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Abstract: With fast evolving econometric techniques being adopted in asset pricing, traditional linear 

asset pricing models have been criticized by their limited function on capturing the time-varying nature 

of data and risk, especially the absence of data smoothing is of concern. In this paper, the impact of 

data smoothing is explored by applying two asset pricing models with non-linear feature: cubic 

piecewise polynomial function (CPPF) model and the Fourier Flexible Form (FFF) model are 

performed on US stock returns as an experiment. The traditional beta coefficient is treated 

asymmetrically as downside beta and upside beta in order to capture corresponding risk, and further, 

to explore the risk premia attached in a cross-sectional context. It is found that both models show better 

goodness of fit comparing to classic linear asset pricing model cross-sectionally. When appropriate 

knots and orders are determined by Akaike Information Criteria (AIC), the goodness of fit is further 

improved, and the model with both CPPF and FFF betas employed showed the best fit among other 

models. The findings fill the gap in literature, specifically on both investigating and pricing the time 

variation and asymmetric nature of systematic risk. The methods and models proposed in this paper 

embed advanced mathematical techniques of data smoothing and widen the options of asset pricing 

models. The application of proposed models is proven to superiorly provide high degree of explanatory 

power to capture and price time-varying risk in stock market. 
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1. Introduction 

Since the Capital Asset Pricing Model and beta were introduced in modern finance, there has been 

arguments on whether beta is adequate to explain the complex nature of systematic risk in stock market. 

The complexity of systematic risk is primarily due to its asymmetry and time-varying nature. The 

asymmetry of systematic risk, particularly downside risk, begins drawing attention of researchers in recent 

two decades. Most studies of downside risk follow the classic approach, employing the linear market model 

to estimate beta. As a result, the time-varying nature of beta is either ignored or being weighted 

inappropriately. Therefore, adopting appropriate data smoothing technique is crucial to preserve the true 

time-varying nature of beta. In this paper, two models, the cubic piecewise polynomial function (CPPF) 

model and the Fourier Flexible Form (FFF) model are employed to model portfolio returns in order to 

examine the significance of beta, downside beta and upside beta estimates. Both models take flexible 

approaches, yet are parsimonious, allowing beta estimates to be time-varying with appropriate weight. 

Innovatively, various numbers of knots and orders are applied on the CPPF model and the FFF model, 

respectively, to smooth the sample. Also, the Akaike Information Criteria (AIC) (Akaike, 1974) is adopted 

to determine the most appropriate number of knots and order for the sample. With the AIC, the best fitted 

estimates of beta, upside beta and downside beta for both models are generated. These estimates are sorted 

into portfolios to examine the risk-return relationship. Moreover, Fama-Macbeth regressions are performed 

to discover the significance of the estimates in a cross-sectional context. 

Taking the CPPF and the FFF approach is motivated by their flexibility, with both approaches 

allowing the beta estimates to vary over time with heavier weight on more recent data. The CPPF 

approach is analogous to cubic spline approach but with no constraints of intercept columns, and the 

estimates at each point in time are the product of a vector of initial estimates and a piecewise 

polynomial matrix. For the FFF approach, Sine and Cosine functions are adopted to construct a matrix 

which creates a non-linear pattern bounded between −1 and 1. The pattern is finally presented on the 

estimates at each point in time to allow time-variation. The importance of time-varying estimates is 

that estimates can present the true relationship between variables at each point of time, which allows 

us to discover the variation of co-movements among variables rather than a single estimate over the 

whole sample. Compared to the moving window approach, the advantage of the CPPF model and the 

FFF model is that the whole sample is considered, while the moving window approach is limited to 

past data and the length of the window used. 

We find the estimates of beta, downside beta and upside beta estimates of both models to be highly 

significant to drive stock returns. The beta estimates positively drive stock returns. The downside and 

upside beta estimates demonstrate reversed impacts on stock returns, the downside beta has a negative 

impact on stock returns, while the upside beta, consistent with beta estimates, has a positive impact. This 

paper is arranged as follows: Section 2 provides literature reviews of both models, followed by Section 

3 describes the data. Section 4 explains the econometric models and methods applied. Section 5 and 

Section 6 provide the empirical results and results of the Fama-Macbeth regressions. Section 7 concludes.  
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2. Literature review 

2.1. Literature of time -varying beta and downside risk 

The existing literature of time-varying beta is extensive. There is a long history of literature that 

has argued that the Capital Asset Pricing Model (CAPM) proposed by Sharpe (1964) and Lintner (1965) 

is inadequate to explain the risk-return relationship due to the assumption of constant beta. To solve 

this drawback, relaxing the constant beta assumption and allowing time-varying beta is one possible 

method. There are a number of approaches to obtain time-varying betas, for instance, in Fama and 

Macbeth’s (1973) study, moving window Ordinary Least Square (OLS) regression is applied to the 

market factor model to obtain time-varying beta. According to Härdle et al (1988), Härdle (1992), 

Wand and Jones (1995), Ang and Kristensen (2012), and Li and Yang (2011), various nonparametric 

approaches which are based on simulation are alternative methods to obtain the time-varying beta. 

Moreover, the time-varying beta also can be obtained by the multivariate GARCH based model 

proposed by Engle (2002), Andersen et al. (2002) and Nieto et al. (2011). More recently, Horvath et al. 

(2020) employ functional data regression to estimate time-varying beta in Chinese stock market, and 

Chakrbarti and Das (2021) adopt modified multivariate GARCH to capture time-varying risk in Indian 

and American stock market. 

There is relatively fewer literature focusing on downside risk of stock market although research 

emerge in recent decade. Since Ang et al. (2006) point out that stocks with higher downside risk is 

compensated with additional risk premium, focus has primarily been lying on how to measure the 

downside beta. Giglio et al. (2016), Min and Kim (2016) and Li (2021) all adopt unique approaches to 

estimate downside risk in various financial markets.  

Although existing literature are considerably well built on time-varying beta and downside risk 

separately, there is limited research focusing on time-varying feature of downside risk. Huang (2019) 

applies linear market model to estimate time-varying downside beta. More recently, Dobrynskaya 

(2021) investigates downside risk in cryptocurrency market by estimating downside beta at each point 

in time using high frequency data. The aforementioned studies use linear model to estimate time-

varying downside beta, while fail to put appropriate timing weights (heavier weight on more recent 

data) when smoothing due to a lack of non-linear feature of the models. In this paper, to fill gap in the 

literature, specifically on both investigating and pricing the time variation and asymmetric nature of 

systematic risk. Instead of regressing the stock return upon the market portfolio return in a linear 

fashion, two alternative methods with non-linear feature are proposed to estimate the corresponding 

time-varying beta coefficients, namely the CPPF regression and the FFF regression, respectively. A 

brief literature of development of both methods is provided in following sections.  

2.2. The foundation of CPPF approach: cubic spline method 

The advantages of the CPPF approach are, firstly, data can be flexibly adjusted without 

considering the sample size. Secondly, for research with particular focus on data smoothing, it allows 

time weight to be considered when estimating among various selected knots. Thirdly, apart from the 

time weight, the nature of the original data is retained and there are no extra functions or patterns to be 

put into the model. 
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In order to introduce CPPF approach, a review of cubic spline method is essential. The cubic 

spline method was originally used in mathematics and engineering (Ferguson, 1963). Mathematically, 

as a third order piecewise polynomial function, the cubic spline is used to smooth discrete points into 

a continuous curve. According to Rorres and Anton (1984), a cubic spline can be expressed 

mathematically in the following form: 

𝑆(𝑥) = {

𝑠1(𝑥 ) 𝑖𝑓 𝑥1 ≤ 𝑥 ≤ 𝑥2

𝑠2(𝑥) 𝑖𝑓 𝑥2 ≤ 𝑥 ≤ 𝑥3

⋮
𝑠𝑛−1(𝑥) 𝑖𝑓 𝑥𝑛−1 ≤ 𝑥 ≤ 𝑥𝑛

         (1) 

where it is assumed that si is the third order polynomial function defined by 

𝑠𝑖(𝑥) = 𝑎𝑖(𝑥 − 𝑥𝑖)
3 + 𝑏𝑖(𝑥 − 𝑥𝑖)

2 + 𝑐𝑖(𝑥 − 𝑥𝑖) + 𝑑𝑖        
(2) 

for i = 1, 2, 3…….n − 1. 

The first and second order derivative of Equation (1) defines the fundamentals of the process. 

These derivatives are given by 

𝑠𝑖
′(𝑥) = 3𝑎𝑖(𝑥 − 𝑥𝑖)

2 + 2𝑏𝑖(𝑥 − 𝑥𝑖) + 𝑐𝑖                        (3) 

𝑠𝑖
″(𝑥) = 6𝑎𝑖(𝑥 − 𝑥𝑖) + 2𝑏𝑖                           (4) 

for i = 1, 2, 3…….n − 1 

The piecewise polynomial function has the following properties: 

1. The piecewise polynomial function interpolates all data points. 

2. The S(x) function is continuous in the interval [x1, xn]. 

3. The first derivative of the S(x) function is continuous in the interval [x1, xn]. 

4. The second derivative of the S(x) function is continuous in the interval [x1, xn].  

There are a number of studies which employ the cubic spline approach in financial modeling, 

mainly focusing on estimation of the term structure, autoregressive conditional duration (ACD) models 

and volatility of high frequency data. Vasicek and Fong (1982) and Jarrow et al. (2004) employ the 

cubic spline approach in estimating interest rate term structure. Engle and Russell (1998) proposed an 

ACD model which treats the time between transactions as a stochastic process. Within the ACD model, 

a daily seasonal factor is modelled by a cubic spline series. Moreover, in Zhang et al. (2001), a 

threshold autoregressive conditional duration (TACD) model is proposed and shown to be superior to 

the classic ACD model.1 More recently, Taylor (2004a, b) and adopted cubic splines in their studies 

in the context of modelling the volatility of high frequency data via the ACD model. Aside from the 

above studies, there are a few studies that have also adopted cubic splines as a modelling tool, such as 

Engle and Rivera (1991) who estimated the density factor by using cubic splines in an autoregressive 

conditional heterosecdasticity (ARCH) context. Yu and Ruppert (2002) introduced the cubic spline 

approach into the estimation of the single index model. Evans and Speight (2010) employed the cubic 

spline approach to model intraday exchange rate volatility.  

 
1The cubic spline approach was particularly used to approximate seasonal factors within the model. 
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2.3. Competitive basis of cubic spline 

According to Eilers and Marx (2004), there are mainly two approaches used in cubic spline 

regression: the B-spline basis and truncated power functions basis.  

For the B-spline basis approach, Eilers and Marx (2004) use equally-spaced knots and spline 

function B. Mathematically, the B-spline model can be written as 

𝐸(𝑦) = 𝜇 = 𝐵𝛼                                   (5) 

and the objective function to be minimized is 

𝑄𝐵 = |𝑦 − 𝐵𝛼|2 + 𝜆|𝐷𝑑𝛼|2                              (6) 

which λ is a non-negative parameter, and Dd is the d-th difference of α, it can be written as 

𝐷𝑑 = 𝛥𝑑𝛼                                        (7) 

and  

𝛥𝛼𝑗 = 𝛼𝑗 − 𝛼𝑗−1                                     (8) 

𝛥2𝛼𝑗 = 𝛼𝑗 − 2𝛼𝑗−1 + 𝛼𝑗−2                                 (9) 

and so on for higher orders. So the objective function of QB leads the B-spline model to  

(𝐵′𝐵 + 𝜆𝐷𝑑
′ 𝐷𝑑)𝛼̂ = 𝐵′𝑦                                 (10) 

It can be seen from Equation (10) that when λ=0, it becomes the classic equation of linear 

regression. 

For the truncated power functions basis, according to Ruppert et al. (2003), for a given asset i, 

column j and degree p, the truncated power function of F is written as 

𝐹𝑖𝑗 = (𝑥𝑖 − 𝑡𝑗)
𝑃𝐼(𝑥𝑖 > 𝑡𝑗)                            (11) 

where I(u) is an indicator function, it is 0 when u < 0 and 1 otherwise. The vector t contains the knots, 

and the knots are placed as quantiles of x. Consequently, the model for E(y) can be written as  

𝐸(𝑦𝑖) = ∑ 𝛽𝑘𝑥𝑖
𝑘 + ∑ 𝐹𝑖𝑗𝑏𝑗

𝑛−1
𝑗=1

𝑃
𝑘=0                         (12) 

And the objective function to be minimized is given by 

𝑄𝐹 = |𝑦 − 𝛽𝑥 − 𝐹𝑏|2 + 𝜅|𝑏|2                        (13) 

The increasing of κ will increase the smoothness.  

Eliers and Marx (2004) point out that both bases allow a mixed model approach, and the B-spline 

basis can be derived from the truncated power basis. They also show that the truncated power basis 

has bad numerical properties, and could cause discontinuities in estimation, while the B-spline basis 

approach has no such issue. However, according to Taylor (2004), the truncated power basis is 

employed in the spline-based periodical GARCH model on high frequency commodity future return 

data, which produces excellent smooth estimates. Therefore, in light of Taylor’s (2004) study, the 
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truncated power basis is employed in the CPPF approach in this paper, and the detail of the piecewise 

polynomial matrix used will be introduced in Section 4.2  

2.4. The FFF approach 

The advantages of the FFF approach are: firstly, in the context of normal and high frequency data, 

the macroeconomic news announcement effect has been filtered by the periodic pattern of the FFF, so 

there is no need to model the macroeconomic news announcement effect; secondly, the FFF approach 

creates a smooth pattern for volatility dynamics and changes; thirdly, the FFF approach is based on 

sound mathematics and the fit of the periodicity of financial data is widely agreed. 

The FFF which was first proposed and refined by Gallant (1981, 1982 and 1984). This 

mathematical function, based on a Fourier series, was initially used to approximate the utility 

function and derive an appropriate expenditure system for the whole economy. Mathematically, it 

can be written as 

∑ ∑ 𝑎𝑗𝛼𝑒𝑖𝑗𝑘𝛼
′ 𝑥 = ∑ {𝑢0𝛼 + 2∑ [𝑢𝑗𝛼 𝑐𝑜𝑠( 𝑗𝑘𝛼

′ 𝑥𝐽
𝑗=1 ) − 𝜐𝑗𝛼 𝑠𝑖𝑛( 𝑗𝑘𝛼

′ 𝑥)]}𝐴
𝛼=1

𝐽
𝑗=−𝐽

𝐴
𝛼=1

 

  (14) 

where 

𝑎𝑗𝛼 = 𝑢𝑗𝛼 + 𝑖𝜐𝑗𝛼 , 𝛼 = 1,2,3. . . 𝐴, 𝑗 = 0,±1,±2. . . ± 

whereas i is defined as the imaginary unit, k is the order of the expansion, aj is the coefficient given by  

𝑎𝑗 = 𝑢𝑗 + 𝑖𝜐𝑗                             (15) 

Recently, the FFF was widely applied in two aspects of economics and finance: estimation of 

production and banking efficiency, and modeling high frequency volatility periodicity.  

In the former aspect, Chung et al. (2001) and Huang and Wang (2001) both applied the FFF in 

estimating the scale and scope of the Asian banking industry. Huang and Wang (2004) expanded the 

FFF and applied it to panel data to estimate multiproduct banking efficiency. Featherstone and Cader 

(2005) employed the FFF in a Bayesian econometrics context to evaluate agricultural production. And 

Yu et al. (2007) adapted the FFF to estimate agricultural banking efficiency.  

Within a volatility context, Andersen and Bollerslev (1998) introduced the FFF into high 

frequency data volatility modelling. In their study, under GARCH framework, the FFF was used to 

estimate an intraday periodicity component in order to capture volatility reactions to macroeconomic 

announcements. The FFF within their study has been simplified as  

𝑓(𝜃, 𝑡, 𝑛) = 𝜇0 + ∑ 𝜆𝑘 ⋅ 𝐼𝑘(𝑡, 𝑛) + ∑ (𝛿𝑐,𝑝 ⋅ 𝑐𝑜𝑠
𝑝2𝜋

𝑁
𝑛 +𝑃

𝑝=1
𝐷
𝑘=1 𝛿𝑠,𝑝 ⋅ 𝑠𝑖𝑛

𝑝2𝜋

𝑁
𝑛)      (16) 

where Ik(t,n) is the indicator of event k during time interval n on day t, θ is the parameter vector to be 

estimated, and μ0, λk, δc,p and δs,p are the fixed coefficients to be estimated (Andersen and Bollerslev, 

1998). Moreover, Andersen et al. (2000) applied the FFF in the Japanese stock market, while Bollerslev 

 
2The CPPF approach is derived from the cubic spline approach described above. However, we do not refer to CPPF as a 

spline because we allow for discontinuities at each knot. 
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et al. (2000) employed the FFF in analyzing the US bond market. More recently, Evans and Speight 

(2010) further adopted the FFF in the foreign exchange market.  

Although the cubic spline approach and FFF approach are widely used in the financial literature, 

the majority of studies use high frequency data in a financial derivatives market, banking industry or 

foreign exchange market. There is very few study using both approaches to estimate the downside and 

upside components of risk in stock markets. This paper employs the CPPF and FFF as tools, with 

various numbers of knots and the AIC used to uncover the best fit of beta, downside beta and upside 

beta estimates of monthly data with a long span in the US stock market and to improve the goodness 

of fit of asset pricing models. 

3. Data 

As an experiment for CPPF and FFF models, data used in this paper are taken from Center for 

Research in Security Price (CRSP) database. This paper focuses on the ordinary common stocks listed 

on the New York Stock Exchange (NYSE), American Stock Exchange (AMEX) and NASDAQ 

measured on a monthly frequency from January 1960 to December 2010.3  American depositary 

receipts (ADR), real estate investment trust (REIT), closed-end funds, foreign firms and other 

securities which do not have a CRSP share code of 10 or 11 are excluded from the sample. Each stock 

is required to have at least 5 years of consecutive monthly adjusted return observations with at most 5 

missing observations. The return of each stock is adjusted for stock splits, mergers and acquisitions, 

and dividends (dividends are subtracted from stock prices for adjustment), giving 13,557 stocks. The 

value-weighted return of all listed stocks is taken as a measure of the market portfolio, and the one 

month Treasury bill rate represents the risk free rate.4 A summary of stocks selected is shown in Table 

A.1 in Appendix. 

4. Econometrics models and methods 

All econometric models in this paper are based on the CAPM proposed by Sharpe (1964) shown 

as Equation (17) 

𝑅𝑖𝑡 − 𝑅𝑓𝑡 = 𝛼𝑖𝑡 + 𝛽𝑖𝑡 ⋅ (𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝜀𝑖𝑡                   (17) 

where Rit is the rate of return of stock i at time t, Rft is the risk free rate at time t, αit is the constant at 

time t, βit is the coefficient to be estimated and represents the co-movement between stock i and the 

market at time t, RMt is the rate of return of market portfolio at time t, ( RMt – Rft ) is the excess return 

of the market portfolio, and εit is the error term of stock i at time t. It is this equation that will be 

estimated using the CPPF and FFF models. 

For convenience, we define 

𝑥𝑅𝑖𝑡 = 𝑅𝑖𝑡 − 𝑅𝑓𝑡                             (18) 

and 

 
3The NASDAQ data are only available from January 1972. 

4Using the same criteria Ang et al. (2007) adopted.  
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𝑥𝑅𝑀𝑡 = 𝑅𝑀𝑡 − 𝑅𝑓𝑡                               (19) 

where xRit is the excess rate of return of stock i at time t, and xRMt is the excess rate of return of the 

market portfolio at time t. 

4.1. The CPPF model 

In this section, the CPPF (with knots) model is described. By using the CPPF model, the excess 

rate of return on the market portfolio xRM will be divided into different numbers of series depending 

on the number of knots selected, thus allowing the betas to vary over time.  

Deciding the number of knots to use is an interesting tradeoff (Stone, 1986). If a small number of 

knots are chosen, the estimates will be over-smooth with less variability, and could also be biased. By 

contrast, if a high number of knots is selected, the bias can be avoided, however, it will also lead to a 

high variability of estimates in the fit and could result in overfitting. Eilers and Marx (1996) discovered 

that up to 4 to 5 knots is most appropriate for most applications, therefore, the number of knots selected 

for the CPPF model will vary from 0 to 5. 

Placement of knots follows the quintile method proposed by Stone (1986). In his study, he found 

that placing knots according to the quintile point with respect to the total number of observations results 

in less bias than placing knots according to a fixed number of observations. Therefore, the knots are 

placed at the quintile points as follows: 

Table 1. Placement points of knots. 

Number of knots 0 1 2 3 4 5 

Placement points  50% 33.3% 25% 20% 16.6% 

   66.6% 50% 40% 33.30% 

    75% 60% 50% 

     80% 66.6% 

      83.3% 

The econometric models used here take advantage of the CPPF approach, and apply it to the classic 

market model. To estimate the beta coefficient of each stock, the model, in matrix terms, can be written as 

XRi = αi + (XRM ʘ SN)∙Bi + εi    N = 0, 1, 2, 3, 4, 5               (20) 

where XRi is a (t × 1) column vector of excess returns of stock i, αi is a t × 1 column vector, XRM is a 

(t × 1) column vector of excess returns of the market portfolio, SN is a (t × n) piecewise polynomial 

matrix with N representing the number of knots, ʘ is the element to element multiplication sign which 

results in (XRM ʘ SN) becoming a (t × n) matrix,5 Bi is the (n × 1) estimated beta column vector, and 

εi is the (t × 1) column vector error term. 

Specifically, the piecewise polynomial matrix, SN, varies along with the number of knots selected. 

When the CPPF has no knots, S0 can be expressed as: 

 
5ʘ is conventionally used as an element to element multiplication sign when two matrices are in the same rank, we borrow 

it here for different rank matrices for the sake of simplicity.  
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𝑆0 =

[
 
 
 
 
 
10 1 12 13

20 2 22 23

30 3 32 33

40 4 42 43

⋮ ⋮ ⋮ ⋮
𝑡0 𝑡 𝑡2 𝑡3]

 
 
 
 
 

 .                               (21) 

Moreover, when one knot is selected, the knot will be placed at the 50% point of observations, 

with the S0 elements remaining in S1, plus new elements added in with elements valued 0 above the 

knot, therefore S1 can be written as 

𝑆1 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

10 1 12 13 0 0 0 0
20 2 22 23 0 0 0 0
30 3 32 33 0 0 0 0
40 4 42 43 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

(
𝑡

2
)
0

(
𝑡

2
) (

𝑡

2
)
2

(
𝑡

2
)
3

0 0 0 0

⋮ ⋮ ⋮ ⋮ 10 11 12 13

⋮ ⋮ ⋮ ⋮ 20 21 22 23

⋮ ⋮ ⋮ ⋮ 30 31 32 33

⋮ ⋮ ⋮ ⋮ 40 41 42 44

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑡0 𝑡 𝑡2 𝑡3 (
𝑡

2
)
0

(
𝑡

2
) (

𝑡

2
)
2

(
𝑡

2
)
3

]
 
 
 
 
 
 
 
 
 
 
 
 
 

                  (22) 

The expression for SN with two knots (N = 2), three knots (N = 3), four knots (N = 4) and five knots 

(N = 5) can be found in Illustration A.1–A.4 in Appendix. It can be seen from the expression for S0 and S1 

that as the number of knots increases, the number of columns in SN will increase. More precisely, for every 

one extra knot placed, the number of columns in SN will increase by 4, so the dimensions of S0, S1, S2, S3, 

S4 and S5 will be (t × 4), (t × 8), (t × 12), (t × 16), (t × 20) and (t × 24) respectively.  

The OLS regression is applied to each stock to get the vector of beta estimates. Then, beta 

estimates for each stock at each point in time (𝐁𝐒 in vector form) can be calculated as follows: 

                               
BS = SN ∙ Bi                                (23) 

It can be seen from Equation (14) that BS is a product of a (t × n) matrix SN and a (n × 1) estimated 

beta vector Bi, therefore regardless of the number of knots placed in the function, the rank of BS
 will 

always be t × 1. Since the number of knots varies from 0 to 5, there will be 6 possible Bi vectors for each 

stock corresponding to the number of knots used. In order to find the best fit for each stock, we follow 

Eilers and Marx’s (1996) study, and use the AIC.6 The AIC can be expressed as 

𝐴𝐼𝐶 = −2 𝑙𝑛( 𝐿) + 2𝑘                                (24) 

where L is the maximum value of the likelihood function, and k is the number of parameters within the 

model. There are discontinuities at knots points, while the fitted values are smooth between each knot. 

 
6The Schwarz Information Criteria (SIC) can also be used to determine the appropriate number of knots, in this paper, AIC 

is chosen instead of SIC since the SIC shows less tolerance when the number of parameters in the model is high, according 

to Eilers and Marx’s study (1996). 
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These discontinuities are due to the column of ones in the piecewise polynomial matrix, and in these 

cases, we let the data to decide the appropriate value of the estimates.  

In order to calculate the downside and upside beta estimates by using the CPPF model, the same 

logic is used with Equation (11) modified. Referring to Ang et al. (2006), the downside beta and upside 

beta are calculated as  

𝛽− =
𝑐𝑜𝑣(𝑥𝑅𝑖,𝑥𝑅𝑀|𝑥𝑅𝑀<𝑥𝑅𝑀)

𝑣𝑎𝑟(𝑥𝑅𝑀|𝑥𝑅𝑀<𝑥𝑅𝑀)
                              (25) 

and 

𝛽+ =
𝑐𝑜𝑣(𝑥𝑅𝑖,𝑥𝑅𝑀|𝑥𝑅𝑀≥𝑥𝑅𝑀)

𝑣𝑎𝑟(𝑥𝑅𝑀|𝑥𝑅𝑀≥𝑥𝑅𝑀)
                            (26)  

where 𝑥𝑅𝑀 is the average market excess return over the sample period of the stock, and previous 

notations hold. In light of Ang et al. (2006), dummy variables (vectors) D1i and D2i are created and 

employed for each stock. D1 and D2 (with time subscript t) can be expressed as 

D1i = 1 and D2i = 0 if 𝑥𝑅𝑀,𝑡 < 𝑥𝑅𝑀                         (27) 

and 

D1i =0 and D2i = 1 if 𝑥𝑅𝑀,𝑡 ≥ 𝑥𝑅𝑀                          (28) 

It can be seen from Equations (18) and (19) that D1i = 1 and D2i = 0 if the market excess return at 

time t is below the average market excess return, while D1i = 0 and D2i = 1 if the market excess return at 

time t is above the average market excess return. Then two more variables are created as follows: 

𝐷1𝑖𝑥𝑅𝑀 = 𝐷1𝑖 ⊙ 𝑥𝑅𝑀                                  (29) 

𝐷2𝑖𝑥𝑅𝑀 = 𝐷2𝑖 ⊙ 𝑥𝑅𝑀                                  (30) 

It can be seen from Equations (20) and (21) that two new variables D1ixRM and D2ixRM are the 

element to element products of dummy variables of stock i and the corresponding excess market return 

over the sample period of the stock. For the former, observations are excess market returns if they are 

below the average excess market return over the sample period, and 0 otherwise. For the latter, 

observations are excess market returns if they are above the average excess market return over the 

sample period, and 0 otherwise. 

The econometric model used to estimate downside and upside betas for each stock, in matrix form, 

can be written as 

XRi = D1i + D2i + (D1iXRM ʘ SN)∙ Bi
- + (D2iXRM ʘ SN)∙ Bi

+ + εi       (31) 

where N = {0, 1, 2, 3, 4, 5}, Bi
- and Bi

+ are the (n × 1) estimated downside and upside beta estimate 

column vectors. Since the number of knots varies from 0 to 5, there will be 6 pairs of Bi
- and Bi

+ vectors. 

The best downside and upside beta estimates as determined by the AIC for a stock at each point of 

time, (𝐁𝐒
−∗ and 𝐁𝐒

+∗ in vector form) can be conducted as follows 

𝐁𝐒
−∗ = SN∙𝐁𝐢

−
                                   (32) 

and 
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𝐁𝐒
+∗ = SN∙𝐁𝐢

+
                                   (33) 

As mentioned in the previous paragraph, regardless of the number of knots placed in the function, 

the dimensions of 𝐁𝐒
−∗  and  𝐁𝐒

+∗  will always be t × 1. Both downside and upside betas can be 

interpreted in an analogous manner to classic beta regarding to downside and upside market.  

4.2. The FFF model 

In this section, the FFF model is described in detail. In light of Andersen and Bollerslev (1998), 

Andersen et al. (2000), Bollerslev et al. (2000), and Evans and Speight (2010), the econometric model 

with the FFF specification employed in this paper is defined as  

𝑥𝑅𝑖𝑡 = 𝛼𝑖𝑡 + ∑ [𝑃
𝑝=1 𝛽𝑐𝑜𝑠,𝑝 ⋅ (𝑐𝑜𝑠

𝑝2𝜋

𝑁
𝑛 ⋅ 𝑥𝑅𝑀𝑡) + 𝛽𝑠𝑖𝑛, 𝑝 ⋅ (𝑠𝑖𝑛

𝑝2𝜋

𝑁
𝑛 ⋅ 𝑥𝑅𝑀𝑡)] + 𝜀𝑖𝑡      (34) 

where αit is the constant, βcos,p and βsin,p are the coefficients to be estimated for stock i, N is the total number 

of observations of stock i, n is the order of observations with n = {1, 2, 3…t} , εit is the error term of stock 

i at time t, and p is the order of the FFF. The order of the FFF can vary from 1 to infinity. However, in order 

to provide efficient and unbiased estimates, according to previous studies, we chose up to 4.7 In this paper, 

the order from 1 to 4 is selected to examine and discover the best fit of the estimates.  

The OLS regression is applied to each stock to get the βcos,p and βsin,p estimates. The AIC will then 

be used for each regression. Since an order of 1 to 4 is examined, there are 4 AICs for each stock. 

Taking advantage of the nature of the AIC, the regression that produces the least AIC will indicate the 

optimal fit. To calculate the best estimate for a stock at each point of time, the AIC supported estimates 

of βcos,p and βsin,p for each stock are used to get the best estimates at each point of time, specifically,  

𝛽𝐹
∗ = ∑ (𝛽𝑐𝑜𝑠,𝑝 ⋅ 𝑐𝑜𝑠

𝑝2𝜋

𝑁
𝑛 + 𝛽𝑠𝑖𝑛, 𝑝 ⋅ 𝑠𝑖𝑛

𝑝2𝜋

𝑁
𝑛)𝑃

𝑝=1                    (35) 

In order to calculate the downside and upside beta estimates using the above FFF model, the same 

logic is followed as in the CPPF case. The same variables created in Equations (20) and (21) are created 

and employed for each stock in the new FFF model and the new market model is given by 

𝑥𝑅𝑖𝑡 = 𝐷1𝑖 + 𝐷2𝑖 + ∑[

𝑃

𝑝=1

𝛽𝑐𝑜𝑠, 𝑝
− ⋅ (𝑐𝑜𝑠

𝑝2𝜋

𝑁
𝑛 ⋅ 𝐷1𝑖𝑥𝑅𝑀𝑡) + 𝛽𝑠𝑖𝑛, 𝑝

− ⋅ (𝑠𝑖𝑛
𝑝2𝜋

𝑁
𝑛 ⋅ 𝐷1𝑖𝑥𝑅𝑀𝑡)] 

+∑ [𝑃
𝑝=1 𝛽𝑐𝑜𝑠, 𝑝

+ ⋅ (𝑐𝑜𝑠
𝑝2𝜋

𝑁
𝑛 ⋅ 𝐷2𝑖𝑥𝑅𝑀𝑡) + 𝛽𝑠𝑖𝑛, 𝑝

+ ⋅ (𝑠𝑖𝑛
𝑝2𝜋

𝑁
𝑛 ⋅ 𝐷2𝑖𝑥𝑅𝑀𝑡)] + 𝜀𝑖𝑡       (36) 

where 𝛽𝑐𝑜𝑠,𝑝
−  and 𝛽𝑠𝑖𝑛,𝑝

−  are the downside market coefficients to be estimated for stock i, and 𝛽𝑐𝑜𝑠,𝑝
+  

and 𝛽𝑠𝑖𝑛,𝑝
+  are the upside market coefficients to be estimated for stock i, and previous notations hold. As 

in Equation (22), there is no conventional constant term in the model, rather, full set of dummy variables 

are instead used. Since the order of the FFF examined varies from 1 to 4, there will be 4 groups of 𝛽𝑐𝑜𝑠,𝑝
− , 

𝛽𝑠𝑖𝑛,𝑝
− , 𝛽𝑐𝑜𝑠,𝑝

+  and 𝛽𝑠𝑖𝑛,𝑝
+  for each stock. For each group an AIC value is calculated and the lowest value 

indicates the best fit group of 𝛽𝑐𝑜𝑠,𝑝
− , 𝛽𝑠𝑖𝑛,𝑝

− , 𝛽𝑐𝑜𝑠,𝑝
+  and 𝛽𝑠𝑖𝑛,𝑝

+ .  

 
7See Andersen and Bollerslev (1998), and Evans and Speight (2010) for similar assumptions. 
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Furthermore, the best downside and upside beta estimates for each point in time are given by 

𝛽𝐹
−∗ = ∑ (𝛽𝑐𝑜𝑠, 𝑝

− ⋅ 𝑐𝑜𝑠
𝑝2𝜋

𝑁
𝑛 + 𝛽𝑐𝑜𝑠, 𝑝

− ⋅ 𝑠𝑖𝑛
𝑝2𝜋

𝑁
𝑛)𝑃

𝑝=1                    (37) 

and 

𝛽𝐹
+∗ = ∑ (𝛽𝑐𝑜𝑠, 𝑝

+ ⋅ 𝑐𝑜𝑠
𝑝2𝜋

𝑁
𝑛 + 𝛽𝑐𝑜𝑠, 𝑝

+ ⋅ 𝑠𝑖𝑛
𝑝2𝜋

𝑁
𝑛)𝑃

𝑝=1                     (38) 

and all previous notations hold. In the next section, the empirical results will be demonstrated and 

analyzed in detail.  

5. Empirical results 

As the method explained in the previous section, the best fits for both the CPPF and FFF models 

are obtained. In order to illustrate the results in a clearer way, having the best fitted estimates 𝛽𝑆
∗, 𝛽𝑆

−∗ 

and 𝛽𝑆
+∗ for the CPPF model and 𝛽𝐹

∗, 𝛽𝐹
−∗ and 𝛽𝐹

+∗ for the FFF model, the number of stocks with 

corresponding numbers of knots or orders and the percentage of the whole sample are shown in Table 

2 and Table 3, respectively.  

For the CPPF model, it can be seen from Table 2 that for 9409 stocks, best estimates are obtained 

when no knots are used. For other knot values, the number of stocks decreases. Typically, when 5 knots 

are used, just 563 stocks produced the best estimates. Similar results are obtained when the downside 

and upside beta estimates are constructed. 

Table 2. Stocks with corresponding knots to construct 𝛽𝑆
∗, 𝛽𝑆

−∗ and 𝛽𝑆
+∗. 

Knots  0 1 2  3  4 5 

𝛽𝑆
∗ Number of Stocks 9409 1455 861 655 614 563 

 Percentage to Whole sample 69.40% 10.73% 6.35% 4.83% 4.53% 4.15% 

𝛽𝑆
−∗and 𝛽𝑆

+∗ Number of Stocks 9399 903 483 416 729 1627 

 Percentage to Whole sample 69.33% 6.66% 3.56% 3.07% 5.38% 12.00% 

Note: This table reports the number and percentage of stocks with different knots to construct the best fit estimates 

of CPPF model. 

Table 3. Stocks with corresponding orders to construct 𝛽𝐹
∗, 𝛽𝐹

−∗ and 𝛽𝐹
+∗.  

Order  1 2 3  4  

𝛽𝐹
∗ Number of Stocks 6204 2746 2099 2508 

 Percentage to Whole sample 45.76% 20.26% 15.48% 18.50% 

𝛽𝐹
−∗and 𝛽𝐹

+∗ Number of Stocks 8377 2293 1429 1458 

 Percentage to Whole sample 61.79% 16.91% 10.54% 10.75% 

Note: This table reports the number and percentage of stocks in different orders to construct the best fit estimates of the 

FFF model. 

For the FFF model, it is clear from Table 3 that to construct 𝛽𝐹
∗, 6204 stocks have an order of 1. 

Orders 2, 3 and 4 are generally selected less often. This pattern is even more obvious when constructing 
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𝛽𝐹
−∗ and 𝛽𝐹

+∗, 8377 stocks produce the best estimates with order 1, 2293 stocks with order 2, and the 

number of stocks with order 3 and 4 are 1429 and 1458, respectively. 

Furthermore, the relationships among stock returns and corresponding beta, downside beta and 

upside beta estimates for the CPPF model and the FFF models are examined. In order to uncover the 

relationship in a cross-sectional fashion, stocks at each point of time are cross-sectionally assigned into 

five portfolios according to the value of the estimate. Since the beta, upside beta and downside beta 

estimates for both models are not independent of each other, to distinguish the effects among them, the 

relative upside beta, denoted by (β+−β) and relative downside beta denoted by (β-−β) are considered. To 

sort the portfolio, at each point of time, all stocks are sorted into five quintiles according to the value of 

the beta estimate. Therefore, portfolio 1 contains stocks with the lowest 20% of estimates, portfolio 2 

contains stocks with the second lowest 20% of estimates, and accordingly. When stocks are sorted into 

5 portfolios at each point of time,8 the equally weighted average of the estimate for each portfolio and 

the corresponding average annualized stock returns are calculated. The results of both models are 

summarized in Table 4 and Table 5, respectively.  

It can be seen from the CPPF model results in Table 4 that when sorting by 𝛽𝑆
∗, portfolio 1 has an 

average 𝛽𝑆
∗ of −0.24 while on the other hand, portfolio 5 has an average 𝛽𝑆

∗ of 2.68. Consistent with 

the literature, the average annualized realized rates of return of each portfolio show an ascending order 

as the average 𝛽𝑆
∗ increases, portfolio 1 yields a return of 1.53% while portfolio 5 shows a return of 

24.84%. The average 𝛽𝑆
−∗ and 𝛽𝑆

+∗ values of each portfolio follow the same trend as 𝛽𝑆
∗, an average 

𝛽𝑆
−∗ is 0.47 in portfolio 1 and increases to 2.18 in portfolio 5. Similarly, the average 𝛽𝑆

+∗ is −0.21 in 

portfolio 1 and increases to 2.4 in portfolio 5. 

Interestingly, a different pattern in returns is demonstrated when stocks are sorted by 𝛽𝑆
−∗. It is 

clear that average returns demonstrate a reversed trend while average 𝛽𝑆
∗ shows the same ascending 

trend from portfolio 1 to portfolio 5 along with the increase of 𝛽𝑆
−∗. 𝛽𝑆

−∗ is −7.2 in portfolio 1 with 

an average 𝛽𝑆
∗ of 0.48 and an average return of 25%, while in portfolio 5, 𝛽𝑆

−∗ grows to 10.01 with 

an average 𝛽𝑆
∗  increasing to 1.86 and the average return drops to −2.67%. The pattern of 𝛽𝑆

+∗  is 

generally increasing but with a subtle variation in that, it drops from 0.85 to 0.62 from portfolio 1 to 

portfolio 2, and then keeps growing to portfolio 5 ending up with a value of 1.23.  

Notably, although 𝛽𝑆
∗ and 𝛽𝑆

+∗ still have increasing trends in this panel, the difference between 

values for portfolio 1 and portfolio 5 (1.38 and 0.39, respectively) are narrower than the ones in Panel 

1 (2.92 and 2.62 respectively). 

When stocks are sorted by 𝛽𝑆
+∗, a similar pattern appears to those in Panel 1. It can be seen from 

Panel 3 that, 𝛽𝑆
+∗ is −3.87 in portfolio 1 with an average 𝛽𝑆

∗ of 0.42 and an average return of −11.93%, 

and in portfolio 5, 𝛽𝑆
+∗ grows to 5.94 with average 𝛽𝑆

∗ increasing to 2.11 and average returns increasing 

to 35.58%. The pattern of 𝛽𝑆
+∗ is also generally increasing but with a sudden drop from 1.32 to 0.91 

between portfolio 1 to portfolio 2, and then keeps increasing to portfolio 5 and ends up with a value of 

1.42. Compared to Panel 1, the spread of 𝛽𝑆
∗ , and 𝛽𝑆

−∗  between portfolio 5 and portfolio 1 is less, 

however the spread of 𝛽𝑆
+∗ and average return is much higher (9.81 and 47.51% in Panel 3, while 2.62 

and 23.3% in Panel 1). It is clear that 𝛽𝑆
+∗ has the same positive impact on portfolio returns as 𝛽𝑆

∗. 

In order to examine how 𝛽𝑆
−∗  is driving the return not considering the impact of 𝛽𝑆

∗ , a new 

estimate (𝛽𝑆
−∗−𝛽𝑆

∗) is employed in the analysis. Using this estimate to sort portfolios could discover the 

 
8Since monthly data are used in this paper, and the whole sample is from January 1960 to December 2010, there are 612 

time points. 
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unique property of 𝛽𝑆
−∗ after controlling for 𝛽𝑆

∗. When stocks are sorted by (𝛽𝑆
−∗−𝛽𝑆

∗), an unfamiliar 

pattern appears in Panel 4. From portfolio 1 to portfolio 5, all average returns, 𝛽𝑆
∗ and 𝛽𝑆

+∗ are in 

descending order while only 𝛽𝑆
−∗ increases from −6.6 to 9.49. Although in Panel 1, Panel 2 and Panel 

3, 𝛽𝑆
−∗ are also in ascending order, the spread of average returns in Panel 4 is the highest and reaches 

−48.22%. So controlling for 𝛽𝑆
∗, it can be seen that 𝛽𝑆

−∗ shows a negative relationship with portfolio 

returns and 𝛽𝑆
∗.  

Table 4. Relationships between stock returns and CPPF factor loadings. 

Portfolio Return βS
* βS

−* βS
+* Portfolio Return βS

* βS
−* βS

+* 

Panel 1 Stocks Sorted by βS
* Panel 2 Stocks Sorted by βS

−* 

1 Low 1.53% −0.24 0.47 −0.21 1 Low 25.00% 0.48 −7.2 0.85 

2 6.76% 0.64 0.80 0.32 2 11.08% 0.77 0.68 0.68 

3 8.95% 0.99 1.23 0.84 3 10.53% 1.03 1.1 0.83 

4 11.59% 1.41 1.54 1.25 4 9.73% 1.33 1.61 0.99 

5 High 24.84% 2.68 2.18 2.4 5 High −2.67% 1.86 10.01 1.23 

High − Low 23.30% 2.92 1.72 2.62 High − Low −27.67% 1.38 17.21 0.39 

Panel 3 Stocks Sorted by βS
+* Panel 4 Stocks Sorted by (βS

−*−βS
*) 

1 Low −11.93% 0.42 1.32 −3.87 1 Low 35.87% 1.64 −6.6 2.03 

2 6.67% 0.71 0.91 0.34 2 14.74% 1.11 0.88 1.09 

3 9.85% 0.96 1.21 0.81 3 9.72% 0.96 1.05 0.72 

4 13.43% 1.28 1.35 1.37 4 5.72% 0.95 1.38 0.6 

5 High 35.58% 2.11 1.42 5.94 5 High −12.35% 0.83 9.49 0.16 

High − Low 47.51% 1.69 0.1 9.81 High − Low −48.22% −0.81 16.09 −1.87 

Panel 5 Stocks Sorted by (βS
+*−βS

*) Panel 6 Stocks Sorted by (βS
−*−βS

+*) 

1 Low −6.16% 1.35 1.88 −3.38 1 Low 36.79% 1.43 −6.32 5.09 

2 7.24% 1.03 1.37 0.52 2 14.15% 1.05 0.89 1.2 

3 9.94% 0.96 1.16 0.84 3 10.07% 0.96 1.05 0.83 

4 13.12% 1 1.1 1.21 4 6.43% 0.98 1.35 0.53 

5 High 29.51% 1.14 0.71 5.4 5 High −13.76% 1.05 9.23 −3.06 

High − Low 35.67% −0.2 −1.18 8.78 High − Low −50.55% −0.38 15.55 −8.15 

Note: This table presents the relationship between excess stock returns and factor loading of the CPPF model. The column 

labeled “return” reports the average stock returns over a one month T-bill rate. “High-Low” reports the difference between 

portfolio 5 and portfolio 1. Notably, in a perfect market, the average value of βS
* is assumed to be 1. 
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As with (𝛽𝑆
−∗−𝛽𝑆

∗), (𝛽𝑆
+∗−𝛽𝑆

∗) is employed to uncover the unique property of 𝛽𝑆
+∗ after controlling 

for 𝛽𝑆
∗. It can be seen from Panel 5 that from portfolio 1 to portfolio 5, both average return and 𝛽𝑆

+∗ 

are in ascending order, starting at −6.16% and −3.38, increasing to 29.51% and 5.4, respectively. 𝛽𝑆
−∗ 

exhibits a descending trend for the first time within these panels. It drops from −1.88 to 0.71. A U-

shaped pattern in 𝛽𝑆
∗ is apparent, it starts at 1.35 in portfolio 1 and drops to 0.96 in portfolio 3, but 

restores to 1.14 in portfolio 5.  

In Panel 6, (𝛽𝑆
−∗ − 𝛽𝑆

+∗) is adopted to sort the portfolio in order to control 𝛽𝑆
+∗ from 𝛽𝑆

−∗ and for the 

sake of precision. In can be seen from Panel 6 that both average returns and 𝛽𝑆
+∗ are in descending orders, 

starting at 36.79% and 5.09 and dropping to 13.76% and −3.06 respectively, while 𝛽𝑆
−∗  exhibits an 

ascending trend increasing from -6.32 to 9.23. As in Panel 5, a U-shaped pattern appears in 𝛽𝑆
∗, starting at 

1.43 in portfolio 1 dropping to 0.96 in portfolio 3 and recovering to 1.05 in portfolio 5. Notably, the spread 

of returns in Panel 6 is the highest among all 6 panels at −50.55%.  

Regarding the FFF model, it can be seen from Table 5 that when sorting by 𝛽𝐹
∗, portfolio 1 has 

an average 𝛽𝐹
∗ of −1.19 while on the other hand, portfolio 5 shows an average 𝛽𝐹

∗ of 1.22. Again, 

consistent with the literature, the average annualized rates of return to each portfolio are presented in 

an ascending order with the 𝛽𝐹
∗. Portfolio 1 yields a return of 3.54%, while portfolio 5 has a return of 

22.26%. Average 𝛽𝐹
−∗ and 𝛽𝐹

+∗ for each portfolio follow the same trend as 𝛽𝐹
∗, with an average 𝛽𝐹

−∗ 

of −0.74 in portfolio 1 and 0.76 in portfolio 5. Similarly, the average 𝛽𝐹
+∗ is −0.87 in portfolio 1 and 

increases to 0.95 in portfolio 5. A different pattern was demonstrated when stocks are sorted by 𝛽𝐹
−∗. 

It is clear that average returns exhibit a reversed trend while average 𝛽𝐹
∗ shows the same ascending 

trend from portfolio 1 to portfolio 5 along with the increase of 𝛽𝐹
−∗. 𝛽𝐹

−∗ is −1.32 in portfolio 1 with 

an average 𝛽𝐹
∗  of −0.67 and average return of 21.88%, while in portfolio 5, 𝛽𝐹

−∗  grows to 1.33, 

average 𝛽𝐹
∗  increases to 0.69 and the average return drops to −0.03%. The pattern of 𝛽𝐹

+∗  is 

consistent with 𝛽𝐹
−∗, it starts at −0.31 in portfolio 1, and then keeps growing to portfolio 5 ending up 

with a value of 0.33. Notably, although 𝛽𝐹
∗ and 𝛽𝐹

+∗ still have an increasing trend in this panel, the 

difference between values in portfolio 1 and portfolio 5 (1.36 and 0.64, respectively) are narrower than 

the ones in Panel 1 (2.41 and 1.82, respectively). 

When sorting by 𝛽𝐹
+∗, a similar pattern to that in Panel 1 appears. It can be seen from Panel 3 that 

𝛽𝐹
+∗ is −1.28 in portfolio 1 with an average 𝛽𝐹

∗ of −0.81 and an average return of −7.72%, and in 

portfolio 5, 𝛽𝐹
+∗  grows to 1.33 with an average 𝛽𝐹

∗  increasing to 0.86 and an average return 

increasing to 32.33%. The pattern of 𝛽𝐹
−∗ is consistent with 𝛽𝐹

+∗, it starts at −0.29 in portfolio 1, and 

then keeps growing to portfolio 5 ending up with a value of 0.3. Compared to Panel 1, the spread of 

𝛽𝐹
∗, and 𝛽𝐹

−∗ between portfolio 5 and portfolio 1 are less. However, the spread of 𝛽𝐹
+∗ and average 

returns is much higher (2.61 and 40.05% in Panel 3, and 1.82 and 18.72% in Panel 1, respectively). 
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Table 5. Relationships between stock returns and the FFF factor loadings. 

Portfolio Return βF
* βF

−* βF
+* Portfolio Return βF

* βF
−* βF

+* 

Panel 1 Stocks Sorted by βF
* Panel 2 Stocks Sorted by βF

−* 

1 Low 3.54% −1.19 −0.74 −0.87 1 Low 21.88% −0.67 −1.32 −0.31 

2 7.51% −0.37 −0.26 −0.28 2 13.09% −0.24 −0.38 −0.12 

3 9.11% −0.01 −0.01 −0.03 3 10.46% −0.01 −0.01 −0.01 

4 11.24% 0.36 0.24 0.23 4 8.22% 0.23 0.37 0.11 

5 High 22.26% 1.22 0.76 0.95 5 High −0.03% 0.69 1.33 0.33 

High − Low 18.72% 2.41 1.49 1.82 High − Low −21.91% 1.36 2.65 0.64 

Panel 3 Stocks Sorted by βF
+* Panel 4 Stocks Sorted by (βF

−*−βF
*) 

1 Low −7.72% −0.81 −0.29 −1.28 1 Low 33.18% 0.52 −0.71 0.65 

2 5.02% −0.27 −0.13 −0.36 2 16.29% 0.11 −0.18 0.19 

3 9.44% −0.02 −0.01 −0.02 3 10.34% −0.02 −0.02 −0.01 

4 14.58% 0.24 0.13 0.33 4 4.66% −0.14 0.17 −0.21 

5 High 32.33% 0.86 0.3 1.33 5 High −10.84% −0.48 0.74 −0.61 

High − Low 40.05% 1.67 0.59 2.61 High − Low −44.02% −1 1.45 −1.27 

Panel 5 Stocks Sorted by (βF
+*−βF

*) Panel 6 Stocks Sorted by (βF
−*−βF

+*) 

1 Low −4.27% 0.36 0.57 −0.63 1 Low 36.12% 0.17 −0.81 0.85 

2 5.48% 0.12 0.21 −0.14 2 16.44% −0.02 −0.24 0.17 

3 9.74% 0 −0.01 −0.01 3 10.15% −0.02 −0.01 −0.02 

4 14.99% −0.14 −0.23 0.12 4 4.34% −0.02 0.22 −0.2 

5 High 27.69% −0.34 −0.54 0.66 5 High −13.41% −0.12 0.85 −0.81 

High − Low 31.95% −0.7 −1.1 1.29 High − Low −49.53% −0.3 1.66 −1.66 

Note: This table presents the relationship between excess stock returns and factor loading of the FFF model. The column labeled 

“return” reports the average stock returns over one month T-bill rate. “High-Low” reports the difference between portfolio 5 and 

portfolio 1. Notably, in a perfect market, the average value of βF
* depends on the average value of the intercept. 

As with the CPPF model, we consider (𝛽𝐹
−∗ − 𝛽𝐹

∗ ) in the analysis. Using this estimate to sort 

portfolios could uncover further properties of 𝛽𝐹
−∗ after controlling for 𝛽𝐹

∗. When stocks are sorted 

by (𝛽𝐹
−∗ − 𝛽𝐹

∗), an unfamiliar pattern appears in Panel 4. From portfolio 1 to portfolio 5, average returns, 

𝛽𝐹
∗ and 𝛽𝐹

+∗ all decrease only with 𝛽𝐹
−∗ increasing from −0.71 to 0.74. As in Panel 1, Panel 2 and 

Panel 3, 𝛽𝐹
−∗  are also in ascending order, the spread of average returns in Panel 4 is highest and 

reaches −44.02%. Referring back to when stocks are sorted by (𝛽𝑆
−∗ − 𝛽𝑆

∗), a similar pattern appears. 
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Therefore, it can be concluded that when controlling for the effect of beta, the relative downside beta 

estimates of both models have a negative relationship with portfolio returns, which can be interpreted 

as stocks tend to suffer a loss if they have large downside betas. 

When (𝛽𝐹
+∗ − 𝛽𝐹

∗) is employed (to uncover the unique property of 𝛽𝐹
+∗ after controlling for 𝛽𝐹

∗), 

it can be seen from Panel 5 that from portfolio 1 to portfolio 5, both average returns and 𝛽𝐹
+∗ increase, 

starting at −6.16% and −3.38% and increasing to 29.51% and 5.4, respectively, while both 𝛽𝐹
∗ and 

𝛽𝐹
−∗ decrease from 0.36 and 0.57 to −0.34 and −0.54, respectively.  

Also in Panel 6, (𝛽𝐹
−∗−𝛽𝐹

+∗) is adopted to sort the portfolio to control 𝛽𝐹
+∗ from 𝛽𝐹

−∗ and for the sake 

of precision. It can be seen from this panel that the same pattern as in Panel 4 appears. From portfolio 1 to 

portfolio 5, average returns, 𝛽𝐹
∗  and 𝛽𝐹

+∗  all decrease while only 𝛽𝐹
−∗  increases from −0.81 to 0.85. 

Notably, the spread of returns in Panel 6 is the highest among all 6 panels at −49.53%. 

To sum up, the results of the CPPF and the FFF models, 𝛽𝑆
∗ and 𝛽𝐹

∗ as classic risk estimates, 

still have a clear impact stock returns. Specifically, when stocks are sorted by 𝛽𝑆
∗ and 𝛽𝐹

∗, average 

returns follow exactly the same increasing trend with the 𝛽𝑆
∗ and 𝛽𝐹

∗ presented, even the portfolio 

return is inversely related to the market return. More importantly, it can be seen from these panels that 

𝛽𝑆
−∗, 𝛽𝑆

+∗, 𝛽𝐹
−∗ and 𝛽𝐹

+∗ do have an impact on stock returns. When stocks are sorted by 𝛽𝑆
−∗, (𝛽𝑆

−∗ −

𝛽𝑆
∗), 𝛽𝐹

−∗ and (𝛽𝐹
−∗ − 𝛽𝐹

∗), clearly, downside related estimates have a negative relationship with the 

realized returns, this is even more obvious in Panel 6 when stocks are sorted by (𝛽𝑆
−∗ − 𝛽𝑆

+∗) and 

(𝛽𝐹
−∗ − 𝛽𝐹

+∗ ), while when stocks are sorted by 𝛽𝑆
+∗ , (𝛽𝑆

+∗ − 𝛽𝑆
∗ ), 𝛽𝐹

+∗  and (𝛽𝐹
+∗ − 𝛽𝐹

∗ ), positive 

relationships appear between upside related estimates and realized returns. Moreover, the classic 

estimates 𝛽𝑆
∗ and 𝛽𝐹

∗ appear to have a similar impact as the upside related estimates 𝛽𝑆
+∗, (𝛽𝑆

+∗ − 𝛽𝑆
∗), 

𝛽𝐹
+∗ and (𝛽𝐹

+∗−𝛽𝐹
∗). To rationalize that, when downside beta is calculated, the return of the market 

portfolio is below the average, and very likely to be negative. The stock expected excess return is the 

product of beta and excess returns to the market portfolio, so when stocks are sorted by downside beta into 

portfolios, the larger the downside beta, the lower the return. In addition to that, the panic on the falling 

market of investors’ could also be a reason for aggravating the negative returns. 

6. Fama-Macbeth regression 

In this section, in order to uncover the premia of 𝛽𝑆
∗ , 𝛽𝑆

−∗ , 𝛽𝑆
+∗ , 𝛽𝐹

∗ , 𝛽𝐹
−∗  and 𝛽𝐹

+∗  on stock 

returns from a cross-sectional point of view, a series of Fama-Macbeth regressions are performed 

which employ various combinations of the above estimates as independent variables.  

For the purposes of comparison and to demonstrate the importance of placing an appropriate 

number of knots for the CPPF model and choosing an appropriate order for the FFF model, additional 

variables 𝛽𝑆0, 𝛽𝑆0
− , 𝛽𝑆0

+ , 𝛽𝐹1, 𝛽𝐹1
−  and 𝛽𝐹1

+  are introduced. For 𝛽𝑆0, 𝛽𝑆0
−  and 𝛽𝑆0

+ , they are the beta 

estimate, downside beta estimate and upside beta estimate, respectively, for each stock at each point in 

time estimated with the CPPF model without placing a knot. However for 𝛽𝐹1, 𝛽𝐹1
−  and 𝛽𝐹1

+ , they are 

the beta estimate, downside beta estimate and upside beta estimate, respectively, for each stock at each 

point in time estimated with the FFF model with order 1. 
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Table 6. Correlations of factor loadings without knot and in order one. 

 𝛽𝑆0 𝛽𝑆0
−  𝛽𝑆0

+  𝛽𝐹1 𝛽𝐹1
−  𝛽𝐹1

+  

𝛽𝑆0 1.0000       

𝛽𝑆0
−  0.3363 1.0000      

𝛽𝑆0
+  0.4326 0.0365 1.0000     

𝛽𝐹1 0.4397 0.1345 0.1770  1.0000    

𝛽𝐹1
−  0.3209 0.2611 0.0458 0.7331 1.0000   

𝛽𝐹1
+  0.4620  0.0336 0.2737 0.8093 0.2886 1.0000  

Note: This table reports the correlation coefficients between factor loadings of both the CPPF model with zero knots and 

the FFF model in order one. To avoid unnecessary repetition, only the lower triangle of the matrix is shown. 

The correlation coefficient matrices for groups of variables are presented in Table 6 and Table 7. 

It can be seen from Table 6 that 𝛽𝐹1  is highly correlated with both 𝛽𝐹1
−   and 𝛽𝐹1

+   (the correlation 

coefficients are 0.7331 and 0.8093, respectively). The other pairs of variables are correlated with each 

other to some extent, but not as highly as the two mentioned pairs (above 0.5), for instance, 𝛽𝑆0 and 

𝛽𝐹1
+  exhibits the highest correlation with a coefficient of 0.462 after the two peak values. Therefore, 

in the following Fama-Macbeth regression, 𝛽𝐹1  will not appear in the same regression with 𝛽𝐹1
−  

or 𝛽𝐹1
+ , and the other variables will form different combinations of independent variables. 

It is clear from Table 7 that, as in Table 6, high correlations appear between the FFF based estimates, 

with 𝛽𝐹
∗  highly correlated with 𝛽𝐹

−∗  and  𝛽𝐹
+∗  (with correlation coefficients of 0.5239 and 0.6689, 

respectively). The remaining variables exhibit a weaker correlation with each other. Thus in the following 

Fama-Macbeth regression, 𝛽𝐹
∗  will not appear in the same regression with 𝛽𝐹

−∗  or 𝛽𝐹
+∗ , and the other 

variables will form different combinations of independent variables. Notably, in Table 8, for both the CPPF 

and the FFF models, the upside beta estimates 𝛽𝑆
+∗ and 𝛽𝐹

+∗ are negatively correlated with the downside 

beta estimates of the CPPF model 𝛽𝑆
−∗ with correlation coefficients of −0.0001 and −0.0018, respectively.  

Table 7. Correlations of factor loading with knots and orders. 

 𝛽𝑆
∗ 𝛽𝑆

−∗ 𝛽𝑆
+∗ 𝛽𝐹

∗ 𝛽𝐹
−∗ 𝛽𝐹

+∗ 

𝛽𝑆
∗ 1.0000       

𝛽𝑆
−∗ 0.0130  1.0000      

𝛽𝑆
+∗ 0.0237 -0.0001 1.0000     

𝛽𝐹
∗ 0.3154 0.0029 0.0085  1.0000    

𝛽𝐹
−∗ 0.2609 0.0082 0.0025 0.5239 1.0000   

𝛽𝐹
+∗ 0.3099 -0.0018 0.0098 0.6689 0.1889 1.0000  

Note: This table reports the correlation coefficients between factor loadings of both the CPPF model with appropriate 

number of knots and the FFF model in appropriate order, to avoid unnecessary repetition, only the lower triangle of the 

matrix is shown. 

This phenomenon potentially shows that the downside beta estimates do have an opposite impact 

on stock returns compared to the upside beta estimates which complies with the conclusion made in 

the previous sections. 

After deciding on the possible combinations of variables, the Fama-Macbeth regressions are 

performed on both groups of variables which are demonstrated in Table 8 and Table 9. Since the data 

are at monthly frequency from January 1960 to December 2010, there are 612 cross-sectional time 

points and 2,398,103 observations of each regression. Newey-West (1987) heterosecdasticity robust 
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standard errors with 12 lags are employed to calculate the t-statistics and the adjusted R2 values 

obtained from the cross-sectional regressions are provided. 

As 𝛽𝐹1 is excluded from the regression when 𝛽𝐹1
−  or 𝛽𝐹1

+  are employed, therefore, there are 11 

possible combinations among 𝛽𝑆0, 𝛽𝑆0
− , 𝛽𝑆0

+ , 𝛽𝐹1, 𝛽𝐹1
−  and 𝛽𝐹1

+  as independent variables. It can be 

seen from Table 8 that regression 1, 2 and 3 examine the impact of estimates of the CPPF model 

without a knot. Generally, these three regressions exhibit poor fit with the intercept in regression 1 and 

coefficients of 𝛽𝑆0
−   and 𝛽𝑆0

+   in regression 2 not significant at the 5% significance level and with 

adjusted R2 values of 0.06 and 0.055, respectively. In regression 3, the coefficient on 𝛽𝑆0
−  and the 

intercept are not significant even at the 10% significance level with an adjusted R2 value of 0.098. 

Regression 4 and 5 examine the impact of estimates of the FFF model with order 1. Estimates of 

regression 4 and 5 are all significant at the 1% significance level, however both regressions present 

low adjusted R2 values of 0.017 and 0.029, respectively.  

The remaining regressions 6 to 11 employ variables from both the CPPF model and the FFF model to 

examine the impact of these variables on stock returns. It is clear from Table 8 that with the exception of 

the coefficient on 𝛽𝑆0
−   and coefficients on 𝛽𝑆0

−   and 𝛽𝑆0
+   in regression 10, remaining estimates are all 

significant at the 5% level. Among the regressions in Table 8, regression 11 shows the highest adjusted R2 

value at 0.106 and it also contains the most variables. Notably, consistent with the literature, the estimated 

coefficients of 𝛽𝑆0 and 𝛽𝐹1 are always positive among regressions, and illustrate that the beta estimates 

for both models have a positive impact on stock returns. Moreover, the estimated coefficients on 𝛽𝐹1
−  and 

𝛽𝐹1
+  are always significant at the 1% significance level, and their signs are constantly negative and positive, 

and show that the downside and upside risk estimates of the FFF model have negative and positive impacts 

on stock returns, respectively. However, the significance and sign of the estimated coefficients on 𝛽𝑆0
−  and 

𝛽𝑆0
+  vary across regressions in Table 9, therefore, it is difficult to provide a definitive conclusion. 

Table 9 shows the 11 possible combinations among 𝛽𝑆
∗, 𝛽𝑆

−∗, 𝛽𝑆
+∗, 𝛽𝐹

∗, 𝛽𝐹
−∗ and 𝛽𝐹

+∗. It can be 

concluded from Table 9 that, similar to Table 8, regressions 1 to 3 examine the impact of estimates of 

the CPPF model with appropriate numbers of knots according to the AIC. Moreover, regressions 4 and 

5 examine the impact of best estimates of the FFF model (according to the AIC). The remaining 

regressions 6 to 11 employ variables from both the best CPPF and FFF models to examine the impact 

of these variables on stock returns. Unlike Table 8, all estimated coefficients except the intercept in 

regression 1 are significant at the 1% significance level. These best fit estimates are all highly 

significant, and the beta coefficients are consistently positive, which is consistent with the classic 

literature (as in Table 8). Moreover, the estimated coefficients of downside and upside beta estimates 

show negative and positive signs, respectively, over all regressions, which is consistent with the 

conclusions made regarding Table 4 and Table 5. Furthermore, showing better fit than classic CAPM, 

among all 11 regressions in Table 9, regression 11 exhibits the highest adjusted R2 value at 0.153.9 

However, since 𝛽𝐹
∗  is excluded from regressions employed 𝛽𝐹

−∗  or 𝛽𝐹
+∗ , checking the alterative 

regression (regression 8) shows that employing 𝛽𝐹
∗ instead of 𝛽𝐹

−∗ and 𝛽𝐹
+∗, generates the second highest 

adjusted R2 among all regressions at 0.15. Therefore, it can be concluded from Table 9 that the variables 

produce a much higher adjusted R2 value than the variables used in Table 8, thus indicating that placing 

appropriate numbers of knots in the CPPF model and selecting the appropriate order in the FFF model 

produces better beta estimates. Moreover, all the variables in regression 8 and regression 11 show 

significant effects on excess stock returns, while the regression that employs 𝛽𝐹
−∗ and 𝛽𝐹

+∗ outperforming 

the one that employs 𝛽𝐹
∗.

 
9The outcome of CAMP is not shown due to limited space. 
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Table 8. Fama-Macbeth regressions of factor loadings restricted estimates. 

 1 2 3 4 5 6 7 8 9 10 11 

Intercept 

 

0.00155 

[1.14] 

0.00743*** 

[3.82] 

0.00154 

[1.21] 

0.00852*** 

[3.48] 

0.00907*** 

[3.90] 

0.00212 

[1.57] 

0.00705*** 

[3.88] 

0.00213* 

[1.70] 

0.00345*** 

[2.89] 

0.00801*** 

[4.06] 

0.00251** 

[2.24] 

𝛽𝑆0 
0.00663*** 

[3.25] 

 0.00824*** 

[3.68] 

  0.00614*** 

[3.02] 

 0.00768*** 

[3.46] 

0.00525*** 

[2.73] 

 0.00626*** 

[2.98] 

𝛽𝑆0
−  

 0.0000637 

[0.08] 

−0.000721 

[−1.28] 

   0.00187*** 

[2.99] 

−0.000678 

[−1.20] 

−0.0119*** 

[−13.04] 

−0.000103 

[−0.15] 

0.00147*** 

[2.95] 

𝛽𝑆0
+  

 0.000937* 

[1.90] 

−0.000977*** 

[−2.13] 

   −0.000884** 

[−2.21] 

−0.000983** 

[−2.14] 

0.0115*** 

[14.41] 

0.000520 

[1.14] 

−0.00205*** 

[−4.72] 

𝛽𝐹1 
   0.00542*** 

[3.35] 

 0.00132** 

[2.50] 

 0.00141*** 

[2.66] 

 0.00509*** 

[3.77] 

 

𝛽𝐹1
−  

    −0.0113*** 

[−9.43] 

 −0.0126*** 

[−12.50] 

   −0.0131*** 

[−15.27] 

𝛽𝐹1
+  

    0.0148*** 

[10.83] 

 0.0156*** 

[12.60] 

   0.0127*** 

[17.27] 

Number of  

obs 

2398103 2398103 2398103 2398103 2398103 2398103 2398103 2398103 2398103 2398103 2398103 

Average R2 0.055 0.060 0.098 0.017 0.029 0.056 0.077 0.100 0.065 0.069 0.106 

Note: This table reports the results of the Fama-Macbeth regression of factor loadings without knot and order. The t-statistics in the square brackets are calculated by using 

Newey-West (1987) heteroscedastic robust standard error with 12 lags. * denotes significance at the 10% level, ** denotes significance at the 5% level and ***denotes 

significance at the 1% level. 
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Table 9. Fama-Macbeth regressions of factor loadings with appropriate knots and orders. 

 1 2 3 4 5 6 7 8 9 10 11 

Intercept 

 

0.00186 

[1.52] 

0.00898*** 

[7.05] 

0.00538*** 

[5.04] 

0.00826*** 

[3.56] 

0.00943*** 

[4.42] 

0.00279** 

[2.19] 

0.00965*** 

[7.54] 

0.00618*** 

[5.76] 

0.00369*** 

[3.38] 

0.00947*** 

[7.14] 

0.00623*** 

[6.23] 

𝛽𝑆
∗ 0.00610*** 

[3.42] 

 0.00448*** 

[3.82] 

  0.00481*** 

[3.00] 

 0.00383*** 

[3.54] 

0.00490*** 

[3.20] 

 0.00384*** 

[3.42] 

𝛽𝑆
−∗  −0.0120*** 

[−9.82] 

−0.00948*** 

[−11.19] 

   −0.0106*** 

[−10.25] 

−0.00944*** 

[−11.19] 

−0.00994*** 

[−12.94] 

 −0.00850*** 

[−11.30] 

𝛽𝑆
+∗  

0.0134*** 

[14.47] 

0.00911*** 

[14.41] 
   

0.0117*** 

[15.25] 

0.00890*** 

[14.63] 

0.0107*** 

[15.74] 
 

0.00823*** 

[14.44] 

𝛽𝐹
∗    0.00673*** 

[4.16] 

 0.00334*** 

[5.67] 

 0.00238*** 

[4.73] 

 0.00342*** 

[3.91] 

 

𝛽𝐹
−∗     −0.0113*** 

[−9.13] 

 −0.00419*** 

[−8.21] 

  −0.0111*** 

[−10.53] 

−0.00485*** 

[−13.74] 

𝛽𝐹
+∗     0.0155*** 

[13.00] 

 0.00647*** 

[11.34] 

  0.0121*** 

[15.64] 

0.00586*** 

[13.51] 

 

Number of 

obs 

2398103 2398103 2398103 2398103 2398103 2398103 2398103 2398103 2398103 2398103 2398103 

Adjusted R2 0.092 0.13 0.147 0.039 0.055 0.096 0.138 0.150 0.11 0.137 0.153 

Note: This table reports the results of the Fama-Macbeth regression of factor loadings with appropriate knots and orders on stock excess returns. The t-statistics in the square 

brackets are calculated by using the Newey-West (1987) heteroscedastic robust standard error with 12 lags. * denotes significance at the 10% level, ** denotes significance at 

the 5% level and ***denotes significance at the 1% level.
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7. Conclusions 

It can be concluded from this paper that the beta, upside beta and downside beta estimates 

produced by the CPPF model and the FFF model do have a significant impact on cross-sectional stock 

returns. The beta estimates, whose role has been doubted in the literature for several decades, are 

significant in driving the stock returns for both models. Moreover, the downside and upside beta 

estimates of both models demonstrate reversed impacts on stock returns. The reason for that is when 

downside beta is calculated, the return of the market portfolio is below the average, and likely to be 

negative. The expected excess stock return is the product of beta and excess returns to the market 

portfolio, so when stocks are sorted by downside beta into portfolios, the larger downside beta, the 

lower the return, and vice versa. The former ones show negative impacts on stock returns, while the 

latter ones, consistent with the beta estimates, have positive effects (both are significant). For stocks 

with negative downside beta, they are inversely related with downside risk and more desirable in a 

downside market, therefore positive returns are rewarded. Moreover, placing the appropriate number 

of knots in the CPPF model and selecting the correct order of the FFF model are crucial procedures to 

generate the best fit estimates according to the AIC. It has been shown in this paper that estimates with 

the appropriate number of knots (or order) deliver more significant impacts on stock returns within the 

cross-sectional return regressions with respect to those based on non-optimal knots or orders. 

Furthermore, in order to avoid potential multicollinearity, beta estimates based on the FFF model 𝛽𝐹
∗ 

can be treated as an alternative variable of downside and upside beta estimates (𝛽𝐹
−∗  and  𝛽𝐹

+∗ , 

respectively). However, employing 𝛽𝐹
−∗ and 𝛽𝐹

+∗ in the regression produces higher adjusted R2 values 

than employing 𝛽𝐹
∗.  

The findings of this paper fill the gap in literature, specifically on both investigating and pricing 

the time variation and asymmetric nature of systematic risk. The methods and models proposed in this 

paper embed advanced mathematical techniques of data smoothing and widen the current options of 

asset pricing models. The application of proposed models provides high degree of explanatory power 

to capture and price risk in stock market. Nonetheless, as an experiment, there are certain limitations 

of this paper, e.g. the number of knots and orders are determined relatively arbitrarily, and the sample 

could be extended.  
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