψ2|2ψ1 + γψ2,

−i ∂∂tψ2 = ∆ψ2 − v2(x)ψ2 + µ2|ψ1|2ψ2 + β|ψ1|2ψ2 + γψ1,
ψj = ψj(x, t) ∈ C,

(15)

x ∈ R, t > 0, j = 1, 2.
In [30] a multi-nonlinearities coupled focusing NLS system has been studied for

existence of ground state solutions and global existence and finite-time blow-up
solutions. The authors considered precisely the coupled system iu̇j + ∆uj = −

m∑
k=1

ajk|uk|p−2uj ,

uj(0, .) = ψj

(16)

where uj : RN × R → C, j = 1, 2, . . . ,m and the ajk’s are positive real numbers
with ajk = akj .

In the present work, we focus on the nonlinear mixed super-linear cubic defocus-
ing model

f1(u, v) = g(u, v)u = (|u|p−1 + λ|v|2)u = f2(v, u), (17)

with λ > 0 and 1 < p 6= 3. We consider the evolutive nonlinear Schrödinger system
on R× (0,+∞), {

iut + σ1uxx + g(u, v)u = 0,
ivt + σ2vxx + g(v, u)v = 0.

(18)

Focuses will be on the steady state solutions according to their initial values. We
propose precisely to develop a classification of the steady state solutions of problem
(18) provided with the existence and uniqueness problems. We will consider specif-
ically the case where the two waves u and v have the same frequency or the same
pulsation ω. In this case, the steady state solution of problem (18) is any solution
of the form

W (x, t) = (eiωtu(x), eiωtv(x)),

ω > 0. Substituting W in problem (18), we immediately obtain a solution (u, v) of
the system {

σ1uxx − ωu+ g(u, v)u = 0,
σ2vxx − ωv + g(v, u)v = 0.

(19)

We will see that classifying the solutions of problem (19) depends strongly on the
positive/negative/null zones of the nonlinear function model

gω(x, y) = |x|p−1 + λy2 − ω, (x, y) ∈ R2

which in turns varies according to the parameters p, λ and ω. Denote

Γ1 =
{

(u, v) ∈ R2 ; |u|p−1 + λv2 − ω = 0
}
,

Γ2 =
{

(u, v) ∈ R2 ; |v|p−1 + λu2 − ω = 0
}
.

and
Λ =

{
(u, v) ∈ R2 ; gω(u, v) = gω(v, u)

}
.

It is noticeable that such curves are more and more smooth whenever the parameter
p increases. To illustrate this fact, we provided in Appendix 8.2 a brief overview
for some cases of Γ1, Γ2 and Λ. See Figures 1 and 2.

Note here that Λ does not depend in fact on ω, and that the problem is symmetric
in (u, v). However, if the two waves have different pulsations ω1 and ω2 we get a
non-symmetric problem and new difficulties appear.
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The paper is organized as follows. The next section is concerned with the de-
velopment of our main results on the classification, existence and uniqueness of a
coupled mixed cubic, superlinear sub-cubic Schrödinger system. Numerical simu-
lations are also developed to illustrate graphically the theoretical findings. Section
3 is concerned to the development of the special cases regarding the initial value.
Section 4 is devoted to some numerical simulations where a possible chaotic behav-
ior of some dynamical systems issued from the original system is described. Such
simulations make more deeper studies to be necessary for future directions to study
associated chaotic dynamical systems. Concluding and future directions are next
raised in section 5. Section 6 is devoted to some discussions of some special cases
issued from the present study such as the case w = 0 which corresponds also to the
asymptotic problem where t goes to infinity. We also discussed in a second part the
possible extensions of our results on the half-space and on the finite interval. Section
7 is the general conclusion of our work in which we raised possible extensions for
other forms of coupled systems similar to the one studied here and the p[possibility
to benefit from the calculus applied here. An appendix is developed in section 8
to illustrate the effects of the parameters of the problem on the classification of
the solutions. We notice that the problem may be completely changing according
to these parameters regarding the behavior of the solutions, existence of positive
solutions, sign-changing. In some cases such as p < 0 we may lose the Lipschitz
characteristic of the problem and thus any study will necessitate different and more
advanced techniques. For example, for some values of p and ω the region Λ∩ [−1, 1]
is not contained in Ω2∪Ω4∪Ω8∪Ω11 as in our case. The second appendix concerns
indeed the validity of Lipschitz theory in our case to guarantee the existence and
uniqueness of the solutions.

3. Main results. As it is noticed in the introduction, the behavior of the solutions
depends strongly on the parameters of the problem, especially those affecting the
sign of the function gω. It holds in fact that some of these parameters may be
relaxed to

σ1 = σ2 = λ = 1,

which simplifies the computations needed later. Indeed, denote

u(r) = ũ(
r√
σ1

) and v(r) = ṽ(
r√
σ2

).

The functions ũ and ṽ satisfy immediately the system

uxx − ωu+ g(u, v)u = 0, vxx − ωv + g(v, u)v = 0.

Moreover, consider the scaling modifications

u(r) = K1u(αr) and v(r) = K2v(βr)

where K1, K2, α and β are constants to be fixed. The functions u and v satisfy the
system {

uxx + (|u|p−1 + |v|2 − ω)u = 0,
vxx + (|v|p−1 + |u|2 − ω)v = 0.

(20)

The constants K1, K2, α and β satisfy

Kp−1
1 = σ1α

2, Kp−1
2 = σ2β

2, λK2
1 = σ2β

2, λK2
2 = σ1α

2 (21)
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which in turns yields that

α = exp
( (p− 1)Bλ(σ1, σ2)− 2Aλ(σ1, σ2)

(p− 3)(p+ 1)

)
,

β = exp
(2Bλ(σ1, σ2)− (p− 1)Aλ(σ1, σ2)

(p− 3)(p+ 1)

)
and

K1 =

√
σ2β

2

λ
and K2 =

√
σ1α

2

λ
where

Aλ(σ1, σ2) =
1

1− p
log σ1 +

1

2
log σ2 −

1

2
log λ

and

Bλ(σ1, σ2) = −1

2
log σ1 +

1

p− 1
log σ2 −

1

2
log λ.

Given these facts, we will consider in the rest of the paper the problem (20) with
the initial conditions

u(0) = a , v(0) = b , u′(0) = v′(0) = 0, (22)

where a, b ∈ R. Denote also ωs = ω
1

s−1 , for s ∈ R, s 6= 1. Figure 1 illustrates the
partition of the plane R2 according to the curves Γ1 and Γ2. Figure 2 illustrates
the partition of the plane R2 according to all the curves Γ1, Γ2 and Λ.

Figure 1. Partition of the plane R2 according to the curves Γ1

and Γ2 for p = 1.5 and ω = 2.
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Figure 2. Partition of the plane R2 according to Γ1, Γ2 and Λ for
p = 1.5 and ω = 2.

We now start developing our main results. For this aim, we assume in the rest
of the paper that

ω ≥ 1 and 1 < p < 3. (23)

It is straightforward that ωp > ω3. Moreover, the closed curves Γ1 and Γ2 intersect
at four points B, D, F and H as it is shown in Figure 1. Notice also that the curves
Γ1 and Γ2 split the plane (u, v) into twelve regions, Ωi, i = 1, 2, ..., 12 and an external

region Ωext =
⋃

1≤i≤4

Ωext,i. Such regions are in the heart of the classification of the

solutions of problem (20)-(22). Notice also from the symmetry of the function gω
that the points B and F satisfy the Cartesian equation u = v and the points D and
H satisfy u = −v. Furthermore the polygon BDFH is a square. We may notice
that the coordinates of the main points are A(0, ωp), I(0, ω3), B(uB , uB) where uB
is the unique positive root of up−1 + u2 − ω = 0. The points C, D, E, F , G, H, J ,
K and L may be deduced from A, B and I by symmetries.

The symmetry also shows easily that whenever (u, v) is a pair of solutions of
the system (20), the pairs (−u, v), (u,−v) and (−u,−v) are also solutions. Conse-
quently, in the rest of the paper we will focus only on the case where u(0) = a ≥ 0
and v(0) = b ≥ 0. The remaining cases may be deduced by symmetry. As the
function f(u, v) is locally Lipschitz continuous, the existence and uniqueness of the
solution are guaranteed by means of the famous Cauchy-Lipschitz theory. This will
be proved in the Appendix later.

Theorem 3.1. Whenever the initial data (u(0), v(0)) = (a, b) ∈ Ω1, the problem
(20)-(22) has a unique (u, v) satisfying

i.: u and v are oscillating,
ii.: u is infinitely sign-changing and v is positive,
iii.: (u, v) lies in Ω1 ∪ Ω12 ∪ Ωext,1 ∪ Ωext,4.
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Proof. Writing problem (20) at x = 0 yields that

u′′(0) = −gω(a, b)a < 0 and v′′(0) = −gω(b, a)b > 0.

Hence, there exists δ > 0 small enough such that

u′′(x) < 0 and v′′(x) > 0, ∀x ∈ (0, δ).

Consequently, u′ is nonincreasing on (0, δ) and v′ is nondecreasing on (0, δ). Next,
as u′(0) = v′(0) = 0, it therefore follows that u is nonincreasing on (0, δ) and that v
is nondecreasing on the same small interval. We claim that u and v do not remain
with the same monotony on the (0,∞) as at the origin. Indeed, assume for example
that v remains nondecreasing on (0,∞). Then, it has a limit lv as x goes to infinity.
Because of the energy functional E associated to problem (20) and defined by

E(u, v)(x) =
1

2
(u2x + v2x) +

1

p+ 1
(|u|p+1 + |v|p+1) +

1

2
u2v2 − ω

2
(u2 + v2)

and which is constant as a function of x, the limit lv is finite and positive. Conse-
quently, u2 has also a limit Lu at infinity such that lp−1v + Lu − ω = 0. Moreover,
|u| goes to lu =

√
Lu. Henceforth,

E(u, v)(x) = E(u, v)(0) = E(u, v)(∞).

Assume now that lu = 0. In this case, the solution (u, v) lies in the region Ω1

with its limit being equals to the point A and such that u is nonincreasing and v is
nondecreasing on the whole interval (0,∞). We get

E(u, v)(∞) =
1

p+ 1
lp+1
v − ω

2
l2v =

1

p+ 1
ωp+1
p − ω

2
ω2
p.

On the other hand

E(u, v)(0) =
1

p+ 1
(ap+1 + bp+1) +

1

2
a2b2 − ω

2
(a2 + b2).

So, consider for b fixed the function

fb(t) =
1

p+ 1
(tp+1 + bp+1) +

1

2
t2b2 − ω

2
(t2 + b2).

We immediately get
f ′b(t) = t(tp + b2 − ω) > 0

as [0, a]× {b} ⊂ Ω1. Consequently,

fb(a) = E(u, v)(0) > fb(0) =
1

p+ 1
bp+1 − ω

2
b2.

Now consider the function

fp(s) =
1

p+ 1
sp+1 − ω

2
s2.

On the interval (b, ωp) it is a nondecreasing function. As a result,

fp(ωp) = E(u, v)(∞) < fp(b) =
1

p+ 1
bp+1 − ω

2
b2.

We get a contradiction with the fact that E(u, v)(x) is constant. As a result, lu 6= 0.
We conclude that

gω(lu, lv) = gω(lv, lu) = 0.

This yields that (lu, lv) ∈ {B,D,F,H} which is contradictory with the eventual
monotony assumed for (u, v). We thus conclude that u and v do not remain with
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the same monotony as in the origin on the whole domain (0,∞). Let r1 and r2 be
the first critical points of u and v respectively. Without loss of the generality we
may suppose that r1 ≤ r2. Denote next Mi = (u, v)(ri), i = 1, 2. We claim that
M(r1) ∈ Ω12 ∪Ωext,4. Indeed, assume by the contrary that the turning point M1 /∈
Ω12 ∪ Ωext,4. Relatively to the position of the initial point M0 = (u, v)(0) = (a, b)
there are many cases for M1.

Case 1. M1 ∈ Ω1. Multiplying the first equation in (20) by v and integrating on
(0, r1) we get ∫ r1

0

(
gω(u, v)uv − u′v′

)
dx = 0

which is contradictory.

Case 2. b ≤ ω3 and M1 ∈ Ω2 : In this situation we notice firstly that v(r1) ≥ yB .
Let t0 > 0 be the first point in which the curve (u, v) crosses the curve (B, I). We
immediately obtain

u′(t0)v(t0)− u(t0)v′(t0) =

∫ t0

0

(gω(v, u)− gω(u, v))uvdx.

This is a contradiction as the left-hand and the right-hand quantities have different
signs.

Remark 1. • One may prove that for (a, b) ∈ Ω1 there exists b̃ > 0 depending on

a, b, p, ω such that the solution (u, v) ∈ (xH , xB)× (yB , ωp + b̃). A good question is

to express b̃ by means of ω, p, a and b.

• For r1 and r2 defined above, is it true that
(
r1 ≤ r2 ⇐⇒ a ≤ b

)
?

Figures 3, 4, 5, 6 and 7 illustrate some cases of the theoretical result proved in
Theorem 3.1. In all these figures we fixed the parameters p = 1.5 and ω = 2. In
Figure 3 we fixed the initial values (a, b) = (0.25, 2.75). It yields that gω(a, b) =
13.3317 and gω(b, a) = −0.4587 which confirms that (a, b) ∈ Ω1. In Figure 4 the
initial values are fixed to (a, b) = (1, ω3 − 0.1) which gives gω(a, b) = 0.6938 and
gω(b, a) = −0.2830 which confirms here also that (a, b) ∈ Ω1. We notice clearly
from these figures the compatibility with the result in Theorem 3.1. Moreover
we provided in Figure 5 a sketching graph of both u and v starting inside of Ω1.
The oscillating behavior of both u and v is clearly illustrated. Furthermore, to
confirm again the oscillating behavior we provided in Figures 6 and 7 the phase
plane portraits of u and v respectively. The figures show clearly the oscillating
behavior.

The next result deals with the behavior of the solution when starting from an
initial data (a, b) ∈ Ω2. We will see that the result depends technically on the
position of the initial value in the four sub-regions Ω1

2, Ω2
2, Ω3

2, Ω4
2 shown in Figure

8. In fact we have

Ω1
2 = {(u, v) ∈ Ω2; u < v and Gω(a, b) > 0},

Ω2
2 = {(u, v) ∈ Ω2; u < v and Gω(a, b) < 0},

Ω3
2 = {(u, v) ∈ Ω2; u > v and Gω(a, b) < 0},

and

Ω4
2 = {(u, v) ∈ Ω2; u > v and Gω(a, b) > 0},
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Figure 3. (u, v) for (a, b) = (0.25, 2.75) ∈ Ω1.

Figure 4. The solution (u, v) for (a, b) = (1, ω3 − 0.1) ∈ Ω1.

and where Gω(a, b) = gω(a, b)− gω(a, b). The region Ω1
2 will be the union

Ω2 =
⋃

1≤i≤4

Ωi2 ∪ ΓP1P2
∪ ΓP2P3

∪ [O,P2] ∪ [P2, B],

where ΓP1P2
is the curve joining the points P1 and P2 including them, ΓP2P3

is the
curve joining the points P2 and P3 including them. [O,P2] is the closed segment
joining the point O to P2 and finally [P2, B] is the closed segment joining the point
P2 to B. In the sequel we will also use the following sets.
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Figure 5. The solutions u and v separately for (a, b) =
(0.25, 2.75) ∈ Ω1.

Figure 6. The phase plane portrait (u′, u) for (a, b) =
(0.25, 2.75) ∈ Ω1.

•
◦
ΓP1P2

to designate the curve ΓP1P2
without the extremities P1 and P2.

•
◦
ΓP2P3 is the curve ΓP2P3 without the extremities P2 and P3.

• ]O,P2[ is the open segment joining the point O to P2.
• ]P2, B[ is the open segment joining the point P2 to B.
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Figure 7. The phase plane portrait (v′, v) for (a, b) =
(0.25, 2.75) ∈ Ω1.

Figure 8. The partition of Ω2 according to the curve Λ.

Theorem 3.2. Whenever the initial data (u(0), v(0)) = (a, b) ∈ Ω2, the problem
(20)-(22) has a unique solution (u, v) where u and v are oscillating and may be both
infinitely sign-changing.

Proof. We will develop the proof for the case (u(0), v(0)) = (a, b) ∈ Ω1
2. The

remaining cases may be checked by similar techniques with necessary modifications
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and by using the invariance of the domain Ω2 and problem (20) relatively to the
axial symmetry u = v.

Whenever (u(0), v(0)) = (a, b) ∈ Ω1
2 we may check by similar techniques as in

the proof of Theorem 3.1 that

• u and v are nondecreasing on (0, δ) for some δ > 0 small enough.
• u and v are oscillating on the whole interval (0,∞).

So, let as previously r1 and r2 be the first positive critical points of u and v,
respectively and assume without loss of the generality that r1 ≤ r2. We claim that
M1 = (u(r1), v(r1)) ∈ Ω1 ∪ Ωext,1. Indeed, assume that it is not true.

Case 1. Assume that M0 ∈ Ω1
2. By multiplying the first equation in problem (20)

by v and integrating on (0, r1) we obtain∫ r1

0

(gω(u, v)− u′v′)dx = 0

which is contradictory.

Case 2. M1 ∈ Ω4
2. Let M1 = (u(x1), v(x1)), x1 < r1 be the point where the curve

(u, v) intersects [P2, B]. On [x1, r1] we get

v′(r1)u(r1) + u′(x1)v(x1)− v′(x1)u(x1) =

∫ r1

x1

Gω(u, v)uvdx

which is impossible as the left and the right terms have opposite signs.

Case 3. M1 ∈ Ω3. Let x2 be such that (u(x2), v(x2)) is the intersection point of the
curve (u, v) with the curved line (B, J). Integrating the first equation in problem
(20) multiplied by v on the interval (x2, r1) we get a contradiction as in case 1.

As a consequence of these cases we conclude that the point M1 ∈ Ω1 and thus
the solution (u, v) crosses at the curved line (I,B). Now, Theorem 3.1 yields the
behavior of the solution.

Now similarly to the previous case we provide in Figures 9, 10 and 11 some
graphical illustrations of the theoretical result proved in Theorem 3.2. We fixed
here also for all these graphs p = 1.5 and ω = 2 as previously to be adequate with
the previous case. The Figures show clearly the oscillating behavior of the solutions
and show further the compatibility with the result in Theorem 3.2.

Theorem 3.3. Whenever the initial data (u(0), v(0)) = (a, b) ∈ Ωext,1, the problem
(20)-(22) has a unique solution (u, v) where

i.: u and v are oscillating and may be both infinitely sign-changing.
ii.: The first turning point of (u, v) belongs to Ωext,3 ∪ Ωext,4.

Proof. It is easy to see that u and v are nonincreasing at the origin. Assume that
they remain with the same monotony on the whole domain (0,∞). They will have
therefore finite limits lu and lv respectively. We claim that lulv 6= 0. Indeed, assume
in the contrary that lulv = 0.

Case 1. lu = lv = 0. In this case, the pair of solution (u, v) behaves at infinity like
the solution of the problem

u′′ − ωu = 0, v′′ − ωv = 0

for which the energy E(u, v) satisfies at infinity

E(u, v)(x) =
|C1|p+1 + |C2|p+1

p+ 1
e−(p+1)ω0x +

C2
1C

2
2

2
e−4ω0x
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Figure 9. The solution (u, v) for (a, b) = (0.45, 0.95) ∈ Ω1
2.

Figure 10. The solution (u, v) for (a, b) = (0.5, 0.75) ∈ Ω1
2.
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Figure 11. The solution (u, v) for (a, b) = (0.4, 0.5) ∈ Ω1
2.

Figure 12. The solutions u an v separately for (a, b) =
(0.45, 0.5) ∈ Ω1

2.

where ω0 =
√
ω, which is contradictory.

Case 2. lu = 0, lv 6= 0. In this case, u behaves at infinity like the solution of the
problem

u′′ + (ω2
p − ω)u = 0

which is oscillatory. We get a contradiction.

Case 3. lu 6= 0, lv = 0 is similar to the previous one. We thus conclude from all
these cases that (u, v) behaves at infinity like the solution of the problem

u′′ + (|lu|p−1 + l2v)u = ωlu, v′′ + (|lv|p−1 + l2u)v = ωlv.



ONE-DIMENSIONAL NLS SYSTEM 2577

So, they are both oscillatory, which is also contradictory. We conclude that u and v
cannot remain with the same monotony on the whole interval (0,∞). Furthermore,
they cannot have finite limits simultaneously. It remains the possibility that u is
nonincreasiing with limit 0 and v is oscillating infinitely. In this case, u ∼ Ce−ω0x

at infinity which in turns yields from the first equation in problem (20) that v2 goes
to 0 at infinity, which is contradictory. So as Assertion i is proved. Assertion ii may
be proved by similar techniques as in the previous theorems.

In Figures 13 and 14 some numerical simulations are presented to illustrate the
result of Theorem 3.3.

Figure 13. The solution (u, v) for p = 2, ω = 2 and (a, b) =
(2.5, 4) ∈ Ωext,1.

Besides, Figures 15 and 16 illustrate clearly the oscillating behaviour of the so-
lution (u, v) whenever the initial values (a, b) ∈ Ωext,1.

4. Study of the special cases. In this section we will consider the problem (20)-
(22) when the initial value (a, b) lies on the frontiers of the region Ωi. An obvious
case is when (u, v)(0) = (a, b) ∈ {O,A,B,C,D,E, F,G,H, I, J,K,L}. In this case
the solution is always constant equals to its initial value (a, b) due to the Lipschitz
theory. As a consequence we will consider in the rest of this section the non trivial
cases. Here also because of the symmetries of the problem we will consider only the
case 0 ≤ a ≤ b.

4.1. Case 1: (a, b) ∈)A,B(. As usual u starts by decreasing on a small interval
(0, δ), for some δ > 0 small enough. Now at x = 0 we have

v′′(0) = v′(0) = −gω(b, a)b = 0.

Even though we claim that v can not remain constant on any interval (0, δ), δ > 0.
Indeed, if this occurs on some interval (0, δ), we get immediately

v(x) = b and u2(x) = ω − bp−1 , ∀x ∈ (0, δ).
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Figure 14. The solution (u, v) for p = 2, ω = 2 and (a, b) =
(1, 6.5) ∈ Ωext,1.

Figure 15. The solutions u and v separately for p = 2, ω = 2 and
(a, b) = (0.5, 5) ∈ Ωext,1.

So, |u| is also constant (≡ a) on (0, δ). Therefore, we get

u′′ + gω(a, b)u = 0 on (0, δ).

This means that
u(x) = K1 cos(ρx+ ρ) ; x ∈ (0, δ),

which contradicts the fact that |u| is constant, except if K1 = 0. However, in this
case we again get a = 0, which is contradictory. So as the claim. Consequently, two
situations may occur. (i) the pair solution (u, v) remains on the edge )A,B( and
being non constant. (ii) the pair solution (u, v) bifurcates toward Ω1. Whenever
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Figure 16. The solution u and v separately for p = 2, ω = 2 and
(a, b) = (3.5, 4) ∈ Ωext,1.

the situation (i) occurs we immediately conclude that v is constant, which is a
contradictory with the previous claim. Consequently, the situation (ii) occurs only.
Next, as in the previous cases, u cannot remain nonincreasing on (0,∞). So, let
r0 > 0 be the first positive critical point of u. That is, u′(r0) = 0 and u′(x) < 0 for
all x such that 0 < x < r0. By applying similar techniques as previously we deduce
that the turning point M0 = (u(r0), v(r0)) ∈ Ω12 ∪ Ωext,4 and thus the solution
(u, v) joins the class described in Theorem 3.1 and the symmetric behavior of the
one described in Theorem 3.3 relatively to the y-axis.

Figures 17, 18, 19 and 20 illustrate graphically the theoretical results above.
Notice here that the initial values a and b are related by gω(b, a) = 0 which is

equivalent to a =
√
ω − |b|p−1. We fixed here p = 1.5 and ω = 2.

4.2. Case 2: (a, b) ∈ {0} × (0,∞) \ {A, I}. In this section we assume that the
initial value (u, v)(0) = (0, b) ∈]0, ωp[\{ω3}. Using the well known Lipschitz theory
we immediately observe that u ≡ 0 and thus the problem (20)-(22) becomes v” + (|v|p−1 − w)v = 0 , x ∈ (0,∞)

v(0) = b , v′(0) = 0
(24)

where w3 < b < wp. Denote

g(v) = |v|p−1 − w, f(v) = g(v)v and F (v) =
1

p+ 1
|v|p+1 − w

2
v2.

Denote also

vp = (
w

p
)1/p−1 and ṽp = (

w(p+ 1)

2
)1/p−1.

Consider firstly the case where b ∈ (0, ωp) \ {ω3}. In this case, we have vp < wp <
ṽp. Notice that the function g is even and is nondecreasing on (0,∞). Moreover
g(ωp) = 0 and g is positive on (ωp,∞). Now, at the origin x = 0, v starts by
increasing. Whenever it continues with the same monotony on (0,∞) it has the
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Figure 17. The solution (u, v) for p = 1.5, ω = 2 and (a, b) =
(0.5, 3.0625) ∈)A,B(.

Figure 18. The solution (u, v) for p = 1.5, ω = 2 and (a, b) =
(0.9511, 1.2) ∈)A,B(.

unique finite limit lv = ωp > b. However in this case, v behaves at infinity as the
solution z of

z” + w(p− 1)(z − wp) = 0

which is oscillatory which in turns contradicts the its monotony. As a consequence
v is oscillatory on (0,∞) infinitely. Let ζ0 =< ζ1 < ζ2 < · · · < ζ2k < ζ2k+1 . . . ,
k ∈ N be the sequence of successive critical points of v such that ζ2k, k ∈ N are the
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Figure 19. The solutions u and v separately for p = 1.5, ω = 2
and (a, b) = (0.5, 3.0625) ∈)A,B(.

Figure 20. The solutions u and v separately for p = 1.5, ω = 2
and (a, b) = (0.9511, 1.2) ∈)A,B(.

maximums and ζ2k+1, k ∈ N are the minimums. We claim that

v(ζ2k) < ωp < v(ζ2k+1)

Indeed, for k = 0 for example, we have

v(ζ0) = v(0) = b < ωp.

Whenever v(ζ1) < wp we get from (24)

0 =

∫ ζ1

ζ0

v”dx = −
∫ ζ1

ζ0

f(v)dx > 0

which is contradictory. Similarly for the rest (By recurrence on k). As a result we
proved the following result.
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Theorem 4.1. For all b ∈] − ωp, ωp[\{0} the problem (24) has a unique solution
which is oscillatory around ±ωp infinitely. Furthermore, there exists (ξk)k and
(ζk)k satisfying v(ξk) = −ωp for all k) or (v(ξk) = ωp for all k), v′(ζk) = 0 and the
alternance

0 = ζ0 < ξ1 < ζ1 < ξ2 < ... < ζ2k < ξ2k+1 < ζ2k+1 < ξ2k+2 < ... ↑ +∞. (25)

Consider now the case where b > ωp. As in the previous cases, the solution v is
not monotone on its whole domain (0,∞). Indeed, v is nonincreasing at the origin.
If it continues with the same monotony it has two possible limits at infinity, lv = 0
or lv = ±ωp. Consider the energy functional associated

E(v)(x) =
1

2
v′(x)2 + F (v)(x)

which is obviously constant as a function of x. So, whenever lv = 0 and b 6= ṽp we
obtain

0 = E(v)(∞) 6= E(v)(0) = F (b)

which is contradictory. Now, whenever lv = 0 and b = ṽp we obtain E(v)(x) = 0

for all x. Consequently, v′(x) = −
√
−2F (v)(x) for all x. Integrating on (0,∞) we

get ∫ ∞
0

√
−2F (v)(x)dx = 0

which is impossible. Now, if the limit is ±ωp the solution v behaves at infinity as
the solution z of the problem

z′′ + ω(p− 1)(z ∓ ωp) = 0

which is oscillating. So, we get a contradiction also. We thus conclude that v cannot
be monotone on (0,∞). Let next x0 be the first critical point of v. We claim that
0 < v(x0) < ωp. If not, we have one of the following cases.

i.: v(x0) ≥ ωp.
ii.: v(x0) = 0.
iii.: −ṽp ≤ v(x0) < 0.
iv.: v(x0) < −ṽp.
In the case (i.) we obtain

0 =

∫ x0

0

v”dx = −
∫ x1

0

f(v)dx < 0

which is contradictory.
In the case (ii.) we obtain for η/0 small enough

vp − ω

2
v < 0, x ∈ (x0 − η, x0 + η)

which leads to a contradiction.
For the case (iii.) let ζ0 > 0 be the zero of v on (0, x0). We obtain in one hand

E(v)(ζ0) =
1

2
v′(ζ0)2 > 0. On the other hand, E(v)(x0) = F (v(x0)) < 0. This is

contradictory as the energy E(v) is constant.
For the case (iv.) let ζ1 ∈ (0, x0) be such that v(ζ1) = −ṽp. It holds immediately

that F (v(x)) > 0 on (ζ1, x0). Now observing that v′(x)2 = −2F (v(x)) on (ζ1, x0)
we get here also a contradiction.

From all these cases we conclude that 0 < v(x0) < ωp. Applying next the same
techniques we obtain the following result.
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Theorem 4.2. For all b ∈]ωp,∞[ the problem (24) has a unique solution which is
oscillatory around ωp infinitely. Furthermore, there exists (ξk)k and (ζk)k satisfying
v(ξk) = ωp for all k, v′(ζk) = 0 and the alternance

0 = ζ0 < ξ1 < ζ1 < ξ2 < ... < ζ2k < ξ2k+1 < ζ2k+1 < ξ2k+2 < ... ↑ +∞. (26)

4.3. Case 3: (a, b) ∈)I,B(. This section is resembles somehow to the one where
the initial value (a, b) belongs to the curved arc )A,B( as the problem is symmetric
in (u, v). In fact we observe that Γ1 and Γ2 are symmetric by means of the axial
symmetry x = y. Moreover the curve Λ is invariant via the same symmetry. This
permits to deduce the result in the present case easily.

Figures 21, 22 and 23 illustrate graphically the behavior of the solution for (a, b) ∈
)I,B(. Recall that in this case the initial values a and b are related by gω(a, b) = 0

which is equivalent to b =
√
ω − |a|p−1. We fixed as usual p = 1.5 and ω = 2.

Figure 21. The solution (u, v) for p = 1.5, ω = 2 and (a, b) =
(0.1, 1.2976) ∈)I,B(.

4.4. Case 4: a = b ∈ (0,∞). In this section we propose to study the case where the
functions u and v start from the same origin point u(0) = v(0). It is straightforward
that u ≡ v on the whole domain (0,∞). Consequently we obtain the single problem uxx + (|u|p−1 + |u|2 − ω)u = 0 , x ∈ (0,∞),

u(0) = a , u′(0) = 0.
(27)

The situation here is similar to subsection 4.2. Indeed, denote

g(u) = |u|p−1 + u2 − w, f(u) = g(u)u and F (u) =
1

p+ 1
|u|p+1 +

u4

4
− w

2
u2.

Denote also up,ω, up,ω and up,ω the positive unique zeros of g, f ′ and F respectively.
In other words, up,ω is the unique positive real number such that

|up,ω|p−1 + u2p,ω − w = 0.
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Figure 22. The solution (u, v) for p = 1.5, ω = 2 and (a, b) =
(0.5, 1.1371) ∈)I,B(.

Figure 23. The solutions u and v separately for (a, b) =
(0.1, 1.2976) ∈)I,B(.

Similarly, up,ω is the unique positive real number satisfying

p|up,ω|p−1 + 3u2p,ω − w = 0.

Finally, up,ω is the unique positive real number for which

2

p+ 1
|up,ω|p−1 +

1

2
u2p,ω − w = 0.

We may check easily that

up,ω < up,ω < up,ω.
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Consequently, by applying similar arguments as in subsection 4.2 we get the follow-
ing results.

Theorem 4.3. For all a ∈]−up,ω, up,ω[\{0} the problem (27) has a unique solution
which is oscillatory around ±up,ω infinitely. Furthermore, there exists (ξk)k and
(ζk)k satisfying v(ξk) = −up,ω for all k) or (v(ξk) = up,ω for all k), v′(ζk) = 0 and
the alternance

0 = ζ0 < ξ1 < ζ1 < ξ2 < ... < ζ2k < ξ2k+1 < ζ2k+1 < ξ2k+2 < ... ↑ +∞. (28)

Theorem 4.4. For all a ∈]up,ω,∞[ the problem (27) has a unique solution which
is oscillatory around up,ω infinitely. Furthermore, there exists (ξk)k and (ζk)k sat-
isfying v(ξk) = up,ω for all k, v′(ζk) = 0 and the alternance

0 = ζ0 < ξ1 < ζ1 < ξ2 < ... < ζ2k < ξ2k+1 < ζ2k+1 < ξ2k+2 < ... ↑ +∞. (29)

5. Some possible chaotic behavior. We provide in the present section some
numerical simulations where an eventual chaotic behaviour of the solution is clearly
recorded. Figure 24 concerns the dynamical system

xn+1 = 2xn − xn−1 − 0.01(
√
|xn|+ y2n − 2)xn,

yn+1 = 2yn − yn−1 − 0.01(
√
|yn|+ x2n − 2)yn,

x0 = 0.2, y0 = 0.4, x1 = 0.2014, y1 = 0.4027.

(30)

Figure 24. The chaotic behavior for p = 1.5, w = 2 and (a, b) = (0.2, 0.4).

Figure 25 is simulated for the dynamical system
xn+1 = 2xn − xn−1 − 0.01(

√
|xn|+ y2n − 2)xn,

yn+1 = 2yn − yn−1 − 0.01(
√
|yn|+ x2n − 2)yn,

x0 = 2, y0 = 4, x1 = 1.8459, y1 = 3.9200.

(31)

For Figure 26 we considered the dynamical system xn+1 = 2xn − xn−1 − 0.01(|xn|
√
|xn|+ y2n − 3)xn,

yn+1 = 2yn − yn−1 − 0.01(|yn|
√
|yn|+ x2n − 3)yn,

x0 = 0.2, y0 = 0.14, x1 = 0.2029, y1 = 0.1420.

(32)



2586 RIADH CHTEOUI, ABDULRAHMAN F. ALJOHANI AND ANOUAR BEN MABROUK

Figure 25. The chaotic behavior for p = 1.5, w = 2 and (a, b) = (2, 4).

Figure 26. The chaotic behavior for p = 2.5, w = 3 and (a, b) = (0.2, 0.14).

For Figure 27 we considered the dynamical system
xn+1 = 2xn − xn−1 − 0.01(|xn|

√
|xn|+ y2n − 2)xn,

yn+1 = 2yn − yn−1 − 0.01(|yn|
√
|yn|+ x2n − 2)yn,

x0 = 2, y0 = 4, x1 = 1.8317, y1 = 3.8000.

(33)

6. Further discussions.

6.1. Steady state solution with w = 0. In investigating NLS equation as well
as system, steady state solutions constituted a large set of studies. These solutions
may be obtained as waves propagating with some positive frequency as dealt in the
previous sections. Another way to obtain a different class of steady state solutions
is to let the time t approximate ∞ which is also equivalent to relax the frequency
to w = 0. In this case the problem (20)-(22) becomes uxx + (|u|p−1 + |v|2)u = 0,

vxx + (|v|p−1 + |u|2)v = 0,
u(0) = a , v(0) = b , u′(0) = v′(0) = 0,

(34)
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Figure 27. The chaotic behavior for p = 2.5, w = 2 and (a, b) = (2, 4).

Notice here that the nonlinear function model is

g(u, v) = |u|p−1 + |v|2

which is a positive function. So, the case here resembles in some sense to the cases
where the initial value (a, b) ∈ Ωext investigated in the previous sections. Indeed,
the curves Γ1 and Γ2 are reduced to

Γ1 = Γ2 = {(0, 0)}

and thus the whole plane R2 will be splitted into regions according to Λ as in Figure
28. The energy functional associated to (34) is written as

Figure 28. The partition of the plane according to Γ1, Γ2 and Λ
for w = 0.

E(u, v)(x) =
1

2
(u2x + v2x) +

1

p+ 1
(|u|p+1 + |v|p+1) +

1

2
u2v2.
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As in the previous sections, this energy is constant and positive and satisfies pre-
cisely

E(u, v)(x) = E(u, v)(0) =
1

p+ 1
(ap+1 + bp+1) +

1

2
a2b2 > 0.

This guarantees that the solution (u, v) is bounded and oscillating infinitely without
limit. Table 1 and Figures 29, 30, 31 and 32 illustrate the behavior of the solution
(u, v) of problem (34) for some cases,

Corresponding Figure Figure 29 Figure 30 Figure 31 Figure 32
a 0.25 0.25 0.5 2.5
b 0.5538 0.35 1 3.5

Initial value region (a, b) ∈ Λ (a, b) ∈ R2 (a, b) ∈ R1 (a, b) ∈ R1

Table 1. Some illustrative cases of problem (34) for p = 1.5.

Figure 29. The solution (u, v) for p = 1.5, w = 0 and (a, b) =
(0.25, 0.5538) ∈ Λ.

Figure 30. The solution (u, v) for p = 1.5, w = 0 and (a, b) =
(0.25, 0.35) ∈ R2.

To illustrate more clearly this behavior, we provided in Figure 33 the phase plane
portrait (u′, u) for p = 1.5, w = 0 and (a, b) = (0.25, 0.5538) ∈ Λ corresponding to
Figure 29. Figure 34 illustrates the phase plane portrait (v′, v) for p = 1.5, w = 0
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Figure 31. The solution (u, v) for p = 1.5, w = 0 and (a, b) =
(0.5, 1) ∈ R1.

Figure 32. The solution (u, v) for p = 1.5, w = 0 and (a, b) =
(2.5, 3.5) ∈ R1.

and (a, b) = (0.25, 0.35) ∈ R2 corresponding to Figure 30. Figure 35 illustrates
the behaviors of u and v separately for p = 1.5, w = 0 and (a, b) = (0.5, 1) ∈ R1

corresponding to Figure 31. We notice easily from all these figures the oscillating
behavior of the solution (u, v). Finally, Figure 36 represents the energy E(u, v)(x)
for w = 0 at the top and w = 2 at the bottom. We notice easily that the energy is
constant as a function of x, which is already confirmed theoretically.

6.2. Steady state solutions on the half-space and the interval. Remark that
in our study for reasons of symmetry (parity properties of the nonlinear part) prob-
lems (18) and (19) or the simplified form (20) are invariant under the transformation
u(x)→ u(−x). This is also applicable for the last special case (34). Notice that all
these problems are also autonomous (relatively to the space variable x). All these
reasons make it possible to extend the results on all the real line.

However, on a finite interval such that [0, 1] this needs a deep study as we notice
clearly that the constants σ1, σ2 and λ could not be relaxed simultaneously as in the
present case. This will allow to loss many symmetry characteristics of the problem,
the subdivision of the plane R2 into regions according to Γ1, Γ2 and Λ. This will
induce careful modifications in the study. Nonetheless, we may adapt the techniques
developed here to a finite interval such as (0, 1) in a special case where the first zeros
of u and v coincide, but for a slightly modified (by scaling laws) problem. Indeed,
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Figure 33. The portrait (u′, u) for p = 1.5, w = 0 and (a, b) =
(0.25, 0.5538) ∈ Λ.

Figure 34. The portrait (v′, v) for p = 1.5, w = 0 and (a, b) =
(0.25, 0.35) ∈ R2.

Figure 35. The solutions u (in blue) and v (in pink) for p = 1.5,
w = 0 and (a, b) = (0.5, 1) ∈ R1.

denote x0 the first common zero for u and v and consider the scaling versions

ũ(x) = u(
x

x0
) and ṽ(x) = v(

x

x0
).
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Figure 36. The energy E(u, v)(x) for p = 1.5, (a, b) = (0.15, 25) ∈
R2, w = 0 at the top and w = 2 at the bottom.

The pair (ũ, ṽ) satisfies the re-scaled version of problem (19) on (0, 1) as follows ũxx + x20(|ũ|p−1 + |ṽ|2 − w)ũ = 0,
ṽxx + x20(|ṽ|p−1 + |ũ|2 − w)ṽ = 0,
ũ(1) = ṽ(1) = 0.

(35)

This means that relaxing all the parameters simultaneously as in the case of the
whole line such as the case investigated in our present work could not be applied.
Many ideas have been investigated especially in the single case of NLS equation
such as the so-called shooting parameter method and also the well-known Emden-
Fowler transformation. These are motivating ideas to re-consider the extension of
the present study on finite intervals.

The shooting parameter method consists in fixing the value of the solution at
the last extremity of the interval (for example x = 1 when considering the interval
(0, 1]) and studying its behavior at the origin. The Emden-Fowler approach consists
in transforming the problem on (0,∞) to the interval (0, 1) and vice-versa, and next
deducing the behavior of the solution of the original problem from the one of the
transformed version. See for instance [3, 12, 6, 7, 9, 28, 31].

7. Conclusion. In the present work, 1D problem of coupled NLS equations has
been investigated for the classification of the steady state solutions in the presence
of mixed nonlinearities, a first odd cubic term added with a second odd superlinear
subcubic one. Classification of the solutions as well as existence and uniqueness of
the steady state solutions have been investigated. Numerical simulations have been
provided illustrating graphically the behavior of the solutions such as oscillating
and phase plane portraits.

Inspired from the present work, some analogue studies may be of interest such as
the radial problem in higher dimensional cases where for the example no conservative
energy could occur.

We may also consider cases where assumption (23) does not hold. For example,
for p < 0 the Lipschitz characteristic of the problem is not satisfied which necessi-
tates different and more advanced techniques for the study. For some values of p
and ω the region Λ ∩ [−1, 1] is not contained in Ω2 ∪ Ω4 ∪ Ω8 ∪ Ω11 which induces
more and more difficulties and different behaviors for the solutions.

Moreover, we may be interested in coupled problems such as
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• The Heat operator

Li(u(x, t)) = Hi(u(x, t)) = ut − σi∆u

leading to a nonlinear Heat system.
• The mixed Schrödinger-Heat operator

L(u(, v)) = (L1(u),L2(v)) = (S(u),H(v))

leading to a nonlinear coupled system of Schrödinger-Heat type.

Finally, as discussed above, considering similar study on finite interval is also of
great interest. A forthcoming study in the case of higher dimensional space RN ,
N ≥ 2 is at the mid of being achieved.

8. Appendix.

8.1. Appendix A. Recall that in the previous sections, we applied for many times
the well-known Cauchy Lipschitz theorem on the existence and uniqueness of solu-
tions. In this section and for convenience, we will show that the generator function
used is already locally Lipschitz continuous.

Denote ϕ = u′ and ψ = v′. The system (20)-(22) becomes
u′ = ϕ,
ϕ′ = −(|u|p−1 + |v|2 − ω)u,
v′ = ψ,
ψ′ = −(|v|p−1 + |u|2 − ω)v,
u(0) = a, v(0) = b, ϕ(0) = 0, ψ(0) = 0.

(36)

Denoting X = (u, v, ϕ, ψ)T , where T stands for the transpose, we get

X ′ = F (X), X(0) = (a, b, 0, 0)T ,

where F is the function defined by

F (x1, x2, x3, x4) = (x2,−gω(x1, x3)x1, x4,−gω(x3, x1)x3), (x1, x2, x3, x4) ∈ R4.

Lemma 8.1. F is locally Lipschitz continuous on R4.

Proof. Let δ > 0 be small enough and X0 = (x01, x
0
2, x

0
3, x

0
4) ∈ R4 be fixed. For all

X,Y in the ball B(X0, δ) we have

‖F (X)− F (Y )‖22 = (x2 − y2)2 + (x4 − y4)2

+(g(x1, x3)x1 − g(y1, y3)y1)2

+(g(x3, x1)x3 − g(y3, y1)y3)2.

We shall now evaluate the quantity (g(x1, x3)x1 − g(y1, y3)y1)2. Similar techniques
will lead to (g(x3, x1)x3 − g(y3, y1)y3)2. We have

|g(x1, x3)x1 − g(y1, y3)y1)|
= ||x1|p−1x1 − |y1|p−1y1 + λ(|x3|2x1 − |y3|2y1)|
≤ ||x1|p−1x1 − |y1|p−1y1|+ λ||x3|2x1 − |y3|2y1|
≤ C1(p,X0, δ)|x1 − y1|+ λ

[
||x3|2 − |y3|2||x1|+ |x1 − y1||y3|2

]
≤ C1(p,X0, δ)|x1 − y1|+ λC2(X0, δ) [||x3 − y3|+ |x1 − y1|]
≤ C1(p,X0, δ)|x1 − y1|+ λC2(X0, δ) [||x3 − y3|+ |x1 − y1|]
≤ C(p,X0, δ, λ) [||x3 − y3|+ |x1 − y1|] ,
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where C1(p,X0, δ) > 0 is a constant depending only on p, X0 and δ. C2(X0, δ) > 0
is a constant depending only on X0 and δ. C(p,X0, δ, λ) > 0 is a constant depending
only on p, X0, δ and λ. Therefore,

|g(x1, x3)x1 − g(y1, y3)y1)|2 ≤ C(p,X0, δ, λ)2 [||x3 − y3|+ |x1 − y1|]2

≤ 2C(p,X0, δ, λ)2
[
||x3 − y3|2 + |x1 − y1|2

]
.

Similarly,

|g(x3, x1)x3 − g(y3, y1)y3)|2 ≤ 2C̃(p,X0, δ, λ)2
[
||x3 − y3|2 + |x1 − y1|2

]
,

with some constant C̃(p,X0, δ, λ) > 0 analogue to C(p,X0, δ, λ). Combining all
these inequalities, we obtain

‖F (X)− F (Y )‖22 ≤ C(p,X0, δ, λ)‖X − Y ‖22, ∀X,Y ∈ B(X0, δ).

8.2. Appendix B. In this part, we investigate the dependence of the different
regions Ωi, i = 1, . . . , 12, Ωext,i, i = 1, . . . , 4 and the different curves Γ1, Γ2 and Λ
on the parameters p and ω. So denote Λ∗ = Λ \ {(u, v) ∈ R2; |u| 6= |v|}. Denote

also Ωint =

12⋃
i=1

Ωi and Ap the interior area countered by the curve Λ∗.

Lemma 8.2. The area Ap ⊂ [−1, 1]2.

Indeed, denote for (u, v) ∈ Ap

u = r cos θ, v = r sin θ.

It is straightforward that r is maximum whenever (u, v) is on the frontier Λ∗p, which
may be then governed by the polar equation

rp−3
(
| cos θ|p−1 − | sin θ|p−1

)
= cos(2θ).

Otherwise,

rp−3 =
cos(2θ)

| cos θ|p−1 − | sin θ|p−1
.

Straightforward calculus yield that whenever 0 < p < 3, the radius r is extremum
for θ ∈ {0,±π2 , π}, which gives the vertices (±1, 0), (0,±1). In fact r(θ) may be

extended at θ = {±π4 ,±
3π
4 }. However, these points yield immediately |u| = |v|,

which is the trivial (unbounded) part of Λ.
As a result of Lemma 8.2, we immediately deduce that whenever 0 < ω ≤ 1 and

1 < p < 3 the inclusion Ωint ⊂ Ap. However, for ω ≥ 1 and 1 < p < 3, the area Ap
is contained in the curved octagonal shape IBJDKFLH.
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Figure 37. Parameters’ domains for p = 1.5, ω = 0.5

Figure 38. Parameters’ domains for p = 3.5, ω = 0.5
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