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Abstract: In this paper, we introduce the intraday high frequency data to estimate the daily linear
generalized autoregressive conditional heteroscedasticity (LGARCH) model. Based on the volatility
proxies constructed from the intraday high frequency data, the quasi maximum likelihood estimation
(QMLE) of the daily LGARCH model and its asymptotic distribution are studied under some regular
assumptions. One criterion is also given to choose the optimal volatility proxy according to the
asymptotic results. Simulation studies show that the QMLE of the parameters performs well. It is
also found that introducing the intraday high frequency data can significantly improve the estimation
precision. The proposed method is applied to analyze the SSE 50 Index, which consists of the 50 largest
and most liquid A-share stocks listed on Shanghai Stock Exchange. Empirical results show the method
is of potential application value.
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1. Introduction

Volatility clustering is a well-known characteristic of financial time series. Accurately describing
volatility is helpful for pricing and risk management of financial assets. Many conditional
heteroscedasticity models have been proposed to describe the time varying volatility. Among them, the
autoregressive conditional heteroscedasticity (ARCH) model proposed by Engle (1982) and the
generalized autoregressive conditional heteroscedasticity (GARCH) model proposed by Bollerslev
(1986) have been widely studied, especially in the financial industry. For example, Nelson (1991)
applied GARCH model to asset pricing, Zou et al. (2015) used GARCH model to estimate the
combination of market investment risk value, and De Davide (2019) used GARCH model to analyze
and predict S & P 500 index. In many cases, the impact of assets on the market is asymmetric. That is
to say, investors react differently to the same amount of good news and bad news. Therefore, in order to
reflect this phenomenon, more and more scholars are involved in the study of asymmetric GARCH
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model, see, e.g., Hentschel (1995), Pan et al. (2008), Gyamerah (2019) and Linton et al. (2020). In
addition, considering the cyclical factors of market fluctuations, many scholars began to study periodic
GARCH model, such as Zhao et al. (2016).

As noted by Duffie and Pan (1997), maximum likelihood estimation of the GARCH type model
has the potential disadvantage of being overly sensitive to extreme returns. For example, if we consider
a market crash, then extreme daily absolute returns may be 10-20 times the normal daily fluctuation, so
the quadratic form of GARCH model yields a return effect that is 100—400 times the normal variance,
resulting in excessive fluctuation prediction. Therefore, in order to avoid the impact of extreme returns,
Xiao and Koenker (2009) proposed a LGARCH model. It has been shown that LGARCH model can
produce more robust inferences, compared to the previous GARCH type models. The specific form of
LGARCH (1, 1) model is as follows:

i = hi&, (1)
h = w+ aly,i| + Bh1, )

where, w > 0,a,B8 > 0, {g}, is an independent identically distributed sequence with mean 0 and
variance 1, namely, {&,;} ~ i.i.d(0, 1), and y, is independent of {g, : t > 1} for t > s. Let F; be the o—
field generated by {&;, ..., €1, Y0, y-1 ...}. Given F,_;, the conditional mean of y, is E(y,|¥,-1) = 0, and
the conditional variance of y; is Var(y,|F,_1) = E(h?&|F,_1) = B> E(*|F,_1) = h?.

With the development of electronic information technology, it is easier to obtain intraday high
frequency data in the financial market, and such data usually contain lots of useful information and are
valuable in improving model estimation. To achieve a more precise parameter estimator of common
GARCH model, Visser (2011) proposed a volatility proxy model, embedding intraday high frequency
data into the framework of daily GARCH model. The volatility proxy model not only maintains the
parameter structure of daily GARCH model, but also introduces the intraday high frequency data.
Available results show that the variance of parameter estimator in GARCH (1,1) model can be reduced
20 times by selecting an appropriate volatility proxy, which greatly improves the estimation accuracy of
model parameters. Many scholars have further extended the results of Visser (2011) to other cases. For
example, Wang et al. (2018) proposed a compound quantile regression (CQR) method to estimate the
GARCH model based on high frequency data, and proved the asymptotic normality of the estimators
without strong moment conditions; Wu et al. (2018) studied the quasi maximum exponential likelithood
estimation (QMELE) of non-stationary GARCH (1,1) model under high frequency data, and obtained
the limiting properties under weak moment conditions; Fan et al. (2017) studied the VaR estimation
based on periodic GARCH model with high frequency data; Deng et al. (2020) studied the parameter
test of GARCH model, where the parameter estimators were obtained from intraday high frequency
data, and the corrected likelihood ratio test and Wald test statistics were further investigated.

In the literature, few studies have been done about introducing the intraday high frequency data
to the estimation of daily LGARCH model. However, as mentioned above that LGARCH model is
more robust than other GARCH type models. Therefore, it makes sense to introduce the intraday
high frequency data to estimate the daily LGARCH model, which is a main contribution of this paper.
Another contribution is that the proposed estimation method is adopted to all the parameters of the
model and it is not necessary to set w in (2) to be 1 as before, see, for example, Visser (2011) and Wang
et al. (2018). The rest of this paper is organized as follows. In Section 2, we introduce the volatility
proxy model and estimators. In Section 3, we derive the asymptotic results of the model estimator.
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Simulations and empirical studies are respectively shown in Section 4 and Section 5. We conclude the
article in Section 6.

2. Model and estimation

2.1. Volatility proxy model

Let 6 = (w, @, B)’ be the parameter vector for model (1)—(2). In order to introduce intraday high-
frequency data, it is necessary to extend the LGARCH model to the volatility proxy model. Denote
Y,(u) to be the logarithmic return of an asset at time u on day ¢, where the time of each trading day is
standardized to the interval of [0, 1]. From Visser (2011), we firstly consider the following scale model:

Yi(u) = hZ(u), 3)
hi = w + aly;-1| + Bh_;. “4)

here, 0 < u < 1, h, is the volatility of day ¢. Standard process Z;(u) satisfies: when ¢ # s, Z,(u) is
independent of Z(#) and has the same distribution as Zy(u). When u = 1, (y; = Y(1), & = Z/(1),
EZ*(1) = 1), the model (3)—(4) degenerates into model (1)—(2). It is easy to see that the scale model
introduces intraday data information Y,(u), and it retains the parameter structure of the daily LGARCH
model. Unfortunately, model (3)—(4) can not be directly estimated due to the inconsistent frequency
between A, and Y;(u). In order to estimate 6, we further need to construct the intraday high-frequency
data into a daily volatility proxy.

The volatility proxy is a daily sequence based on the intraday data. That is, for intraday yield process
Y,(u), let H, = H(Y,(u)) be a volatility proxy for Y,(u), where H(-) is a given function. Common volatility
proxies include realized volatility and intraday price range. Positive homogeneity is an important property
of volatility proxy. Namely, for a non-zero constant p (o > 0), the following equality holds:

H(pY,(u)) = pH(Y,(u)) > 0. &)

Consider a given function H(-) satisfying the positive homogeneity and apply H(-) to equation 3.
Then it is obtained that
H, = H(Y\(w)) = H(h,Z(u)) = h,H(Z,(u)) > 0. (6)

Define
ZHt

E

Because the standard process Z,(-) is independently and identically distributed, hence &; is an i.i.d.
sequence with Eg;?> = 1. Then, combined with equations (3)—(7), we have the following volatility
proxy model,

ZH,Z‘ = H(Zt(u))’,u = EZIZLIJ, 8; = (7)

H, = htZH,t =h \/ﬁ : 8?, (8)
h = w+ aly,-| + Bh;. 9)

In the above model, a redundant parameter u appears due to the setting of &/, which makes it
impossible to directly apply the QMLE method to estimate 6 and ¢ simultaneously. Next, we give an
indirect approach to estimate the parameters. Let iy = h; \/u, then (8)—(9) can be rewritten as follows:

H, = he], (10)
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hy = w" + a'ly| +B°h; a1

t—1°

where
w'=w\, o =au,B = (12)

When volatility proxy H, = |y, it is easy to have ¢ = 1,h; = h,. Therefore, model (1)—(2) is a
special case of model (10)—(11). According to (10)—(11), we can use the QMLE method to estimate
the 8" = (w*, a*, B*). Once an estimator for y is given, then we can get the estimation of the parameter
0 = (w,a,B) by using (12). The detailed estimation procedures are given in the next section.

2.2. Parameter estimation

Define 6 = (w*,a*,3*) € ®, where ® C R is a parameter space for model (10)—(11). In addition,
suppose that 6; = (wj, ag, ,83)’ is the true value of the parameter 6%, which is an interior point of the
parameter space ©.

Following the convention in the literature, see Visser (2011), we consider the quasi conditional
log-likelihood function (apart from a constant term).

2

1 v , , H:
Lr(@") = = > (@), 10") = logh*(®") + PRy (13)
t=1 t

Then, the QMLE of parameter 6" can be defined as follows:

o = arglg}ig L, (6%). (14)

According to (12), to further estimate 6, we need to know u. After 8" is estimated, the fitting
sequence {fz;‘} is obtained from (11). It is already known that the absolute value of return |y;| can also
be regarded as a special volatility proxy ( H, = |y, &/ = |&l). When H, = |y,|, the estimated parameter
obtained by the likelihood function (13) is actually the estimator of 8 in the LGARCH (1,1) model
(1)—(2), which only uses the information of daily data {y,} and no intraday high frequency data is
introduced. When H, = |y,|, the estimated value of 6 is denoted as 6 = (@, &, 8)’ and the corresponding
fitting series for A, is denoted as (R} . According to hy = h;Ju or u = h;‘z /h,z, we can get an estimator

of u as followed:
T

1
”:TZ

=1

2

S

~ %

(15)

=

5"
t

Finally, the parameter estimators of LGARCH model with high-frequency information, denoted by
0= (D, &, [3’)’, are given by

O =

" aF A A
=, p=p". (16)
[

TR
Different from the usual estimator 8 = (&, @, 5)’ corresponding to H, = |y,, the estimator 0=(0,a, ,@)’
generally contains intraday high frequency data information and hence is expected to have a better performance.
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3. Asymptotic theory

Before stating the asymptotic results for §*, we firstly make the following assumptions.
A1 The parameter space © is compact, and 6 is an interior point of ®.
A2 The i.i.d. random sequence {&} satisfies E(&/*) < oo, and there exists a positive and continuous
probability density function almost everywhere.
A3 The series {H,, h;} generated from model (10)—(11) are strictly stationary and geometrically ergodic
for the considered parameter space ©.

Based on assumptions (A1)—(A3), adopting similar arguments to Visser (2011), it is not difficult to
prove the asymptotic distribution of 6%,

VT(@ - 6;) = NO,E), T — oo, (17)
where =¥ = Q;'Qs Q. 1,
02165
Q =E o1, 18
! (aejaej.] (1%)

Q = E(%%) (19)

96, o0

To obtain the asymptotic variance of 8%, we give the partial derivatives of the likelihood function
1,(6") with respect to 6 as follows:

o1,(6") H> 1 0n@®) .1 one)
2077 o1 - =2(1 -&*)———F——. 20
s - X h;z(e*))h:(e*) 00" =% oo 20)
L) 2 3H \om@)an®) 2 ( H \&K©)
sg;o0; — mAe)\  mAeH) 00 a0, m@)\ me) 96,00, on
2 ol (6*) Oh’ (6" 2 O*h* (6
— 2 (1-3g) DI 2 (g ) IR
(0" 000 80,  hi(0") 96,0
Further,
821,(6;) 1 ROy Oh(6")
Q =FE = 4E ! .
! (ae;ae;) (h:z(eg) 00; o0, ) @2)
ol(6;) 01,(6y) ) 2 1 0h{(6)) oh:(6%)
Q¢ =F =4E(g"-1) E
s ( o0 o6 (=" -1) @) 06, 06, 23)
2
In terms of (7), Ee* = 1, E (82‘2 - 1) = Var(g}?). Therefore,
* 1 *2 #\— 1
X = ZVar(s, )G(6,), 24)
where,
1 Oh:6)) Oh (6"
G@),i=E 25
(60): (hfz(eg) 00, 90 25)
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According to (11), it can be obtained that:

B@) = T2+ @ Y BVl (26)
1-p 4
Further,

onr@) 1

ow* 1—/3*’ @7)
ah )

P Z(ﬁ Yy s 1|—Z</3 Vvl ©8)
o) W .

B - a—gp ZJ(B Y ‘|ym|—Z<ﬁ Y60, (29)

Let s2., s2., sg,* be the asymptotic variances of w*, a*, 5* respectively. Based on the asymptotic
property of 6*, we can get the following conclusion provided the parameter u is given:

2
VT - wo) 5 N(O, %)

2
VT(@ - ag) 5 N(O, %) (30)
VTG - Bo) 5 N (0.5).

In practice, it is important to choose a proper volatility proxy H, for parameter estimation.
According to (24), it can be seen that the impact of H; to the asymptotic variance is based on E (&)
which equals E (zﬁl’l) /IE (zfq’t)]2 from (7). Consequently, it is expected to choose a volatility proxy H,
with small value for E (8?4). From (6)—(7), similar to Liang et al. (2021), we can obtain

EH* E(h)E(;,) E(hY)  E(z) E(z;,) 1)
= = =C: .
(EH??  [E()PIEG, )PP [ER)P [E(z; )1 [E(z;, )1

Here, ¢ = E(h})/[E(h})]* is a positive constant and hence E(z};,)/[E(z};,))* is proportional to
EH*/(EH?). Let

MH = (EH})/(EH}). (32)
Then we have smaller MH «— smaller E(z‘;“)/ [E(leq,,)]z «—> smaller Var(g}?).

From the above, among several candidates, one can choose the volatility proxy H, according to its
MH value. The optimal H, should have the smallest M H value.

4. Simulations

In this section, we carry out Monte Carlo experiments to assess the finite-sample performance of
the proposed estimators. In order to simulate the process of (3)—(4), we refer to Visser’s (2011) example
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to simulate the intraday standard stochastic process Z;(u), which is produced by the following stochastic
difference equations:

d,(u) = —8(Ty(u) — ur)du + ord B (w), (33)
dZ,(u) = exp(T(u))dBV (), u € [0,1]. (34)

here, Bfl) and B§2) are two uncorrelated Brownian motions, Z,(0) = 0, and I',(0) is randomly generated
from the stationary distribution N (ur, o). The time interval [0,1] within the day is equally divided into
240 cells to correspond to the frequency of 1 min in a real trading day. The settings for parameters in
(33)—(34) are 6 =1/2, or = 1/4 and ur = —1/16 . To further generate the stochastic process Y,(u), the
parameters in equation (4) are set in the following two cases: 6, = (0.1,0.4,0.2)" and 6, = (0.1,0.3,0.5)".

We consider realized volatility (RV) as the volatility proxies H, in (8) under different frequencies,
namely, 1-minute (RV1), 5-minute (RV5), 10-minute (RV10), 15-minute (RV15) and 30-minute (RV30).
For RV 1, the formula is given by:

240 172

H, = RV1, = | Y [¥iu) - Y )| (35)
i=1

where, the value of Y;(1) is replaced by Y;(0) = 0. Other volatility proxies can be computed similarly.
For comparison, we also consider the case H; = |y;| where the estimator is reduced to the usual estimator
which only uses the daily data. The sample sizes are 7 = 500, 1000 and 1500 and the replication time is
set to be 1000. For each H,, its MH value in (32) is estimated as:

T ZIT=] H}

M = T
(T_l Zszlth)

(36)

The mean of 1000 estimated MH values is taken as the final estimated value for MH and is used to judge
whether the volatility proxy is optimal.

Tables 1 and 2 summarize the empirical biases (Bias), empirical standard deviations (SD), asymptotic
standard deviations (AD) and the value of MH (1\711\{) for 6 = (0, &, B)’. It can be seen that the Bias for
each case is generally small. SD and AD of all parameters are very close and decrease when the sample
size becomes large, which is consistent with the asymptotic results. Compared to the case H, = |y,|, the
SD and AD of the parameters estimated by RV are significantly smaller, which implies that introducing
the intraday high frequency data can effectively improve the precision of the estimator.

By comparing the MH values, it can be found that in the simulation examples considered, the
optimal order of different volatility proxies is: RV1, > RVS5, > RV10, > RV15, > RV30, > |y,. Namely
the estimator under RV'1, shows the best performance. The simulation results show that the volatility
proxies model with intraday high frequency data have a good effect on parameter estimation, which is
helpful to improve the estimation accuracy of LGARCH model.
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Table 1. Bias, SD and AD of QMLEs and MH, 6, = (0.1, 0.4,0.2)’.

6y = (0.1,0.4,0.2) [yl RV1, RVS, RV10, RV15, RV30,
Bias  0.0030  -0.0002 -0.0000  0.0000 0.0002 0.0006
o SD 0.0227 0.0083 0.0088 0.0092 0.0099 0.0117
AD 0.0210 0.0080 0.0085 0.0099 0.0116 0.0131
Bias -0.0043 -0.0007 -0.0010 -0.0012 -0.0024 -0.0012

T = 500 a SD 0.0685 0.0255 0.0268 0.0285 0.0300 0.0352
AD 0.0851 0.0249 0.0264 0.0308 0.0347 0.0378

Bias -0.0136 -0.0024 -0.0032 -0.0031 -0.0033 -0.0061

B SD 0.1228 0.0407 0.0440 0.0466 0.0514 0.0621

AD 0.1082 0.0480 0.0506 0.0590 0.0668 0.0739

MH 5.9783 2.2481 2.3255 2.4233 2.5264 2.8541

Bias  0.0022 0.0002 0.0001 0.0002 0.0001 0.0006

o SD 0.0167 0.0057 0.0061 0.0064 0.0069 0.0081

AD 0.0200 0.0053 0.0058 0.0062 0.0071 0.0082

Bias  0.0012 0.0009 0.0007 0.0005 0.0004 0.0011

T = 1000 a SD 0.0473 0.0179 0.0191 0.0202 0.0214 0.0251
AD 0.0490 0.0155 0.0168 0.0177 0.0199 0.0236
Bias -0.0105 -0.0013 -0.0011 -0.0010 -0.0009 —-0.0035

B SD 0.0925 0.0274 0.0301 0.0327 0.0357 0.0431

AD 0.1023 0.0295 0.0324 0.0345 0.0396 0.0450

MH 5.9892 2.1409 2.2125 2.3067 2.4062 2.7358

Bias  0.0011 0.0000 -0.0000  -0.0000  -0.0000 0.0002

o SD 0.0140 0.0046 0.0048 0.0051 0.0054 0.0066

AD 0.0133 0.0038 0.0041 0.0045 0.0048 0.0056

Bias  0.0005 -0.0005 -0.0004 -0.0002 —0.0005  0.0000

T = 1500 a SD 0.0423 0.0151 0.0163 0.0172 0.0185 0.0217

AD 0.0463 0.0125 0.0135 0.0148 0.0154 0.0186

Bias -0.0060 -0.0011 -0.0008 -0.0008 -0.0005 -0.0021

B SD 0.0766 0.0231 0.0247 0.0269 0.0292 0.0357
AD 0.0719 0.0213 0.0231 0.0253 0.0268 0.0318

MH 5.9796 2.0980 2.1750 2.2722 2.3712 2.7094
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Table 2. Bias, SD and AD of QMLEs and MH value, 6§, = (0.1,0.3,0.5Y".

6, = (0.1,0.3,0.5) [yl RV1, RVS, RV10, RV15, RV30,
Bias 0.0072 -0.0011  -0.0008  —-0.0007  —0.0006 0.0001
o SD 0.0375 0.0103 0.0110 0.0119 0.0128 0.0156
AD 0.0436 0.0097 0.0112 0.0112 0.0135 0.0144
Bias 0.0008 0.0005 0.0009 0.0010 0.0007 —-0.0001

T = 500 a SD 0.0647 0.0217 0.0227 0.0246 0.0259 0.0305
AD 0.0681 0.0198 0.0220 0.0230 0.0263 0.0292
Bias  -0.0202 0.0008 -0.0001  -0.0006  —0.0004 -0.0019

B SD 0.1237 0.0334 0.0357 0.0390 0.0424 0.0529

AD 0.1394 0.0324 0.0372 0.0378 0.0448 0.0487

MH 5.2476 1.9006 1.9645 2.0490 2.1307 2.4028

Bias 0.0037 0.0000 0.0001 0.0003 0.0005 0.0007

& SD 0.0243 0.0074 0.0080 0.0086 0.0094 0.0115

AD 0.0260 0.0064 0.0082 0.0091 0.0096 0.0131

Bias 0.0013 0.0004 0.0006 0.0006 0.0010 0.0009

T = 1000 a SD 0.0459 0.0157 0.0167 0.0181 0.0190 0.0223
AD 0.0431 0.0152 0.0169 0.0188 0.0201 0.0275
Bias -0.0114 -0.0014 -0.0017 -0.0023  -0.0030 -0.0034

B SD 0.0816 0.0239 0.0263 0.0287 0.0312 0.0388

AD 0.0830 0.0251 0.0278 0.0310 0.0326 0.0441

MH 5.4240 1.8962 1.9615 2.0488 2.1387 2.4244

Bias 0.0027 —0.0000 0.0000 0.0001 0.0001 0.0003

o SD 0.0199 0.0061 0.0065 0.0071 0.0078 0.0095

AD 0.0146 0.0055 0.0057 0.0061 0.0072 0.0082

Bias 0.0014 0.0002 0.0005 0.0004 0.0007 0.0001

T = 1500 a SD 0.0377 0.0126 0.0135 0.0143 0.0155 0.0186
AD 0.0353 0.0113 0.0122 0.0132 0.0149 0.0174
Bias  -0.0077 -0.0002 -0.0005 -0.0007 -0.0008 —0.0009

B SD 0.0675 0.0195 0.0211 0.0232 0.0256 0.0316

AD 0.0557 0.0201 0.0210 0.0223 0.0261 0.0302

MH 5.4975 1.9082 1.9754 2.0684 2.1681 2.4631
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5. Empirical studies

In this section, model (3)—(4) is applied to study a real data set. We analyze SSE 50 Index (Shanghai
Stock Exchange 50 Index) return series over the period April 28, 2008—July 24, 2013. The data set
consists of the closing prices of the SSE 50 Index at one minute intervals, with a total of 1273 trading
days and 240 observations per day. Denote the price sequence as {P,(u),t € [0,1273],u € [0, 1]}. Then
the intraday return at u time on day ¢ can be calculated as

Y, (u) = [log P,(u) — log P,_1(1)] x 100. (37)

For demonstration, we plot Y;(1) in Figure 1.

10 T T T T T T

_1 O 1 1 1 1 1 1
(0] 200 400 600 800 1000 1200

series

Figure 1. Time series plot of {¥,(1)}!2

=1 °

To estimate the model, we choose realized volatility as the volatility proxy based on different
intraday sampling frequency: 1-minute, S-minute, 10-minute, 15-minute and 30-minute. Accordingly,
the realized volatility of different frequencies are recorded as RV1, RVS, RV10, RV15 and RV30.
Similar to the simulation part, for comparison, we also consider the volatility proxy H, = |y, which
corresponds to the estimator without using high frequency data. Figure 2 shows the time series plots of
different volatility proxies.
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Figure 2. The time series of different volatility proxies
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The LGARCH (1,1) model estimation results among different H, are given in Table 3. The AD in
the table means the asymptotic variance of the estimated parameter which is calculated according to the
formula (17) and (30).

Table 3. Parameter estimation of LGARCH (1,1) model based on different volatility proxies.

A~

H, o & B AD(@®) AD@&) AD@) MH Var(:?)

il 0.0220 0.0501 09499 0.0104 0.0144 0.0144 55530  3.5947
RV1, 0.0836 0.1102 0.8685 0.0094 0.0083 0.0104 1.8320  0.3154
RV5, 0.0239 0.1175 0.8996  0.0061  0.0099  0.0088 2.2553  0.5578
RV10, 0.0311 0.1137 0.8980  0.0061  0.0091  0.0085 22245  0.4724
RV15, 0.0217 0.1154 0.9024 0.0058 0.0097 0.0085 2.4282  0.5581
RV30, 0.0326 0.1116 0.8986 0.0082 0.0121 0.0113  2.6533  0.8288

It can be observed from Table 3 that the MH values of realized volatility are generally much smaller
than that of |y,|, where RV'1, is the smallest and the corresponding \7(;*(3;*2) is also the smallest, which is
consistent with the previous theoretical results. Compared with the estimation results of RV1, and |y,|,
the asymptotic variance of &, & and 3 corresponding to RV1, are obviously smaller.

From Table 3, when H, = |y,|, the estimated LGARCH (1,1) model is

Yr = hi&, (38)
h; = 0.0220 + 0.0501]y,_;| + 0.9499h,_,.

When H, = RV1,, the fitting model is
v = hgy, (39)

h, = 0.0836 + 0.1102]y,_;| + 0.8685h,_.

To further compare the estimation effect between |y,| and RV 1,, the 95% confidence intervals of parameter
estimators are calculated based on the AD in Table 3. Let 6, = (&, &y, ,QL)’ and 0y = (Qy, &y, BU)’ be
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the lower bound and the upper bound respectively. Then we can calculate the upper and lower bounds
of h, as follows:

hie = & + arlyiil + Brhr—1,  hy = oy + Qyly-il + Puhy,-. (40)

For comparison, we plot the computed 4;, h;; and hy, based on equations (38) and (39) in Figure 3.
It can be seen from Figure 3 that the estimated 4, from two models are basically close. However, the
interval [hy,, hy,] (circle) of model (39) is significantly narrower than that of model (38) (triangle).

Volatility
w

0 I | | it i i . . .
1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100
t

Figure 3. Time series plots of A, h;, and hy,: for model (38), h, (real line), h;, and hy;,
(triangle) ; for model (39), h, (dashed line), A, and Ay, (circle).

It is of some interest to compare the performance between RV1,, RV5,, RV10,, RV15,; and RV30,.
Due to limitations of space, we only show the comparisons between RV1, and RV30,. We draw the 95%
confidence intervals of A, calculated by the RV'1, and RV30, in Figure 4. We can find that the confidence
interval under RV1, is narrower than that under RV30,, which means that the model estimation effect is
better with RV1,.

To sum, from the estimation results of Table 3 and the plots in Figure 3, it is shown that introducing
the intraday high frequency data can help to improve the LGARCH model estimation for the considered
data. Hence the proposed approach is of certain practical value.
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Figure 4. Time series plots of &, h;, and hy,: for model under RV 1,(real line, purple,-) and
RV30,(dashed line, green,+).

6. Conclusions

With the motivation that to obtain more precise estimators for the well-known daily LGARCH
model, this paper studies how to introduce intraday high frequency data into the model estimation.
Based on the existing volatility proxy idea, the estimation methods of all parameters of the model and
the corresponding asymptotic properties are given. The selection criteria of the optimal volatility proxy
is also proposed. The simulation results show that the parameter estimators perform well under finite
samples. The empirical study based on SSE 50 index shows that using the high frequency data can
significantly improve the estimation accuracy of daily frequency LGARCH model, compared to the
usual method which only uses the daily data.
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