
AIMS Electronics and Electrical Engineering, 4(4): 359‒368. 

DOI: 10.3934/ElectrEng.2020.4.359 

Received: 15 October 2020 

Accepted: 30 November 2020 

Published: 01 December 2020 

http://www.aimspress.com/journal/ElectrEng 

 

Research article 

Developments in three-dimensional near-field imaging with FMCW 

radar: A comparative study 

 

Reza K. Amineh* 

Department of Electrical and Computer Engineering, New York Institute of Technology, New York, 

NY 10023, USA 

* Correspondence: Email: rkhalaja@nyit.edu. 

Abstract: The use of microwave and mm-wave imaging (MMI) is gaining significant growth due to 

the developments of fast and robust imaging algorithms that resonate well with the recent cost-

effective hardware developments. Specifically, the combination of frequency modulated continuous 

wave (FMCW) radar modules and synthetic aperture radar (SAR) has been recently considered as an 

effective, fast, and robust near-field three-dimensional (3D) imaging technique. In this paper, we 

prove that two of the most recent processing developments based on the back-propagation (BP) 

concept and delay and sum (DAS) concept, within the context of FMCW radar, are equivalent. We 

also compare the performance of these techniques with the one based on the range migration (RM) 

algorithm using a quantitative measure called structural similarity index (SSIM). 

Keywords: FMCW radar; microwave imaging; millimeter wave imaging; synthetic aperture radar 

(SAR); 3D imaging 

 

1. Introduction 

Microwave and millimeter wave imaging (MMI) techniques are growing fast in a broad range 

of applications including but not limited to biomedical imaging [1], security screening [2,3], non-

destructive testing [4,5], through-the-wall imaging [6], imaging of buried objects [7], etc. They offer 

significant advantages such as non-ionizing radiation, penetration inside optically opaque media, 

lower cost, and more compact systems compared to other competitive technologies in relevant 

applications. 

Three-dimensional (3D) MMI imaging provides high resolution images of the interior of the 

inspected medium. In practice, fast and robust 3D MMI techniques have been developed based on 

the use of frequency-stepped holographic techniques for far-field [2] and near-field imaging 

applications [8]. In frequency-stepped techniques, the inspected medium is illuminated by high 
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frequency electromagnetic waves at multiple (discrete) frequencies and the scattered fields due to the 

objects are acquired at those frequencies. Besides, the data acquisition process is based on the 

collection of the scattered fields over a two-dimensional (2D) surface referred to an “aperture” (e.g., 

see [9]) similar to the synthetic aperture radar (SAR) techniques [2]. 

Recently, the use of frequency-modulated continuous-wave (FMCW) radar technology along 

with data collection over a 2D aperture (similar to SAR imaging) has been employed in compact and 

cost-effective imaging systems. In FMCW radar, the frequency of the transmitted signal varies up 

and down over a fixed period of time by a modulating signal. Frequency difference between the 

received signal and the transmitted signal increases with delay, and hence with distance. Echoes from 

a target are then mixed with the transmitted signal to produce a beat signal which will give the 

distance of the target after demodulation [10]. Unlike pulse radars that operate with high peak 

transmission power, FMCW systems require low transmission power. This leads to lower cost and 

more compact systems which is desired for civilian and military applications. 

In [11], a mm-wave imaging system has been proposed for detection of concealed weapons or 

contraband in luggage. It uses a FMCW radar along SAR technique and a polar format algorithm 

(PFA) has been employed for reconstructing 3D images. The drawback of this system is that only a 

limited region can be imaged well. Besides, it requires 2D interpolation, which is computationally 

expensive. Another near-field 3D imaging based on FMCW radar has been proposed in [12]. It offers 

a freehand scanner employing an optical tracking system to capture the position of the radar. Thus, 

the scanning time is reduced significantly compared to conventional SAR imaging due to the partial 

scanning of the 2D aperture. The imaging technique is inspired by the time-domain delay and sum 

(DAS) algorithm. In [13], yet another near-field 3D imaging has been proposed based on the 

combination of the FWCW radar and SAR imaging. The reconstruction technique is based on the 

back-propagation (BP) principle. To reduce the computational time, the principle of stationary phase 

(POSP) has been employed along with Stolt interpolation to derive the image reconstruction 

expressions. This modified BP technique is called range migration (RM) imaging. The focusing 

capability of this algorithm is better than the PFA algorithm in [11]. Besides, it only needs 

interpolation in the range dimension, and thus the processing is much faster than the method in [11]. 

In this paper, we show that the imaging techniques proposed based on the BP concept in [13] 

and DAS concept in [12] (when scanning the whole aperture) are equivalent within the context of 

FMCW radar. Then, for the first time, we compare the quality of the reconstructed images based on 

these methods along with those based on the RM method [13] by 3D image reconstruction examples 

and study the degradations due to the increased sampling step and reduced aperture size. For a 

quantitative comparison, we use the structural similarity (SSIM) index proposed in [14]. 

2. Signal modeling and 3D imaging in FMCW radar 

In FMCW radar, the complex time-domain transmitted signal is expressed as [15]: 

 
22 ( 0.5 )

( ) cj f t t
TXs t e

 +
=          | |

2

sT
t                                                     (1) 

where cf  is the center frequency, sT  is the chirp duration, and   is the frequency sweep rate which 

is equal to the ratio of the bandwidth B to the chirp duration sT  as: 
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From (1), the instantaneous frequency ( )TXf t  can be obtained as:  

( )TX cf t f t= +                                                                    (3) 

After mixing the transmitted and received signals in a dechirp-on-receive system to reduce the 

required sampling rate [15], neglecting the amplitude variations in near-field imaging, and using 

Born approximation [16], the intermediate frequency (IF) also known as beat signal can be written as: 

 
22 ( ( , ) ( , ) 0.5 ( , ))

( , ) ( ) t c t tj r r t f r r r r
t

r O

s r t c r e dr
   + −



=                                          (4) 

where ( , , )r x y z=  and ( , , )t t t tr x y z=  denote the positions of the object and transceiver, respectively, 

O is the object’s spatial domain, ( )c r  is the object’s reflectivity function (also known as the contrast 

function), and ( , )tr r  is the time delay for the signal traveling the distance ( , )tR r r  between the 

transceiver position and point object position and can be written as: 

 
0

2 ( , )
( , ) t

t

R r r
r r

v
 =                                                                      (5) 

where 0v  is the velocity of light. The FMCW radar systems typically do not capture the complex 

signal as represented in (4) due to the lack of an IQ mixer. However, the complex data can be 

constructed analytically using Hilbert transform [17]. Furthermore, in near-field imaging, the phase 

term 
20.5 ( , )tr r−  in (4) can be neglected [12]. 

In the following, we prove that the imaging techniques based on the DAS [12] and BP [13] 

concepts, within the context of FMCW radar, are equivalent. 

2.1. Image reconstruction inspired by DAS concept in FMCW radar 

Here, we consider the 3D image reconstruction that was originally presented in [12] inspired by 

the time-domain DAS imaging concept. First, for each pair of transceiver position tr  and image 

position ( , , )r x y z   = , the beat signal is compensated by 
2 ( , )c tj f r r

e
  −

 term and then the Fourier 

transform of that is written as: 

 
2 ( , ) 2( , , ) ( , ) c tj f r r j ft

t t t

t

s r r f s r t e e d
  − − =                                                 (6) 

If there is a point object at r  , we expect ( , , )ts r r f  to have a peak in the so called beat 

frequency at ( , )tf r r =  [15]. Thus, evaluating ( , , )ts r r f  at the beat frequency, we obtain: 

 
2 ( , ) 2 ( , )
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t t t t

t
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  

− −  =                                         (7) 

Then, the reconstructed image DASI  is obtained by implementing this process for every pair of 

tr  and r   positions and integrating them over the scanned aperture A as: 

2 ( , ) 2 ( , )DAS( ) ( , , ( , )) ( , ) c t t

t t

t t

j f r r j r r t
t t r t t r

r A r A t
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 

  = =                    (8) 

Now, by substituting ( , )ts r t  from (4) in (8) (neglecting the last phase term in (4) in near-field 

imaging), keeping the terms depending on time t inside the inner-most integral, and using (5), we 
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obtain: 
2 ( ( , ) ( , )) 2 ( ( , ) ( , ))DAS( ) ( ) c t t t t

t
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The inner-most integral can be considered as a Fourier transform integral and it can be written 

as  

2 ( ( , ) ( , ))
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t
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− − = −                                             (10) 

where sinc( )  is the sinc function. Then, (9) is written as: 
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For an ideal scenario, when the chirp duration is very long sT → , the reconstructed image can 

be written as: 
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where ( )   denotes the Dirac delta function. Eq (12) can be further simplified as: 
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2.2. Image reconstruction based on the BP concept 

Here, we consider the 3D image reconstruction based on the BP concept that was originally 

proposed in [13]. For this purpose, first, the range wavenumber is defined as: 

 0 04 / 4 /r ck t v f v = +                                                                 (14) 

Using (14), (4) can be written as (neglecting the last phase term in (4) in near-field imaging): 
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Then, the reconstructed image BP ( )I r  can be obtained as: 
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Using (15) in (16) leads to: 
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If rk  is substituted from (14) in (17), we obtain: 
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Now, by changing the variable for the inner-most integral from rk  to t , keeping the terms 

depending on time t inside the inner-most integral, and using (5), we obtain: 
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Obviously, the reconstructed image in (19) is similar to the one in (9). Following similar 

discussions, it can be written as: 
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Thus, it is deduced that the image reconstruction expressions in (11) and (20) are equivalent 

(ignoring the coefficients that disappear after image normalization). 

2.3. Image reconstruction based on the RM concept 

In [13], the original imaging based on the BP concept has been extended further to expedite the 

processing. There, an RM solution has been proposed based on the use of POSP along with Stolt 

interpolation along one dimension. For the sake of brevity, we only present the final expression here: 

( )RM
,

, ,

( , , ) { ( , )} x y z

x y z

x y z

j k x k y k z

x y t r k k k

k k k

I x y z FT s r k e d d d
+ −

=                                       (21) 

where , {}x yFT   denotes the Fourier transform with respect to x and y axes, and xk , yk , and zk  are 

wavenumbers with respect to x, y, and z, respectively, with the following relation between them: 

 2 2 2
z r x yk k k k= − −                                                                     (22) 

3. Simulation results 

In order to compare the performance of the discussed 3D imaging techniques, we conduct a 

simulation study where the values of the parameters are: 1 mssT = , 94 GHzcf =  (wavelength 

3.2 mm = ), and 6 GHzB = . The beat signal is sampled with a frequency of 256 KHz. The above-

mentioned bandwidth B leads to a range resolution 0 / (2 )z v B = =25 mm. 

In the first example shown in Figure 1, an X-shape object is placed at 0z =  and 2D images are 

reconstructed over three planes with a distance of z  between them. The transceiver is scanning an 

aperture with the length of xL  and yL  along the x and y directions, respectively. In this example, 

10x yL L = =  and the spatial sampling steps are / 2x y  =  = . The scanned aperture is at a range 

distance of 2z z= . Figure 1 shows the imaging results for DASI , BPI , and RMI .  

To assess the quality of the reconstructed images, we employ the so called structural similarity 

(SSIM) index proposed in [14]. SSIM is based on the computation of three terms, namely the 

luminance term, the contrast term, and the structural term. Please refer to the Appendix for the 

details of computing SSIM. Here, SSIM is computed for each reconstructed 2D image when taking 

the true object’s image as the reference. The true image has a value of 1 at the pixels overlapping the 

object and 0 elsewhere. A higher SSIM value indicates higher similarity to the true image.   

As it is observed in Figure 1, the images obtain from BPI  and DASI  imaging technique are 

exactly identical, while the one obtained from RM technique shows slightly lower SSIM for this 

example. 
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In the second example, the imaged object and the parameters are similar to those in the first 

example except that the spatial sampling steps are increased to x y  =  = . This is desired since it 

reduces the scanning time to one half. Figure 2 shows the imaging results for DASI , BPI , and RMI . 

As expected the quality of the images obtained from DASI  and BPI  is the same and slightly degrades 

compared to those in Figure 1. The object’s image obtained from RMI  shows lower quality 

compared to those obtained from DASI  and BPI . Also when comparing the degradation of SSIM 

values for the three techniques between first and second examples, the SSIM value corresponding to 
RMI  shows larger degradation when the spatial sampling step is increased. 

In the third example, again, the imaged object and the parameters are similar to those in the first 

example except that the size of the aperture is reduced to 8x yL L = = . This is also desired since it 

expedites the data acquisition process. Figure 3 shows the imaging results for DASI , BPI , and RMI . 

As expected the quality of the images obtained from DASI  and BPI  is the same and slightly degrades 

compared to those in Figure 1. The image obtained from RMI  shows lower quality compared to 

those obtained from DASI  and BPI . Also, when comparing the degradation of SSIM values for the 

three techniques between first and third examples, the SSIM value corresponding to RMI  shows 

larger degradation when the length of the aperture is reduced. 

 

 

Figure 1. True imaged object and the reconstructed images for DASI , BPI , and RMI  and 

when / 2x y  =  =  and 10x yL L = = . 
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Figure 2. True imaged object and the reconstructed images for DASI , BPI , and RMI  and 

when x y  =  =  and 10x yL L = = . 

 

Figure 3. True imaged object and the reconstructed images for DASI , BPI , and RMI  and 

when / 2x y  =  =  and 8x yL L = = . 
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Figure 4. True imaged object and the reconstructed images for DASI , BPI , and RMI  and 

when / 2x y  =  =  and 10x yL L = = . 

To compare the performance of the imaging techniques for the above-mentioned three studied 

cases, Table 1 summarizes the obtained values for SSIM for the image of the object (at z = 0). 

Table 1. Summarizing the computed values for SSIM parameter for imaged object in Figures 1 to 3. 

Studied Case SSIM for IDAS SSIM for IBP SSIM for IRM 

Original Case (Figure 1) 0.285 0.285 0.242 

Reduced Sampling Rate (Figure 2) 0.281 0.281 0.157 

Reduced Aperture Size (Figure 3) 0.264 0.264 0.171 

 

In the fourth example, the parameters are similar to those in the first example but in addition to 

the X-shape object at 0z =  a vertical bar and a horizontal bar are placed at range positions of 

z z= −  and z z= , respectively. Figure 4 shows the reconstructed images for DASI , BPI , and RMI . 

Again, as expected the quality of the images obtained from DASI  and BPI  is the same. The images 

obtained from RMI  show lower quality compared to those obtained from DASI  and BPI . 

4. Conclusion 

In this paper, we studied the 3D near-field imaging techniques based on BP and DAS concepts, 

within the context of FMCW radar, and we showed the equivalence of their normalized 

reconstructed images. We also compared the quality of the reconstructed images based on these 

techniques as well as those obtained from RM technique. Our study showed that the images obtained 

from BP and DAS concepts have exactly the same quality as expected while those obtained from RM 



367 

 

AIMS Electronics and Electrical Engineering  Volume 4, Issue 4, 359–368. 

 

technique have lower quality due to the involved approximations. Besides, the degradations of the 

image quality due to the increased sampling steps and reduced aperture size are more severe when 

using RM technique. 

Please note that although the notations DAS, BP, and RM are used for the images obtained from 

the three studied techniques, we emphasize that these techniques are not the conventional DAS, BP, 

and RM techniques but rather borrow similar concepts from their conventional counterparts. For 

instance, the technique in [12] is not implemented in the time domain the way conventional DAS 

works. Furthermore, the equivalence of conventional DAS and BP techniques and the pros and cons 

of conventional RM technique have been already well-understood in the microwave imaging 

community (e.g., see [18‒20]). 

As a final note, in this work, the stack of 2D images at multiple range positions (z) provides 3D 

information. It is a common approach to present 3D images in microwave imaging works (e.g., see 

[8,21,22]). 
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Appendix 

Suppose that x and y are two generic 2D images that we would like to assess their similarity. 

According to [14], the SSIM is computed using three terms, namely the luminance term ( , )l x y , the 

contrast term ( , )c x y , and the structural term ( , )s x y  as: 

 ( , ) [ ( , )] [ ( , )] [ ( , )]SSIM l c s  =x y x y x y x y               (23) 
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where x , y , x , y , and xy  are the means, standard deviations, and cross-covariance for the 

images, respectively, 1C , 2C , and 3C  are constants determined based on the dynamic range of the 

pixel values 14, and  ,  , and   are used to adjust the importance of the terms (here, we use 

1  = = = ). 
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