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Abstract: As electric vehicles (EVs) continue to acquire prominence in the transportation industry, 

improving the outcomes and efficiency of their propulsion systems is becoming increasingly critical. 

Switched Reluctance Motors (SRMs) have become a compelling option for EV applications due to 

their simplicity, magnet-free design, robustness, and cost-effectiveness, making them an attractive 

choice for the growing EV market. Despite all these features and compared to other electrical 

machines, SRMs suffer from some restrictions, such as torque ripple and audible noise generation, 

stemming from their markedly nonlinear characteristics, which affect their productivity and 

efficiency. Therefore, to address these problems, especially the torque ripple, it is crucial and 

challenging to enhance the performance of the SRM drive system. This paper proposed a 

comprehensive review of torque ripple minimization strategies of SRMs in EV applications. It 

covered a detailed overview and categorized and compared many strategies, including two general 

categories of torque ripple mitigation encompassing optimization design topologies and control 

strategy developments. Then, focused on control strategy improvements and divided them into 

torque and current control strategies, including the sub-sections. In addition, the research also 

provided an overview of SRM fundamental operations, converter topologies, and excitation angle 

approaches. Last, a comparison between each method in torque control and current control strategies 

was listed, including the adopted method, features, and drawbacks. 
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1.  Introduction  

Electric vehicles (EVs) have emerged as a revolutionary-changing alternative to reduce the 

negative consequences of fossil fuel consumption in a time characterized by growing concerns about 

environmental sustainability and the need for energy-efficient transportation [1]. The global 

automotive industry is constantly looking for novel, innovative technologies that promise improved 

effectiveness, lower emissions, and more energy economy. In the EV system, the electric motor 

holds paramount importance, and selecting the appropriate electric motor is essential to meet the 

specific requirements of EV applications. While permanent magnet synchronous motors (PMSMs) 

have gained attention in EVs due to their efficiency and high-power density, their reliance on rare-

earth minerals for magnets presents challenges [2]. These include the high cost of extracting and 

processing these materials, limited global reserves, environmental effects, and the magnets' 

sensitivity to high temperatures, which can affect motor performance under demanding automotive 

conditions. 

Consequently, a growing imperative is to develop motors without rare-earth elements for high-

productivity electric vehicle (EV) applications [3]. As a result, motor development devoid of these 

substances is becoming more and more necessary for superior productivity EV applications. Within 

this framework, SRMs grow as powerful contenders to established electrical motors for EV 

applications by offering an expensive-earth-free choice. SRMs are distinguished by their simple 

double salient structure, low production and maintenance costs, and rotor built of electrical 

steel [4,5]. The machine has built-in fault tolerance since independent focused windings are installed 

on stator slots. 

Furthermore, SRMs exhibit versatility and can operate under various temperature and speed 

circumstances. Because of these features, the switching reluctance machine is a compelling choice 

for variable speed applications and harsh conditions [6]. However, the performance of SRM is 

restricted by some limitations, such as torque ripples and the nonlinearity of magnetic characteristics 

imposed by the double salient structure and the current switching, which mitigates its dependability 

and restricts its spread [7]. Also, acquiring accurate control utilizing only conventional methods is 

challenging due to being influenced by the machine characteristics, the configuration of the 

converter, and feedback variables. Therefore, the researchers have focused on overcoming these 

drawbacks and enhancing the SRM performance by adopting many advanced control strategies 

proposed in the literature [1,5,8] that aim to address the inherent challenges of SRMs, such as high 

torque ripple and acoustic noise to enhance effectiveness and reliability in electric vehicle 

applications. 

The main contribution includes an extensive overview and evaluation of advanced control 

strategies of SRMs, which encompasses a comprehensive analysis of existing strategies, including 

advanced control techniques and design optimizations, focusing on torque ripple mitigation 

strategies, which comprise torque and current control strategies, and a discussion of their benefits 

and drawbacks. The organization of this paper is as follows: Section 2 gives the SRM drive system, 

including SRM fundamentals, the nonlinear model of the SRM, and converter topologies for SRM 

Drives. Section 3 comprises control strategies of SRM Drive Systems. Furthermore, the torque ripple 

reduction technologies are introduced in section 4. Finally, section 5 is the conclusion. 
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2.  SRM drive system 

The SRM is a special kind of synchronous machine with double salient construction for both the 

stator and rotor and also no windings or permanent magnets on the rotor. This motor converts the 

reluctance torque into mechanical power. Where the alignment tendency of poles produces the 

torque, the rotor will move to a position where reluctance is lowest and, as a result, maximize the 

excited winding's inductance. Figure 1 depicts an illustration of common arrangements of SRM. 
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Figure 1. Typical configurations of SRM. 

2.1. Nonlinear model of the SRM 

An SRM has highly nonlinear characteristics because of its doubly salient construction and the 

switching current excitation. Therefore, the nonlinear modelling of this motor is required to predict 

the dynamic performance and analyze its magnetization characteristics [9,10]. These characteristics 

can be computed by the function analysis approach [11,12], neural network approach [13], finite 

element method (FEM), and indirect measurements [14]. First, it is necessary to describe the SRM's 

mathematical model to calculate and analyze these characteristics. The voltage and flux linkage 

equations are as follows: 

𝑉 = 𝑖𝑅 +
𝑑𝜆(𝑖, 𝜃)

𝑑𝑡
                                                                                   (1) 

𝜆 𝑖, 𝜃 =    𝑉 − 𝑖𝑅 𝑑𝑡                                                                              (2) 

where 𝑉 denotes the phase voltage, 𝑅 is the winding resistance per phase, 𝜆(𝑖, 𝜃) denotes the flux 

linkage, which is a highly nonlinear function of rotor position and phase current 𝑖 and can be given 

as: 

𝜆(𝑖, 𝜃) = 𝑖𝐿(𝑖, 𝜃)                           (3) 

where 𝐿 is phase inductance, the torque expression can be derived by substituting the flux linkage 

expression from Eq 3 into Eq 1, which yields: 

𝑇 =
1

2
𝑖2 𝑑𝐿(𝐿,𝜃)

𝑑𝜃
                                                                          (4) 
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The Simulink model of one phase of 8/6 SRM was built using finite-element methods (FEM) 

based on the magnetic flux linkage characteristic. Figure 2 shows the magnetic flux linkage, 

inductance, and torque characteristic curves at the aligned and unaligned rotor positions at 0° and 

30°, respectively. 

  

   (a) The flux-position characteristics λ(i,θ) (b) The inductance-position curves L(i,θ) 

 

 

(c) The torque-position characteristics T(i,θ)  

Figure 2. The FEM-calculated magnetic characteristics. 

 

2.2. Converter topologies for SRM drives 

The power converter is a vital component of the SRM system because the SRM cannot operate 

without a converter. Also, the converter's performance greatly affects the drive's cost and efficiency. 

Since the stator's outer side and the rotor's inner side of the SRM contain salient poles. Therefore, the 

power converters for SRM are different from the other machines. Recent years have seen 

considerable advancements in the development of power converters and the commutation control 

circuit employed to feed SRM [15,16]. The power converters utilized for SRM can be divided into 

three main classifications: Half-bridge, self-commutating, and force-commutating, besides further 

commutation circuits [4]. Each type of SRM power converter has benefits and drawbacks. As a 

result, the best choice of converter configuration and control techniques is based on the nature of the 

load and the applications' specific demands [17,18]. The most typical and often utilized converter of 

SRMs is the asymmetric bridge converter due to its benefit of being ameliorated fault-tolerant, quick 

demagnetization and regenerative braking ability. Figure 3 depicts the overall schematic diagram for 

the SRM drive system with an asymmetric bridge converter and control circuit. 
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Figure 3. Schematic diagram of SRM drive system. 

2.3. Switching angles approaches 

The excitation angles (θon, θoff) significantly produce the SRM torque through the synchronous 

excitation with the rotor position. They immediately impact the current profile, the torque generation, 

and, consequently, the performance of SRM during the range of operating speeds. The excitation 

process generally involves three parameters: The switch-on angle, the switch-off angle and the 

reference current (Iref) through a wide speed range [19]. To maximize the performance of the SRM, 

the switching angles (θon, θoff) should be selected to excite the motor in the increasing inductance 

region (dL/dθ > 0) and de-energized before the negative inductance region (dL/dθ < 0) to prevent 

negative torque generation as shown in Figure 4. Therefore, the switching angles (θon, θoff) are 

essential parameters for SRM control [20]. However, due to the highly nonlinear characteristics of 

SRMs, this process is not easy. Much research has been conducted to determine the optimal 

switching angle values for enhancing SRM performance. 

 

Figure 4. Current waveform with Ideal inductance profile. 

Many techniques are used to obtain the appropriate excitation angles for phase current and rotor 

speed functions. In [21–24], Analytical approaches have been employed to estimate the switching 

angles to increase motor efficiency at various speed ranges. A closed-loop switch-on angle (CL θon) 

is proposed in [25,26] without requiring motor parameters. In [27], an adaptive analytical 

determination for optimum excitation angles (θon and θoff) of SRM drives along a broad range of 

operating speeds by taking into account the influence of back-emf voltage by optimal computation of 
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the θon angle and avoiding the production of negative torque through the whole operating range by 

optimal the θoff angle.  

However, this suggestion does not consider a good solution for torque ripple reduction. In [28], 

a simple adaptive controller is introduced for online tuning of the switch-on angle depending on the 

nonlinear inductance profile of SRM, and offline tuning by a multi-task optimization function for 

optimized switch-off to mitigate the torque ripple and improving the efficiency of the motor. Also, 

the paper [29] presented an analytical method to estimate the optimal switch-on angle online based 

on the nonlinear inductance profile of SRM with consideration of back electromotive force. At the 

same time, the switch-off angle is optimized offline through a secondary objective function to 

minimize the torque ripple. To superior the performance of SRM with minimized torque ripple, 

intelligent control methods like fuzzy logic and neural networks are employed in order to optimize 

the switching angles [30–33]. A fuzzy adaptive control technique is proposed in [31] to 

automatically control switching angles in SRM. This approach optimizes the switch-on and switch-

off angle timings depending on the online rotor position to produce high torque. 

Recently, metaheuristics optimization algorithms have been suggested based on different 

objective functions like output torque, torque ripple, and motor efficiency to optimize the switching 

angles for better performance of SRM [34–39]. The Genetic algorithm (GA) has been utilized to find 

the optimal current excitation angles based on a multi-objective optimization function to enhance the 

output torque profile and decrease the torque ripple of the machine through various operating 

ranges [34]. In [36], a modified PSO algorithm based on velocity-controllable (VCPSO) is suggested 

for optimizing the switch-off angle of the SRM with the current chopping regulator strategy to 

increase the efficiency of real-time tracking. The Grey Wolf (GW) algorithm, another powerful 

optimization technique, achieved SRM's optimum performance [39].  

3.  Control strategies of SRM drive systems 

SRM is an excellent alternative for the growing traction motor applications such as E-bikes and 

Electric Vehicles due to its robustness, reliability, and broad constant power range of operation. In 

contrast, it suffers from drawbacks such as torque ripple and sound noise. The control of the SRM 

must be capable of considering operations under different operating conditions, which make the 

controller's design more challenging due to the nonlinearity of magnetic characteristics caused by the 

double salient structure [40]. These difficulties require highly accurate and sophisticated SRM 

controls on the part of the designer. SRM drives are operated and controlled by synchronizing the 

motor phase energization with the rotor position.  The control method can be accomplished utilizing 

a position sensor feedback signal or a senseless method that estimates the rotor position based on the 

machine's magnetic properties [41–43]. Generally, numerous control schemes are suggested to 

enhance the SRM's performance in terms of increased efficiency, reduced torque ripple, consistent 

torque, and a wide speed range. Various well-known machine control systems exist depending on the 

applications, including position, speed, current, and torque control, as depicted in Figure 5 [44]. Due 

to its pole saliency and nonlinear magnetic characteristics, the SR machine differs from conventional 

DC and AC machine types. Moreover, the current control scheme in SRM is different from torque 

control despite these two being synonyms in DC drives. 
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Figure 5. Types of Control Strategy of SRM. 

4.  Torque ripple reduction technologies  

Torque ripple is the primary restriction to the dependability of utilizing the SRM drives in high-

performance applications such as electric vehicles (EVs). The torque ripple occurs because of the 

double salient structure, which causes extremely nonlinear magnetic characteristics and 

discontinuous current commutation [44], as shown in Figure 6. These reasons increase the torque 

ripple and complicate the control of SRM drives. The torque ripple can be mitigated by either 

enhancing the geometry of the machine design or by adopting different control techniques. Figure 7 

demonstrates the classification of torque ripple reduction strategies used for SRM and the 

improvements made to each control approach [2,5,6]. The optimal performance of the SRM drive 

system depends on the machine characteristics, the control technique, the converter configuration, 

and feedback variables. However, the SRM drive system has a lot of feedback variables. At least one 

current sensor must be needed to measure the motor's current and a position sensor [41,42]. The 

motor’s torque strongly depends on the rotor position and switching current angles; these variables 

can be stored in look-up tables for simpler control processing. In this context, we introduce a 

comprehensive categorization of control strategies to mitigate torque ripple and enhance the 

performance of SRM drives. 

 

 

Figure 6. The torque ripple in phase torque and total torque waveforms. 
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Figure 7. Classification of torque ripple reduction strategies for SRM. 

4.1. Optimization design topology 

SRMs are known for their simple and robust construction characterized by the absence of 

permanent magnets, and stator and rotor poles are normally symmetrically and evenly distributed 

around the motor's circumference [45,46]. This innovative design enables engineers to optimize the 

motor's performance by strategically shaping the stator and rotor poles. Optimization often employs 

sophisticated software programs and algorithm methods, such as finite element analysis (FEA) and 

PSO algorithms, to find the most effective pole designs, sizes, and configurations [47]. By carefully 

tuning these parameters, researchers can mitigate the torque ripple, maximize the torque average 

production, and improve the overall efficiency of this motor. An optimal topology design is essential 

to ensure that SRMs play a crucial role in EV applications [48]. Recently, there has been a trend by 

researchers to focus on the design optimization of SRM to fulfil the requirements of EVs, such as 

maximizing the output torque and reducing torque ripple [49]. In [50], the design and optimization of 

SRM are presented to produce a consistent output torque at high-speed operation. This paper focuses 

on the initial design of this motor and optimizes the electromagnetic design to achieve a high output 

power of 8 kW at a high speed of 100,000 rpm. A novel magnetic parameter design approach of 
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SRM is presented in [51]. This methodology is based on the nonlinear characteristic of flux linkage, 

and the multi-objective optimization function is utilized to accurately calculate the design parameters 

without overly depending on the designer's experience. In [52], the SRM design optimization using 

the layered technique has been presented based on a multi-physical analytical model of SRM. 

Taguchi algorithm is employed to examine the level of effect of the primary geometric dimensions 

on the dynamic performance. In [53], A two-step design optimization procedure is proposed to 

reduce the torque ripple of the DSAFSRM without compromising its efficiency. 

Additionally, the suggested DSAF-SRM is compared with a double-sided radial flux SRM in 

output torque, torque ripple, power density and efficiency. In [54], a 6/4 SRM with a misaligned 

segmental rotor is introduced in order to produce maximum torque with a low torque ripple. The 

segmental rotor has a 15-degree misalignment to achieve a one-layer 2D structure with a short flux 

path structure. In [55], a new geometry for SRM depending on the rotor pole skewing is presented to 

mitigate the torque ripple. This paper uses a differential evolutionary algorithm based on a multi-

objective function to build an asymmetrical skew rotor-SRM. The optimization parameters are 

selected for an enhanced design with a lower torque ripple than a conventional structure. In [56], a 

comprehensive analysis of the advancements in the modelling and design optimization of SRMs 

using Machine Learning (ML) based Intelligent methods. 

4.2. Control strategy improvements 

Today, control technology has become the most appropriate choice for reducing torque ripple 

due to the developments in semiconductors, Integrated circuits, and power electronics converters. 

This development has brought a significant revolution in the possibility of controlling and improving 

the performance of the SRM. According to the operational theory of the SRMs, the tiny gradients of 

inductance in the minimum and maximum inductance zones lead to low phase torque in these 

regions. Therefore, the torque falls in the region of phase commutation and produces a high torque 

ripple [44]. Control technique enhancements are simpler and more affordable than motor topology 

design to mitigate the torque ripple. The enhanced control strategies for reducing torque ripple can be 

categorized into two major techniques: Torque control and current control [5,6], as shown in Figure 

7. To get a superior control strategy performance, the following techniques should be improved to be 

compatible with the overall drive system.  

4.2.1. Torque control strategy 

Torque Control is essential for the electric propulsion system in EV applications. It should 

follow the torque reference fed by the torque controller unit with fast response to enhance the 

dynamic performance at different operating situations of the electric vehicle, such as accelerate, 

decelerate [57]. As for SRM, torque control can be categorized into direct, indirect, intelligent 

control, and other methods, which will be covered in more detail in the following subsections. 

4.2.1.A. Indirect torque control 

1. Open loop current sharing 

The open loop current control technique is utilized to acquire the average torque directly from 

the phase current of the SRM. The basic concept is computing the shape of phase current offline to 

achieve zero torque ripple, which depends on the capability to track the current profile [58], as 

shown in Figure 8. This approach directly utilizes the taken values of three currents from the lockup 
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table I = f(T, θ), which is calculated according to the rising and falling capability of the current (as 

well as concerning minimizing torque ripple or another imposed requirement) for each operating 

case. This approach has the benefit of being able to achieve a minimum torque ripple that is 

restricted only by switching frequency. In addition, the motor's efficiency can be maximized in this 

method. However, this method suffers from some drawbacks, such as the sensitivity to any changes 

in the variables of this motor. Also, it needs a large memory space to store the current profile 

data [58]. In [59], the current sharing method uses the simulation to determine the inductance and the 

rate it varies with the rotor position for each motor phase involved in producing positive torque. The 

current magnitude is changed using the PWM approach following the rotor position to reduce torque 

ripple. Two positive generating phases are simultaneously turned on to minimize the torque during 

commutation with various PWM. In [60,61], an effective methodology is developed to reduce torque 

ripple through coupled simulations of finite element analysis and dynamic simulation. This coupled 

simulation is used to detect the required current profile and fine the tuning of the current shape. The 

suggested approach was built to operate from zero to maximum speed, as the application would 

allow. In [62], a new method for computing current profiles will reduce the torque ripple SRM 

produces under normal and one open-phase fault conditions. In addition, a new scheme to the current 

profile calculation offline for torque ripple mitigation is proposed. To suppress the torque ripple in 

SRM, [63] suggests five new optimization techniques. The phase-current profile has been optimized 

in these techniques using the simplex approach based on a genetic algorithm. These optimization 

processes are tailored to two optimization techniques: The simplex method and the genetic 

algorithm. The torque ripple during commutation is minimized in [64] using closed-loop control and 

the speed signal ripple. It is simpler and less expensive to utilize a speed sensor or estimator to get 

the speed signal than it is to use a torque sensor. This method can capture the torque ripple data using 

a signal processing approach from the speed signal. 
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Figure 8. Open loop current sharing. 

The results demonstrate that the torque ripple reduced through the commutation period by 

finding the appropriate shaping of current. A comparative study was conducted for a different 

precomputed current profiling approach for torque ripple reduction [65]. Additionally, the suggested 

approach provides lower average currents and allows for applying a peak current restriction.  

Additionally, it aids in quantifying the variables affecting torque ripple that are problematic for other 

approaches. A hybrid speed ripple minimization solution for SRM is presented in [66], which 

combines current profiling, effective tracking error elimination, and excitation approaches. The 

suggested method can accomplish the decrease of stator vibration and the enhancement of torque 

generating capacity. A common sharing approach for current and flux-linkage control is presented 

in [67] for the high-performance control of SRM. This method shares current and flux linkage 
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between the phases, significantly reducing the torque ripple. However, it also has the ability to 

mitigate the torque ripple drastically. 

2.  Torque sharing function (TSF) 

TSF is one of the most effective and popular indirect control approaches for torque ripple 

mitigation in the SRM drive system. This strategy is performed by employing the static 

characteristics of this motor through TSF, which distributes the total torque among the motor phases 

utilizing TSF, as shown in Figure 9. The output of TSF is the reference torque for each phase, which 

is transformed into a reference phase current utilizing the torque inverse model (i-T-θ) of SRM. 

Then, a current controller is employed to control the feedback current to follow its reference current 

by hysteresis or PWM control. Moreover, to ensure that the produced torque from each phase is 

stable, the TSF employs the turn-on, turn-off, and overlap angles according to the rotor position to 

independently generate reference torque signals for each phase [68]. The TSF could be utilized in a 

linear or nonlinear function. Due to the nonlinear SRM features considered, the linear TSF is not 

quite effective because the torque ripple is extremely problematic according to the rotor position. 

In [69], a genetic algorithm is employed to identify the turn-on and overlap angles for various TSFs. 

This optimization algorithm tries to mitigate the torque ripple and cooper loss in SRMs running at a 

wide range of speeds. In [70], an offline optimized TSF based on a multi-objective function is 

proposed for minimizing torque ripple. The suggested TSFs with various Tikhonov factors are 

compared with the classical TSFs, such as linear, cubic, and exponential, considering efficiency and 

torque–speed characteristics. In [71], an off-line Optimization algorithm is used to identify the 

optimal switch-on and overlap angles of sinusoidal TSF for every operational point of SRM. An 

optimized TSF based on modified ant colony optimization (ACO) is presented in [72] to improve the 

output torque and minimize the RMS phase current of SRM during a broad range of operating speeds. 

An improved TSF was utilized in [73] to compensate for the torque error with the incoming motor 

phase due to its lower rate of change of flux linkage based on the absolute changing rate of flux 

linkage. The suggested method is compared with traditional TSFs (sinusoidal, cubic, and linear) to 

effectively investigate minimizing the torque ripple and enhancing performance during abroad range 

of speeds. An optimal current profile is achieved in [74] by utilizing a developed TSF. In addition, a 

robust current controller is derived using the Lyapunov stability theory to follow the current 

accurately. The suggested approach offers minimal torque ripple, higher efficiency, and enhanced 

anti-disturbance capabilities. In [75], a new TSF is presented to provide a lower current following 

error by adopting a new current reference generation approach and optimization algorithm. An 

offline calculation based on an optimization algorithm is employed to obtain the phase current 

reference from the torque command for minimizing the torque ripple and copper losses. Two-torque 

ripple mitigation control techniques based on TSF are presented in [76]. The first method uses the 

torque to minimize current ripple, and the other method is the direct instantaneous torque control 

method, which leads to a reduced torque ripple. A novel IITC approach based on hybrid TSF is 

introduced in [77]. The hybrid TSF originated to overcome the torque following error issue during 

phase demagnetization by re-profiling the reference torque section of the incoming phase to be the 

perfect mirroring of the measured torque of the outgoing phases. Thus, the torque profile is improved 

with less torque ripple due to excellent torque monitoring capabilities in this approach. The torque 

ripple and disturbance for an SRM drive are reduced by a piecewise TSF presented in [78] based on 

an enhanced linear active disturbance rejection control (LADRC) and modified coyote optimization 

algorithm (MCOA). First, the piecewise TSF is used with an enhanced linear extended state observer 

to minimize the torque ripple, which has minimal influence on the current peak value and the rate of 
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change in the current value.  Then, the MCOA is suggested to find the optimum switching angles and 

the coefficients in the piecewise function and LADRC  to get better comprehensive performance. 
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Figure 9. Schematic diagram of a torque control strategy based on TSF. 

 

3. Average torque control (ATC) 

ATC is one of the most significant traditional torque control methods for SRM drive systems. 

The main benefit of this approach is that the reference phase current remains fixed throughout one 

excitation cycle. It can be utilized at a broad speed range and requires constant reference torque and 

discrete rotor position [79]. The drawbacks of this strategy are that it generates significant speed 

oscillations and fluctuations at low speeds due to torque ripples throughout the phase commutation. 

In this method, to produce a constant average torque, the torque of each phase can be obtained from 

the saved data using the torque sharing look-up table according to iref , θon, and θoff, as depicted in 

Figure 10. The commended torque in this strategy can be divided into phases according to the 

reference current (iref) and motor speed (ωm), where the current ripple should be minimized as low as 

possible to generate output torque with a low ripple. In addition, to achieve precise operating 

conditions, the control factors, including reference current, turn-on angle, and turn-off angle, can also 

be optimized.  

The SRM for light electric vehicle (LEV) applications is accurately and dynamically controlled 

by a control method that combines offline pre-calculated control variable sets and closed-loop 

control [79,80]. The open loop control system is sensitive to changes in machine parameters, which 

are affected by operating conditions. The control variables that are estimated off-line usually diverge 

from the reference commands. To avoid the undesirable divergence between reference and actual 

torque, it becomes desirable to follow the average torque by altering the closed-loop control 

parameters with online computation. To determine the online average torque of an SRM, a new 

technique was developed in [80]. This new method of estimating the average torque and energy ratio 

can be applied to closed-loop torque control. In addition, this paper developed an approach to 

calculate the average torque by estimating the machine variables, such as phase current and phase 

voltage for one phase of the motor. This calculated torque can be utilized for on-line feedback 

control. In [81], a simple quadratic equation is utilized to determine the switching angles based on 

the motor's speed and phase current values to enhance the efficiency of low low-power SRM motor. 

An improvement of the ATC method was proposed in [82], based on a current-peak regulation 

approach to the control torque in low-speed chopping mode and high-speed single pulse control. This 

technique provides a smooth transition between two modes of operation. A speed control approach 

based on average torque control was proposed in [83]. The control parameters are determined 

according to multi-objective criteria to optimize the performance of SRM. 
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In [84,85], a search algorithm based on a multi-objective function was employed to optimize the 

excitation angles offline. This algorithm produces high-output torque and mitigates torque ripple 

using the ATC technique for electric scooters and EV applications. In [86], a new method of ATC 

strategy of SRM is proposed to get high operating performance for EVs. This method uses an online 

average torque estimator with Current chopping control-angle position control (CCC-APC) hybrid 

crossover control to improve performance over a broad speed range. In addition, a genetic algorithm 

(GA) is utilized to identify the optimal excitation angles to provide high efficiency and low torque 

ripple. In [87], a novel ATC technique of SRM based on a hybrid flux–current locus control strategy 

with a micro-stepping process is proposed. Despite its complexity, the benefit of the suggested ATC 

is that it generates the commended average torque over any given range of rotor angles. 
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Figure 10.  Schematic diagram of ATC method of SRM. 

4. Vector control (field‑oriented control) 

The vector control strategy is widely utilized in AC machines to enhance torque control 

performance due to Park’s transformation. Regretfully, there is no such transformation to isolate the 

position from the flux-linkage and torque of SRMs in the early development of SRM control 

techniques, even in the linear situation, as shown in Figure 11. However, in the last decades, the 

field‑oriented control was developed based on the average value of the first-order inductance and the 

relationship between the q-axis current and torque was derived, but only for the unsaturated 

SRM [88].  

In the vector control method of SRM, a sinusoidal current is applied to each circuit along with a 

DC offset, constituting the unipolar excitation current. This excitation current comprises DC and AC 

components, generating the virtual rotor flux and a rotating stator field. Hence, the SRM can be 

operated similarly to traditional AC machines. Notably, it has been demonstrated that continuous 

current excitation can reduce the vibration and the acoustic noise of the SRM in the vector control. 

Nevertheless, it is essential to note that the application of vector control to SRMs operating in high-

speed regions hasn’t been fully utilized because of uncertainties surrounding factors such as bus 

voltage, switching frequency, and inverter specifications required to facilitate vector control in high-

speed drives. In [89], vector control was proposed for the SRM drive. The drive conditions for the 

SRM drive system in high-speed regions, such as switching frequency and bus voltage, are 

established in the high-speed region and can realize low vibration. A complex rotating vector control 

strategy is suggested in [90] for estimating the air gap torque of an SRM. The Vector method can 

handle an arbitrary number of spatial harmonics of the inductance saliency and saturation for 

enhancing the air gap torque of the SRM. The d-q control method-based flux-weakening control for 

SRMs has been introduced in [91]. The d-q control of SM has been modified to operate with SRMs 
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by eliminating negative aspects and nonlinearities. The suggested controller has a simple structure 

and effectively eliminates the requirement of switching angles controller from the SRM control 

structure. To mitigate the torque ripple by controlling torque within a specified hysteresis band, a 

vector control method of SRM is introduced in [92] that employs a combination of fuzzy logic and 

ANN controllers. Vector control for SRM drives with unipolar current excitation has been suggested 

in [93]. This method involves the application of a sinusoidal current with a DC offset to each circuit, 

resulting in an excitation current comprising both DC and AC components. A novel approach for 

torque ripple reduction based on vector control of SRM is presented in [94]. The proposed strategy 

used a non-sinusoidal dq transform and the derivatives of inductance as main variables to mitigate 

the torque ripple average current and enhance the efficiency while minimizing the copper losses. 
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Figure 11. Vector control method of SRM. 

4.2.1.B. Direct torque control 

1. Instantaneous Torque Control (ITC) 

Recently, the algorithm of instantaneous torque control has made significant advancements and 

has been widely used to solve the issues of indirect torque control approaches.  The important 

advantages of this approach are that instantaneous torque is taken into account as a control variable 

directly; torque to current conversion and closed-loop currents control is no longer necessary. 

Besides, ITC can rapidly eliminate errors instantly with an excellent dynamic response, as well as 

torque ripples, which will be minimized [95]. The ITC scheme has three approaches: indirect ITC 

(IITC) dependent on torque sharing function (TSF), direct torque flux control (DTFC), as well as 

direct ITC (DITC). Figure 12 depicts the schematic diagram of the DITC approach for the SRM 

drive system. The instantaneous torque is estimated online, and then the torque error (∆T) is utilized 

as a control variable input without any current loop to generate an appropriate switching signal for 

the SRM drive. An improved DITC-based adaptive commutation algorithm is suggested in [96] to 

enhance the average torque and efficiency of SRM by appropriately adjusting the switching angles in 

real-time. In [97], a modified ant colony optimization (ACO) is employed to precisely find the 

optimum excitation angles to enhance the performance of the DITC approach for SRMs. This 

strategy focuses on minimizing the torque ripple and improving the efficiency of the SRM. An 

enhanced DITC with adaptive switching angles is proposed in [98] for enhancing the SRM's 

performance. In this control approach, the switching angles are dynamically tuned to enhance the 

commutation interval so that the DITC can flexibly set this process. An enhanced DITC method of 

SRM is presented in [99]. The proposed scheme includes a torque error compensation and an 
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uncomplicated online torque estimator. The switching angles are optimized to achieve high torque 

per ampere (MTPA), low torque ripple, and highest efficiency. Besides, this paper thoroughly 

compares the proposed DITC, IITC, and ATC strategies. The comparison results demonstrate that 

the proposed DITC performs better with a low torque ripple. In [100], the researchers suggest a TSF 

based on adaptive turn-on angle for improving a DITC strategy to mitigate the torque ripple in 

commutation overlap regions. This method presents TSF and provides the appropriate candidate 

voltage values for various sectors, where the working cycle is divided into six sectors in this method. 

A modified PWM-DITC based on a fixed switching frequency is suggested to suppress the 

torque ripple [101]. The PWM is employed to modulate the torque deviation, and the optimum 

excitation angles are chosen according to the PWM modulation signal and the rotor sector position. 

This method provides an effective solution for the issue of shaft breaking in the starting and 

generating system of SRM. In [102], an optimized DITC approach for SRM and a new adaptive 

dynamic excitation technique is proposed. In terms of torque tracking during commutation areas, two 

operational modes have been established.  Besides, the excitation angles are dynamically adopted by 

a phase current endpoint detector and a torque error regulator throughout each electrical cycle. This 

strategy generates full torque to mitigate the torque ripple and improve system efficiency. In [103], a 

new control strategy is suggested, which combines adopted hysteresis and PWM in DITC. This 

proposed approach accounts for the benefits of the PWM and the hysteresis methods.  With this 

method, the torque error will be minimized by PWM in DITC. In [104], an improved IITC approach 

of SRMs for EVs is introduced to satisfy the vehicle's requirements, which include low torque ripple, 

maximum torque per ampere (MTPA), and excellent efficiency throughout the full speed range. An 

online analytical method is utilized to achieve the optimal torque production turn-on (θon) angle. In 

addition, an improved TSF is proposed to compensate for torque following errors. 
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Figure 12. Direct instantaneous torque methods. 

2. Model predictive torque control (MPC) 

Model predictive control (MPC) has been used successfully in industrial control applications 

and, recently, in industrial power electronic systems. The major goal of model predictive control in 

electric motor drives is to identify the converter's optimum switching state at each switching instant 

to satisfy specific constraints and meet the stated performance objectives using a system's predictive 

model. The MPC has been used in the SRM to predict the torque, current, and flux of the SRM, as 

shown in Figure 13 [105–107]. The MPC is considered an appropriate strategy to handle the 

nonlinearity of the magnetic characteristics of SRM and address the complicated switching rules. 

Different MPC techniques for SRM have been suggested [107]. An MPC strategy based on choosing 
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candidate voltage vectors in six regions is presented in [108]. The cost function is established to find 

the optimal voltage vector from candidate voltage vectors to reduce the torque ripple and copper loss. 

A model predictive control strategy is suggested in [109] to suppress torque ripple. This 

approach predicts the torque and current through the torque-current-position and the current-flux-

position two-dimensional look-up tables, respectively. The cost function is based on torque and 

current and then optimized to acquire an ideal control signal. Authors in [110] employed the 

candidate voltage vectors (CVVs) algorithm based on the modified model predictive torque control 

(MPTC) method for SRM to minimize torque ripple and increase system efficiency successfully. 

This method of MPTC is modified in three ways. The first way, the flux linkage estimation, is 

omitted compared to traditional MPTC. Second, the commutation region of the SRM is redefined, 

and according to the optimal torque contribution profile, the motor's electric cycle is split into six 

sectors. The total number of CVVs is then minimized to 2 or 3 at each control period, and each 

sector's CVVs are adopted depending on phase torque characteristics. The cost function is 

established to minimize torque ripple and reduce copper loss by choosing the optimal voltage vector 

from CVVs. 

A modified MPTC-based TSF approach for SRM is presented in [111]. This strategy distributes 

the torque reference to each phase through a sinusoidal TSF approach. Then, the predictive torque 

control strategy is employed to follow the phase torque reference and minimize the torque ripple. 

In [112], an online adaptive approach is presented to modify the excitation angles for SRM via the 

finite control set model predictive control (FCS-MPC) approach to decrease the negative torque 

generation. The proposed method uses a simple online scheme to modify the switch-off angle for a 

single prediction horizon FCS-MPC to eliminate negative torque generation. As discussed, the FCS-

MPTC strategy is considered one of the most effective methods to minimize the commutation torque 

ripple. The limited voltage vectors lead to high-frequency torque ripples. To solve this problem and 

improve the torque control performance, a continuous control set (CCS) model predictive torque 

control (MPTC) approach with low torque ripple is presented in [113]. This approach is established 

based on the optimal torque references, which can be optimized by the Lagrange multiplier method. 

In [114], a four-quadrant operation strategy of SRM based on the PWM-MPC method with an online 

adaptive commutation angle was proposed. In this strategy, a composed of MPC and deadbeat 

predictive control (DPC) is utilized in the commutation region to improve the performance of SRM. 

A new indirect MPTC method is presented in [115] to suppress the torque ripple of SRM in EV 

applications. The proposed method is established by two aspects: Torque inverse model to provide 

an additional error compensator and robust predictive current controller seeks out all possible 

switching states and utilizes the switching state that minimizes cost function as the optimum output. 

The proposed IPTC technique, which is simple to implement as well as suitable for electric vehicle 

driving, indirectly achieves immediate torque control through accurate current following. In [116], 

two novel strategies are introduced based on TSF, DITC, and MPC to suppress the torque ripple of 

SRM further. The first method combines TSF with DITC strategy, and the second approach 

integrates MPC and TSF. According to the results, both strategies can successfully reduce torque 

ripple, but the TSF + MPC strategy can follow the reference torque more precisely and provide low 

torque ripple. 
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Figure 13. Model predictive torque control (MPC) for SRM. 

4.2.1.C.   Intelligent control 

1. Iterative learning control 

Iterative learning control (ILC) is particularly well suited to improve output tracking 

performance uncertain non-linear systems together with high-precision analysis without the 

requirement to determine the system's parameters [117]. The main concept is repeatedly applying a 

simple algorithm to the system or plant to obtain perfect tracking, as shown in Figure 14. Therefore, 

it is an iterative technique for determining the optimal system input to ensure the output is as near the 

required one as possible [118]. As a result, it is considered for SRMs' dynamic torque control to 

mitigate torque ripple. To enhance torque control performance SRM, a developed ILC is built in two 

stages [119], including determining optimal phase voltages for accurate waveform tracking and 

suitable phase current waveforms for the specified torques. In [120], a control system for SRM using 

a direct instantaneous torque controller called (DITC), which is based on the ILC method, is 

suggested. 

Moreover, the ILC performs efficiently to reduce torque ripples in steady-state operations. 

Because ILC learning takes a limited time, performance loss will occur over transient periods. The 

proposed method employed a sliding mode controller (SMC) combined with ILC to get torque track 

and improve control response during transient periods. An adaptive ILC strategy based on the 

accurate magnetization characteristics of the SRM is suggested in [121]. The proposed method 

included torque ripple controller (TCIL) and energy conversion loss controller (ECIL) schemes to 

reduce the torque ripple and energy conversion loss. A novel direct torque controller based on a 

spatial ILC approach for SRM is suggested in [122] to emphasize torque ripple reduction. The ILC 

employed a linearized magnetization characteristic and a straightforward learning rule to produce the 

appropriate control signal. This approach is appropriate for applications needing ripple-free constant 

torque at low speeds. An optimal torque controller combining the TSF method and the current 

controller is presented in [123] for reducing the torque ripple along with the stator current-oriented 

approach.  To optimize the TSF scheme, a current controller based ILC considers the mutual 

inductance with simultaneous two-phase commutation. An improved control method is presented to 

mitigate the torque ripple of SRM using the ILC approach [124]. In the proposed method, a feed-

forward learning compensator is employed to control the torque pulsations produced in SRM due to 

the overlapping of phase currents by finding the appropriate current profile for a reference torque and 

then applying it to the phase winding. 
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Figure 14. Schematic diagram of iterative learning control. 

2. Artificial intelligence techniques  

Artificial intelligence techniques have recently been utilized to convert human knowledge into a 

form that computers can understand. The intelligent control can be utilized for offline or online 

current optimization to optimize the SRM problems further and minimize the torque ripple. It has 

significant self-learning and adaptive capabilities such as fuzzy logic, neural networks, neural-fuzzy 

networks, and evolutionary algorithms [125]. 

Fuzzy logic control 

Fuzzy Logic control is a popular intelligent control method that deals with nonlinear or complex 

control systems for better performance because it has strong stability and flexibility. Besides, having 

an exact mathematical model of the controlled item is unnecessary when designing a fuzzy controller. 

Figure 15 depicts the fuzzy logic controller to control the torque of SRM. In [126], a fuzzy logic 

controller is presented to suppress the torque ripple and modify the performance of SRM. Then, a 

performance comparison between the fuzzy and PI controller is implemented to depict the validity of 

the suggested controller. In [127], a fuzzy logic control based on the current modulation approach for 

direct torque control of SRM. The proposed modulated reference phase current uses a fuzzy logic 

controller in order to address the system's nonlinearities so that the torque ripples are further reduced. 

A novel adaptive TSK fuzzy sliding mode controller based on DITC without a torque sensor is 

suggested in [128]. The sliding mode controller (SMC) executes fast responses to mitigate the impact 

of uncertainties and external disturbances. The coefficients of the adaptive method (AFC) are tuned 

online by Lyapunov stability theory to improve the performance of SRM. An enhanced fuzzy logic 

control based on the TSF strategy is suggested in [129] to mitigate the torque ripple and enhance the 

dynamic response of the speed controller of SRM. This approach employs a combination of fuzzy 

and PID control to adjust the proportion factor automatically.  In fuzzy control, the scale factors for 

speed and torque are self-tuned by the output torque characteristics. In [130], a fuzzy controller 

based IITC strategy is proposed to minimize the torque ripple of SRM. First, a fuzzy controller is 

implemented to produce a compensation current in accordance with the torque error. Then, the input 

factor is reset by human experience, and the output factor is properly designed depending on the 

inductance deviation.  
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Figure 15 Fuzzy logic control for torque control of SRM.  

Artificial neural network 

The artificial neural network (ANN) technique is inspired by the human brain model. Its 

benefits include self-repair capacity fault tolerance, organic learning, and linear data 

processing [131]. An artificial neural network (ANN) is introduced in [132] to mitigate the torque 

ripple of SRM. In this scheme, the ANN technique is employed to predict the stator current and flux 

to improve current and speed response regarding reduced torque ripple during a broad speed range. 

In [133], a genetic neural network controller-based DTC approach is suggested to minimize the 

torque ripple of SRM. In the proposed approach, suitable data are selected for training and testing, 

which leads to weight adjustment in the network. Therefore, the error is decreased, demonstrating the 

accuracy of the voltage vectors chosen from the vector table and producing improved torque 

response throughout a wider speed range. In [134], An improved TSF technique-based artificial 

neural network for four quadrants operation of the SRM is presented to mitigate the torque ripple as 

depicted in Figure 16. The ANN is employed to translate the torque reference to the appropriate 

current. An online reference torque neural network (RTNN) based on the TSF approach is proposed 

in [135] to modify the reference torque. The RTNN is constructed on the TSF approach as a single-

input and single-output network. Then, the parameters of RTNN are trained according to the torque 

error to reduce the torque ripple. Last, the suggested approach is compared with the fuzzy torque 

compensation and PD current compensation methods to demonstrate the successfulness of the RTNN 

method. An intelligent torque control method based on the BP neural network is suggested in [136]. 

At first, the fitting generalization capability of the BP neural network is used to establish the 

nonlinear relationship between speed, load torque, and turn-on angle. After that, the control method 

can automatically tune the turn-on angle according to the operation conditions to reduce the torque 

ripple. 
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Figure 16. TSF based on ANN control for torque control of SRM. 

Fuzzy-neural network 

The neuro-fuzzy inference system (ANFIS) incorporates the merits of both approaches, artificial 

neural networks and fuzzy logic systems [137]. The schematic diagram of the ANFIS controller for 

torque control is the same in Figure 15 or maybe in Figure 16, with replacing the control unit, 

depending on the suggested approach. To mitigate the torque ripple of SRM, a hybrid ANFIS 

method is presented in [138]. The proposed approach is employed to find the optimal switch-off 

angle while the switch-on angle is estimated analytically. Then, the ANFIS method is compared with 

the analytical method and fuzzy logic controller to depict the ANFIS controller's ability to decrease 

torque ripple. To enhance the torque control performance of SRM, a genetic neural network is 

integrated with a DTC approach is suggested in [33]. The proposed scheme chooses the appropriate 

data bits for GA training and testing. Also, the artificial network fuzzy inference system-based DTC 

strategy is presented in [139] to provide high torque with minimized torque ripple of SRM 

throughout a broad speed range. In [140], an improved intelligent control based on the Lyapunov 

stability theory controls SRM to improve the speed response and minimize the torque ripple. The 

suggested method is divided into two sections; the main section is the speed controller, and the other 

part is the torque controller. The speed controller uses an adaptive fuzzy controller based on the 

Hamilton–Jacobi–Bellman theory to optimize the controller's parameters. Moreover, the torque 

controller is implemented using an ANN for torque estimation, reducing the torque ripple. In [141], 

ANFIS based on space vector Modulation is utilized to choose voltage space vectors better. The 

SVM-DTC provides a fixed switching frequency, while the suggested ANFIS technique controls the 

torque and stator flux. This technique improves the torque profile with low torque ripple and flux 

ripple. 

Machine learning 

Machine learning is a modified generation of intelligent control systems with a high rate of 

automatic learning with a simple structure, making it ideal for use on an industrial scale [142]. 

In [143], a machine-learning approach is presented based on two pre-trained ANN models to 

minimize the torque ripple throughout a broad speed range of SRM. The proposed pre-trained ANN 

is utilized to predict the actual torque according to the motor's current and position and to compute 

the optimal reference currents for each phase to minimize the torque ripple. A novel intelligent 

technique based on a computational model of the mammalian limbic system and emotional processes 

(BELBIC) is suggested in [142] to control the speed of SRM with a focus on torque ripple mitigation. 

In this technique, simple and effective controls are achieved by employing machine learning without 
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the requirement of any classical controllers and completely independent of the motor parameters. 

The suggested approach offers fast auto-learning and high tracking potency, which leads to improved 

speed response with reduced torque ripple. The same intelligent controller (BELBIC) method 

combined with the PI conventional controller is presented in [144] to control the torque of SRM 

indirectly. This technique is employed to modify the transient state and improve dynamic response. 

4.2.1.D.   Other torque control strategies  

There are many other strategies for reducing the torque ripple; a general overview of a few of 

these methods is covered in this section. The feedback linearization (FBL) technique applies state 

feedback to the nonlinear system in order to linearize the closed-loop system [145–147], thereby 

compensating the motor's nonlinear properties. This approach has significant limitations, such as the 

need for a precise motor model that requires high currents during low-speed operation and the 

measurement of state variables (position, velocity, and stator currents). To overcome these 

disadvantages, an adaptive feedback linearization approach has been utilized based on multi-

objective optimization by genetic algorithm [148] to identify the optimal coefficients of the feedback 

linearization control approach. Another method utilized to enhance the torque control strategy’s 

performance is the non-linear control method [149,150]. A nonlinear internal model control (IMC), 

depending upon an appropriate commutation technique for SRM, is proposed in [151]. This control 

approach is robust for internal and external disturbances caused by modeling uncertainties. It can 

successfully offset the system's nonlinearity. 

Also, researchers have utilized non-linear control methods called variable structure control 

methods for reducing the torque ripple [152–155]. In [155], the variable structure control strategy is 

utilized to mitigate the torque ripple of SRM with robust torque control. To enhance the performance 

of the structure control method to suppress the torque ripple, a combination of variable structure 

control theory and fuzzy logic control is suggested in [154]. In [156], a sliding mode control is used 

based on variable structure control, which has many features of fast response, insensitivity to 

adjusting parameters and disturbances, and strong robustness. Besides that, this method is not 

dependent on the parameters and disturbances. References [157–159] developed the sliding mode 

control as a torque control strategy to mitigate the torque ripple. 

Comparison of torque control methods for torque ripple reduction  

The torque control strategies discussed in this paper are categorized into four methods, 

including their sub-sections, as shown in Figure 4, and all these methods are utilized to minimize 

torque ripple with control of the average torque. The effectiveness of these strategies is assessed and 

compared through a list of some key aspects of each strategy, as shown in Table 1. The table offers a 

general comparison regarding advantages, disadvantages and complexity, but it does not specify the 

best way to mitigate torque ripple. Therefore, it is essential to carefully assess the application's 

specific requirements to select the most suitable control strategy. The choice of the torque control 

method of SRM application is based on the vehicle itself and factors such as the desired torque 

precision, speed range, cost constraints, and available computational resources. 
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Table 1. Comparison of the SRM torque control strategies. 

Control 

Method 

 

Adopted Technique Merits Drawbacks Implementation

& 

Computational    

Complexity 

Ref. 

Current 

Profiling 

Intelligent current profiling 

online 

Reduce the torque ripple during 

commutation; Detect the required 

current profile offline. 

It needs large memory space to store 

the current profile data and sensitivity 

to any changes in the actual variables 

of SRM. 

Complex/Low [58-67] 

TSF A modified offline TSF Powerful and efficient; determined 

torque waveforms; smooth torque over 

a wide speed range; Better current 

tracking performance. 

Need i-T-θ characteristics; offline 

designed torque waveform; A high 

bandwidth current regulator is needed; 

Cannot realize high torque commands. 

Complex/High [68-78] 

 

ATC 

online average torque 

estimator with optimized 

switching angles offline. 

High torque per ampere ratio; 

The reference phase current remains 

fixed through the excitation, easy 

implementation and lower cost. 

The torque ripple is high at low speed. Simple/low [79-87] 

FOC Improved FOC based on a 

non-sinusoidal d-q 

transform 

Removes the need for an excitation angle 

controller; Less torque ripple 
 

Vector control has not been applied at 

high speed; Complicated d-q transform. 

Complex/Mediu

m 

[88-94] 

 DTC 

 

Improved DTC based on 

adaptive commutation 

strategy 

Reduced the torque ripple; Direct 

controlled instantaneous torque. 

Require prior knowledge of machine 

parameters. 

Medium/Low [95-104] 

MPC Online adaptive PWM-

MPC method 

Torque ripple minimizes and reduces a 

theoretical delay; optimized current 

profiles are not required. 

Required accurate information about 

the machine's characteristics. 

Simple/high [105-

116] 

ILC Adaptive iterative learning 

control 

Effective tracking torque, reduced 

torque ripple, do not require an 

accurate plant model. 

Complex learning control, finite time-

limited 

Complex\High [117-

124] 

Intelligent 

control 

 

Independent controller on 

the SRM model using an 

Adaptive Intelligent 

controller (ANN, FLC, 

ANFIS) 

Strong, Self-learning, Adaptive 

Capability; Not requires model 

parameters; low torque ripple. 

Complex computational process. Complex/High [125-

144] 

Feedback 

linearizatio

n control 

 

Feedback linearization 

control with PID  

controller 

 

A feedback loop has no nonlinear 

variables; 

provide the necessary decoupling 

between currents. 

Requires very high flux variations;           

an accurate motor model is required; 

Difficulties in practical 

implementations. 

Complex/ 

Medium 

[145-

150] 

Variable 

Structure 

Control 

Sliding mode variable 

structure 

Low sensitivity to plant uncertainties, 

fast response, and easy implementation. 

Chattering; difficult to build an 

accurate nonlinear model. 

Complex/High [150-

159] 

4.2.2. Current control strategy 

The current control is the most popular scheme to mitigate the torque ripple acoustic noise and 

vibrations in SRMs. In addition, Torque control is greatly impacted by setting the current profile in 

each phase of SRM. The phase current is shaped according to several predetermined parameters to 

achieve various speed, torque, power, and efficiency goals across various operating conditions. A 

control stage usually tracks the current and demands excitation angles θon and θoff. Where the output 

of the current controller is the reference voltage provided to the inverter via hysteresis current control 

(HCC) or a modulation stage in the form of PWM [160]. Generally, there are many major 

classifications of current control in SRM based on HHC or PWM techniques, which are detailed 

discussion in the following subsections in accordance with the block diagram in Figure 7. 

4.2.2.A.  Model-Independent methods  

1.  Current chopping control (CCC) 

Current chopping control is a common strategy employed for controlling the current of SRM 

due to its simplicity and independence on the machine parameters [161]. A hysteresis controller with 

a predefined hysteresis band is employed in the strategy. Hard and soft chopping methods are based 

on defining upper and lower boundaries and modifying the excitation signal to maintain the 

instantaneous current within the error band [162]. These techniques are characterized using positive, 
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negative and zero voltage levels. The discrete number of possible duty cycles (1, 0 and ‒1) and the 

limited sampling frequency substantially impact this strategy's ability to track the reference current. 

Various approaches have been used in the literature to enhance the current tracking capabilities. 

Figure 17 depicts the general diagram of a hysteresis current control strategy. The CCC approach is 

presented in [163] to keep the current within a set hysteresis band, which leads to improved 

performance at low and medium speeds. The CCC strategy is improved in [164] to keep the SRM's 

torque within a set of hysteresis bands using an appropriate source voltage. To examine the effect of 

SRM's control settings on the dynamic response of the EV. A Fix angle current chopping control 

(FA-CCC) and adaptive variable angle current chopping control (AVA-CCC) is proposed in [165] to 

enhance the torque speed characteristics of SRM. To achieve high performance with minimal torque 

ripple at the low switching frequency, a current chopping controller based on fuzzy logic control is 

suggested in [30]. The proposed controller achieves this by altering the duty cycle of each interrupted 

period. In [166], a modified current chopping controller based on a segmented PWM variable duty 

cycle according to the inductance characteristic curve is used to mitigate the torque ripple. 
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Figure 17. General schematic diagram of SRM hysteresis current control. 

2.  Intelligent current control   

The intelligent control method has been researched as an efficient candidate solution instead of 

the hysteresis controller while falling within model-independent methods [167]. These approaches 

commonly incorporate a learning mechanism to augment the controller's effectiveness. This may be 

achieved either online, with the controller modified using experimental measurements, or offline, 

using the results of consecutive simulations. These approaches offer several notable benefits, 

including their capability to handle highly nonlinear behaviors and adapt to parametric changes over 

time.  

Furthermore, these methods can also be applied with PWM, leading to a consistent switching 

frequency. In contrast, these approaches' primary limitations are the slow learning rate, the 

requirement for training data, and their substantial complexity. In [168], a new current tracking 

strategy using ILC for SRM is proposed for tracking the reference current with fewer PWM cycles. 

The iterative learning current control approach utilizes real-time periodic learning at various rotor 

positions to calculate the optimal duty ratio to track the reference current. A hybrid torque controller 

that integrates optimal TSF and ILC approaches is presented in [169]. The TSF is used to optimize 

the torque and current profiles to mitigate the torque ripple. The iterative learning control (ILC) is 

used as a current controller to provide effective current tracking. An ANN-based algorithm is 

proposed in [170] for speed and current controllers to enhance the performance of SRM with lower 
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torque ripple. The Levenberg–Marquardt algorithm is employed for optimizing the parameters of the 

ANN for both controllers, resulting in efficient and faster convergence during training and testing. 

The reference [178] uses a novel compensation scheme-based fuzzy logic control and ANFIS to 

compensate for the phase current and produce the optimum possible phase current waveform. In the 

suggested method, the fuzzy logic and ANFIS controllers control the motor current to reduce the 

torque ripple, where a compensating signal is added as input to the current loop control. In [171], An 

improved ANFIS based on a Hybrid SSD-SFO algorithm for speed and current control of SRM to 

mitigate the torque ripple. In the proposed strategy, two ANFIS controllers control the speed and 

current. Additionally, the Hybrid SSD-SFO (social ski-diver-based sunflower optimization) 

algorithm was used to optimize the switching angles of SRM and the parameters of the ANFIS 

controller for both the current and speed controller. The simulation results demonstrate that the 

suggested approach performs effectively with less torque ripple. 

Other intelligent control techniques offer adequate current tracking for SRMs based on machine 

learning presented in [172]. A new Q-learning scheduling strategy for controlling the current of SRM 

is proposed in this paper to minimize the torque ripple. The reference current path is followed using a 

table of Q-cores originating on an SRM model's nonlinear surface without including any model 

parameters data to schedule the infinite horizon linear quadratic trackers (LQT) handled by Q-

learning algorithms, as illustrated in Figure 18. 
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Figure 18. The Q-learning scheduling control scheme for optimal current control of SRM. 

4.2.2.B.  Model-Based methods 

1.  Linear current control (PI-PWM) 

In this strategy, the current control of SRM can be accomplished by linear control theory (PI, 

PD, PID) to offer appropriate consideration. The PI(D) controller calculates a PWM signal's duty 

cycle based on the tracking current error. In this approach, the dynamics of the current loop are 

regulated by the sampling time and filtered to reduce the current ripple caused by the switching 

frequency [173]. This technique is simple to implement with both digital and analogue electronic 

circuits. However, the digital implementation is better for improving the performance of SRM. 

Figure 19 shows the schematic diagram of a linear current control method of SRM. Besides, the 

PWM technique has benefits like low current ripple and a consistent switching frequency than the 

hysteresis controller [174]. However, because of the nonlinear behavior of the SRM, constructing 

linear controllers is a difficult issue. To address this issue, researchers suggested a modified linear 

current controller to improve the response of this approach. 

A digital PWM current controller is implemented in [175,176] to enhance the performance of 

SRM. The controller switches between two high and low states using a digital approach to achieve 
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the desired speed. In [177], a linear controller is implemented for a small signal model of SRM. Two 

PI controllers are utilized for both speed and current loops. The machine's back-EMF is a disturbance 

that influences SRMs' current control. Therefore, some methods employ EMF compensation as a 

solution. A digital PI current controller based on an improved back-EMF decoupling scheme is 

suggested in [174]. This technique improved the performance of SRM by adjusting the PI parameters. 

In [178], a simple current control approach depending on narrow voltage pulse injection and a single 

threshold is presented for an SRM to achieve senseless control. A two PI-PWM closed-loop control 

is implemented to enhance the response of the suggested method. In [175], an adapted parameter of 

the PI-PWM current controller of SRM is introduced to achieve a fast dynamics response with a less 

current ripple of the proposed current controller. This method proposes a modified sampling scheme 

to avoid the control loop's PWM delay. To superior the performance of the linear current control, an 

adaptive PI-based current control is developed [179]. Two speed and current control loops are 

utilized to minimize the torque ripple. 
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Figure 19. Schematic diagram of a linear current controller. 

2.  Model predictive current control 

Predictive current control is an excellent alternative to traditional current control strategies. It 

can deal with nonlinearities and constraints with many features such as online optimization, low 

current distortion, and effectiveness in dynamic response [180]. The MPC strategy consists of three 

paradigms, which include the estimation phase, prediction phase, and cost function design step, as 

shown in Figure 20. The states employed for estimation and prediction are chosen according to the 

designed cost function [106]. In [181], a predictive control approach is presented to track the current 

reference in an SRM accurately. The proposed technique tracks two reference currents to achieve a 

fast dynamic response through a broad range of torque-speed characteristics. In addition, it offers a 

better torque profile with a low torque ripple. In the variable switching frequency control, the 

inverter could be within the range of audibility, which results in acoustic noise issues. Therefore, a 

predictive current control strategy based on fixed switching frequency was suggested in [182]. The 

proposed method employed deadbeat predictive current control to predict the desired duty ratio of 

the PWM pulse for a certain reference current in each digital time step through a broad range of 

speeds. To enhance the performance with minimized torque ripple for the SRM, the incorporation of 

the predictive current control method with a TSF approach was presented in [183,184]. The proposed 

strategy in [183] tracks the reference current at a low switching frequency to minimize the pulsation 

torque ripple. In [184], An enhanced MPC strategy based on offline training and online adjustment 

for the phase current to avoid the model mismatch issue. The proposed approach utilized a radial 

basis function (RBF) neural network to adjust the model parameters, enhancing the tracking 

performance and minimizing the torque ripple. A new control approach based on the TSF utilizing 

predictive current control is suggested in [144] to mitigate the ripple of torque and current. In 
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addition, an optimized PWM control is introduced by precisely predicting the duty ratio of the 

voltage using the data of the motor running parameter. 

Moreover, an MPC method based on a fixed-switching frequency utilizing a multiplexed 

current sensor for SRM is presented in [185]. In this method, the only current sensor used in this 

system was time division multiplexing for phase current sampling, and the duty ratio of PWM was 

constrained to maintain an adequate sampling time for A/D conversion. This strategy aimed to 

reduce costs with guaranteed performance. In [186], A virtual-flux finite control set MPC (FCS-

MPC) approach of SRM is developed to control the phase current through a flux linkage-tracking 

algorithm indirectly. This technique uses a discrete voltage equation to predict a virtual flux and 

determines the switching mode, resulting in the minimum error concerning the flux reference. 
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Figure 20. Schematic diagram of model predictive current control for SRM. 

3.  Sliding mode current controller 

Sliding mode control (SMC) is one of the effective methods for addressing control of highly 

nonlinear dynamic systems because it has a good dynamic response and superior robustness in 

controlling power converters and motor drive systems [187]. Sliding mode control has been 

suggested as a good solution to control the SRM, especially the speed control approach. It is 

employed to control the current to minimize the torque ripple. Figure 21 illustrates the architecture of 

sliding mode current control of SRM. In [188], an SMC-PI current controller is introduced to 

mitigate the torque ripple and enhance the efficiency of SRM. A second-order sliding mode current 

controller based on the super twisting algorithm is proposed in [189] to achieve high performance 

and lower current ripples. In [190], a digital control scheme based on SMC is suggested to offer a 

carrier-less pulse width modulation. The proposed algorithm presents a good dynamic response with 

minimized torque ripple and a constant switching frequency. A fixed-switching-frequency SMC is 

proposed in [191,192]. In [191], an integral SMC is presented as an inner control loop of the TSF 

method to mitigate the torque ripple. In [192], an integral SMC is proposed to acquire a fixed 

switching rate and low sampling rate for mutually coupled SRM and asymmetric bridge converters. 

An adaptive SMC is suggested in [193] to improve the performance of SRM. 

Additionally, a modified technique is adaptive to identify the combined uncertainties, enhancing 

the robustness against coefficient uncertainties and other external disturbances. Moreover, the 

suggested control employed the Lyapunov theory to investigate the stability. A PWM super-twisting 

SMC for SRM with a fixed-gain construction is presented in [194] to achieve appropriate reference 

tracking and torque ripple minimization. A digital SMC-based robust model-free PWM current 

control technique of SRM is presented in [195]. The suggested method enables the total reduction of 

the phase inductance or flux-linkage identification process. Besides, this method accurately tracks 



130 
 

AIMS Electronics and Electrical Engineering                                                         Volume 8, Issue 1, 104–145. 

 

the reference phase current at a consistent switching frequency. It presents a powerful tracking 

response during a wide operating range of the SRM with low current ripple. 
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Figure 21.  Block diagram of SMC for SRM. 

Comparison of current control methods for torque ripple reduction  

The current control strategies for SRMs are developed to exploit their specific characteristics 

for EV applications. These strategies can be divided into two major sections with subsections that 

aim to mitigate the torque ripple of SRM, as depicted in Figure 7. Here is a comparison of several 

typical SRM current control strategies regarding advantages, limitations, model information, 

complexity, and switching frequency, as shown in Table 2. The model-independent methods like 

current hysteresis control are the most common due to their simplicity and effectiveness in tracking 

the current profile without the need for the model information. However, it provides variable 

switching frequency, may produce a high current ripple, and can present fixed switching frequency, 

but it requires data and extensive training.  On the other hand, model-based methods like MPC and 

sliding mode control offer an optimal current profile, low torque ripple, and enhanced efficiency 

while considering nonlinearities. However, they require accurate motor models and involve higher 

computational demands. 

Table 2. Comparison of current control methods. 

Control   

Method 

 Adopted Technique                      Merits            Drawbacks Complexity Switching 

frequency 

Model 

Information 

Ref. 

Current 

chopping 

control 

Optimized the 

switching angles by 

metaheuristics 

algorithm 

Minimized the torque ripple 

improved the efficiency and 

torque profile with low copper 

losses 

Complicated 

optimization for offline 

calculation, high current 

ripple, and variable 

switching frequency. 

Low Variable No [161

-

166] 

Intelligent 

current 

control 

Offline optimization 

algorithm-based 

artificial intelligence 

techniques (FLC, 

ANN, ANFIS) 

Provide adequate current 

tracking with highly nonlinear 

behavior, improving 

performance during a wide 

range of torque-speed 

characteristics. 

Required training data, 

slow learning process 

Medium Variable/Fixed No [167

-

172] 

Linear 

current 

control 

Adopted PI parameters 

with back-EMF 

compensation 

Simplicity implementation for 

both digital and analog circuits, 

low current ripple 

Required tuning PI 

controller gains 

Low Fixed No/Yes [173

-

179] 

Model 

predictive 

current 

control 

 

A virtual-flux FCS-

MPC method 

High precision control, ability 

to handle constraints and 

disturbances, online 

optimization,  and low current 

distortion 

High computational 

requirements, 

implementation 

complexity 

High Variable/Fixed No/Yes  

[180

-

186] 

Sliding 

mode 

current 

control 

 

An adaptive sliding 

mode-based PWM 

Low sensitivity to 

plant uncertainties, good 

dynamic response and superior 

robustness 

high-frequency 

oscillations (chattering) 

Medium Fixed No/Yes [187

-

195] 
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5.  Conclusions 

To fulfill the growing demand for effective and sustainable transportation solutions, electric 

vehicle (EV) propulsion systems have grown quickly. SRMs have captured significant attention for 

EV applications due to their inherent simplicity, robustness, high reliability, and rare-earth-free 

composition. However, the SRM encounters numerous challenges requiring the widespread adoption 

of innovative solutions. Among the primary issues is the torque ripple issue resulting from its 

inherent structure, which can lead to noise and vibration that affect the SRM performance for EV 

applications and constraints further developments. Therefore, to achieve the requirements of the 

propulsion system in the EV market, the performance of SRM must be outstanding with low torque 

ripple and high energy efficiency. As a result, the improvements in modeling and simulation 

techniques are crucial for accurately predicting motor performance and optimizing design parameters 

to minimize these effects. Furthermore, developing advanced control strategies is essential to 

mitigate torque ripple and improve the efficiency and reliability of SRMs. Additionally, the 

innovations in power converter topologies for SRMs in EVs can lead to more compact, efficient, and 

cost-effective solutions.  

This review paper presented a comprehensively survey and analyzed torque ripple mitigation 

strategies in SRMs. It discusses the converter topologies' switching angle schemes and focus on 

control strategies to minimize the torque ripple. Each strategy's effectiveness, advantages, and 

limitations are critically assessed, considering factors such as torque ripple, efficiency, 

implementation, and computational complexity in real-world applicability. Besides that, it discusses 

methods developed by the researcher. It summarizes the research status and predict future research 

directions, aiming to guide for improving low-noise SRM drives in EV applications. 
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