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Abstract: With the abundance of raw data generated from various sources including social networks, 

big data has become essential in acquiring, processing, and analyzing heterogeneous data from 

multiple sources for real-time applications. In this paper, we propose a big data framework suitable for 

pre-processing and classification of image as well as text analytics by employing two key workflows, 

called big data (BD) pipeline and machine learning (ML) pipeline. Our unique end-to-end workflow 

integrates data cleansing, data integration, data transformation and data reduction processes, followed 

by various analytics using suitable machine learning techniques. Further, our model is the first of its 

kind to augment facial recognition with sentiment analysis in a distributed big data framework. The 

implementation of our model uses state-of-the-art distributed technologies to ingest, prepare, process 

and analyze big data for generating actionable data insights by employing relevant ML algorithms 

such as k-NN, logistic regression and decision tree. In addition, we demonstrate the application of 

our big data framework to facial recognition system using open sources by developing a prototype as 

a use case. We also employ sentiment analysis on non-repetitive semi structured public data (text) 

such as user comments, image tagging, and other information associated with the facial images. We 

believe our work provides a novel approach to intersect Big Data, ML and Face Recognition and 

would create new research to alleviate some of the challenges associated with big data processing in 

real world applications. 

Keywords: big data; machine learning; social networks; sentiment analysis; facial recognition; 

distributed computing 

 



69 

AIMS Electronics and Electrical Engineering  Volume 5, Issue 1, 68–92. 

1. Introduction 

In the age of innovation and digital transformation, data is generated in huge volumes and in an 

increasing velocity that constitute a recently popular term, „big data‟. Recently, big data (BD) related 

technologies have developed into a hotspot that attracts great attention from academia, industry and 

even governments around the world.  However, three of the key features of big data (3V‟s), namely 

multi-sources (Variety), huge volume (Volume) and fast-changing (Velocity), make it difficult for 

traditional data processing methods such as data mining to effectively support the processing of 

heterogeneous big data. To address the computational complexity of big data applications, there is a 

need to explore new approaches for building scalable big data processing architecture. Apache Spark 

along with tools from Hadoop eco system, enables complex analytics processing using in-memory 

computational techniques. The principal advantage of such big data technologies [1‒3] is in their 

ability to provide computation-intensive operations upon massive data sets in real-time with 

significant accuracy and performance. Therefore, big data technologies could be considered ideal for 

facial recognition applications that warrant resource-intensive image analysis using machine learning 

(ML) algorithms on large corpus of image data collected from multiple internal and external big data 

sources.  However, big data [4,5] and facial recognition [6] form two disparate advancements in 

technologies that are coming into some common convergence only recently.  

Facial recognition with machine learning capabilities is a hot research topic due to its various 

applications in social media, surveillance systems, online shopping, banking, law enforcement, 

personalized marketing and access control for Internet of Things within various radical real world 

scenarios  For instance, recent popularity of social networking hubs are requiring security and law 

enforcement in future to apply Artificial Intelligence (AI) on big data streams of facial data in 

real-time. AI-enabled facial recognition is required by retail and banking industries to understand 

consumer behavior patterns to improve their personalized products and services. While there is a 

plethora of facial recognition technologies, they need to be adapted with the massive upsurge of 

social networks and Internet of Things that are accompanied by big data of facial images stored and 

retrieved from several intertwined and disparate real-world application domains. Further, the process 

of facial recognition from a large set of images or videos is complex. Classical ML approaches 

involve domain knowledge of the data to create features, and such techniques are not applicable for 

the radical applications of the future. There are practical challenges of real-time processes apart from 

interpersonal variations due to similarities between two persons such as twins, or intrapersonal 

variations due to differences in two different image data of the same person contributed by several 

factors such as pose, obstruction, age, expression, quality and noise. Modern ML approaches require 

automatic feature extraction from large image data sets that remain invariant to such variations by 

adopting novel deep learning techniques. This forms the main motivation of this research work to 

propose a big data framework for providing an effective solution to the said problem. 

In this paper, we leverage on recent developments in public large datasets, social networking 

public media and relevant ML algorithms to transform the conventional view of addressing facial 

recognition issues with a contemporary perspective. Our key contributions of this work are three-fold 

forming a modest initial step towards advancing an important research in this direction. These are 

given below 

1. An approach first of its kind to intersect big data, machine language and facial recognition through 

the proposal of a big data architecture by employing two main workflow processes, namely BD 

pipeline and ML pipeline. 
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2. Application of the proposed BD architecture for developing a novel facial recognition prototype as 

a use case. We develop a prototype as an amalgamation of BD pipeline to include image data 

pre-processing, real time data streaming along with ML pipeline processing on stored facial 

images against real time streams.  

3. Our unique method augments image analysis with text analytics on selected attributes such as 

social media tweet, and face tagging associated with social networks towards improving facial 

recognition.  

The rest of the paper is organized as follows. In Section 2 we provide a review of related work 

and the unique contribution of our work. Section 3 describes our proposed big data architecture with 

the details of the solution model using relevant big data technologies. In Section 4, we demonstrate 

the application of proposed model for an effective facial recognition solution using machine learning. 

Finally, we provide the conclusion of our study in Section 5. 

2. Related work 

The global market for software taking benefit of facial recognition is expected to grow from 

$3.85 billion USD in 2017 to $9.78 billion USD by 2023. The Asia Pacific region, which holds 

around 16% of its market share, is the fastest-growing region [7]. This section is divided into three 

parts. In these parts, we provide an overview of some exiting works done from three perspectives: i) 

feature engineering and hyper parameter tuning for image or video processing, ii) facial recognition 

and learning algorithms, and iii) big data architecture and technologies. 

2.1. Feature engineering and hyper parameter tuning for images and videos 

Feature selection reduces the dataset by removing irrelevant or redundant features. Based on 

the feature extraction techniques used, face recognition uses global or local feature extraction 

methods. Global feature extraction algorithms used by researchers include Principal Component 

Analysis (PCA), Linear Discriminant Analysis (LDA), Canonical Correlation Analysis (CCA), and 

Two Dimensional PCA (2DPCA) [8]. Local feature extraction includes PCA, Support Vector 

Machines (SVM), Local Binary Pattern (LBP), and Local Binary Pattern Histogram Wavelet 

Feature (LBPWT) [9]. Global features can recognize pervasive features in the image or video such 

as texture, shape and other background information. Local features can use them for guidance and 

focus on smaller subset of processing.  

Recently, a k-NN algorithmic variant was employed for expression mining using facial image 

tagging and classification in the Hadoop and MapReduce environment as a cloud hosting [10]. The 

experiment used 3120 images of 120 persons (65 male and 55 female candidates) from the AR public 

Face database using PCA, CCA and LDA combination. This is quite contrary to other studies 

conducted historically where PCA has been considered as the performant popular choice for facial 

image processing [11,12]. 

The combination of multiple local features can also improve the accuracy of face recognition. 

However, one shortcoming observed is that the local features tend to be sensitive, which makes them 

vulnerable to local lighting, expression, posture and other factors, and lack of robustness. Therefore, 

the best feature engineering models that deal with facial recognition effectively try to combine the 

advantages of both local features and global features. Our work attempts to combine selected global 

and local feature algorithms as appropriate. 
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2.2. Facial recognition using learning algorithms 

Facial recognition is a technology for identifying or verifying a person in images or videos. 

The first face recognition [13] algorithm published in 1991 used eigenfaces [12]. In the past, Parkhi 

et al. used a convolutional neural network (CNN) [14], and He et al. used Laplacian faces [15]. 

However, in recent works, very Deep Neural Network [16] is observed to be in use towards 

achieving lightweight performance and high accuracy rates from loss correction and hyper 

parameter tuning [17‒22].  

Generally, the process of facial recognition is performed in two key steps: (1) Feature extraction 

and selection, and (2) Classification of objects. Recent deep learning developments have introduced 

several other methods, such as the use of facial recognition algorithms, three-dimensional 

recognition, skin texture analysis, and thermal cameras. While deep learning for facial recognition is 

well researched in the field, its influence on feature engineering and hyper parameter tuning lack the 

required importance and exploration. This paper attempts to fill that gap by combining deep learning 

algorithms with enhanced feature tuning. 

2.3. Big data architecture and technologies 

Big data architecture and technologies are being well researched in certain domains such as 

HealthCare [23], Smart Initiatives [24‒26], and Climate Change [27]. Researchers have published 

technical stacks as big data architecture templates using combination of tools from the Hadoop Eco 

System and distributed computing frameworks such as Spark, Flink and Beam. However, there are a 

few research observations regarding the hybrid architectural models that use batch as well as 

real-time processing towards facial recognition in the literature. Our work is a humble step towards 

bridging this gap. 

3. Proposed big data architecture 

Training complex face recognition on images and videos can take hours, days, or even weeks. 

In most cases, a single multi-GPU machine is enough to train large models in a reasonable amount 

of time. However, for more demanding real-time face recognition workloads, spreading 

computational loads across multiple machines can dramatically reduce training time, enabling rapid 

iterative experimentation, and accelerating deep learning deployments. Thus, big data processing 

architectures and parallel processing frameworks like MapReduce and Spark play a key role in such 

frontiers. 

3.1. Big data technologies 

There are two main approaches to enhance facial recognition, namely model parallelism and 

data parallelism. The big data architecture relies on distributed cluster computing for pre-processing 

and classification tasks of the heterogeneous and disparate big data streams emanating from various 

data sources. In this context, data parallelism can be achieved from the regular Hadoop MapReduce 

stack as proposed in our technical stack. However, when it comes to model parallelism, in memory 

frameworks play a key role. Thus, we propose to use the Spark in-memory processing to achieve 

learning model parallelism. 
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Figure 1. Data vs model parallelism. 

To support both data and model parallelism, we adopt the common open-source choice of 

technologies, namely Hadoop distributed file system and HBase for collecting data from 

heterogeneous data sources in our proposed big data architecture. Our approach is to use a hybrid of 

both data parallelism and model parallelism illustrated in Figure 1, where the parallelism can be 

achieved using MapReduce framework of Hadoop. MapReduce is a programming model for 

processing large datasets that are employed in a variety of real-world tasks. Developers can specify 

the computation in terms of a map and a reduce function, and the underlying runtime system 

automatically parallelizes the computation across large-scale clusters of machines, handles machine 

failures, and schedules inter-machine communication to make efficient use of the network and disks 

[10,28,29]. However, research in the past have only focused on the feature-based batch 

implementation of facial recognition using MapReduce [29‒31]. However, for performance reasons 

we have chosen Spark over MapReduce for the facial recognition algorithms implemented in this 

work. 

Apache Spark [32] achieves high performance for both batch and streaming data, using a 

state-of-the-art DAG scheduler, a query optimizer, and a physical execution engine. The research 

carried out by Hazarika et al. [33] indicates that Spark can solve learning problems on large image 

data sets using in-memory iterative caching ML libraries that run on top of Spark Data Frames. In 

some cases, Spark outperforms Hadoop MapReduce in computational speed by 10-times in iterative 

ML tasks and up to 20-times for iterative applications [34]. This is because Spark leverages 

in-memory processing as compared to MapReduce which must read from and write to the disk. 

3.2. Proposed solution model 

The big data processing system we propose is powerful enough to identify or verify a face or 

understand a facial expression from digital images and videos, which we generally term as facial 



73 

AIMS Electronics and Electrical Engineering  Volume 5, Issue 1, 68–92. 

recognition. This system works by comparing the most common and prominent facial features from 

a given image (collected in real-time from various external sources) with the faces stored in a 

database. The facial recognition system also has the ability to understand patterns and variations 

based on an individual‟s facial textures and shape to uniquely recognize a person. 

We provide an architectural diagram of our proposed big data processing solution in Figure 2. 

It shows an end-to-end prototype architecture to ingest, cleanse, process and visualize facial 

recognition results for generating actionable insights (image is considered as an unstructured big 

data in our use case).  

 

Figure 2. Proposed big data architecture. 

Our proposed architecture integrates and automates ingestion, storage, processing and special 

analysis layers. The prototype consists of two main workflows to effectively process different data 

streams, namely (1) Big data pipeline and (2) Machine learning pipeline. We describe these two 

workflows below. 

1) Big Data Pipeline 

The main role of the big data (BD) pipeline is to automate the movement of huge data of 

different data types from external sources of data streams into a data lake for downstream analysis. 

In addition to moving data, we also use data from traditional relational databases, NoSQL databases 

and static data stores such as jpg/ mp3/ mp4/ json files so that these can be analysed by downstream 

processes more efficiently in the data lake. The key considerations of tools and techniques to 

implement the BD pipeline for our proposed big data architecture is that it can meet the following 

objectives: 

 to connect multiple types of data and file stores (e.g., relational & NoSQL databases, static 

file store for unstructured and semi-structured data), and  

 to provide custom scripting support for implementing data quality checks and pre-processing 

during the data ingestion phase. 

2) Machine Learning Pipeline 

The main role of the machine learning (ML) pipeline is to help automate the machine learning 

and parameter tuning of workflows as ML refers to learning patterns in the data. In other words, ML 
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can infer the pattern or nontrivial relationships between a set of observations and a desired response. 

The key considerations of tools and techniques to implement the ML pipeline for our proposed 

architecture is that it can meet the following objectives: 

 to support distributed computing so that a scalable pipeline is achieved, and 

 to provide functions and API‟s to implement feature analysis and iterative ML algorithms. 

Using the abovementioned pipelines, our proposed big data architecture is generic enough to 

make use of different sources of big data related to any application requirement including web 

crawlers to scrap information from real-time data streams / online public datasets as part of the data 

acquisition process. Lastly, we have also explored the management perspective of the entire solution 

by considering open-source workflow tools such as Apache NiFi and multi-node cluster 

management stack from Cloudera under academic license partnership.  

3.3. Big data pre-processing 

Data pre-processing is a quintessential step in data mining as it affects the quality of insights 

derived from the ML algorithms applied. A good face preprocessing stage will help improve the 

reliability of the whole face recognition system. In our proposed architecture, the big data 

pre-processing consists of the following five steps:  

i. Data Imputation: Data imputation involves representing missing values in a dataset. 

Imputation replaces the missing values with an estimate, and then analyses the full data set as 

if the imputed values were actual observed values. 

ii. Feature Selection: Automatic selection of attributes in data set that would help in pattern 

recognition are more relevant to face recognition systems.  

iii. Dimension Reduction: In order to perform the face recognition (classification) task with 

reduced complexity and acceptable performance, usually features that are irrelevant, redundant, 

or noisy are excluded from the representation. This is the process of reducing the number of 

random variables under consideration. 

iv. Data Balancing: A balanced training set leads to an equal feature space, improving recognition 

accuracy and fairness. This step forms the task of balancing the representation of classes. 

v. Discretization: The final discretization step is the process of transforming continuous functions, 

models and equations into discrete forms. 

The common bottleneck of these steps is the requirement for the model to facilitate a decision 

based on a collective representation of big data using a calculated estimation. These pre-processing 

steps require complex computations constrained by the number of dimensions or features to account 

for. As in the case of facial recognition application, the larger the dimensions, the more complex is 

the computation process. Hence, the main challenge faced in modelling is in translating the classical 

computational tasks (single instance) into a distributing computing task (MapReduce or Spark). 

This is an additional step that was not essential in traditional approaches. In addition, another area 

of concern is the accuracy or error rate of performing these tasks using distributed computing 

frameworks vis-à-vis classical computational task. 

Data pre-processing is a critical phase in data mining. Data in the real world may not be 

perfectly collected or collated with the right purpose. There are many reasons for the collected big 

data to be dirty and examples of issues are: distorted images, lack of focus, image tag errors, 
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inherent error in counting or measuring devices, external factors, etc. To address these big data 

issues, we identify existing work in these areas and use that to guide our proposal as presented 

below. 

i. Data Imputation - Handle missing values 

Data imputation is a procedure that aims to fill in the missing values automatically. In most 

cases, variables are correlated with one another and therefore, we can use variables containing 

values to estimate the most probable value for the variable with missing values. The presence of 

missing values can impact the model development process. There are various reasons leading to 

missing values in many datasets e.g., all the information may not be available, data could be lost, 

certain data could be left out for a particular reason, etc. The easiest way of dealing with missing 

values is to simply ignore the data sample with missing values. However, this method is impractical 

when the number of affected data samples is large, it can introduce bias and distortion to the data. 

One of the most popularly used imputation methods in image processing is based on the 

k-nearest neighbor (k-NN) algorithm[35,36]. The attribute average for all samples belonging to the 

same class provides a good estimate. Hence, we use k-NN algorithm for image data imputation in 

the proposed system.  

ii. Feature selection - Identify outliers and smooth out noisy data 

Outliers are observations that usually appear at the maximum or minimum end of a variable‟s 

possible value range, thereby skewing or distorting the distribution. If these rare, unusual, infrequent 

events are not of interest, outliers usually should be removed to avoid any adverse impact on the 

resulting model. 

Cosine similarity of the k-NN has been widely applied to detect and remove any kind of class 

noise. For example, the well-known Edited Nearest Neighbor (ENN) [10,37] consists of removing all 

data samples whose class labels do not agree with majority of their k-nearest neighbors. In [38], the 

authors proposed a variant of the ENN, which changes the class labels of inaccurate examples. More 

studies of k-NN based noise filters termed as edition-based models can be found in literature [39,40]. 

In addition, two new approaches to remove noisy data points for big data pre-processing were 

proposed in [41]. The first approach called homogeneous ensemble for big data (HME-BD) uses 

random forest as a single base classifier. The second approach called heterogeneous ensemble for big 

data (HTE-BD) uses three different classifiers: k-NN, logistic regression and random forest. Using 

multiple algorithms implemented in the Spark framework, the study reported that HME-BD is the best 

performing method overall in terms of original accuracy and computing time. Further, the number of 

data partitions had a low impact in the performance of their noise removal process, while the voting 

strategy of ensemble had a high impact in the classification performance. 

Considering the abovementioned previous research literature, we decided to use Open Source 

Computer Vision Library (OpenCV), an open-source library that includes several hundreds of 

computer vision algorithms to pre-process the images before submitting the spark ML pipeline. Open 

CV is capable of advanced image feature engineering such as changing color spaces, morphing, 

blending, contouring, segmentation, and deep transformations. In this work, we consider image 

processing aspects that are closer to face recognition such as gradient and edge transformations, 

foreground extraction and facial features. 

iii. Data reduction - Reduce number of variables 
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Complex data analytics may take a very long time to run on a big data set. Data reduction can be 

employed to obtain a reduced representation of the data set that is much smaller in volume while 

capable of producing the same (or almost the same) analytical results. The two main data reduction 

approaches are feature selection and feature extraction.  

For feature selection, several approaches have been proposed to enable data reduction techniques 

to pre-process big datasets. In [29,42], the authors perform feature selection on big datasets using the 

k-NN rule within an evolutionary mode. In [43], the authors utilized a feature-weighted version of the 

k-nearest neighbor algorithm for feature selection. In another work, a feature selection algorithm 

named BELIEF was proposed for processing big data with millions of features and implemented under 

the Apache Spark framework [44]. BELIEF, a distributed distance-based algorithm was developed 

with distances computed locally using a novel feature weighting estimation procedure to reduce the 

communication between partitions to improve performance by reducing process time and redundancy. 

In [45], a Hadoop MapReduce solution named MRPR was designed to enable feature extraction 

techniques to be applied on big datasets. On the other hand, [46] proposed Random Discretization 

Dimensionality Reduction (RD2R) in ensembles for dimensionality reduction and random 

discretization based on the Apache Spark framework. They used five big datasets with very different 

properties to show that their novel RD2R algorithm outperforms Random Projection Random 

Discretization (RPRD) and Random Forest in terms of stability, prediction accuracy and effectiveness. 

For the prototype development of our proposed model, we adopt Spark related data reduction libraries 

that are DataFrame compatible for performance reasons. We also employ k-NN feature engineering 

algorithms for facial feature selection and grouping.  

iv. Data balancing - Represent classes equally 

Problems due to highly imbalanced data are more noteworthy in big data environment where 

huge datasets are present. In [47], an evolutionary under-sampling (EUS) method was proposed for big 

data classification. The method involves two MapReduce stages: the first one builds a decision tree in 

each map after performing EUS; and the second one classifies the test dataset using a set of decision 

trees. The building phase is accelerated by a windowing approach in order to speed up the 

under-sampling process without any loss in accuracy. The EUS balancing procedure can be performed 

in a guided manner by using a genetic algorithm (GA) to obtain an optimal subset of instances. With 

MapReduce framework, several EUS processes when run over different chunks of the training set 

would help to create a model (a decision tree) with each dataset, and such generated models would then 

get aggregated into a classifier ensemble in the reduction phase. Additionally, to apply EUS in big data 

problems, two levels of parallelism were proposed with: (1) MapReduce, and (2) EUS using 

windowing. Another work [48], building on with previous work in [47], in-memory operations within 

Apache Spark were employed effectively to tackle highly imbalance datasets. We employ Naïve 

Bayes as the ML classifier to assess the quality of solutions. We follow similar balancing pipeline 

design of Spark framework, but we use decision tree classifier with additional ensemble model as 

shown in Figure 3. 
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Figure 3. Decision tree classifier using EUS. 

v. Discretization - Transform to discrete form 

A novel Distributed Evolutionary Multivariate Discretizer (DEMD) was proposed recently using 

evolutionary optimization and was implemented under the Apache Spark framework [49]. By 

applying on several huge real-world datasets, DEMD was shown to be more accurate with simpler 

discretization schemes than other algorithms, including Distributed Minimum Description Length 

Principle (DMDLP) and Naïve Bayes. 

Overall, we provide in Table 1 a summary of our literature survey by comparing the commonly 

used data pre-processing methods. For each of the five pre-processing tasks described above, we 

identify key methods studied in literature and compare the associated parameters such as the number of 

features, the number of instances, the memory size and the implementation framework adopted. 

Table 1. A comparison of commonly used data pre-processing methods. 

Reference Category # Features # Instances Size (GB) Framework 

[35] Missing values 73 2,534 0.0016 - 

[36] Missing values 9 1,473 0.0000 - 

[38] Outliers 8 615 0.0000 - 

[39] Outliers 11 1,025,010 0.0236 - 

[40] Outliers 11 19,020 0.0014 - 

[41] Outliers 2000 500,000 3.6000 Apache Spark 

[46] Data reduction 2000 500,000 3.6000 Apache Spark 

[45] Data reduction 41 4,856,151 1.4834 Hadoop MapReduce 

[29] Data reduction 631 65,000,000 7.4460 Hadoop MapReduce 

[44] Data reduction 631 65,000,000 7.4460 Apache Spark 

[47] Imbalance data 41 4,000,000 0.743 Hadoop MapReduce 

[48] Imbalance data 41 4,000,000 0.743 Apache Spark 

[49] Discretization 631 65,000,000 7.4460 Apache Spark 
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As evidenced from the summary of our literature survey given in Table 1, we observe that 

researchers prefer to use Apache Spark for both pre-processing and processing algorithms. Hence, we 

apply similar techniques for our big data processing in this study. We adopt HBase, HDFS and Spark 

as the BD pipeline technical stack. In conjunction to these we use special image libraries such as Open 

CV, MLlib, FaceNet and related deep learning algorithms that are compatible with Spark framework 

for the feature engineering and ML pipeline. 

3.4. Big data classification 

Among the popular classification techniques, we adopt the k-NN algorithm as it is most suitable 

for both image and text analytics as compared to other ML algorithms such as Naïve Bayes and 

Support Vector Machines that are biased for one data format over another. Also, the k-NN algorithm 

utilizes a lazy-learner approach which mimics learning by memorization, where the entire training data 

is loaded in feature space. The prediction is derived by comparing a new data point against the entire 

feature space iteratively to approximate its nearest neighbor (predicted class). This approach contrasts 

with eager learners‟ type of algorithms that constructs a model based on past observations (training 

data). It is also able to generalize into a single hypothesis that can cover the entire feature space for 

facial recognition. The key challenge when using k-NN is its resource-greedy computation due to its 

large memory footprint required to load and compute the entire feature space in memory. It could 

become computationally intensive to develop a bag-of-words model or a face recognition model that 

can comprehensively represent various features including a vocabulary of words for associating 

text-based information and other metadata usually available with facial images. Such novel 

considerations of multi-faceted features from various big data collections including social networks 

can enhance image classification. Thus, the large memory footprint problem of k-NN becomes much 

more compounded for big data applications such as facial recognition. In this context, among various 

classification algorithms, k-NN would benefit more for achieving the desired computational 

performance in real world applications. 

 
Figure 4. BD pipeline. 

The BD pipeline shown in Figure 4 ingests data from various sources into a single stream and 

prepares for further testing in the subsequent ML pipeline. For instance, the facial recognition 

pre-processing needs to first be able to retrieve the region of interest (ROI), followed by detecting 

features using histogram of oriented gradients (HOG). Then the facial image data is coded for RGB 

values, and a bounding rectangle is drawn at the border for each face region detected for visualization 
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at the current frame. Subsequently, normalization is implemented to perceive face under various 

lighting conditions using histogram equalization technique. Initially, RGB image is converted to YUV 

color space to decouple luminance (Y) and chromatic plane (UV). Then, histogram equalization is 

applied to the luminance channel, Y. The formula for histogram equalization, Hk is given as follows: 

𝐻𝑘 =   
𝑐𝑑𝑓𝑘 − 𝑐𝑑𝑓𝑚𝑖𝑛

𝑡 − 𝑐𝑑𝑓𝑚𝑖𝑛
 (𝑑 − 1) , 𝑘 ∈ 0, . . . 𝑑 − 1 

where cdfk  is a set of cumulative density function, t is the total number of pixels for a face image, 

and d is the color depth at Y channel. Histogram equalization enables more facial features to be 

extracted. The equalized face image is then converted back to RGB image for further processing in 

ML pipeline. 

4. Proposed classification (ML) model for facial recognition 

Facial recognition technology is getting increasingly sophisticated, which requires substantial 

computational power and the efficiency of the algorithm adopted plays a vital role. For reliable 

handling and efficient processing of large-scale multimedia stream data, there is a need for a scalable, 

fault tolerant and loosely coupled distributed system. In the case of media that is uploaded online via 

social network such as Facebook or Twitter, processing for data insights is quite challenging due to the 

inherent massiveness in the datasets. In addition, processing for gaining insights from sentiment 

analysis or facial recognition is even more challenging due to their complexity of feature engineering 

such as facial expressions. In the past, PCA has been chosen for facial recognition to represent a larger 

dimensional vector of pixels that could be structured from a 2-D facial image to the compact principal 

components of the feature space called eigenspace projection. Further, the k-NN algorithm is applied 

to the spatial feature vectors for dimension reduction.  

In this work, we employ Hadoop ecosystem and Spark framework due to their key features such 

as ease of parallelism and availability of in-memory facilities. For our facial recognition use case, we 

employ parallelism via MapReduce mechanism using Spark as it embraces divide-and-conquer 

approach for processing of large datasets successfully. In the context of our proposed model for the use 

case, there are two primary design goals: 

1.  To perform real-time ingestion of images data in distributed file system such as HDFS. 

2.  To support image analytics by augmenting sentimental analytics from the collected social 

media text information, thereby observing emotional similarities between the image and text 

content. 

Based on reported literature, we observe that (a) the feature extraction performance and the 

processing time for image classification are determined by the number of working nodes in the k-NN 

classifier, (b) the facial expression recognition rate has slight impact on PCA, and (c) the recognition 

rate with different PCA and Mahalanobis distance strategy are able to produce excellent result for 

neutral facial expressions. However, extreme lighting and covered face continues to be a challenge for 

PCA based facial recognition algorithms. We describe three main classification approaches, namely 

k-NN, k-means clustering and decision tree implemented for the use case in this work. 

4.1. K-Nearest Neighbors (k-NN) 

A k-NN classifier is a slow and lazy learner as it uses the entire training set each time when 
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testing an example is performed. When training a k-NN classifier, it exhibits a time complexity of 

𝑂(1). When classifying a new instance over a training set with m instances and n attributes, it 

exhibits a time complexity of  𝑂(𝑚𝑛 + 𝑚 log 𝑚 ) , where 𝑂 𝑚𝑛  is the time complexity for 

calculating the cosine-similarity between the test examples with the entire training set examples, and 

𝑂(𝑚 log 𝑚 ) is the time complexity for sorting the similarity when finding the k-nearest neighbors 

of the new example. In summary, with the increase in data size, the processing time of k-NN will 

increase exponentially. 

A Hadoop distributed processing with a MapReduce implementation of a k-NN classifier 

(MR-KNN) was proposed by mapping the training examples, followed by reducing the number of 

examples that are nearest to the test example [50]. The MR-KNN was reported to achieve a speed-up 

from 16 to 149 times when tested on a dataset with 1 million examples. The speed-up of the 

proposed implementation depended mainly on the number of maps and k neighbors used. These 

results were further improved by using an Iterative Spark implementation (kNN-IS), similar to 

MR-KNN framework, but using multiple reducers to speed up the result aggregation process [51]. 

4.2. K-Means clustering 

One of the simplest ML techniques for splitting a dataset is k-means, a typical non-hierarchical 

clustering algorithm. Its goal is to divide the sample into predetermined number (k) of 

non-overlapping clusters so that clusters are as homogeneous as possible with respect to the 

measurements used. The k-means algorithm is very efficient and perhaps the fastest clustering 

algorithm that can handle both long (many records) and wide datasets (many input fields). Based on 

clustering the training set using k-means clustering algorithm, a recent work proposed using 

landmark spectral clustering (LC-KNN) to increase the speed of k-NN [52]. After narrowing down 

the most relevant cluster, sequential k-NN was applied from a smaller set of examples to the test 

example. LC-KNN was evaluated on nine huge datasets showing reasonable approximation. Another 

study proposed cluster augmentation process (cKNN) to accelerate the speed of the k-NN [53]. The 

reported average accuracy for various datasets was in the range from 83% to 90%, depending on the 

number of clusters used. In addition, these results were improved when deep neural networks (DNN) 

were used to learn representative features for classification. 

4.3. Decision tree 

To solve the speed limitations in big data classification approaches using k-NN, we implement 

decision tree classifiers. A recent study had proposed two multivariate decision tree classifiers for 

dealing with large datasets [54]. The first classifier employed a random partition, and the second 

classifier employed PCA-partitioned method. Fully balanced binary trees were generated based on 

multivariate combination of weights and by adopting a median-based method to select the divide 

value. Many research studies conducted with big datasets have used a „divide and conquer‟ 

algorithmic principle of decision trees successfully. Such a decision tree approach requires clustering, 

splitting, or partitioning the data to a manageable size that can then be used by the classifier. 

5. Prototype implementation and results 

Recent advances in Social Networking (SN), Internet of Things (IoT), crowdsourcing and 
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cloud-based services have brought techniques and technologies of facial recognition, ML and big 

data to converge. For our facial recognition use case, we implemented an end-to-end prototype 

solution to ingest, process and analyze image-based big datasets using our proposed big data 

architecture (Figure 2). Next, we describe the BD pipeline and ML pipeline components for the 

implementation of the end-to-end facial recognition prototype. 

Stage 1: Big Data Collection 

Massive collections of facial images are available in various public datasets and SN hubs such 

as Facebook. We make use of public data sets from Facebook and Twitter to evaluate different 

techniques in facial analysis. Our prototype solution caters to data acquisition of facial images from 

such big data streams using web crawlers as well as from reliable data sources. The three main types 

of objects returned by Twitter used in our solution are described in Table 2. For our prototype 

development, we employ the latest beta version of v2 API of Twitter, which supports new features 

such as choosing specific fields to receive data within the response and streaming rules that allows 

changes without dropping connections.  

Stage 2: Big Data Source  

In this study, Twitter APIs with schema shown in Table 2 are used as the prime data source, 

media is used for facial recognition and tweet for sentiment processing, testing of text and image 

analytics integration, validating our integrated prototype for insight engineering. We use acquire live 

data for testing our prototype with tags and geofence. To overcome Twitter API quota restrictions for 

developers, we created two functions. The first function was designed to receive ~1% of all public 

Tweets in real-time based on specific ruleset, e.g. monitoring data based on certain Twitter user 

accounts or keywords. The second function was used for code testing and demonstrations since it 

allowed controlled incoming tweet data. A variety of features such as face tagging and geofencing 

were used in novel ways to select the dataset from real-time streams. 

Table 2. Tweet data set. 

Object Description 

Tweet The Tweet object has a long list of root-level fields, such as id (unique ID 

for each tweet), text (tweet content), and created at (date timestamp of 

tweet). Tweet objects are also the parent object to several child objects 

including user and media objects. 

User The user object contains Twitter user account metadata describing the 

referenced user. Fields included are name, username, date of creation of 

account, number of followers, tweet counts and more. 

Media If a Tweet contains media (such as images), then the media object can be 

requested using the media.fields parameter and includes fields such as the 

media_key, type and URL. 

Stage 3: Ingestion 

For implementing the Ingestion phase of the BD pipeline, we employed Apache Nifi and minifi 

to automate the process of ingesting data from the staging environment into Hadoop HDFS 
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seamlessly. We describe below two main steps for implementing the Ingestion of big data of the 

facial images in the pre-processing phase: 

i. Ingestion Step 1: In this step, Apache Nifi listens to the staging folders as shown in Figure 5. 

We developed Python scripts to perform data cleaning, data enrichment, and extraction of key 

attributes as well as to integrate multiple disparate source files of facial image data from the 

staging environment into a single dataset. We make use of Apache Nifi to execute these scripts 

to pre-process data and to store the output into an intermediate folder prior to transferring them 

into HDFS. 

 

Figure 5. Implementation of ingestion stage 1 of facial image data. 

ii. Ingestion Step 2: This step creates an additional Nifi workflow to listen to new files that 

require to be transferred into HDFS as shown in Figure 6. When a new file arrives, Nifi will 

perform a PUT command to move data from the host environment into Hadoop HDFS via a 

Web HDFS interface.  

 

Figure 6. Implementation of ingestion stage 2 of facial image data. 

Stage 4: Big Data Storage 

For this prototype implementation, HDFS was used as the file storage to store the images 

captured from the public tweets, and to reference image uploads of the target for facial recognition. 

To maintain within the storage limit, the storing and retrieval of images was constrained to a 

maximum of 5 images for each run. HDFS was also used to facilitate as a host for images utilised on 

the Tableau dashboard. After the data ingestion, for the pipeline processing, we had stored various 

image and text separately for further processing. These data were then placed in a staging 

environment (specific folders on local host) before they were ingested into HDFS. 

We made use of Cloudera cluster environment to implement our proposed facial recognition 

prototype. The main storage choice adopted was HDFS, and we employed Spark pipelines to deliver 

our proposed solution in a single node cluster. In addition, we employed Apache Ambari tool to 

monitor the Hadoop system resources and their performance. An example Ambari monitoring 

dashboard is shown in Figure 7. Such a dashboard is useful to manage/configure the Hadoop cluster 

based on the resources required for large amounts of facial image data that gets ingested from 

various big data sources into the system. 
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Figure 7. System performance monitoring dashboard. 

Stage 5: ML Process and Analysis 

The image dataset for facial recognition was captured by considering the real-world challenges 

such as variations in pose, illumination, expressions, background, etc. We obtained the training data 

using our own personal images that had been suitably anonymized. We used two sets of training data 

and one set of test data. For the first training dataset, we considered mostly frontal color images, with 

only one image per user. The second training data was the live real-time tweet stream feeds that was 

acquired from the big data processing pipeline as explained earlier. The cleansed data set consisted of 

multiple real-world images per user as shown in Figure 8. 

 
Figure 8. Training and testing data set in ML pipeline. 

For the actual ML pipeline proposed, our key solution focus was on its implementation using 

Spark. We invoked Spark‟s Pipelines API and customized our programs to automate the ML tasks 

required for the image-based feature process and analysis stage of implementation. We created a ML 
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workflow by integrating the Spark Transformers and Estimators as a sequence of pipeline programs 

using Spark ML. While a Transformer includes feature transformation methods and learned models, 

an Estimator includes learning model fitting and training on the pre-processed facial data. Figure 9, 

Workflow process and analysis of facial images in ML pipeline - provides a workflow of the process 

and analysis phase in the ML Pipeline for the facial recognition use case.  

 

Figure 9. Workflow process and analysis of facial images in ML pipeline. 

In general, the facial recognition implementation in Spark ML Scala builds a ML model in an 

ordered sequence of processes as follows: (1) Feature extraction, transformation and selection. (2) 

Predictive model training a based on these vectors and label. (3) Prediction using the generated 

model. (4) Evaluating the model (performance and accuracy). Spark MLib provides two top level 

abstractions to facilitate the development of this pipeline: transformers and estimators. A 

transformer implements a method transform() which will convert one DataFrame into another, 

generally appending one or more new column. For example, a transformer will take all the columns 

as features of each entry on the Data Frame and map it into a new column (feature vectors). The 

estimator will be responsible for applying the learning algorithm that fits or trains on data. It 

implements the method fit() that accepts a DataFrame, and produces a Model that is a 

transformer. We achieve image feature extraction using six selected features such as tags, face 

features, color, metadata and image features including labels. Batch training was conducted using 

k-means clustering algorithm (Figure 10). 

 

Figure 10. Sample spark ML code snippet for ML pipeline with k-means fit. 
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Real-time stream processing supported by Spark ML and Discrete Streaming techniques were 

employed to extract information from unbounded video stream data and to divide them into smaller 

chunks of image data. We implemented k-NN algorithm on Apache Spark platform using a hybrid 

spill tree approach to achieve high accuracy and search efficiency. The simplicity of k-NN and the 

lack of tuning parameters makes k-NN a useful baseline model for many ML problems, and is a 

best-fit for our study. Apache Spark consists of multiple layers of nodes and each layer of the k-NN 

classifier can be fully connected to the next layer in the network. For our prototype, nodes in the 

input layer were used to represent the input data. All other nodes mapped inputs to outputs by a 

linear combination of the inputs with the node‟s weights w and bias b and by applying an activation 

function. This can be written in matrix form with K+1 layers as follows:  

 𝑦 𝑥 = 𝑓𝑘( . . . 𝑓2   𝑤2
𝑇𝑓1 𝑤2

𝑇𝑥 + 𝑏1 + 𝑏2 . . . +𝑏𝑘) 

For the nodes in intermediate layers, we used the sigmoid (logistic) function:  

𝑓 𝑧𝑖 =
1

1 + 𝑒𝑖
 

For the nodes in the output layer, we used the softmax function:  

𝑓 𝑧𝑖 =
𝑒𝑧𝑘

 𝑒𝑧𝑘𝑁
𝑘=1

 

The number of nodes N in the output layer corresponds to the number of classes. Spark ML 

employs backpropagation for learning the model. We adopted factorization machines that can estimate 

interactions between features even in problems with huge sparsity such as the facial recognition 

problem of our use case. The spark.ml implementation supports factorization machines for 

classification. The formula used for factorization machines is given below: 

𝑦 = 𝑤0 +  𝑤𝑖𝑥𝑖

𝑛

𝑖=1

+    𝑣𝑖 , 𝑣𝑗  

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

𝑥𝑖𝑥𝑗  

The first two terms denote the intercept and linear term, and the last term denotes pairwise 

interactions term. The pair  vi , vj  describes the i
th

 variable with k factors. We employed factorization 

machines for establishing optimization criterion (logistic loss) with mean square error. Factorization 

machines can be used for classification through sigmoid function. To demonstrate our ML pipeline 

code, in Figure 11 we provide a sample code in SparkML for the image grabbing function (from a real 

time streaming source) and vector assembly of images with the selected features extracted from facial 

images of various users. When the functions are declared, we chain them up into a single pipeline. This 

pipeline in turn can be used to fit the training data automatically. This had helped to reduce the latency 

in training as the pre-processing and training functions were performed continuously in-memory as 

compared to processing the data in a step-by-step manner which would incur some cost in loading each 

processed instance in-memory after completing each ML step. 
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Figure 11. Sample Spark ML code snippet for image grab and vector assembler. 

In addition to ML, we used Spark to create logical views of the dataset for various queries to 

perform further analytics. Figure 12 gives sample code to demonstrate the image view creation. 

 

Figure 12. Image view creation. 

Stage 6: Visualization 

We developed the final visualization stage of our big data architecture to provide visual outputs of 

data analytics performed for the facial recognition system. We employed Apache Zeppelin built-in 

Apache Spark integration tools to perform the data visualization tasks. The analysis and interpretation 

of the processed data was directly extracted from HDFS. The visualization layer comprised of two key 

components as summarized below: 

i. Business Intelligence Dashboards - The logical views created from Stage 4 that were queried 

using Spark SQL were visually made available as business intelligence dashboards using a 

variety of dynamic graphical charting features. The tableau dashboards generated with a test use 

case data for images and tweet texts are shown in Figure 13 for facial recognition and Figure 14 

for sentiment analysis of tweets.  

ii. Machine Learning Evaluation - The results of the Sentiment Analysis model were also 

visualized to determine an evaluation of the ML model developed for the facial recognition 

prototype. Several metrics were used to evaluate our ML classifier implemented for the use case 

of our big data architecture. A visualization of one such metric is given in Figure 15 as an 

example. It shows that an area under curve (AUC) score of 0.952 was achieved under a receiver 

operating characteristic curve (ROC) that was generated for evaluating the facial image 

classification of our prototype. In ML, the ROC curve is obtained by plotting the true positive 
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rate (TPR) against the false positive rate (FPR) at various threshold settings, where TPR 

denotes the probability of correct facial detection and FPR denotes the probability of false 

detection. An AUC value close to 1 shows a high performance of the classifier. 

 

Figure 13. Face recognition dashboard (image blurred to protect privacy). 

 

Figure 14. Tweet dashboard. 
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Figure 15. Sample ROC curve. 

Result Discussion 

When retrieving the past seven days‟ worth of tweets via Twitter API from a user, the data was 

received as JSON objects and converted into a Spark DataFrame, which required the processing to be 

scalable and fast. This is essential because there may be a large number of tweets, and also there may 

be multiple users tweeting the same matching images. Each return from Twitter consisted of only 10 

entries per “page”, thus we had to iterate through the “pages” of the tweet entries until all tweets 

were retrieved. Thereafter, the different returns were merged into one Spark DataFrame. To manage 

the large data set for face recognition, the prototype was scoped into a particular geofence to restrict 

the search space. We observe from the returned tweets that a user may include geolocation 

information in some tweets and if not properly handled, it can cause an exception as different pages 

of tweet entries will have a different number of fields. As such, there was a need to check if 

geolocation information could be found in that particular page of tweet entries and if so, to be parsed 

accordingly. The above scoping constraints built into the script helped us to have control on the 

dataset loaded in memory at any point of the prototype development.  

As for text tweets that were relatively short, only basic data cleaning was required. Punctuation 

was removed and the text was converted to lowercase. Thereafter, tokenisation and removal of stop 

words were performed via the spark.ml library functions (Tokenizer and StopWordsRemover). 

Afterwards, words less than three or more than thirteen characters are removed. The result is a Spark 

DataFrame containing word counts, which would eventually be used to generate word cloud in 

Tableau. Separately, sentiment analysis is performed on each tweet and the sentiment scores were 

tagged to it. This was done using TextBlob. The sentiment scores were then classified into three 

categories, namely positive, neutral, and negative. Total counts of the tagged tweets were also stored 

as these would serve as useful summaries (descriptive analytics) for basic profiling. The integrated 

dashboard as shown in Figure 14 provides an illustration of the visualization of data insights from 

tweet sentiment analysis.  

6. Conclusion  

The use of big data technologies to store, process and analyze data has changed the context of 

knowledge discovery from data from various sources including social networks. This work intersects 
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three areas, big data, machine learning and facial recognition augmented with sentiment analysis of 

social engineering data as a modest initial step in this direction. This was achieved by proposing a 

novel big data architecture consisting of BD pipeline and ML pipeline and its use case for facial 

recognition application was demonstrated by implementing the prototype. 

Real-time stream processing supported by Spark ML and Discrete Streaming techniques were 

employed to extract information from unbounded video stream data into smaller chunks of image 

data. In particular, the data pre-processing and data mining tasks that were previously implemented 

in a single computation node have become suboptimal with big data warranting real-time distributed 

computing. ML models in distributed nodes are required to be re-developed by looking at only a 

subset of the observation space. To achieve this, we proposed a novel big data architecture that can 

operate optimally on images and text to augment insights on person‟s mood/sentiments. Further, the 

big data pre-processing methods and classification models adopted were guided by the 3V tenets of 

big data (Volume, Velocity and Variety). We demonstrated the application of our proposed big data 

architecture using a facial recognition and sentiment analysis integrated pipeline. We employed 

Hadoop and Spark frameworks and the associated ML libraries for open source streaming conversion 

and image pre-processing. We highlighted key implementation components and visualization of data 

analytics performed for the facial recognition use case. Further, our use case development and 

observations during implementation provide domain-specific future research areas that can be 

explored in big data environments. 

This paper presented a prototype pipeline using open-source image and text processing tools for 

rapid acquisition and visualization of a stream-specific dataset in the immediate aftermath of image 

conversion window with relevant pattern recognition algorithms. For the purpose of demonstrating 

our proposed architecture in this research work, the prototype pipeline is implemented to use a small 

number of interactively labeled real time data samples from open image and tweet data sets, and an 

active learning framework, coupled with unsupervised open grabber tool embedding. This facilitated 

to obtain a relevant corpus without extensive labeling or feature engineering effort. Using a more 

supervised, interactive and lightweight system, images from a large video corpus containing millions 

of unlabeled image frames can be employed and would be more helpful in selecting key image 

frames that access the facial recognition system. As an extension, in future we could perform 

comparison study using various cloud facilitated image recognition products such as AWS 

SageMaker, Rekognition and Cloud Vision, and benchmark against FaceNet and Open CV libraries.  

Finally, facial recognition technology, powered with big data and real-time stream processing 

abilities can help us solve difficult problems, increase security, and improve stakeholder interaction 

experience. However, the technology could be misused resulting in privacy invasion and security 

breaches. Hence, we recommend to advocate for strong digital ethics from perspectives of fairness, 

inclusiveness, accountability, trust and adaptability to be incorporated into the framework for future 

research.  
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