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Abstract: The effects of UV radiation, a maleic anhydride grafted polyethylene (MAPE) coupling 
agent and moisture cycling exposure on wood plastic composites (WPC) made from pinewood waste 
(PW) and high-density polyethylene (HDPE) on their tensile and flex properties, were studied. First, 
the effect of UV radiation and the presence of anhydride grafted polyethylene on the 
absorption-desorption behavior of the compounds was evaluated and then its effect on the 
mechanical properties. Scanning electron microscopy (SEM) was used to analyze the surfaces of the 
samples subjected to these factors and their subsequent damage in fracture zones of the samples. The 
moisture absorption-desorption process exhibited a two-stage mechanism: the first is significant 
increases in the absorption values in the first five cycles, and a second stabilization stage that occurs 
from the sixth cycle onwards. The first stage includes several steps: initial absorption and 
delamination; capillary action and polymer-wood interaction; and swelling, fiber-matrix interaction 
and mechanical damage. The second stage involves the balance and stabilization step. Statistically, it 
was found that the changes in the humidity values in the absorption and desorption cycles show that 
UV radiation has a significant contribution with the effect of increasing the absorption and 
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desorption values, while the presence of anhydride grafted polyethylene as a lesser effect with an 
effect of decreasing those values. The tensile and flexural properties of the compounds were 
significantly affected by UV radiation and moisture cycling. Taking the sample without anhydride 
grafted polyethylene and without treatments as a reference, only a slight increase of 5–12% in its 
tensile and flexural properties was observed, while treatments with UV radiation and 
absorption-desorption cycles reduced them by up to 45%. The SEM analysis confirmed the 
deterioration of the composites in the form of microcracks, delamination, interfacial voids and 
mechanical failures in both the wood filler and the polyethylene matrix, especially in the samples 
exposed to ultraviolet radiation, where this deterioration was lower in the samples containing 
anhydride grafted polyethylene. 

Keywords: absorption, desorption; UV radiation, anhydride grafted polyethylene (MAPE); cycle; 
moisture; wood plastic composite (WPC); mechanical properties 

 

1. Introduction 

Wood-plastic composites (WPC) incorporate lignocellulosic fillers in plastics to generate 
advantages in terms of stiffness, mechanical strength, cost-benefit ratio and reduced weight. They 
use lignocellulosic waste to reduce the consumption of natural resources and promote better 
sustainable practices. These compounds are used to manufacture various products with better 
advantages than products made of natural wood when used outdoors, such as its resistance to 
humidity and insect attack. 

The use of coupling agents promotes a better interaction between lignocellulosic fillers and the 
polymeric matrix, which typically exhibit hydrophilic and hydrophobic characteristics, respectively. 
Maleic anhydride grafted polyolefins are the most widely used coupling agents in WPC when the 
polymeric matrices are polyethylene or polypropylene. This produces interactions between the 
components of the WPC, the greatest interaction occurs between the hydroxyl groups of the 
lignocellulosic fillers and the grafted polyolefins, and the least interaction occurs between the fiber 
coupling agent with the hydrophobic matrix. A better dispersion of the fiber in the polymer matrix 
and a better interaction between them are obtained, with greater resistance to humidity and better 
mechanical properties [1–4]. 

These abiotic factors, such as ultraviolet (UV) radiation, humidity and temperature, can 
significantly affect the WPC performance [1,2]. The role of lignocellulosic fillers (e.g., wood 
particles, agricultural residues, agro-industrial wastes natural fibers) in moisture absorption is 
particularly important. Changes in ambient humidity levels induce cycles of moisture absorption and 
desorption in the fibers, where hydrogen bonds between water molecules and cellulose chains are 
continually broken and reformed, making water a plasticizer for wood fillers, promoting compound 
flow [5,6]. A higher deformation in WPC under humidity cycles, attributed to molecular mobility in 
the amorphous region of wood fillers has been observed [7]. Furthermore, it has been suggested that 
hot and humid climates enhance the water absorption in the material, while exposure to shade or 
sunlight seems to have a similar effect on moisture absorption [8]. This phenomenon in fibers 
produces stresses resulting from the hygrothermal expansion differences between the polymer matrix 
and the lignocellulosic fillers, leading to the formation of microcracks [9–11] and failure at the 
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filler-matrix interface [12]. Both facts are responsible for the reduction in strength and rigidity of the 
material [3,4]. 

We aim to comprehensively analyze the effects of moisture absorption-desorption (AD) cycles, 
the amount of coupling agent (CA) and UV radiation (UV) on the absorbed-desorption moisture and 
the flexural and tensile mechanical properties of WPC made of pinewood waste and high-density 
polyethylene (HDPE). A two-level full factorial experimental design and statistical analysis are used 
to investigate these effects systematically. 

2. Materials and methods 

2.1. Raw materials 

Pine wood residue (PW) obtained from Maderas Bajce (Mérida, Yuc., México) was used as 
lignocellulosic filler for the WPCs. Extrusion HDPE (Padmex 56035, MFI of 0.3133 g/10 min, from 
Petroquímica Morelos, Coatzacoalcos, Ver., Mexico) was employed as the thermoplastic matrix. 
HDPE modified with maleic anhydride (Polybond 3009 from Brenntag México, Cuatitlán Izcalli, 
México) was included coupling agent (CA). As processing aid (PA), the additive TPW113 (Structure 
Company of America, Cuyahoga Falls, OH, USA) was added. 

2.2. Methods 

2.2.1. Preparation of PW/HDPE composites 

The preparation of PW/HDPE composites involved several steps. First, the pinewood waste was 
dried for 24 h at 80 ℃ using a convection oven (Fisher Scientific, Pittsburgh, PA) to remove 
moisture. After drying, the pinewood wastes were ground using a Pagani mill (model 1520, Molino 
Pagani SpA, Borghetto, Italy) with a mesh with 1 mm diameter holes. The ground particles were then 
classified using a sieve shaker with a set of Tyler sieves, specifically 20, 30, 40 and 50 mesh sizes, 
for 5 min. Particles that passed through 30 mesh but were retained on 40 mesh (430 to 600 mm in 
size) were selected for further use. 

High density polyethylene (HDPE), a coupling agent and processing aid, were also processed. 
They were ground separately using a mill (model TI 880804, C.W. Brabender Instruments, NJ, USA) 
with a 1 mm diameter mesh. The PW, HDPE and additives were then premixed in a horizontal mixer 
equipped with a helical agitator (model ML-5; Intertécnica, Mexico City, Mexico). Subsequently, the 
mixture was dried in a convection oven at 85 ℃ for 24 h before the preparation process. 

The basic composite formulation consisted of 40% by weight of PW and 60% by weight of 
HDPE. In addition, 3% by weight of processing aid based on the pinewood content was added. 
Different compounds were prepared incorporating 0% and 5% by weight of coupling agent with 
respect to the pine wood content. 

Melting and blending of the compounds was performed using a laboratory twin screw conical 
extruder (EP1-V5501, C.W. Brabender Instruments, Inc., NJ, USA). The extrusion involved the use 
of a 4 cm long capillary die with an internal diameter of 5 mm. The screw speed was set at 50 rpm, 
and the barrel and die temperatures were maintained at 180 ℃. The obtained extrudates were 
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pelletized using a laboratory pelletizer (type 12-72-000, C.W. Brabender Instruments, NJ, USA) for 
further processing. 

2.2.2. Preparation of tensile and flexural test specimens 

The preparation of tensile and flexural specimens involved the use of pellets obtained from the 
twin screw extrusion process described above. These specimens were prepared according to the 
geometry and dimensions specified in the ASTM-D638 [13] and ASTM-D790 [14] standard test 
methods, respectively, for tensile and flexural specimens. 

The pellets were hot-pressed using an automatic hydraulic press (Model 3819, Carver, Inc., IN, 
USA) at 160 ℃ for 5 min, applying a compression force of approximately 26689 N (6000 lbf). 
Molded plates with a thickness of 3.2 mm were obtained. For tensile tests, the pellets were direct 
molded into V-type test tubes. For flexural tests, the plates were later cut into rectangular sections 
and then machined to obtain specimens with the required dimensions and geometry. 

2.3. Taguchi experimental design 

To evaluate the experimental factors of UV radiation, absorption-desorption cycles and coupling 
agent content on moisture and mechanical properties of PW/HDPE composites, the following 
Taguchi-type orthogonal experimental designs were used (Tables 1 and 2). 

First, an L8 experimental design was evaluated the contribution of UV radiation (factor A), the 
presence of MAPE (factor B) and the absorption-desorption cycles (factor C), at two levels, on the 
tensile and flexural mechanical properties of the PW/HDPE compounds. 

Table 1. L8 Taguchi experimental design. 

Exp. run 

(number) 

Factor A 

UV radiation (days) 

Factor B 

MAPE (% w/w) 

Factor C 

AD* cycles (number) 

Sample 

(exp. condition) 

1 0 0 0 0-MAPE/0-UV/0-AD 

2 16 0 0 0-MAPE/16-UV/0-AD 

3 0 0 8 0-MAPE/0-UV/8-AD 

4 16 0 8 0-MAPE/16-UV/8-AD 

5 0 5 0 5-MAPE/0-UV/0-AD 

6 16 5 0 5-MAPE/16-UV/0-AD 

7 0 5 8 5-MAPE/0-UV/8-AD 

8 16 5 8 5-MAPE/16-UV/8-AD 

Subsequently, only for a statistical analysis, the results of the absorbed moisture (MA) and the 
desorbed moisture (MD) obtained during the experimental runs that involved only the eight 
absorption-desorption cycles (experimental runs 3, 4, 7 and 8 from Table 1), were used to evaluate 
the contribution of UV radiation (factor A) and the presence of MAPE (factor B) on them, using a L4 
experimental design (Table 2) derived from the earlier L8 design. 

The impacts of the factors listed in Tables 1 and 2 on the above responses were quantified using 
the commercial software Qualitek-4 (Nutek, Inc., 3829 Quarton Rd Ste 102, Bloomfield Hills, MI 
48302, USA). 
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Table 2. L4 Taguchi experimental design. 

Exp. run (number) Factor A 

UV radiation (days) 

Factor B 

MAPE (% w/w) 

Sample 

(exp. condition) 

1 0 0 0-MAPE/0-UV 

2 0 5 5-MAPE/0-UV/8-AD 

3 16 0 0-MAPE/16-UV 

4 16 5 5-MAPE/16-UV/8-AD 

2.4. Treatments of PW/HDPE samples 

2.4.1. Accelerated weathering tests 

A Uvcon UV accelerated weathering chamber (ATLAS MTT, Moussy Le Neuf, France) was 
used to expose the PW/HDPE samples to 24 h cycles of continuous UV light irradiation for 16 days 
at 60 ℃ using UVB-313 type fluorescent lamps (Atlas Electric Devices, Chicago, IL), according to 
the experimental design in Table 1. 

Accelerated UV weathering tests followed the mentioned test methods, including 
ASTM-D4329 [15], ASTM-G151 [16] and ASTM-G154 [17]. Before exposure, ten samples of each 
PW/HDPE composite were conditioned following the standard methods ASTM-D618 [18] and 
ASTM-G147 [19] (105 ℃ for 24 h). 

2.4.2. Exposure to moisture absorption-desorption cycles 

The samples, both UV-irradiated and non-irradiated, were subjected to eight cycles of moisture 
absorption and desorption as specified in Table 1, following the standard test methods 
ASTM-D5229 [20] and ASTM-D570 [21]. Each cycle, called the absorption-desorption (AD) cycle, 
involved immersing the samples in hot distilled water (60 ℃) for 10 days (240 h) and then drying 
them for five days (120 h) at a temperature of 60 ℃. 

The variation in the percentage of moisture absorbed (MA) and moisture desorption (MD) was 
measured according to the standard test method ASTM-D5229 [20]. Prior to this, the test specimens 
were conditioned according to the ASTM-D570 standard [21]. 

During absorption-desorption (AD) experiments, the change in sample weight was measured 
using an analytical balance (Ohaus Voyager Pro, model VP214CN, Parsippany, NJ, USA). The 
percentage by weight of absorbed moisture (MA) was calculated using Eq 1: 

MA = 100 (mH − m0)/m0        (1) 

where mH is the weight of the sample after exposure to the humid environment and m0 is its initial 
weight. The weight percent of desorbed moisture (MD) was calculated using Eq 2: 

MD = 100 (mS − m0)/m0        (2) 

where mS is the weight of the sample after the drying period. 
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2.5. Characterization of PW/HDPE samples 

2.5.1. Mechanical characterization 

Tensile and flexural tests were conducted using a universal testing machine (Type 5500R, Model 
1125, Instron, Norwood, MA, USA). The characterization was performed for irradiated and non-UV 
irradiated materials, with and without CA, subjected and not subjected to AD cycles. The tensile tests 
were implemented according to the ASTM-D638 [13] standard, using a cross head speed of 10 
mm/min. The bending tests were executed in accordance with the ASTM-D790 standard [14]. The 
three-point loading system was used with a crosshead speed of 10 mm/min. 

At least ten specimens corresponding to each type of test and PW/HDPE compound were 
evaluated to obtain the modulus of elasticity in tension and flexion, and the resistance to tension and 
flexion. All samples were conditioned at 23 ± 2 °C and 50 ± 5% relative humidity for at least 40 h 
before testing conforming to ASTM-D618 [18]. 

2.5.2. Scanning electron microscopy 

The morphological analysis was performed by scanning electron microscopy (SEM) on sample 
surfaces of the PW/HDPE compounds treated under the experimental conditions indicated in Table 1, 
as well as on sample surfaces that failed in the mechanical tests. Specimens were cut into small 
sections and then mounted and coated with sputtered gold (Denton Vacuum Desk II, Moorestown, NJ, 
USA). Samples were examined with an electron microscope (JSM-6360 LV, Jeol USA, Inc., Peabody, 
MA) at a voltage of 10 kV. 

3. Results and discussions 

The process of the absorption-desorption cycles of the PW/HDPE plastic wood composites was 
determinant in the resulting physical integrity that affected the tensile and flexural properties 
obtained [5,22] in composites of pinewood waste (PW) and high-density polyethylene (HDPE). This 
was dependent to a greater or lesser extent on the following experimental factors to which they were 
exposed: UV radiation [7,11], the amount of maleic anhydride grafted polyethylene (MAPE) 
coupling agent [1,23] and water absorption-desorption cycles [5,24]. 

3.1. Water absorption–desorption in PW/HDPE compounds 

The experimental results reveal that degradation and surface damage within PW/HDPE 
composites lead to high moisture absorption and retention. Clearly, the tension samples show higher 
maximum moisture values compared to the flexure samples. The influence of the coupling agent 
MAPP and exposure to UV radiation markedly affect the moisture dynamics. Patterns of change 
throughout the cycles underscore stabilization trends, with UV radiation increasing values and 
MAPE hindering the process. These observed behaviors follow an apparent two-step 
absorption-desorption mechanism described by diffusion, pressure, capillarity and interactions 
between the composite materials, a proposal supported by the eighth cycle results. 
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3.1.1. Absorption–desorption cycles 

Figures 1 and 2 show the maximum moisture values reached and, from the second cycle, the 
minimum moisture retained by the four samples, both in tensile and in flexural. All samples are   
3.2 mm thick and are subjected to eight water absorption-desorption cycles in the PW/HDPE 
composite. It is noteworthy that at the end of each cycle, there is an increase in the amount of 
moisture absorbed and moisture retained, especially in the stress curves (Figure 1). This could be 
because, in each cycle, there is a marginal increase in the surface exposed to water due to the 
degradation of the compound [3], which produces new damaged surfaces such as microcracks [9] or 
by the loss of the matrix-fiber interface [4]. The samples then proceed to the next cycle, with each 
cycle contributing to the absolute amount of absorption and desorption and adding to the remaining 
moisture values from the previous cycle. The Figures 1 and 2 present the resulting values obtained 
from these processes. 

 

Figure 1. Maximum and minimum moisture reached by tensile samples subjected at 
eight continuous cycles of absorption–desorption. 
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Figure 2. Maximum and minimum moisture reached by flexural samples subjected at 
eight continuous cycles of absorption–desorption. 
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more sinuous trend in the tensile samples and a simpler curve in the flexural samples. This difference 
in trends may indicate that the absorption-desorption process is more complex in tensile samples 
compared to flexural samples. 

 

Figure 3. Maximum and minimum moisture reached by tensile samples during eight 
continuous cycles of absorption–desorption, solid (   ) and dashed lines (---) 
respectively. 

 

Figure 4. Maximum and minimum moisture reached by flexural samples during eight 
continuous cycles of absorption–desorption, solid (   ) and dashed lines (---) 
respectively. 
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It can also be noted that the tensile samples without MAPE and exposed to UV radiation 
(0-MAPE/16-UV) obtained the highest maximum moisture values. This could be attributed to the 
fact that these samples experienced greater physical damage [7,25], both in tensile and flexural 
samples, which facilitated water absorption. Following this trend, the samples that follow in 
descending order are those with UV treatment and the presence of MAPE (5-MAPE/16-UV), 
followed by the two samples without UV treatment (0-MAPE/0-UV and 5-MAPE/0-UV). In these 
last samples, the absorption-desorption process can be observed depending solely on the interaction 
between water and the polymeric matrix. It is evident that the presence of MAPE inhibits this 
process, resulting in lower moisture values achieved in these samples [23]. 

A similar behavior is observed in the flexing samples, where the maximum moisture values are 
higher and similar in the samples exposed to UV radiation, specifically the 0-MAPE/16-UV and 
5-MAPE/16-UV samples. On the other hand, between the two samples without treatment with UV 
radiation, the sample containing the coupling agent (5-MAPE/0-UV) presents the lowest maximum 
humidity values. 

Regarding the values of retained moisture, behaviors similar to the maximum moisture are 
observed. That is, the presence of treatment with UV radiation favors moisture retention, where the 
highest values are also obtained in the samples with UV treatment (0-MAPE/16-UV and 
5-MAPE/16-UV), while the lowest values are obtained in the samples without UV treatment 
(0-MAPE/0-UV and 5-MAPE/0-UV). 

3.1.3. Absolute absorption–desorption per cycle 

Figures 5 and 6 provide information on the absolute moisture change during the eight cycles of 
absorption and desorption. These cycles were performed for both tensile and flexural samples of the 
PW/HDPE composites. The behaviors observed in the four samples exhibit a remarkable similarity. 
These trends are in line with the previously reported results, demonstrating an asymptotic upward 
behavior that leads to stabilization from the third cycle on. Initial discrepancies in the first few cycles 
are clearly noticeable but decrease as more cycles are performed. In addition, an asymptotic behavior 
is observed between the first and the sixth cycle, observing a small minimum in the sixth cycle, an 
inflection point that continues with a slight increase in the absorption values during the last two 
cycles. 

The sample without MAPE and exposed to UV radiation (0-MAPE/16-UV) exhibits the highest 
absorption and desorption values [7,11]. Two samples follow: one with MAPE and exposed to UV 
radiation (5-MAPE/16-UV) and another without MAPE but also without UV radiation 
(0-MAPE/0-UV). On the contrary, the sample with MAPE and without UV radiation 
(5-MAPE/0-UV) presents the lowest absorption and desorption values [23]. 

These observed behaviors suggest a two-stage absorption-desorption mechanism [27,28], where 
the parameters involved are moisture diffusion, internal water-fiber pressure back into the polymeric 
matrix, capillarity, polymer-wood fiber interactions, polymeric matrix relaxation, temperature, time 
and volumetric factors of the samples, among others. 

The first stage demonstrates significant changes in water absorption and desorption, while the 
second stage exhibits smaller changes that contribute to the stabilization of the process, resulting in 
convergent absolute values of absorption and desorption for all samples. 
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Figure 5. Absolute absorption reached by tensile and flexural samples during eight 
continuous cycles of absorption-desorption, solid (   ) and dashed lines (---) 
respectively. 

 

Figure 6. Absolute desorption reached by tensile and flexural samples during eight 
continuous cycles of absorption-desorption, solid (   ) and dashed lines (---) 
respectively. 
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3.1.4. Absolute absorption–desorption of the eighth cycle 

The analysis of the absorption and desorption behavior throughout a complete cycle provides 
valuable information on the final changes experienced by the samples. The results obtained from the 
eighth cycle shed light on the comprehensive understanding of these processes. 

Figures 7 and 8 represent the values of the absolute moisture change over time in the eighth 
cycle. During the initial 80 hours, the absorption and desorption curves present the most significant 
changes, showing notable discrepancies between them. Once again, the samples exposed to UV 
radiation show the highest absorption and desorption values, with the sample without MAPE 
(0-MAPE/16-UV) presenting the highest values and following a similar trend. On the contrary, the 
samples without radiation treatment show the lowest absorption and desorption values, the sample 
containing MAPE (5-MAPE/0-UV) showing the minimum values. These samples also exhibit 
consistent trends among themselves. 

These findings suggest the attainment of a stable absorption-desorption process, characterized by 
repeatable trends that reflect the consequences of physical changes occurring in the preceding cycles. 
Notably, the initial stage of a probable mechanism explaining these processes corresponds to an 
initial stabilization stage achieved within the first 80 hours. This is followed by a second equilibrium 
stage where the values tend to converge to the same level across all samples. 

 

Figure 7. Absolute absorption reached by tensile and flexural samples during the eighth 
cycle of absorption-desorption, solid (   ) and dashed lines (---) respectively. 
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Figure 8. Absolute desorption reached by tensile and flexural samples during the eighth 
cycle of absorption-desorption, solid (   ) and dashed lines (---) respectively. 
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Statistical analysis of the above results quantifies the impact of UV radiation and MAPE content 
on moisture dynamics within samples of the PW/HDPE composites. Thus, the maximum absorption 
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depending on the type of sample. For the tensile samples, an increasing influence is observed from 
cycles 1 to 4, with values ranging from 66.86% to 73.46%. It is followed by a minimum value of 
53.58% and a maximum value of 76.82% in cycle seven. This is consistent with the curves observed 
in the behavior of these values in Figure 3. It has been established that this process is complex for 
stress samples due to its narrow section in the center of the sample. Consequently, the flexure 
samples exhibit higher and more stable values (ranging from 72.9% to 85.0%), which aligns with the 
stability of the values shown in Figures 2 and 4–6 during the water absorption and desorption cycles. 
As mentioned above, irradiated samples are likely to show more damage compared to samples not 
exposed to UV radiation [7,11], as anticipated. 

On the other hand, the presence of the coupling agent has the effect of reducing the maximum 
moisture values [1,23] reached by the samples subjected to eight continuous cycles of 
absorption-desorption. This effect is particularly evident in the tensile samples (Figure 9), where its 
contribution ranges from 17.82% to 40.56%, with a minimum value of 21.34% in cycle three and a 
maximum value of 40.56% in cycle five. On the contrary, its contribution is negligible in the flexural 
samples (Figure 10). This indicates that, although its volumetric expansion is more significant than 
the tensile samples, in samples of equal thickness, high contributions of UV radiation can be 
achieved from the first absorption-desorption cycle. 

 

Figure 9. Statistical contribution of UV radiation and MAPE content to the maximum 
absorption reached by tensile samples during eight cycles of absorption–desorption. 
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Figure 10. Statistical contribution of UV radiation and MAPE content to the maximum 
absorption reached by flexural samples during eight cycles of absorption–desorption. 
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a stage of significant changes from the first to the fifth cycle, and a stage of stabilization from the 
sixth cycle onwards. 

 

Figure 11. Statistical contribution of UV radiation and MAPE content to the absolute 
absorption reached by tensile samples during eight cycles of absorption–desorption. 

 

Figure 12. Statistical contribution of UV radiation and MAPE content to the absolute 
absorption reached by flexural samples during eight cycles of absorption–desorption. 
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Figure 13. Statistical contribution of UV radiation and MAPE content to the absolute 
desorption reached by tensile samples during eight cycles of absorption–desorption. 

 

Figure 14. Statistical contribution of UV radiation and MAPE content to the absolute 
desorption reached by flexural samples during eight cycles of absorption–desorption. 
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In Figure 15, it is evident that the trends in absolute absorption are similar for both tensile and 
flexure samples, with a maximum contribution from UV radiation at the initial time of result 
collection, accompanied by a minimum contribution from MAPE. This suggests that, at the 
beginning of the test, absorption occurs rapidly (Figure 7) in areas where it is easier, such as direct 
contact of water with lignocellulosic fillers through interactions with the hydroxyl groups of the 
wood [4,9–12]. 

To a lesser extent, additional wetting of these soaked fibers continues as they attempt to expand 
due to the high temperature of the test, 60 ℃. This leads to bulking of all materials, where 
differences in their expansion coefficients create gaps, interfacial stresses, phase separation and 
ruptures. In the polymeric matrix, this can be attributed to the relaxation of its molecular chains [27] 
and, to a lesser extent, to the initiation of low molecular weight chain flow at a characteristic 
temperature known as heat deflection temperature, HDT, which is 56.3 ℃ for the HDPE Padmex in 
this study [29]. Since the temperature of the UV radiation treatments as well as of the 
absorption-desorption cycles is 60 ℃, it is very possible that this flow of low molecular weight 
molecules exists. 

As a result, moisture partially fills the voids and voids generated by damage from previous 
cycles of UV radiation. After some time, this reaches a maximum, and only small variations of this 
phenomenon will depend on new interactions with the available hydrophilic sites found by the wet 
fiber pool, which is now highly dependent on the action of MAPE [1,23]. Therefore, the role of 
MAPE is to reduce absorption. 

On the other hand, Figure 16 shows that in early times, the absolute desorption shows a 
comparable contribution from both UV radiation and MAPE, which remains constant until around 80 
hours. At this time, almost all of the moisture has already been released from the tensile and flex 
samples, and the remaining, small amount is more easily released as it encounters hydrophobic sites, 
both within the polymeric matrix and due to the action of MAPE on the lignocellulosic filler [1,23]. 

 

Figure 15. Statistical contribution of UV radiation and MAPE content to the absolute 
absorption reached by tensile and flexural samples during the cycle eight. 
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Figure 16. Statistical contribution of UV radiation and MAPE content to the absolute 
desorption reached by tensile and flexural samples during the cycle eight. 
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This reduction in mechanical properties seems to depend on the damage caused by its type of 
formulation and by exposure to UV radiation [7,11] and the absorption-desorption cycle [9–12,25]. 

 

Figure 17. Tensile strength and flexural strength of the samples from the experimental 
design in Table 1. 

 

Figure 18. Tensile modulus and flexural modulus of the samples from the experimental 
design in Table 1. 
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Figure 19. Relative comparison of mechanical properties relative to sample ERS1, 
0-MAPE/0-UV/0-AD. 
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Figure 20. Statistical contribution of the experimental factors on the tensile and flexural 
properties of PW/HDPE composites. 
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These samples show similar damage: (1) fibrillated polymeric matrix due to failure; (2) failed pieces 
of wood with rough surfaces caused by their own breakage; (3) pulled-out wood fibers separated 
from the polymeric matrix (pull-out) with smooth surfaces; and (4) interfacial voids generated 
between the wood particles and the polymeric matrix. 

As for the sample without MAPE and untreated (ERS1), it presents the aforementioned damage, 
being the only one with torn wood fibers and larger interfacial spaces compared to the sample with 
MAPE (ERS5). Furthermore, when comparing the samples with MAPE, both treated and untreated, 
ERS8 and ERS5 respectively, the former shows a higher number of failed wood particles. This can 
be attributed to wood degradation caused by water absorption and desorption, which induces 
mechanical stress in the wood [26], eventually leading to its breakage, as observed in this case. 

 

Figure 21. SEM micrographs of PW/HDPE composite samples, with and without MAPE, 
subjected to specific conditions: untreated, UV radiation and/or absorption-desorption 
cycles according to Table 1. 
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Figure 22. SEM micrographs of failed PW/HDPE composite samples, with and without 
MAPE, subjected to specific conditions: untreated and with both UV radiation and 
absorption-desorption cycles treatment, according to Table 1. 
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3.5.1. Proposed water absorption–desorption mechanism in PW/HDPE compounds 

The absorption–desorption behavior of PW/HDPE wood-plastic composites can be explained by 
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(Figure 23). 

 

Figure 23. Proposed water absorption-desorption mechanism in PW/HDPE compounds. 
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Micrographs show surface delamination and interfacial void formation due to separation between the 
wood particles and the polymeric matrix (Figure 21g,h). UV radiation accelerates this process, since 
it degrades both the polymeric matrix and the lignocellulosic filler, increasing water      
penetration [7,11]. 

Capillary action and polymer-wood interaction. As absorption-desorption cycles continue, more 
water enters the composite through capillary action and diffusion, filling microcracks and      
voids [9–12]. The presence of wood flour and the initial damages in the polymer matrix promote 
capillarity, contributing to greater moisture absorption. The presence of the coupling agent MAPE 
inhibits water infiltration to some extent, as evidenced by the lower moisture values in samples with 
MAPE [1,23]; however, it improves the interaction between wood and polymer [1–3]. 

Swelling, fiber-matrix interaction and mechanical damage. As moisture continues to penetrate, 
the wood particles absorb water and begin to swell. This swelling puts pressure on the surrounding 
polymer matrix, which can cause mechanical stress within the material. In the presence of UV 
radiation, wood degrades and becomes brittle [26], increasing the susceptibility of the composite to 
mechanical damage. This can be observed in micrographs where damaged wood fibers are extracted 
from the matrix [22]. 

Balance and stabilization. After repeated cycles of absorption and desorption, the compound 
approaches equilibrium and the moisture content stabilizes, indicating that the absorbed moisture 
reaches an equilibrium between the polymeric matrix and the wooden floor. Stabilization is due to 
the complex interplay of factors such as moisture diffusion, polymer relaxation and saturation of 
available hydrophilic sites. 

3.5.2. Impact on mechanical properties 

The mechanical properties of PW/HDPE compounds are significantly influenced by 
absorption-desorption cycles, UV radiation and the presence of MAPE. Microcracks and delamination 
caused by UV radiation and water absorption lead to reduced mechanical performance [7,11]. SEM 
images support this observation by showing the formation of microcracks, shedding of wood fibers 
and interfacial voids (Figures 21g,h and 22). The presence of MAPE mitigates degradation to some 
extent by improving the interaction between wood and polymer, resulting in slightly better 
mechanical properties [1,23]. However, the combined effects of UV radiation and 
absorption-desorption cycles dominate the overall reduction in mechanical strength and stiffness, as 
evidenced by the lower mechanical values in the treated samples [17,18]. 

4. Conclusions 

The results of this study show that high-density polyethylene (HDPE) and pinewood (PW) waste 
samples, with and without maleic anhydride grafted polyethylene (MAPE) coupling agent, suffer 
damage when exposed to UV radiation and absorption-desorption cycles, which determined their 
subsequent mechanical behavior. 

Exposure of the PW/HDPE composite to UV radiation led to increased moisture absorption and 
desorption, resulting in higher maximum moisture content and retained moisture at the end of the 
eighth absorption-desorption cycle. This was thirty percent more for the tensile samples than the 
flexure samples, due to a shape factor. On the other hand, the presence of the coupling agent (MAPE) 
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helped to reduce the absorption and desorption of humidity, which contributes to improve the 
mechanical properties; although its effect was marginal, given the level of damage caused by the 
other two factors. 

The moisture absorption-desorption process follows a two-stage mechanism, with significant 
changes occurring in the early cycles and a stabilization stage occurring from the sixth cycle 
onwards. 

The mechanical properties of the composites are affected by the interactions between the wood 
fillers and the polymeric matrix, with UV radiation and humidity cycles causing damage in the 
interface zone. The damage suffered in the samples was generated to a greater extent during 
exposure to UV radiation, and to a lesser degree, by the absorption-desorption cycles. 

The SEM analysis allowed to identify the damages and their level of extension in the PW/HDPE 
composites due to UV radiation and exposure to humidity, detected as microcracks, delamination, 
interfacial voids and failed wood and polymer phases. The presence of the coupling agent (MAPE) 
helped to mitigate these damages. 
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