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ABSTRACT. In this paper, the initial-boundary value problem for a fourth-order
plate equation with Hardy-Hénon potential and polynomial nonlinearity is in-
vsitgated. First, we establish the local well-posedness of solutions by means of
the semigroup theory. Then by using ordinary differential inequalities, poten-
tial well theory and energy estimate, we study the conditions on global exis-
tence and finite time blow-up. Moreover, the lifespan (i.e., the upper bound of
the blow-up time) of the finite time blow-up solution is estimated.

1. Introduction and main results. In this paper, we consider the following plate
equation with Hardy-Hénon potential and polynomial nonlinearity:

Uy + A%u+u=olz| " xu+ [ulf % u, xeQ,t>0,
0

uzéﬁzo, x €00t >0, (1.1)
v

u(z,0) = ug(z), u(x,0) = ui(z), x € 9,

where 2 C R™ is a bounded domain with smooth boundary 92, v is the unit outer
normal to the boundary 99 at z, o € (—oo,n) and o € R are constants, and

< 00, n=1234,

4 .
SPY <242 n>s. (1.2)
n—4

The initial value (ug,u;) € HZ(2) x L*(Q). Here,

/ @~y u(y)dy, ifa £0,
Q

|z| 7% *u =
/u(y)dy, if a=0.

Q
Plate equations have been investigated for many years due to their importance
in some physical areas such as vibration and elasticity theories of solid mechanics.
For instance, in the case when o is identically zero, equation (1.1) becomes an
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equation with polynomial nonlinearity which arises in aeroelasticity modeling (see,
for example, [14, 15]), and the problem with (or without) damping, memory, time-
delay etc. were studied extensively (see [17, 21, 25, 26, 27, 33, 34, 37, 40, 55, 44]
and references therein for the topics on well-posedness, global existence, finite time
blow-up, global attractor etc.).

The potential term ||~ **w is known in the literature as Hardy potential if v > 0,
while if o < 0 it is known as Hénon potential. This type of potential is important in
analyzing many aspects of physical phenomena with singular poles (at origin). For
example, the Efimov states (the circumstances that the two-particle attraction is so
weak that any two bosons can not form a pair, but the three bosons can be stable
bound states): see e.g., [16]; effects on dipole-bound anions in polar molecules: see
e.g., [4, 7, 28]; capture of matter by black holes (via near-horizon limits): see e.g.,
[9, 19]; the motions of cold neutral atoms interacting with thin charged wires (falling
in the singularity or scattering): see e.g., [5, 12]; the renormalization group of limit
cycle in nonrelativistic quantum mechanics: see e.g., [6, 8]; and so on. The are a
lot of studies of evolution equations with this type of potentials, see, for example,
[1, 2, 3, 45, 32, 50] for parabolic equation, [11, 49, 52, 39] for wave equations,
and [24, 22, 23, 42, 47, 48, 53] for Schrodinger equation. However, as far as we
know, there seems little studies of fourth-order plate equation with Hardy-Hénon
potentials.

Motivated by the previous studies, in this paper, we will consider a fourth-order
plate equation with Hardy-Hénon potential and polynomial nonlinearity, i.e, prob-
lem (1.1). We mainly concern with the well-posedness, and the conditions on global
existence and finite time blow-up. To state the main results of this paper, we first
introduce some notations used in this paper:

o Let (X, ||x) and (Y,|| - |ly) be two Banach space such that X < Y contin-

uously. Then we denotes by C'x_,y the optimal constant of the embedding,
ie.,

Cx_y = sup o1y (1.3)

sex\{oy ¢llx
e The norm of the Lebesgue space LP(Q2), 1 < p < oo is denoted by | - ||,-
Especially, we denote || - ||2 by || - || for simplicity.
e The inner product of the Hilbert space L?(Q2) is denoted by (-, ).
e The norm of the Sobolev space HZ({) is denoted by || - ||z and
117> = [1AGI + [lg]I*.

Definition 1.1. Assume a € (—oo,n) and o € R. Let T > 0, ug € HZ(Q), and
uy € L*(Q). By a weak solution to problem (1.1), we mean a function

ue C([0,T]; H; () nC* ([0,T]; L*(2))
such that ©(0) = ug, u¢(0) = uy, and

¢ ¢
/u@dm—l—/Q/AquSdach—i—O/Q/uqﬁdxdT

Q 0

¢
://(a\x|’o‘*u+|u|p*2u) ¢dxd7—|—/u1¢dx
00

Q

(1.4)

holds for any ¢ € HZ(Q) and 0 < t < T.



FOURTH-ORDER PLATE EQUATION WITH HARDY-HENON POTENTIAL 601

The local-well posedness of solutions to problem (1.1) is the following theorem:

Theorem 1.2. Assume p satisfies (1.2), a« € (—oo,n) and o € R. Let (ug,u1) €
H2(Q) x L2(2). Then there exists a positive constant T depending only on ||ug|| = +
|lu1]| such that problem (1.1) admits a weak solution
ue C([0,T);H; () nC* ([0,T); L*(%)) .

The solution u can be extended to a mazimal weak solution in [0, Tmax) such that
either

1. Thax = 00, i.e., the problem admits a global weak solution; or

2. Thax < 00, and

i (a2 + Jue(O)]) = oo,

max

i.e., the solution blows up at a finite time Tyyax.
Furthermore, then energy E(t) is conservative, i.e.,

E(t) = E(0), 0 <t < Tmax, (1.5)
where 1
E(t) = 5 |[u]]” + J(w)(t), 0=t < Thax, (1.6)
and )
E(0) = E(t)]i=0 = §||U1||2 + J(uo). (1.7)
Moreover, we have (ug,u) € C0, Tipax), and
d
7w w) = |lwl® = I(w). (1.8)
Here J : H3(Q)) — R is a functional defined by
Lo Lot p_i//M
5@ = I8l + 5o = telg - 5 [ [ 49 aedy. 19
Q Q
and I : H2(Q2) — R is a functional defined by
o(x)o(y
16) = 180l + ol = ol = [ [ F2% sy (10)
Q Q

Based on Theorem 1.2, we study the conditions on global existence and finite time
blow-up. The first result is about the case that the initial energy is non-positive.

Theorem 1.3. Assume p satisfies (1.2), a € (—oo,n) and o € R. Let (up,u1) €
HZ(Q) x L*(Q) satisfy

1. E(0) <0; or

2. E(0) =0 and (ug,u1) > 0.
Then the weak solution got in Theorem 1.2 blows up in finite time, i.e., Tax < 00.
Moreover, Tyax satisfies the following estimates:

1. If |o| < o*, then

M7 if E(0) <0 and (ug,uy) > 0;
(p* 22(“07u1)

Tnax < [oll ;. if BE(0) <0 and (ug,u1) = 0;
(p—2)\/—2E(0)

T, if E(0) <0 and (ug,u1) <0,
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where

—4B(0) ol +2 (~(ug, w2) + /T, P — 2B g )

—2B(0)(p — 2)y/ (uo, ur)? — 2E(0) [luo
2. If |o| > o* and (ug,u1) > 0, then

A + 2)||uo|? ‘
8}9—2)(2'(')2'1)’ if E(0) <0 and (uo, 1) > 0;
Tmaxg 2

(A +2)|luoll
(p —2)v/—2E(0)

T:

. if E(0) <0 and (ug,u1) = 0.

Here,
A 2 2
o i lAgI? + [l )
H2(Q)\{0 —a
PN | [ o~y oaoly)dady
aJa
and
(lo] = o™ )R~ ||uo|[*~7, if a0 < 0;
= (p—2)2+p(2n—o/)—2n 9 ) (1.12)
K(lo| —o*)|Q 2 B luwol*7P, #0<a<mn,
where

o

. T("5%) [T\ "
R = sup $—y|,l‘i—ﬂ'2n2_a{ 2
z,yeQ F(QT) ['(n)
Remark 1. There are two remarks on the above theorem.

*

1. Firstly, by Lemma 2.2, if a € (=00, n), 0* is well-defined and

Re (cHg%l)_Q, a € (—0,0],

-2
1

= (C’Hgﬁmena) , ac(0,n),

where Cz_, 1 is the optimal constant of the embedding H2(Q) — LY(Q),
2n_ is the optimal constant of the embedding HZ(Q) — L7s Q).

H2—L7n-a
So Theorem 1.3 makes sense.

2. Secondly, for |o| > o* and (ug,u1) < 0. Due to technique reasons, we only
show the solution will blow up in finite time, but the upper bound of the
blow-up time T, is not given. We left the study of this problem as an open
question.

o>

Theorem 1.3 is above the case E(0) < 0. In order to derive some results for the
case E(0) > 0, we use the potential well method (see, for example, [10, 20, 35, 36,
41, 43, 51]). Let

d=inf{J(¢): ¢ € N}, (1.13)
where J is the functional defined by (1.9), and N is the Nehari manifold defined as
N ={¢p € Hy(2)\ {0} : I(¢) = 0}. (1.14)

Here I is the functional defined by (1.10).
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Remark 2. If we assume p satisfies (1.2), a € (—oo,n), and o € (—o*,0*), where
o™ is the positive constant defined by (1.11), by Lemma 2.4, d is a positive constant

and
p—2 lol\ 2 P2
d>2p(< ‘U*>CH3HLP :

where Cz_, 1» is the optimal constant of the embedding HE(Q) < LP(Q).

Theorem 1.4. (Global existence for 0 < E(0) < d). Assume p satisfies (1.2),
a € (—oo,n), and o € (—0*,0%), where o* is the positive constant defined by
(1.11). Let u be the weak solution got in Theorem 1.2 with (ug,u1) € HZ(Q)x L*(Q)
satisfying I(ug) > 0 and 0 < E(0) < d, where E(0),1,d are defined in (1.7),(1.10),
(1.13) respectively. Then u exists globally, i.e., Tyax = 00.

Theorem 1.5. (Blow-up for 0 < E(0) < d) Assume p satisfies (1.2), o € (—o0,n),
and o € (—o*,0%), where o* is the positive constant defined by (1.11). Let u be the
weak solution got in Theorem 1.2 with (ug,u1) € HE(Q) x L2(2) satisfying

1. E(0) < d,I(ug) <0; or

2. E(O) = d,I(UO) <0, (’LLO7U1) >0,
where E(0),I,d are defined in (1.7),(1.10), (1.13) respectively. Then u blows up in
finite time, i.e., Tinax < 00. Moreover, Thax satisfies the following estimates:

2wl . |
(p_Q)(ZfI(I)’ufﬂ’ if E(0) < d and (uo,u) > 0;
Tmaxg Uup . s
w_2vaa gy PO s dand o) =0
T, ZfE(()) <d and (u07u1) <0,
where
A BO) ol +2 (o, + /G 7§ A~ EO)wlP)

(2(d — E(0))(p — 2)y/ (o, w)? + (2(d — E(0))) [[uo

The organization of the rest of this paper is as follows: In Section 2, we give some
preliminaries, which will be used in this paper; In Section 3, we study the well-posed
of solutions by semigroup theory and prove Theorem 1.2; In Section 4, we study
the conditions on global existence and finite time blow-up and prove Theorems 1.3,
1.4 and 1.5.

2. Preliminaries. The following well-known Hardy-Littlewood-Sobolev inequality
can be found in [31]:
Lemma 2.1. Let g, > 1 and 0 < 0 < n with

1 -0 1

R LA §

q n T

Let w € LT(R™) and v € L™ (R™). Then there exists a sharp positive constant C
depending only on n,« and q such that

u(z)v(y)
dxdy| < k||lul|q||v]]
[ [ ey < slull o]
Rn Rn
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If
o 2n
q—r—n+97
then .
e T [T
C=kx:=m F(TLJ;)){F(”)} . (2.15)

If u € LY(Q) and v € L"(Q) with q and r satisfying the assumptions, by valuing
them 0 in R™\ €, it also holds

[ [ A2 daay| < o 216)
Q Q

|x

Lemma 2.2. Let a € (—oo,n) and o* be the constant defined in (1.11). Then o*
is well-defined and

R” (CHgﬁLl)_Q, a € (—o00,0],

-2
1
- (CH§HL232a> , ac(0,n),

where Cyz_,p1 is the optimal constant of the embedding HZ(Q) — LY(Q),

2n

on_ is the optimal constant of the embedding HZ(Q) — Lz-=(Q), k is

H2—L?2n-«
the constant given in (2.15) with 0 = n — «a, and

o >

R = sup |z —y| < oo.
z,yeN
Proof. If o € (—00, 0], we have,

2

[ [1e=sireswotday| < | [1o(@az | n-e
Q Q Q
< Chppn R (180]7 + [1¢]) -
If o € (0,n), by Hardy-Littlewood-Sobolev inequality (see (2.16) of Lemma 2.1)
with ¢ = r = 522 and HZ(Q) — L%(Q) with constant C’H2

2n—a
0

2n__,
—L2n—a

//|x —y| 7 ¢(2)dy)dzdy| < Kl|6| 2

Q Q
2 2 2
<RC? e (1804 [01P).

O
Lemma 2.3. [29, 30] Suppose F(t) € C?[0,T) is a nonnegative function satisfying
F'(H)F(t) — (1+7) (F'(t)* > 0, (2.17)

where 0 < T < 400 and r is a positive constant. If F(0) > 0 and F'(0) > 0, then

F(0)
< .

< pa < (2.18)

and F(t) — +oc ast — T.
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Lemma 2.4. Assume p satisfies (1.2), a € (—oo,n), and o € (—o*,0*), where o*
is the positive constant defined by (1.11). Let d be the constant defined in (1.13).
Then we have

d = inf {i‘;‘é J(\@) : p € HZ(Q)\ {0}} , (2.19)
" ax 22 ((1- e, L) o (2.20)

where Crz_, v is the optimal constant of the embedding HZ(Q) < LP(Q).

Proof. Firstly, we prove (2.19). For any ¢ € HZ(Q) \ {0}, since o € [0,0%), by

means of a simple calculation, we find there exists a unique positive constant A
defined by

X:

, (2.21)

<||A¢|2 +8l® = o fo S lz—y7° ¢<x>¢><y>dmdy> v
R

such that
sup J(Ag) = J(A@), A € N. (2.22)

A>0
Then,

it {sup 7000): 0. B30\ (0} = int {730) 6 € @)\ 101}
. > int{J(0) : 6 € N},
On the other hand, for any ¢ € N, we have A= 1. Then

inf{J(¢): p e N} = inf{ig;())J()\qﬁ) %0 EN}
> int {sup T+ 0 € () {0}
A>0

Then (2.19) follows from the above two inequalities.
Secondly, we prove (2.20), by (1.11), we have

int (Pl ¢ € HH)\ (0}

d=

Q 18617 +11811° ~0 Jo Jo lr—y]™* é(x)$(y )d:vdy> =

p <¢eH2 @)\ (0} (e[

b2 ( 1861 +191*~ o1 | o Jo lr—yT™ o) (y)drdy
2p

(2.23)

v

critn ) [

p2
2p

(S

| \/

dEHF()\{0}

o _a) 1Aa¢l° + llg] )
o) el

P
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Lemma 2.5. Assume p satisfies (1.2), o € (—oo,n), and o € (—o*,0*), where o*
is the positive constant defined by (1.11). Let
W= {peH;Q):1(¢)>0,J(¢) <d}U{0}. (2.24)
V={ueH;Q):I(¢) <0,J(¢) <d}, (2.25)
where d is the positive constant defined in (1.13). Then
d
lolly < 2%, v e w (2.26)

and

2012 + ol = ((1- ';’) (Cugr) ") o,

where Cz_, v is the optimal constant of the embedding HZ(Q) < LP(Q). Moreover,
W =W, and Vi, =V, where

i = {o e @) @) <d ool 4ol < 2L o0} @29
and

V=o€ HHD) 0) < d A0 + ol > 25 koG, . (220
Here,

con [ [

Proof. Step 1. We prove (2.26). By the definition of J and I (see (1.9) and (1.10)),
we have

2J(6) - 1(6) = P—21101}, o € H(@) (230)

For any ¢ € W, since I(¢) > 0 and J(¢) < d, (2.26) follows from the above
inequality.

Step 2. We prove (2.27). For any ¢ € V, by the definition of I in (1.10), |o| < o*,
it follows from (1.11) and I(¢) < 0 that

(Crze)” (12012 + 91%)* = 101

>80P+ 1of? —o [ [ W azay
Q Q

> (1- ) qaoe + 1o2).

which implies (2.27).

Step 3. We show that V; = V.
Firstly, for any ¢ € V1, by (1 9) and the definition of Vi, we get

P(x
Ad|? 2> d d
1AGI2 + ]2 > / / _y‘a v,

1 ¢(x)¢(y)
3 (18617 + 1617) < d-+ —oll, + Q/ ! P
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which implies
2pd
lelly > Y

Thus, by the definition of I in (1.10) and the above two inequalities,

1(6) = 1Al + 1612 — 6] - //¢ Y) jrdy

<2d— —Ilcbl\"
<0,

which, together with J(¢) < d, implies ¢ C V, then V; C V.
Secondly, we prove ¥V C V;. For any ¢ € V, since |o| < o*, it follow from (2.27)

and (2.31) that
1861 + 1P~ [ [ S22 arg
Q Q

= (1) (112 (enponr) 7) 7 50

Then, in view of I(¢) < 0, i.e.,
P(z)P(y)
P> ||Ag|? 2 2 dxd
el > I1Ael” + ol UQ/Q/ 7 ylo W

we get

917 > (1801 + o) - //ﬁ” ) dedy

61277 > (18612 + 1612 - //¢ Y) jrdy

<wmmF+MW—¢//ﬂ——;mw
|z —yl
Q Q

IAGI2 + 19112 — o [y, fo T2 dedy \ "
EE ’

which, together with the second line of (2.23) implies
Pz 2pd
18612 + 16l - //ﬁ A dody > 2

Since J(¢) < d, the above inequality infers that ¢ € V;, and then V C V.

Step 4. We show that W = W;.
Firstly we prove W C W;. In fact, for any ¢ € W, if ¢ = 0, it is obvious that
¢ € Ws; if ¢ # 0, in view of the definition of W, we get
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80+ ol = [ [0 ey > o
Q Q

DN =

1 1
(1801 +161%) <+ Sl + 3o [ [ T2 dsa
Q Q

The above two inequalities imply

2pd
Bolft+ ol < 2% o [ [ A0 g,
p—2 |z —yl
Q Q
which, together with J(u) < d, implies ¢ € Wy, then W C W.
Secondly we prove W; C W by contradiction argument. If there exists ¢ €
Wi \ W. Then we have

J(p) < d (by (2.28)), (2.32)
2 2 ﬁ o P(x)o(y) -

1861+ o) < 25 + ! / T dady (by (229), (2:33)

I(¢) <0, ¢ #0 (by (2.24) and (2.32)). (2.34)

If I(¢) < 0, the by (2.32), we get ¢ € V (see (2.25)), and then ¢ € V; (since
VY =V, has been proved in Step 3), which, together with (2.29), contradicts (2.33);
If I(¢) = 0, then by ¢ # 0, we get ¢ € N (see (1.14)), and then J(¢) > d (see
(1.13)), which contradicts (2.32). So, ¢ € W, and then W; C W. O

Lemma 2.6. Assume p satisfies (1.2), a € (—oo,n), and o € (—o*,0"), where o*
is the positive constant defined by (1.11). Let

u € C ([0, Tinax); H3 (2)) N C* ([0, Tinax); L*(2))

be the mazimal weak solution to (1.1) with initial value (ug,u1) € HZ(Q) x L?(2)
got in Theorem 1.2.
1. If there exists a tg € [0, Tmax) such that E(ty) < d, then u(t) € W fort €
[to, Tmax) provided that u(tg) € W;

2. If there exists a to € [0, Tymax) Such that either E(ty) < d or E(ty) = d and
(ug, )=ty > 0, then u(t) € V fort € [to, Tmax) provided that u(ty) € V,
where E(t) is the energy functional defined in (1.6), W and V is is the sets defined

in (2.24) and (2.25) respectively, d constant defined in (1.13).

Proof. Firstly, we proof the first part by contradiction argument. Actually, if the
conclusion is incorrect, by using u € C ([0, Tmax); HZ(Q2)) N C* ([0, Tiax); L*(2))
and u(tg) € W, there must exist a ¢1 € (tg, Tmax) such that

u(t) €W, t € [to,t1); and u(ty) € OW.

Since the energy is conservative (see (1.5)), E(t) = %HutHz + J(u)(t) (see (1.6)),
and E(0) < d, we get

J(u)(tr) < E(t) = Elto) < d. (2.35)
Then by u(t1) € OW and the definition of W (see (2.24)), it follows I(u)(¢1) = 0 and

u(ty) # 0. So u(t;) € N (see the definition of A/ in (1.14)), then by the definition
of d (see (1.13)), it follows J(u)(t1) > d, which contradicts (2.35).
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Secondly, we proof the second part. In the case F (tg) < d, in view of (2.27), the
proof is similar to the first part. We only prove the case

E (to) = d and (ug, u)i=t, > 0

in detail. Arguing by contradiction, if the conclusion is incorrect, by u (tg) € V and
ue C ([O,Tmax) ;Hg) , we obtain that there must exist a t1 € (o, Tmax) such that
u(-,t) € V, t € [to,t1) and u(t1) € IV, i.e. (see (2.25)),

(1): J (u) (t1) < d,I(u)(t1) =0; or

(#1): J(u)(t1) =d, I (u)(t1) <O0.

Due to u(t) € V for any t € [to,t1) and u € C ([0, Tmax) ; H3), by (2.27), we get

el ol = (1= 2 () )V e

If (¢) is true, by using I( (t1)) = 0 and (2.36), we have u (t1) € N (see (1.14)),
which implies J (u) (t1) > d (see (1.1 ))7 a contradiction.
If (i) is true, by (1.5) and E(t) = ;5 L lwgl|? 4 J(u)(t) (see (1.6)), we get

—_

d= E(to) = 5 |lue (EDN7 + T (w) (1) - (2.37)
Combining (2.37) and J (u) (t1) = d, we have
s (£2)]* = 0. (2:38)
Utilizing Cauchy-Schwartz’s inequality, we obtain that
(e, W)=ty < Jlue ()] fu ()] = 0. (2.39)

Integrating (1.8) over [0, t], we obtain

t t
(ug,u) + /I(u)(T)dT - / url2dr = (ur,ug), 0 <t < Toax. (2.40)
0

By (2.40), we get

to tO
(s ) ety + / I(u)(r)dr — / Jur |27
0 0
t1 ty
)l + [ T ()i = [ furlfar
0 0

t1 ty
(s ) ety — (1t )}y = / I(u)(r)dr - / lur |2dr.
t t

Then,

Since I(u)(t) < 0 (by using u(t) € V for t € [to,t1)) and (us, u)|i=t, > 0, we get
from the above equality that

tl tl
(wes0)limts = (arslemsy = [ T+ [ s Par >0,
to

to
which contradicts (2.39). O
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3. Local-well posedness. In this section, we study local well-posedness of solu-
tions to (1.1) by semigroup theory. To this end, first, we introduce some fundamen-
tal theory on semigroup theory.

Suppose that H is a Hilbert space with inner product (-,-)g and norm

®lg =V (P, @), ® <€ H.

Suppose F' is a nonlinear operator from H into H. F is said to satisfy the local
Lipschitz condition if for any positive constant M > 0, there is a positive constant
Ly depending only on M such that when U,V € H, ||U||g < M and ||V |z < M,

IF(U) = F(V)|lz < MU= V|a. (3.41)

Consider the following abstract semilinear evolution equation

(3.42)

U + AU = F(U), t >0,
U(0) = Uy,

where A : D(A) — H is a densely defined linear operator on H, i.e., A is linear and
D(A) is dense in H, where D(A) ={® € H: A € H}.

First, we introduce the Lumer-Phillips theorem (see, for example, [38, Theorem
1.2.3] and [54, Lemma 2.2.3]):

Lemma 3.1. The necessary and sufficient conditions for A generating a contraction
Co-semigroup {e4};>0 on H are

1. (AD,®)y <0 for all ® € D(A), and

2. R(I—A)=H.
Here R(I + A) = {®+ A® : ® € D(A)} is the range of the operator.

Next, we introduce the local well-posedness results for (3.42), which can be found
in [54, Theorems 2.5.4 and 2.5.5]:

Lemma 3.2. Suppose that A generates a contraction Cy-semigroup {etA}tZO on H,
and F is a nonlinear operator from H into H satisfying the local Lipschitz condition.
Then for any Uy € H, there is a positive constant T depending only on ||Up||g such
that problem (3.42) admits a unique local mild solution U(t), i.e., U € C([0,T], H)
and satisfies

t

U@p:&%h+/£Wﬂ4ﬂUu»m7tepTy (3.43)

The solution U can be extended to a mazimal mild solution in [0, Tiax) such that
either

1. Tiax = 00, i.e., the problem admits a global mild solution; or
2. Thax < 00, and

li t =
Jim U@ =,

i.e., the solution blows up at a finite time Tipax.

Furthermore, if ug € D(A), then u € C ([0, Tmax); D(A)) N C* ([0, Trax); H) is
classical solution.
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By introduction U = (u,v) := (u,ut), Up = (up, u1), and

0 I
A= ( AT 0 )
0
FU) = ( a|x\_a*u—|—|u|p_2u )’

where T is the identity operator, (1.1) can be equivalently written as the following
system

(3.44)

U, =AU + F(U) x € N,t>0,
U:%Z:o, T EIUL>0 (3.45)
U(z,0) = Uy(x), x € Q.

In the next lemma, we show A generates a contraction semigroup {e*4};>¢ on
HZ(Q) x L*(9).

Lemma 3.3. Let A be the operator defined in (3.44). Then A generates a contrac-
tion semigroup {et*};>0 on H3() x L(1).

Proof. Let H := HZ(Q) x L*(Q), then H is a Hilbert space with inner produce
(,)g defined as

(@, ¥)p = /(AwAwl + @191 + @at)o) da, (3.46)
Q

where ¥ = (¢1,p2), ¥ = (¢1,%2) € H. Then
1@z = (®, ®)u = l|é1]la= + 2]
Let A be the linear operator defined in (3.44), then
A:D(A) = (HYQ) N H(Q)) x HX(Q) C H — H.

Next we show A generates a Cp-semigroup on H by using Lemma 3.1. It is
obvious D(A) is dense in H, and for any ® = (¢1, p2) € D(A), we have

(A(bv (I))H = ((@27 _A2<P1 - @1) ) (Qph <‘02))H

:/ (AgogAgol + a1 + (—A2<P1 - 901) <P2) dx (3.47)
Q
=0.

Next we show R(I — A) = H. Fixed any f = (f1, f2) € H, since fi + fo € L*(),
by standard theory of elliptic equation, the following problem

Au+42u=fi+fo, x€Q,

3.48
v

u
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admits a unique solution u € H*(Q) N HZ(Q). Let v = u — f1 € HZ(Q). Then
U = (u,v) satisfies

which implies R(I — A) = H. Then by Lemma 3.1, A generates a contraction
Cy-semigroup on H. O

Next, we show (3.45) admits a mild solution.

Lemma 3.4. Assume o € (—oo,n) and o > 0. Let H be the Hilbert space defined in
Lemma 5.3, and Uy = (ug,u1) € H = HZ(Q) x L?(Q). Then there exists a positive
constant T depending only on ||Ugllg = |luollgz + ||uill such that problem (3.45)
admits a unique mild solution U(t), i.e., U = (u,u) € C ([0,T); H) and satisfies
¢
U(t) = Uy + / eDARU(T))dr, 0<t<T. (3.49)
0
The solution U can be extended to a mazimal weak solution in [0, Tiax) such that
either

1. Thax = 00, i.e., the problem admits a global mild solution; or
2. Thax < 00, and

Jim U@ = tim (fu®)le + [ub)]) = .

i.e., the solution blows up at a finite time Tyyax.
Furthermore, it holds
t
UMl =11Uollu + 2/(F(U(T)), U(r))udr. (3.50)
0
Proof. Let F be the nonlinear function defined in (3.44). In view of Lemmas 3.2
and 3.3, to prove local existence, uniqueness, and extension of mild solutions, we
only need to show F': H — H satisfying the local Lipschitz condition.
First, we show F(H) C H. For any U = (u,v) € H, by (3.44), to prove F'(U) €
H, we only need to prove,
olz| ™ s u+|ulP P u e L2(Q), Yu e HE (). (3.51)
Since HZ(Q) < L2P=D(Q) (see (1.2)), it is obvious |u[P~2u € L*(Q).
Next we show |z|”“ xu € L?(Q). According the range of o, we divide the proof
into two cases: @ <0 and a € (0,n).

Case 1. a < 0. Since (2 is bound, we have

R = sup |z —y| < oo.
z,yeN
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Then, by Holder’s inequality,

2
el <l = [ { [ 1o = ol utwdy | do
Q Q
2 (3.52)

< R0 / u(y)dy
Q
< R0 [lu]]? < oo.

Case 2. 0 < o < n. Since a < n, it follows 232(1 < 2. For any ¢ € L%(Q), there
exists a positive C depending only on €2 such that [|¢[|_2u_ < Cqfl¢||. Since

1

1 « 9
e T
2n—« 2n—a«

by using (2.16) with ¢ =r = 23117 0 =n—a, we get

/(|x|_°‘*u) (x)qﬁ(x)dmzﬂ/ﬂ/imdxdy

Q
< kllull 2] 2n_
< kCllullllo]-
Then we get
|||3:|*’JZ * uH = sup / (|x|7’1 * u) (z)p(x)dx
(3.53)

2 -
e L?(Q), 8]l LFA
< KCE||u|| < oo.

So (3.51) is true.
Next we show F is locally Lipschitz continuous. Let Uy = (u3,v1) € H and Uy

(ug,v2) € H be such that
Uil = lluillzz + lo1|l < M, (|Uz)lg = |luallaz + |lo2]] < M, (3.54)

where M is a positive constant. Let

R™*Q, a<0
kC3, 0<a<n.

Then, by (3.52) and (3.53),
IF(Uy) = F(U) |l <lo|||lz]7* % (ur — u2) || + [[lus[P~?ur — |ua|P~*us||

<lo|xllur — usall

1
+ (p — 2) / |9U1 + (1 — 0)u2|p72d0(u1 — UQ)
0
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Case 1. n = 1,2,3,4. Since HZ(Q) < L°°(2) with optimal constant Chz_yp1, in

view of (3.54), we have

1 1
/ |9U1 + (1 — 0)u2|p72d0(u1 — UQ) S / |9u1 + (1 — 9)U2|p72d9 ||U1 — UQH
0 0 00

—2
< (luallos + lluzlloo)™™ flua — uall

p—2
< (20w 1) flur = s
Case 2. n > 5. Since HZ(Q) — Lﬁ(Q) with optimal constant CH2 L2 and
0
n(p—2)

HZ(Q) — L~z (Q) with optimal constant C’Hg%L#, in view of (3.54), we
have
L 2
/ |0uy + (1 — 0)us|P~2dO(uy — ug)
0
1 z i
< / /|9u1 F 1= 0wl a8 | | — e,
a \0
9 T
2% (C o) | [ (™ a5 o )l
%)
9 2 (p=2)
71 (0 ) (o) bl

In view of the above three inequalities, we get F' is locally Lipschitz continuous.
Then the local existence and extension of mild solutions follows.

Next we prove (3.50). Suppose firstly Uy € D(A) = (H*(Q) N HZ(Q)) x HZ(Q),
then by Lemma 3.2, U € C ([0, Trnax); D(A)) N CY (0, Timax); H) is a classical solu-
tion. Then it follows from (3.45) and (3.47) that

1d
§%||U(t)”§{ = (U,U)n
= (U, A(U)) + (U, F(U)) = (U, FU)), 0 <t < Tax-

For fixed t € [0, Thax), integrating the above equality over [0, t], we get (3.50).
In general case Uy € H, since D(A) is dense in H, we approximate Uy by a
sequence {Upo}22;, and then we pass to the limit to obtain (3.50). O

Proof of Theorem 1.2. Step 1. Existence of maximal weak solution. By Lemma
3.4 and Definition 1.1, to show the existence of maximal weak solution, we only
need to prove the mild solution U = (u,u¢) got in Lemma 3.4 satisfies (1.4).

We denote the inner produce of the Hilbert space L?(Q) x L?(Q) by ((-,-)), i.e.,

(U, V)) = /(ulvl + ugva)dx, ¥ U = (u1,uz), V = (vi,v2) € L*(Q) x L*(Q).
Q
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Since C§°(12) is dense in HZ(Q), by density arguments, we only need to prove (1.4)
with ¢ € C5°(Q). Let U(t) = (u,us) € C ([0, Tmax); HZ(Q) x L2(2)) be the mild
solution of (3.45) got in Lemma 3.4 and ® = (0, ¢). For fixed t € [0, Tynax), by using
(3.49), we get

(U, ®)) = (("* Uy, ®@)) + ((/e(tT)AF(U(T)),Q))) )

0
We differentiate to obtain

% (U, @) = % (o, @)) + % ((/B(tT)AF(U(T)), cb)) . (3.55)

0

Now, using the standard properties of the semigroup (see for example, [54, Chapter
2]), we obtain

%((etAU()’q))) :((etAUO,A*d))) + ((etAUO,CI)t)) (3.56)

)

where

is the adjoint operator of A; and

= (]
"

0

Then it follows from (3.55)-(3.57) and (3.49) that
d

dt

Since U = (u,us) and & = (0, ¢), we have

(U, @) = (FU®)), @) + (U, A"®)) + (U, D1)) - (3.58)

Q
(U, A*®)) = (((u,ur), (—A%) — ,0))) :—/(UA2¢+U¢) dzx
Q

(U, ®,)) = / wnoud.

Q
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Then it follows from (3.58) that

d
pr /ut(ﬁdx + / (uA2¢ + ug) dz = / (o]~ *u+ |u|p_2u) odx + /utqbtdgc.
Q Q Q
Since u € C ([O, Tinax); Hg(Q)), integrating by parts, we get

jt /u@dm + / (AulA¢ + ud) dz

o ° (3.59)

:/ (o]z| ™ * u+ [u[P~?u) pdz + /ut@dac.
Q Q
Note ¢; = 0, integrating in time over [0,¢] for any t € (0, Tynax), we obtain (1.4).
Step 2. Proof of (us,u) in C[0, Tihax) and the equality (1.8). Since
u(t) € C ([0, Tmax); H3()) and uy € C ([0, Timax); L*(9))
by taking ¢ = u(t) in (3.59), we get
—I(u)

d 2 2 2 //u(x,t)u(y,t)
- — _ A _ P _ AN AP AR
() = Il = | VAl ol o [ [ 2 ey

€ C[OaTmax),
i.e, (ug,u) in C1[0, Tipax) and (1.8) holds.

Step 3. Proof of the equality (1.5). The energy identity (1.5) follows from (3.50)
directly. In fact by using U = (u, u;), (3.44), and (3.46), we have

10N = 1 Aul® + flull® + Juelf?,

(F0).U 2 [ [ HE e Dy

Q Q
Then by (3.50), we get (1.5). O

4. Global existence and finite time blow-up.

Proof of Theorem 1.5. Let u € C ([0, Tinax); H3(22)) N C* ([0, Tinax); L2(2)) be the
maximal weak solution got in Theorem 1.2. By E(0) < 0 and (1.5), it holds,

E(t)=E(0) <0, 0<t< Tax.
By the definitions of J and I (see (1.9) and (1.10)), we get

T(u) = 2 (u) - EHung,

1) = pJ(u >(||Au||2+||u||2o [ [ e gy )

By (1.5) and (1.6), it follows J(u) = E(0) — %|ju¢[|?>. Then, by the above two
inequalities, we get

I0) =280 ~ [l = P2 ul} (1.60)
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and

1(u) =pE(0) = £ u|?

—@Am9+mw o[ [ thP dd@ o

By (1.11), we get

/ / | | d dy’ < [JAul]? + |ul? if |o] < o*. (4.62)
r—=Yy

In the following we divide the proof into two cases: |o| < ¢* and |o| > o*.
Case 1. |o] < o*. It follows from (4.61) and (4.62) that

1) < pE(0) = & uc][* (4.63)

Let
h(t) = [lu(®)]* + BE+7)% 0 <t < Tiax, (4.64)

where f > 0 and v > 0 are two constants to be determined later. Then by using
(1.8) and (4.63), we have

R (t) = 2(us, u) + 26(t +7), (4.65)
B (1) = 2llug||? — 21 (w)(t) + 28 > —2pE(0) + (p + 2)|Jue | + 2. (4.66)
By Cauchy-Schwartz’s inequality,
(') < A(J|ue]l [l + B(t+))?
= 4 (Wl fwel® + B3 + ) + 28(¢ + ) llul el

< 4 (Jlul® el + 82+ )2 + B+ ) Jwel* + Blul®)  (a.67)
<4 ((Jlull® + Bt +7)2) (luel® + 8))
= 4h(t) (llwl)” + B) -

Then by (4.66) and (4.67), it follows

om0 - (14272 ) (00 2 p(-280) - (o
>0 for 0 < 3 < —2E(0).

(4.68)

Subcase 1. E(0) < 0 and (ug,u1) > 0. We take 3 = v = 0, then h(0) = ||Jug||*> > 0
and h'(0) = 2(ug,u1) > 0. Then, it follows from Lemma 2.3 that h blows up at a
finite time T', T' > Tyyax (by Theorem 1.2), and

o) 2|l
P2 (0) (P —2)(uo,ur)’

T <
Subcase 2. E(0) < 0 and (ug,u;) = 0. We take

B =—-2FE(0) and v = ,
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then h(0) = uoll? + B7® = 2[lug||? > 0, B (0) = 28y = 2/=2E(0)||uo| > 0. Then,
it follows from Lemma 2.3 that h blows up at a finite time T', T' > Tyax (by Theorem
1.2), and
. 4
e MO dlwl
ZW0)  (p-2)y/—2E(0)

Subcase 3. F(0) < 0 and (ug,u;) < 0. We take

—(ug,uy) + \/(u07 u1)? + B|uo|?
B b

then,

h(0) = [Juol® + Bv* = |luoll® + <—(U0»u1) + /(o u1)? + »3||U0H2)2 /B >0,
W (0) = 2(ug, u1) + 287 = 2/ (uo, u1)? + Blluol2) > 0

Then, it follows from Lemma 2.3 that h blows up at a finite time 7', T > Thax (by
Theorem 1.2), and

o (Fwou)+y/luo )2 Al
2 Jjuoll® + ;
hO)
20 (0) (b —2)/(uo, w1 )? + Blluoll”)

2

28 Juo * +2 (— (o, wr) + /{0, w1)? + BluclP)

B(p — 2)y/ (o, ur)? + 8 [luo
—4B(0) Juol* +2 ( (a0, 1) + (o, P — 2B o)

~2B(0)(p — 2)y/ (w0, ur)? — 2(0) [[uo

T <

Case 2. |0 > o*. Firstly we estimate [, [, |v —y|~*u(z, t)u(y, t)dzdy.
If a <0, let R =sup, ,cq |z —yl, then by Holder’s inequality, we get

2

// ul uwt) ol < po /Mm
W (4.69)

Q
<R~ a|Q
If 0 < a < m, since
1 o 1
o Tt =2
2n—a 2n «
and 32— < p, by using (2.16) with ¢ = r = 522~ 6 = n—a and Hélder’s inequality,
we get
t)u
// > d:r:dy < /1||uH 20
(4.70)
p(2n— (x) 2n
< &9 lull,

where £ is the positive constant defined in (2.15).
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Let

2(p—1)
o 7, ifa<o,
= p(2n—a)—2n .
KQT , if0<a<n.
By (4.69) and (4.70), we get

// U@ DUl g gl < @2, (@.71)

Subcase 1. E(0) < 0 and (ug,u1) > 0; or E(0) = 0 and (ug,uy) > 0. By (1.8),
(4.60), and E(0) <0, we get

d

%(uhu) > 0.

Then
d
S le®N* = (w,w) > (ur,u0) = 0,
and then ||u|| > |Jup||. Then it follows from the Holder’s inequality that
o2 < llull? < 1917 [lul,

which, together with (4.71) implies

// ‘x 7 y’ ) ddy| < Ollu2" (4.72)
In view of (1.11), (4.61) and (4.72), we obtain
I(u) <pE(0) = £ Ju?
N (||Au||2 P = o | [ [ 2000 gy )
=pE(0) — £ Ju?
4.73)
. (
T <||Au||2+||u||2 )
|o'| —o* d dy‘
\fE —yl"
2
<pE(0) - §||ut|| + 7Auung,
where
= (o —o")0l0 (4.74)
It follows (4 x (4.60) + 2 x (4.73)) x A+2 that
2p(A+1) p(A+1) 5
< 2 a7 )
I(u) < =552 B(0) = £ (4.75)

Let h be the function defined in (4.64). Then by using (1.8) and (4.75), we have
K (t) = 2(u,u) +28(t +7) (4.76)
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and

R (t) = 2llue]|* — 21 (u)(t) + 28

4p(A +1) 2p(A + 1)
 pA+2 E() ( pA + 2

Then it follows from (4.67) that

(4.77)
+ 2> llue||? + 28.

wont) - (1+ 525 ) 00

>2p(A—|—1)
— pA+2

(4.78)
(—2E(0) — B) h(t) > 0 for 0 < B < —2E(0).

0 and (ug,u1) > 0, we take 3 = v = 0, then h(0) = |jug|/* > 0 and
0,u1) > 0. Then, it follows from Lemma 2.3 that h blows up at a finite
> Tiax (by Theorem 1.2), and

hO)  _ (pA+2)]uo
iz (0) (P 2)(uo,ur)’

If E(0) < 0 and (ug, u1) =0, we take

If E(0) <
W (0) = 2(u
time T', T

T <

[[uoll

B

then h(0) = [Juol|® + Bv* = 2||uo||* > 0, K (0) = 23y = 2/—2E(0)||lug|| > 0. Then,
it follows from Lemma 2.3 that h blows up at a finite time T T > Tinax (by Theorem
1.2), and

B =—-2FE(0) and v =

fe MO 2(pA+2)lluoll
s (0)  (p—2)y/—2E(0)

Subcase 2. F(0) < 0 and (ug,u1) < 0. We prove u blows up by contradiction
argument. Assume u exists globally, i.e., Ty = 00.

By (4.60), —I(u)(t) > —2E(0) > 0, t € [0,00). Then it follows (1.8),

) > ~I(u)(1) > ~2(0) > 0.

Integrating this inequality from 0 to ¢t we get
(ug,u) > (ug,u1) — 2E(0)t.

Let tg = (72‘%(%1)), then (u(tg),us(to)) > 0. Moreover, E(tg) = E(0) < 0. We come
back to subcase 1. Then ||u|| will become infinite in finite time, which contradicts

Tnax = 00. O

Proof of Theorem 1.4. Let u € C ([0, Trax); H3(22)) N C* ([0, Tmax); L*(2)) be the
weak solution got in Theorem 1.2 with (ug, u;) € HZ(Q) x L?(£2) satisfying I (ug) > 0
and 0 < E(0) < d.

Step 1. E(0) < d; or E(0) = d and |lu1| > 0. By (1.7), J(ug) < d. Since, we
also have I(ug) > 0, we get ug € W (see (2.24) for the definition of W). Then,
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by Lemma 2.6, u(t) € W for all t € [0, Tipax). Since W = W, (see Lemma 2.5), it
follows from the definition of W, (see (2. 28)) that

t
1Au|? + [l < +a// W U 4oy 0 <t < Ty, (479)
Q

By (1.11), it follows

1
dd < — (| Aul||® + ||Jul?),
// D L (Iaul? + )

which, together with (4.79) and |o| < o*, implies

—1
2pd
| Aul|? + |lul]? < (1 - U') LQ, 0 <t < Tax- (4.80)

0-*

Since E(t) = E(0) (see (1.5)), E(t) = S|lu||* + J(u)(t) (see (1.6)), 2J(u) — I(u) =
pTT2||u||§ (see (2.30)), I(u)(t) > 0 (since u(t) € W) for all ¢t € [0, Tyax), and E(0) <
d, it holds

lue]|? = 2E(0) — 2J(u)(t) < 2d — I(u) < 2d, 0 <t < Tppax. (4.81)
By (4.80), (4.81), and Theorem 1.2, we get Tiax = 00.

Step 2. E(0) = d and |lu;|| = 0. Since E(t) = E(0) (see (1.5)), E(t) = |ju||? +
J(u)(t) (see (1.6)) and E(0) = £|ju1][* + J(uo) (see (1.7)), we get

J(u)(t) < d, t € [0, Tmax) and J(ug) = d.

If J(u(t)) = d for all t € [0, Tiyax), then by (1.6), ||u¢]] = 0 for ¢ € [0, Tiax), then
u(t) = ug, so by Theorem 1.2, Ty ax = oo; If there exists t1 € [0, Tinax) such that
J(u)(t1) < d, we claim

o there exists a constant ¢ > 0 sufficient small, and a sequence {¢,}22; such
that o > t, } 0 as n 1 oo and J(u)(t,) <d forn=1,2,---

In fact, if the claim is not true, there must exists a constant 6 > 0 such that
J(u)(t) = d for t € [0,0]. Then by analysis as the first case, u(t) = ug for ¢t € [0, d];
and then u(t) = ug for t € [4,26], [26,30], etc. So u(t) = g for all t € [0, Tiax),
then J(u)(t1) = J(uo) = d, a contradiction. So the claim is true, since I(ug) > 0
and I(u)(t) € C[0, Thax), limptoo I(w)(tn) = I(ug) > 0. So for n large enough, we
have J(u)(t,) < d and I(u)(t,) > 0, we come back to step 1. O

Proof of Theorem 1.5. Let u € C ([0, Tiax); HZ(€2)) N C* ([0, Tiax); L2(2)) be the
weak solution got in Theorem 1.2 with (ug,u1) € HZ(Q) x L?(Q).

If E(0) < d, by (1.7), we get J(ug) < d; If E(0) = d and (ug,u1) > 0, we must
have ||u1|| > 0, and by (1.7) again, we get J(ug) < d. Now we prove |jui| > 0 by
contradiction argument. In fact if ||juy|| = 0, by Cauchy-Schwartz’s inequality, we
have 0 < (ug,u1) < |Juo|||lu1]| = 0, a contradiction.

Since J(up) < d and I(ug) < 0, we get ug € V (see (2.25)). Then by Lemma 2.6,
u(t) € V for t € [0, Tiax), where V is the set defined in (2.25). Since V =V (see
Lemma 2.5), by (2.29) and (4.61),

1(u) < pE(0) = £ Jusl* = pd, 0 < t < Thna. (4.82)
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Let h(t) be the function defined in (4.64), with 5 > 0 and v > 0 to be determined
later. Then by using (1.8) and (4.82), we have

W (t) = 2(ue, u) + 2B(t + ), (4.83)

W' (t) = 2l|ugl|* — 21 (u)(t) + 28 = —=2pE(0) + (p + 2)||ue||* + 2pd + 28 (4.84)
Then it follows from (4.67) that

won) - (14272 ) 04(0)* 2 pi2(a ~ £0) -

4 (4.85)

>0 for 0 < g <2(d— E(0)).

Case 1. E(0) < d and (ug,u;) > 0. We take f = v = 0, then h(0) = [lug|* > 0
and h'(0) = 2(ug,u1) > 0. Then, it follows from Lemma 2.3 that h blows up at a
finite time T', T' > Tyyax (by Theorem 1.2), and

hO) _ 2ul?
2p/(0) (P —2)(uo,ur)

T <

Case 2. F(0) < d and (ug,u;) = 0. We take
ol
VB’

then 1(0) = [luo||* + B9* = 2[luo[|* > 0, I'(0) = 28y = 24/2(d — E(0))[|uo| > 0.
Then, it follows from Lemma 2.3 that i blows up at a finite time 7', T' > Tiyax (by
Theorem 1.2), and

B =2(d— E0)), ~

fe O ]

EER(0) (0 -2)v/2(d - E(0)
Case 3. F(0) < d and (ug,u1) < 0. We take

—(ug, u1) + v/ (uo, u1)? + Bllug||?)
IB )

5= 2~ BO), - =
then,

h(O) = lluo* + B4 = o> + (~(uo, 1) + /G- )2 + BwalP)) /8 >0,

R (0) = 2(ug, uy) + 287 = 24/ (uo, u1)? + Bllug|?) > 0.

Then, it follows from Lemma 2.3 that h blows up at a finite time T, T > Tonax (by

Theorem 12)7 and
—(wo,u1)+ uo,u 2+[; u 2 2
9 Hu0||2 ( ( 0, 1) ( 0 1) Il OH ))
!

22 h/(0) (p — 2)y/uo, ur)® + Blluo|?)

T <

28 ol +2 (o, ) + /T, w2 T Bl

B(p — 2/ (w0, 1)? + B luo
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A(d — BO) o +2 (~ (o, ) + /T, )7 T @(d— BO)walP)

(2(d ~ B(0))) (0~ 2)y/ (o, ur)? + (2(d — E())) |[uo]

O
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