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1. Introduction

Since Kovacik and Rakosnik established the theory of variable-exponent function spaces in [1], the
subject has attracted extensive attention by many scholars. The theory of the variable-exponent
Lebesgue spaces LPY(R") has been extensively investigated, see [2-5]. Izuki first introduced the
variable-exponent Herz spaces K;&?)(R”) [6] and considered the boundedness of commutators of
fractional integrals in these spaces; for more research about the boundedness of operators in the above
spaces, see [7,8]. Subsequently, Izuki generalized the Herz-Morrey spaces MKZ”;(R”) in [9] into the

variable-exponent Herz-Morrey spaces MKZ:;(,)(R’l) [10], for more research about MKZ,’If(.)(R”),
see [11-13]. On the other hand, the Muckenhoupt weight theory is a powerful tool in harmonic
analysis, [14-17]. By using the basics on Banach function spaces and the variable-exponent
Muckenhoupt theory, Izuki and Noi developed the theory of weighted variable-exponent Herz spaces
I'(ng;(w) [18-20]. After that, the research for the boundedness of some operators, such as the
commutator of bilinear Hardy operators, commutators of fractional integral operators, and fractional

Hardy operators achieved good results on weighted variable Herz-Morrey spaces MKZ”ﬁ(,)(w); for
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more details, see [21-26]. Consequently, many scholars have contributed to the study of function
spaces and related differential equations, [27,28].
Motivated by the mentioned works, the main goal of this paper is to establish the boundedness

of higher-order commutators /3!, generated by the fractional integral operator with BMO functions

. . . a,r),0 .
on grand weighted variable-exponent Herz-Morrey spaces MKZ’;)(,)(w) and to establish boundedness
of the m—order multilinear fractional Hardy operator Hj,, and its adjoint operator ‘7—([;"’,11 on weighted

variable-exponent Herz-Morrey spaces MKZ”;(,)(w). The paper is organized as follows: In Section 2,
we collect some preliminary definitions and lemmas. Our main results and their proof will be given in
Section 3 and Section 4.

Now, let us recall some notations that will be used in this paper.

In [29], Hardy defined the classical Hardy operator as follows:

1 X
P(f)(x) = ;f f(dt, x>0. (1.1)
0
In [30], Christ and Grafakos defined the n—dimensional Hardy operator as follows:
1
H()(x) = o f(nde, x e R"\ {0}, (1.2)
[t <lx]

and established the boundedness of H(f)(x) in L’(R"), obtaining the best constants.

In [31], under the condition of 0 < 8 < nand |x| = /YL, xiz, Fu et al. defined the n—dimensional
fractional Hardy operator and its adjoint operator as follows:

f@dt, Hf(x) := mdt, x e R"\ {0}, (1.3)

Ii<Ix] iz 177

H =
ﬁf('x) |x|n—ﬁ
and established the boundedness of their commutators in Lebesgue spaces and homogeneous Herz
spaces.
Let m and n be positive integers with m > 1, n > 2, and 0 < § < mn, and let LIIOC(R") be the

collection of all locally integrable functions on R*. Wu and Zhang in [12] defined the m—order
multilinear fractional Hardy operator and its adjoint operator as follows:

1
|x|mn—ﬁ

ﬂﬁ,m(?)(x) = fll IIII IIH. . llfl(tl)fz(fz)'"fm(tm)dfldfz'"dfm, (1.4)

—2 @) o) - fut)
Hyno= [ " dtydty - i, (1.5)
p izl izl PRSI (T8 SRR ] Lo
H . .
where x € R"\{0}, |(t1, t2, - - )| = \/tf +65+--+12. f =(fi, fr.r -, fn) is a vector-valued function,

where fi(i = 1,2,--- ,m) € L _(R").
Obviously, when m = 1, Hg,, = H,, 7’(5*,” = 7‘(5 When g = 0, H,, indicates a multilinear
operator H,,, corresponding to the Hardy operator H, and H,, indicates a multilinear operator Hj; ,

corresponding to the adjoint operator H* := H;.
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Let Llloc(R”) be the collection of all locally integrable functions on R”, and given a function b €
L, .(R"), the bounded mean oscillation (BMO) space and the BMO norm are defined, respectively, as

follows:

BMOR") := {b € L, .(R") : [Ibllsmogn) < o0}, (1.6)
1
IbllBmoRn = sup — f |b(x) — bgldx. (1.7)
B:ball |B| B

where the supremum is taken over all the balls B € R” and bg = |B|™! fB b(y)dy.
Let b € BMO(R"), 0 < B < n, and the fractional integral operator Iz and the commutator of
fractional integral operator [b, Iz] f(x) are defined, respectively, as follows:

AS)

| | de, x e R (1.8)
R2 x_yn_

Ig(f)(x) =

[b. 151 () 1= b)) = Ip(bf)(x), x € R™. (1.9)

Let b € BMOR"), 0 < 8 < n, and m € N. The higher-order commutator of fractional integrals
operator I, is defined as follows:

7, f(x) ::f Mf(y)dy, xeR" (1.10)
’ no =yl

Obviously, when m = 1, Iﬁl’b(f)(x) = [b, Is] f(x); and when m = 0, Ig’b(f)(x) = Ls(f)(x).
For0<p <nand f € L] (R"), the fractional maximal operator Mj is defined as follows:

1
Mf) = sup—— [ oIy, xR (1)
xB |B|'"% JB
Where the supremum is taken over all balls B C R”" containing x. When § = 0, we simply

write M instead of M, which is exactly the Hardy-Littlewood maximal function.

Throughout this paper, we use the following symbols and notations:

1. For a constant R > 0 and a point x € R”, we write B(x,R) :={y e R" : |[x —y| < R}.

2. For any measurable set £ C R”, |E| denotes the Lebesgue measure and y x means the characteristic
function.

3. Given k € Z, we write By := B(0,2) = {x e R" : |x| < 2*}.

4. We define a family {Ci};> by Cy := B\ Bioy = {x € R" : 287! < |x| < 2%}. Moreover y; denotes
the characteristic function of Cy, namely, xi := xc,.

5. For any index 1 < p(x) < oo, p’(x) is denoted by its conjugate index, namely, zﬁ + Iﬁ = 1.

6. If there exists a positive constant C independent of the main parameters such that A < CB, then
we write A < B. Additionally A ~ B means that both A < B and B < A hold.
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2. Preliminaries

In this section, we first recall some definitions related to the variable Lebesgue space and variable
Muckenhoupt weight theory. On this basis, we review some definitions of weighted variable-exponent
Lebesgue spaces, weighted variable-exponent Herz-Morrey spaces, and grand weighted
variable-exponent Herz-Morrey spaces. In addition, we recall some definitions of Banach function
space and weighted Banach function space. Then, we present several relevant lemmas that will aid in
the proof of our main boundedness result.

2.1. Some definitions that will be used in this paper

Definition 2.1 (see [2]) Let p(-) : R” — [1, o) be a real-valued measurable function.
(i) The Lebesgue space with variable-exponent L’/(R") is defined by

LPOR") = { f is a measurable function : f

Rﬂ

oo
()

dx < oo for some constant A > 0}

(if) The spaces with variable-exponent Lﬁ)(c')(E ) are defined by

L (')(R”) := {f is a measurable function : f € L'"(K) for all compact subsets K C R"}

loc

The variable-exponent Lebesgue space LP©)(R") is a Banach space with the norm defined by

1 /1l ro> gy := inf {/1 >0: fRn (|f;x)|)p(X)dx < 1}.

Definition 2.2 (see [2]) (i) The set Py(R") consists of all measurable
functions p(-) : R" — (0, o) satisfying

0<p <pkx) <p"<oo, (2.1)
where
p~ =essinf{p(x) : x e R"} >0, p* :=esssup{p(x): x € R"} < o0, 2.2)
(i) The set P(R") consists of all measurable functions p(-) : R* — [1, o) satisfying
1 <p <px) <p" <o, (2.3)
where
p~=essinf{p(x) : x e R"} > 1, p* :=esssup{p(x) : x € R"} < oo, 2.4

(iii) The set B(R") consists of all measurable functions p(-) € P(R") satisfying that the Hardy-
Littlewood maximal operator M is bounded on LPO(R").

Definition 2.3 (see [2]) Suppose that p(-) is a real-valued function on R”. We say that

(7)) Clog(R”) is the set of all local log-Holder continuous functions p(-) satisfying

loc

1
|p(x) — py)| < lx—yl < 5 %Y € R™. (2.5)

“log(lx -y
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(i) Cg’g(R”) is the set of all local log-Holder continuous functions p(-) satisfying at origin

C
Ip(x) = pol £ ———, x€R" (2.6)
log(e + M)

(iii) C5(R™) is the set of all local log-Holder continuous functions satisfying at infinity

C
= Poo|l £ ————, R". 2.7
lp(x) = Pl Tog(e & 1) x € 2.7

(iv) C'°¢(R") = Cﬁg(R”) N C}gf(R") denotes the set of all global log-Holder continuous functions p(-).
In [2], the author proved that if p(-) € C'°¢(R"), then p’(-) € C'°¢(R"), and also proved that if p(-) €
P(R") N C'°¢(R"), then the Hardy-Littlewood maximal operator M is bounded on LPO(R™).

Definition 2.4 (see [17]) (i) Given a non-negative, measure function w, for 1 < p < oo, w € A, if

1 1 -1
[wla, := sgp(ﬁﬁw(x)dx)(ﬁflgw(x)l pdx) < 00, (2.8)

where the supremum is taken over all balls B ¢ R".
(ii) A weight w is called a Muckenhoupt weight A if

ﬁ fB w(x)dx

wla, S‘ép essinf{w(x) : x € B} 2.9)
(iii) A weight w is called a Muckenhoupt weight A, if
A = U A,. (2.10)

l<r<oco

Note that these weights characterize the weighted norm inequalities for the Hardy-Littlewood maximal
operator, thatis, w € A,, 1 < p < oo, if and only if M : LP(w) — LP(w).
Definition 2.5 (see [18]) Suppose that p(-) € P(R"), a weight w is in the class A, if

1

sup Bl w0 xgll o llw 70 xgll 0 < co. (2.11)
B:ball
Obviously, if p(-) = p,1 < p < oo, then the above definition reduces to the classical
Muckenhoupt A, class. In [18], suppose p(-), g(-) € P(R") and p(-) < g(-), then A} C A,y C Ayy.
Definition 2.6 (see [18]) Let 0 < 8 < n and p;(:), p2(-) € P(R") such that 1*)0 = zﬁ - § A
weighted w is said to be an A(p;(:), p2(+)) weight, then for all balls B c R” satisfying
_ _B
llwx sll 0 llw IXB”LP',(,) < CIB'". (2.12)
In [14], suppose pi(:),p2(-) € PMR") and B € (0,n) such that pzl(x) = pll(x) - ':—j

Then w € A(pi(-), p2()) if and only if W € A, p0.
7o

Definition 2.7 (see [25]) Let p(-) € P(R") and w € A, the weighted variable-exponent Lebesgue
space L") (w) denotes the set of all complex-valued measurable functions f satisfying

LPO(w) = {f : fwi € LPORM).
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This is a Banach space equipped with the norm:

1
0wy = ILf P || Lpogny-

Definition 2.8 (see [25]) Let @ € R,0 < g < o0, p(:) € P(R") and 0 < A < oo. The homogeneous
weighted variable-exponent Herz-Morrey spaces MKZ:;(,)(w) are defined by

> a,d . n
MK g0 (@) = (f € L) R\NOL ) ¢ [1fllygoa () < ).

where
L

1
W, = 5382 2, 2 Wl

Nonhomogeneous weighted variable-exponent Herz-Morrey spaces can be defined in a similar way.
For more details, see [25]. When 4 = 0, the weighted variable-exponent Herz-Morrey spaces become
weighted variable-exponent Herz spaces, see [18].

Definition 2.9 (see [32]) Let p(-) € PR"), @ € R,0 > 0,0 < r < 00,0 < A < co. The homogeneous
grand weighted variable-exponent Herz-Morrey spaces MKZ,’;)(’,?(w) are the collection of Lﬁ)(c')(R” \
{0}, w) such that

5 a,r),0

MK0(@) = {f € LEJ RO} ) ¢ fllygans,, < o).
where

Il = sup sup 274{o" D2 e ).
keZ
Nonhomogeneous grand weighted variable-exponent Herz-Morrey spaces can be defined in a
similar way. For more details, see [32]. When 4 = 0, the grand weighted variable-exponent
Herz-Morrey spaces become grand weighted variable-exponent Herz spaces, see [33].
Definition 2.10 (see [18]) Let M be the set of all complex-valued measurable functions defined
on R”, and X a linear subspace of M.
1. The space X is said to be a Banach function space if there exists a function
Il - [lx : M — [0, o] satisfying the following properties: Let f, g, f; € M(j =1,2,...), then
(a) f € X holds if and only if || f||x < oo.
(b) Norm property:
1. Positivity: ||f]|lx > O.
ii. Strict positivity: ||f]lx = 0 holds if and only if f(x) = O for almost every x € R".
iii. Homogeneity: [|Af|lx = |4] - ||f|lx holds for all 4 € C.
iv. Triangle inequality: If + gllx < IIfllx + llgllx.
(c) Symmetry: [|fIlx = Il llx-
(d) Lattice property: If 0 < g(x) < f(x) for almost every x € R”, then |g|lx < ||fllx-
(e) Fatou property: If 0 < fj(x) < fj+1(x) for all j and f;(x) — f(x) as j — oo for almost every
x € R, then Jlin; Ifillx = 11f1lx-

(f) For every measurable set F' C R” such that |F| < oo, ||y F||x is finite. Additionally, there exists a
constant Cr > 0 depending only on F so that fF |7(x)|dx < Cgl|h||x holds for all i € X.
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2. Suppose that X is a Banach function space equipped with a norm || - ||x. The associated space X’
is defined by

X' ={f e M:|Iflx < oo},

where

il = sup f (g : lilly < 1).
8 R

Definition 2.11 Let(see [18]) Let X be a Banach function spaces. The set X;,.(R") consists of all
measurable functions f such that fyy € X for any compact set E with |E| < co. Given a function W
such that 0 < W(x) < oo for almost every x € (R"), W € X;,.(R") and W € (X),,(R"), the weighted
Banach function space is defined by

XR", W) :={feM: fWeX}

2.2. Some lemmas that will be used in this paper

Lemma 2.1 (see [34]) Let X be a Banach function space, then we have
(i) The associated space X’ is also a Banach function spaces.

@) || - llxry and || - ||x are equivalent.

(iii) If g € X and f € X’, then

fRn lf()gldx < (I flIxllgllx (2.13)

is the generalized Holder inequality.
Lemma 2.2 (see [34]) If X is a Banach function space, then we have, for all balls B,

1 < 1B ' lysllxllsllx - (2.14)

Lemma 2.3 (see [16]) Let X be a Banach function space. Suppose that the Hardy-Littlewood
maximal operator M is weakly bounded on X, that is,

-1
Dmrallx < A fllx

is true for all f € X and all 4 > 0. Then, we have

1
sup —|lysllxllysllx < oo. (2.15)
B:ball | Bl

Lemma 2.4 (see [18]) (i) The weighted Banach function space X(R", W) is a Banach function space
equipped by the norm

1 e wy := If Wllx.
(if) The associate space of X(R", ‘W) is a Banach function space and equals X"(R", W1).
Remark 2.5 (see [21]) Let p(-) € P(R") and by comparing the L7V (w”") and L") (w™?'") with the
definition of X(R", ‘W), we have
1. If we take W = w and X = LPO(R"), then we get LPO(R", w) = LPO(w?V).
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2. If we consider W = w™! and X = L”O(R"), then we get L O(R", w™!) = L O(w™7'V). By virtue
of Lemma 2.4, we get

(Lp(')(R",w))' - (Lp(-)(wp(~)))' - Lp’(~)(w—p’(')) - Lp’(-)(Rn,w—l )

Lemma 2.6 (see [18]) Let X be a Banach function space. Suppose that M is bounded on the
associate space X’. Then there exists a constant 0 < ¢ < 1 such that for all balls B ¢ R”" and all
measurable sets E C B,

v ellx (@)5. (2.16)

<
Iesllx — 1B

The paper [1] shows that LPO(R") is a Banach function space and the associated space LPO(R") has
equivalent norm.

Lemma 2.7 (see [20]) Let p(-) € PR") N C°¢(R") and w € A (> then there are constants 6,6, €
(0,1) and C > 0 such that for all k,l € Z with k <[,

bl _ Wil oy iCulyo 2.17)
|I)(l||U’('>(wP(‘>) ”Xl”(Lp'«)(wfp’(')))/ B ICil ’ .
and
IDeillczeo@wroryy Cil\o2
Weelarowroy <C(M) . (2.18)

I illro@royy — MCH

Lemma 2.8 (see [35] Theorem 3.12) Let p;(-) € P®R") N LHR") and 0 < B < =X

Py
Define p,(-) by ﬁ - ﬁ = £ If w € A(pi(), p2(-)), then Iy is bounded from L"O(w”®) to
LPz(')(wpz('))_
Lemma 2.9 (see [35] Theorem 3.14) Suppose that b € BMO(R") and m € N. Let p;(:)
e P(R") N C(R") and 0 < B < E Define p,(-) by ﬁ - ﬁ = §. If w € A(p1(-), p2()), then
125, 202y S 1BIEntoem L 1210 @io)-

Lemma 2.10 (see [36] Theorem 2.3) Let p(-), p1(-), p2(+) € Po(R") such that == = -+ 1 _forx e

) ; . p(x) T pi®) " pa(n)
R". Then, there exists a constant C), ,, independent of functions f and g such that

»P1

1fgllro < Cppilfllriollgllro, (2.19)

holds for every f € LP*O(R") and g € L”*O(R").
Lemma 2.11 (see [23] Corollary 3.11) Let b € BMO(R"),m € N, and k, j € Z with k > j. Then we

have
C_lllbllgMo(Rn) < sup (b = bB)"xBllrow) < ClIbligymonys (2.20)
B Bllrow)
and
16 = 3"l < CCk = " 1Blnon Bl (2.21)
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3. Higher-order commutators of fractional integrals operator

In this section, under certain hypothetical conditions, we first establish the boundedness of higher-
order commutators I, generated by the fractional integrals operator with BMO functions on weighted

variable-exponent Herz-Morrey spaces MKZ”ﬁ(,)(w). Then, we establish the boundedness of Iy, on

grand weighted variable-exponent Herz-Morrey spaces MK‘;;)(i)(w)

Theorem 3.1  Suppose that b € BMOR") and m € N. Let 0 < 1 < 00,0 < g < g2 < 00, p,(+) €
PRMHNCL(RY), w"(+) € Ay, 1,0, € (0, 1) are the constants appearing in (2.17) and (2.18) respectively.
a and S are such that

()—noé;+A<a<nd,—-B+A41

(i) 0 < B < n(6, + 02).

Define p,(-) by —= pz() p11(~) ~, then I}/, are bounded from MKq (@) to MKZ Ap )

Proof We prove the homogeneous case while the nonhomogeneous case is similar. For all f €
MK, pz()(wm())(R”) and Vb € BMO(R"), if we denote f; := fx; = fxc, for each j € Z, then f =

2w fj- So we can write
0= onm= 3 .

Jj=—oo J==oo
Because of 0 < Z—; < 1, then the Jensen inequality follows that

00 a1 [ 0
(1l < 3wt o
j:—oo j:—cx)
By virtue of (3.1), we obtain

a1

—LA ka m
Lup2 71 kz 28| 1 b(f))(k||m<)(wpzo))q2

< sup 274 Z 2kaq‘||1mb(f)Xk||Lﬂ2<><w”2”)

LeZ

III'”b(f)Ilq' ke

)( p())

k=—oc0
< sup27 (N 20 (N el
s 8, 5 ot
k+1
+ sup 27H{ Z 2990 (3N ellrmognoy) |
LeZ k=—oco j=k—1
L 00 q
- (07 m !
+sup2 M"'{ Z 2k q'( Z ||Iﬁ,b(fj))(k||u’z<')(wpz<->)) }
Lez k=—c0 j=k+2
= (J1+TJ2+T3).

First we estimate J;. Note that if x € Cy, y € C;, and j < k — 2, then |x — y| = |x| =~ 2. By C,
inequality and generalized Holder inequality, for every j, k € Z, we get

b(x) — by
o <€ [ POZ00 )

Cj
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< k) f OB — )" dyye(x)
Cj

< 200~ e [ oy + [ 10IB0) - be o

< Zk(ﬂ_")llfj||m<~>(wpl<->){lb(x) = be, 1" ll oo w0y
+ 1) = b, I lwnownoy ). (3.2)
By taking the L”)(wP2"))—norm for (3.2), by Lemma 2.11, we have
15, (DXl Lo o2y
< zk(ﬂ_n)||ﬂ||U1<')(wP1<->){|||b(x) - bC_,'|ka||LP2(‘)(w1’2<'))”/Vj"(U’l(‘)(wpl(')))’
+ 115G = be, ") ooy el oo
< 2K £l mo(wpl(-)){(k = " Ibgyvo@n Dl ra6 @moy I il oo ey
+ 1Blstogee o oy Ibeellro o
< 2970 = Y Bl I Fillnowno ey IllLraormo)- (3.3)
By virtue of Lemma 2.6, we have

il _ o(1C
bes i~ NB

Note that y5,(x) < 2‘Jﬁlﬁ()(3j) (see [11] p.350), by applying (2.15), (3.4), and Lemma 2.8, we obtain

)6 =C = Iljllx < Cllxslix- (3.4)

”/Yj”LPZ(')(a)”Z(‘)) < ”/\/BJ-“L”Z(‘)(wI’z(‘))
< 2715 0¢ 8|2 0
< 2_Jﬁ||)(3j||m(v>(wp1<->)

j(n-, -1
S 2](” ﬂ)”/YBj||(Lp1(-)(wp](-)))/

< 2Pl (3.5)

(LP1 O P10y

By virtue of (2.14) and (2.15), combining (2.18) and (3.5), we have

k(B—
2 B n)”/\/j”(U’l(')(a)l’l(')))’“)(k”LPz(')(sz(‘))
k ki
=2 ﬂ||Xj||(Lm<l>(wp1<.>)),2 n“Xk”LP2<')(w”2('))
k -1
< 2 ’Bll/\/j”(LPl(')(wl’l(-)))/||Xk||(Lp2(-)(wp2(.))),
H/Vj"(LPZ(')(sz(')))/
= Zkﬂ“)(” LP1O (P10 '”/\/'”_17 O(wP2OW T 11
JUELPYE (0PI AT (P2 O (P20)y) ||Xk||(L,,2(.)(wp2(4))),
kBAnGa(j—k) .
< 29272079 il O om oy 1 L0y

Kk 52(j—k)~ j(n—B) -1 -1
<2 an 20 2](11 A ”Xj”Lpz(-)(wpz(O)”lel(Lpz(‘)(sz(')))'

k i—k)y—jB(~—J -
— kBond2(j-k1n Jﬁ(2 Jn|IX]_||Lp2(‘)(w,,2(,>|[xj||(Lp2(‘)(w,,2(,))),)
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< 2B-n&2)(k=j) (3.6)
Hence by virtue of (3.3) and (3.6), we have

15, PN Lm0y S 272D (ke = " IBlignsognl il owrio)- (3.7)

On the other hand, note the following fact:

1

q

”‘fJ”L])l()(a’pl()) = 2 ]a(z]aqlllf)(j Lpl()(wpl())) ]
J 1

—jl;Y iaq . q1 E
<2 ( Z 2| fxl Lm(-)(wl’l(')))

j=—00
1
Jj(A-a) J/l iagq q1
=2 2 22 1”le Lpl()(wpl())> }
i=—c0
A-
S 2 fllygor oy (3.8)

Thus, by virtue of (3.7) and (3.8), remark that @ < né, — 8 + 4,

L k-2
g1 = sup 2‘“‘“{ Z 2’“”“( Z |IIKb(fj))(kl|Lpz<-)(wpzw))ql}

Lez

k=—00 Jj=—00
L k=2
-LA k . —n6y)(k—j) 7!
< sup2 q1{ Z 2 a‘]l( Z (k - .])m||b|rgMO(Rn)”f‘j”LI’l(‘)(wm(‘))2(‘8 n62)( J)) }
LezZ f— =0
L k=2
mq q LA kA . k—j —ndy-2)\7!
S R e DI O I
k=—00 j:—oo
L
mqi q1 ~LAq kdq
S Wl Mty SUP271( 5 247)
k=—00
mq q1
< ”b”BMO(R")”f” KA ()( Pl())
Next, we estimate J,. Using Lemma 2.9, we get
k+1 q
—LA k !
T2 = sup 27 Z 20 () M (illirogno) |
Lez o k=1
L k+1
-LA k a
< Ibllgion sup 270 > 20 ( " M fwallzownoy) |
LeZ p— j=k—1
L

mq -LAq kag
< 11bllgpoen SLuEZ 1{ Z 2 l”fj)(k”mo(wm())}
€.

k=_
_ mqi q1
= ||b||BMO(R”)||f|| n{ ()( ])1())
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Finally, we estimate /3. Note thatif x € Ct, y € Cj, and j > k+ 2, then |x — y| = |x| = 2/. By the C,

inequality and generalized Holder inequality, for every j, k € Z, we get

m 1b(x) = bI™
L, (fD 0kl < Cfcj Ty

< 2970 [ f50)NIB(x) = b dyxi(x)
Cj

| £ Idyxr(x)

< 25 |b(x) = b I f £ 0)Idy + j; FONBO) = be,"dypa(x)
Cj i

< 2j('8_n)”fj”Lm(‘)(wm()){lb()C) - ijlmlI/\/j”(Ll’l(’)(a)”l(')))/
+ 16() = b, ™ ity Pa().
Thus, by taking the L”29(w??®)—norm for (3.9), by virtue of Lemma 2.11, we have

125, (FDCOX Kl 200
s 2j(ﬁ_n)”f"||L”‘(‘>(w”1“>){”'b(x) = be " X il 120 @wr | ll 0 @0y
+l16(y) — bc,-|m)(j||(Lp1<-)(wp1<->))fIb(kllyz(.)(wpz(,))}
< 2j(ﬁ—n)||f.i||LI>1<A>(wm<A>){(j - k)ml|b|lgMO(R")“Xk”L”Z(‘)(wl’z('))“/\/J‘H(Lpl(»)(wpl(.)))/
* 1bllgyon Nl ownony ”Xk”LPz(')(wpz(-))}
< 2f(ﬁ—n)(j - k)m”bl|r€MO(R")”‘fj”Ll’1(')(wl)l('))|I/Yk”Lpz(')(sz('))“/Yj”(Lpl(-)(wpl(‘))),_

On the other hand, by (2.14) and (2.15), combining (2.17) and (3.5), we have

276l 120 illro o)y

= 2P 1kll a0 ra0y 27 1Dl mioyy

< 2JB||)(k||LP2<‘)(w”2"))“Xj“1_j}|(')(wf’l('))
I 1l 26 (@or200)
< 2j’82"61(k_j)|IXj||Z;£1<->(wp1<»))||Xj||Lpz<~)(wp2<->)

i 61 (k—j)A j(n— -1 -1
S 2]ﬁ2n i J)Zj(n ﬁ)|I/Yj'|Lp1(-)(wp1(~))“Xj”(Lpl(J(wpl(-)))f

. , . , -1
01 (k—j)~— -
— 2]52" 1( ])2 ]ﬁ(2 jn|I/\/jl|L”1(')(w”1('))”/lel(L”l(')(wpl(')))')
< i),

] -1
= zjﬁ”)(jllu)l(')(wpl(-))”Xj”LPZ(')(wPZ(‘))

Hence, combining (3.10) and (3.11), we obtain

S1(k—j)
||Ig,lb(fj)/\/k||L1’2<‘><w"2<')) < 2" j)(J - k)m”b”gMO(R”)||fj”L”l(')(w"1('))‘

Thus, by virtue of (3.9) and (3.12), remark that A — nd; < @, and we conclude that

L 00
J3 = sup 2—L/1q1{ Z zkaql( Z ||Ig?b(fj)/\/k||LP2('>(wP2<‘>))ql}

Lez fe=—o0 j=k+2

(3.9

(3.10)

(3.11)

(3.12)
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L

S Sup2 L/Uh{ Z 2k q]( Z (.] - k) ||b||BMO(RH)”‘fj”Lm(')(wpl(-))z o1k ])) }

Lez k=—oc0 j=k+2

p2 Lxlql Z 2k/1q1 Z (] k)mZ(f k) (A-ns; a))Ql}

< 1Bl L1

()( 1)1()) L7 P &b
L
mqy q1 LMl( Z k/lth)
SIS0 s 3222 ( 22
=—00
< mqi q1
~ ”b”BMO(Rn)“f” (t/lpl()(wpl())

Combining the estimates of I, 7>, J3, we complete the proof of Theorem 3.1.

Theorem 3.2 Suppose
that b € BMOR") and m € N. Let 0 < 1 < oo, 1 < r < oo, po(-) € PR" N C°¢R"),
wP(-) € Ay, 01,0, € (0,1) be the constants appearing in (2.17) and (2.18) respectively. @ and S are
such that

(i) —né; < @ < no, — B

(i) 0 < B < n(d; + 02).

Define p;(-) by — m() pll(.) - g, then I}, is bounded from MKQ . f)(wm()) to MK}, ().

Proof We prove the homogeneous case, as the nonhomogeneous case is 51m11ar. For all f €
MK m) 9)((»”2()) and Vb € BMO(R"), if we denote f; := fx; = fxc, foreach j € Z, then f = X3 _, f;.
So we can write

a/r)f)

@ = fOx0 = ) £,

j:—oo j:—oo

Then we have

m
I,B,b (f) | |MK3;)2?) (wP2©))

1
—LAf ¢O kar(1+6 1+6 r(1+6)
sup sup 274(o" >~ 2 (Fyll ) )

>0 LezZ ez
1
_ —LA( O kar(1+6 r(1+6) r(1+5)
= supsup 2~ 5 22 or(i+0) Z 17 b(fj)Xkllez(->(wpz<~>))
0>0 LeZ ez J—
1
—LAf <6 kar(1+6 (1+6) (1+6)
< supsup2” 6 Z PR Z ||1mb(f]))(k||r,,2<>(w,,2<.)))
>0 Lez ez j<k—2
k = (1+6) T] )
-La 0 1+6 r(l+ r(1+0,
+supsup 27K (o7 )" 2k N i (000 )
>0 Lez ez =1

1
~LA( 50 kar(1+6 1+6 a3
+ sup sup 2 (6 Z 2kar+9 Z ||Ig?b(fj))(k||g,2<»>()wpz<-)))
0>0 LeZ keZ J=k+2

= (J1 + T2+ T3).

First, we estimate ;. Remark that @ < nd, — 3, thus we consider two cases: 1 < r(1 +9) <
oo and 0 < (1 +6) < 1. For the case 1 < r(1 + §) < oo, by applying (3.7) and Holder inequality, we
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have
1
—LA( 50 kar(1+6 146 D)
g1 = supsup?2 (6 Z kar(1+9) Z IIZ b(fj))(kllz(pz(,)()wpz(.)))
0>0 LeZ k——oo
_ < r(146)) ==
< sup sup 21| Z plarro( Z 1L, el o) )
6>0 LezZ o =0
0o k-2
~LA[ O kar(1+6
< sup Sup2 {6 Z 2 ars )( Z ”bl|§1M0(Rn)”fj”u’l(')(wm('))
6>0 Lez [ —
=—00 j (o)
1
X (k — j)’"2<ﬂ—néz>(k—j))’“+‘”}r<1+6>
< 1bllgpocen)
_ SRS F(1+6) b
x sup sup 2~ 6‘9 Z Z 2“’||]§||Lp1<>(wp1<>)(k jymoBnorralk= f)) } 5w
0>0 LeZ e oo
=—00 ]_
S
= = (1 5)
X sup sup 2" LA 66 Z Z 2ajr(1+6)”fjllr(p1t)5) o= ])mr(1+6)2(ﬁ nér+a)(k—j) 52 )
LP1O(wP1)
0>0 LezZ P —
=—00 ] o0
k=2 w1
Z 9 (B-ndr+a)(k- ])(’(“‘)” )(r<1+6)>'}r<1+6>
]——oo

< IIbllgymoge

bl - 1
LA[ o6 (1+6) r(1+6) mr(1+6) A (B—ndy +a)(k— j) "L | 7T+8)
X supsup 2- 5 Z Z 20 ”lele.(-)(wm(-))(k_ " PARLE A
>0 Lez k=—o0 j=—oo
< IPlgnmogs)
1
L/l 0 (1+6) r(1+6) N mr(146) A (B=nda+a) (k- j) Lt | 7T+8)
X sup sup2” (5}]2”’ A o) D (= it @needen
0>0 LeZ — k>j+2

1
LA 0 (1+6) r(146) r(1+6)
< Iblioqes) Sup sup2” s E 2 )
>0

j_—OO
< blgnosen Tz ooy

For 0 < r(1 +0) < 1, by virtue of (3.7), we have

1
—LA( 50 kar(1+6 146 e
g1 =supsup2” 6 E Hkar(1+6) E ||Imb(fj))(k||Z(,,2(,>()wp2(.)))
0>0 LeZ k=—oo =0
L/l 0 kar(1+6) S m r(14+6)) i
ﬁww2<5§2 §nummmwm)}
550 Lez = —
00 k-2
—LAf 0 kar(1+6
< sup sup 2 {5 E phar(l+ ) E bl lgMo @ I ill Lo @wen oy
6>0 LezZ koo =
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1
& — i) )t

< Ibllgmocn

_ > k= r(146)) s
x sup sup 2~ 56 Z 26” Z £l 210 om0y (k = jym2Bnorra)k= J)) } (o
J_

>0 LezZ

k=—00

< IPllgymogs)

00 k-2 1
X Sup sup y-LA { s5° Z Z 2ajr(1+6)” f, ”;;1;;5) o (k — J-)mr(1+6)2(ﬁ—n62+a)(k— j)r(l+6)}r(l+5)
0>0 LeZ k=—o0 j=—00 @)
< Iblfyioqee)

1

—Laf 56 jr(1+6 1+6 . 1+6 —no; k—j)r(1+06) | r(1+6)

xsupsup 27 o ) 2SI ) D (k= i)
>0 LeZ [ ey

< Ibllgmon

(o)

1

LA <0 jr(1+6 (1+6) 7T+o)

X sup sup 2 {(5 Z 20 )||J3||2p1(4>(wp1<4>)}
550 LezZ e

< |IblIQMO(Rn)IIfIIMK;»;)g)(wmo)-
P1(

Next, we estimate /. Using Lemma 2.9, we get

k+1

1
_ —LA( <6 kar(1+6) H(145) T
> = supsup 2 (6 Z kar Z L5 (f il L,,2(.)(wp2@))

>0 LezZ keZ j=k—1
k+1

1
—LA( o6 kar(1+6) r(1+6) w1+3)
I61vioe Sup sup 2 (67 > 24 S I L)
>0

Lez keZ j=k—1

A

1
LA 56 kar(1+6 146 EeED)
< ||b||BMO(R,,) sup sup 2~ (5 Z kar(l+ )||(ka)||2(,4«)pr1<~>>)
0>0

Lez ez

< ||b||gMo(Rn)”f||MKZ’;>1~?)(wp|(-))'

Finally, we estimate J3. By virtue of (3.12), we have

1
_ —LAf <O k 1+6 r(1+0) r(1+6)
Js = supsup 276" > 240 N (il )
>0 Lez ;
keZ Jj=k+2
< 1blEmogn
1
LAf O kar(1+6 01 (k— 1+6 1+6 1+0 r(1+6)
X sup sup2 (5 E o) ar(1+6) § on 1 (k= r(1+ )(] k)mr( + )Hflllr(pl()()wpl(»))
0>0 Lez kezZ J=k+2

< ”b”gMO(R")

. \F(146)) s
X sup sup 2-u{59 Z( Z “fj“Ll’l(‘)(w"l('))(j _ k)m2a12<a+n51)(k—1)) + } 5

0>0 LeZ keZ  jzk+2
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Remark that a + nd; > 0, thus we consider two cases 1 < r(1 + ) < oo and 0 < r(1 + 6) < 1. For
the case 1 < r(1 + 9) < oo, by applying Holder inequality, we have

j3 < ”b”gMo(Rn)

. \F(1+0)) 7
X SUp Sup Z_L’l{ée Z( Z ||fj||LP1<'>(wPl<'))(j _ k)mzan(amél)(k—J)) + } (1+9)

>0 LezZ

keZ  jzk+2
< ”b”gMO(R")
(o)
—La] <6 jr(1+6 r(1+6) . 1+8) A (16 +a)(k— j) "0
X sup sup 2 {5 Z ( Z pair( )”‘fj”Ll’l(‘)(wPl('))(J_k)mr( )9 (nd1+a) (k=)™ )
0>0 LezZ ;
k=—co  j2k+2
><( Z D (nd1+a) (k=) "5 )<< ) }( )
j=k+2

< 1Pligmogn)

= 1
LA <0 } : }: ir(1+6 1+6 . 1+6)~(né k—j) 10X\ 7145
X sup suP2 {5 2£¥JF( " )l|f}|lgp|(-)()w171(-))(1 - k)mr( " )2(" D } '
>0 Lez K=o j=k+2

< 1bllgmocm

(59

1

—LA[ <6 ir(1+6 1+6 . 146)~(né k- j) 10X\ 7145

xsupsup2 H{s? N 2mr Y pen N gymeongueadon )
0>0 LeZ =0 K2

b 1
-LA) c6 ir(1+6) r(1+06) r(1+6)
< ||b||gMO(R,,) sup sup 2 {6 Z Hajr ||fj||Lm(A)(w,,l<A>)}
6>0 LezZ j=—oo
< b m n o 1), 21 ()N
> ” ”BMO(R )llf”MKﬂ.p)li)(w“())
For 0 < (1 + ¢6) < 1, we have

j3 < ”b”gMo(Rn)

X sup sup 2—L/1{59 Z ( Z ”fj”Lm(»)(wPl(-))(j - k)'nzajZ(“”lsl)(k—j))r(1+6)}m

0>0 LeZ keZ  jzk+2

< 1bllEmocm

ad 1
X SUp Sup y-L1 { 5f Z Z X ]r(1+6)|| f] ||r(1+<5) (j - k)mr(1+6)2(n61+a)(k— ])r(l+§)}r(l+5)

LP1O(P10))

6>0 LeZ Koo j>k+2
m
S ”b”BMO(R")
= 1
—-LAf o0 ir(1+6 (1+6) . 146 5 k= )r(1+6)) 7(1+0)
X sup sup 2 {5 E e+ )”fj”;‘m(ﬂ(wm(-)) E (j — kymr+0pmor+a)k=prit+ )}
>0 LezZ jm—oo Py
b 1
m —LAf cO ajr(1+6) r(1+6) r(1+6)
< |1Bllos SUp Sup 2 {5 E 2 I ff”m»(m»)}
>0 LeZ =

< ”bl|’1131M0(R")||f||MKj:;>I’?_)(wP1(‘))'

Combining the estimates of 1, 7>, 93, we complete the proof of Theorem 3.2.
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Remark 3.3 When 4 = 0 and m = 0, Theorem 3.1 holds on weighted variable-exponent Herz
spaces and generalizes the result of Izuki in [18] (see Theorem 4). When 0 < 4 < nand m = 1,
Theorem 3.1 has been proved by Zhao in [26] (see Theorem 2.2). When m = 0, Theorem 3.2 holds
on grand weighted variable-exponent Herz-Morrey spaces, and generalizes the result of Sultan in [32]
(see Theorem 2).

4. Multilinear fractional Hardy-type operators

In this section, under some assumed conditions, we first establish the boundedness of the m—order
multilinear fractional Hardy operator Hg,, on weighted variable exponent Herz-Morrey spaces
MKq p()(w). Then, we establish the boundedness of the adjoint operator of the m— order multilinear
fractional Hardy operator 7—( ; » ON weighted variable-exponent Herz-Morrey spaces MKq (W) As a
corollary of the above two results we also obtain the corresponding result for multilinear Hardy
operator H,, and its adjoint operator H.

Theorem 4.1 Let p,(-) e PR NC2R(i=1,2,--- ,m,m € Z*), p(-) is defined as follows:

$ e
pix)  px) n

i=1

1 1
LetO<B< e 0< g <00, 4 >0, =30 LB 2= 50 o= T, a1, 0 € Ayy, wi € Ay,
1<i<m

w = 12, wi, @i < A; + ndp, where 8, € (0,1) are the constants in (2.18) for exponents p;(-) and
weights w?! ‘O then

m
_)
1M Pl o, < € [ [ Wil p
i=1 o

Proof = We prove the homogeneous case, since the nonhomogeneous case is similar. Without loss
of generality, we only consider the case m = 2. Actually, a similar procedure works for all m € Z*(m >
1). When m = 2, then we have

— 1
Hpo(f)(x) = W—n_ﬁ\fll i ||f1(11)f2(f2)df1dt2~

s A

For arbitrary f; € MKq p()(wf"('))(i = 1,2),let fi, == fi - xx, = fi - xc, - then

filx) = Z F) - x, () = Z fia().

ki=—00 ki=—o0

By virtue of the definition of Hjy, and generalized Holder inequality (2.13), we have

Hua(F)0 a0l < s [

[t11<lx]

f |f1(20) f2(2)lderdes - ()
[r2]<]x]

< kB2 f |fi (1) fo(t2)Idtydts - xi(x)
By J By
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k k

<20 3 f I, nenwnan v
ki=—00 ky=—00 ky
k k

SEID) ([ 1neon)( [ i) ae
1=—00 kp=—00 Cy Cr,

k k

k(B-2n)
2020 37 3 (Wallpopolfiallpao o)

kl =—00 k2:—oo

10 g1y I g 20, P (0): 4.1)

Note that if u(-), pi(+), p2(-) € P(R") such that — u(x) m](x) + m(x) for x e R", and w € A, with w; €

Apy, = Hi:l w;, by (2.19) of Lemma 2.10, we have

||fg||Lu<->(wu<->) = ||fgw||Lu<->(Rn) = ”fwlng”LP(')(R”)
S W @illmognligwallirogn = 1l om0, 1811 oo, (4.2)

By virtue of (2.16) of Lemma 2.6, we have

ellx _ (ICklNe
WX (TR 2 ¢ = [l < Clls,lx. (4.3)
oot < (321 el = Cllen e

Let — u<x) = ml(x) + o5 (x), then by the condition of Theorem 4.1, it implies that '3 = u(lx) p(x) Note

that yp, < C2‘kf’51ﬁ()(Bk (x) (see [11] p.350), by virtue of (2.15), (4.2), (4.3), and Lemma 2.8, we have

IDeillzro @wroy < DB llLro@wro)
< 27N s Or ) 2 oy
27k I B e ()
S 2_k'8||/\/Bk||m<-)(wP1('> ||)(Bk||Lp2<.>(wp2<-))

k(2n-, - -
< 24Pl sl

o P10y L0 20y,

k(2n— -
A Iy (44)

LPZ()(wPZ( ))),

Remark that k; < k, k, < k. By applying (2.18) and (4.4), we have

k(B2
2 B n)“Xkl”(Lpl(.)(wz]n(-))),|b(k2||(Lp2(-)(wgz(->)),“)(k”Lp(-)(wp(.))

|LY/€1 ||(L”1 (~)(wll’l (‘)))/ ”/\/kz | |(Lp2(»)(w52(')))/

= |L\/k||(Lp1(«)(wll’l(’)))/ ”/Yk”(Lpz(»)(wgz(')))/
< pki—kndiz o (ka—kndzy 4.5)

Thus, by taking the L’ (w”"))—norm for (4.1), and by virtue of (4.5), we have

N k k
k(B—-2.
IH52C) - dallisosoy < 29720 33 (Uil ol o)

ki=—00 kp=—c0
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sy ||(Lm<~>(w:ln<->)),Hsz||(Lp2<.)(wgzv>))/)IL\/kllm-w(»))
k k

k1—k)noé ko —k)né
< ( Z 2( 1—k)n 12||ﬁ€1||Lpl(A)(w1171(‘)))( Z 2( 2—k)n zzllszllez(‘)(wgz(A)))

kp=—00
k

ki
2
ki—k)nd;:
% 1_[( Z 2o leﬁﬂ”m«)(w’.’i(')))' 4.6)
=1k

j=—00

Let 0 <y < 1, then by the Jensen inequality it follows that

(Z la)’ Z al, 4.7)

Let % = q‘—l + é, then é = % - g, therefore ¢ > v. By applying (4.6), (4.7), and Holder inequality in
sequential form, we have

— L — L
_ -LA ke q 4
H52( st ooy = SUP2 {kZ 25 o (Rl )

L 2 ol

ssup2 i 2k [ ( Z 25 fill o) |

Lez k=—00 i=1  kj=—o0 '
L 2

1
_ I, .l
sup2 Z l_[ Z 2k01+(k, k)msa||fki||Lpi(~)(w_Pi('))) }q

Lez k=—oo i=1 ki=—oo

A

1

L 2
N ka; k —kné; v
a2 3 TT0S 210

<
LeZ [ —
2 L a 1
—-LA; ka;+(ki—k)no; N4
<[ Toup2ttf 30 (3 2ot @9
i=1 LeZ k=—co  ki=—co ’

on the other hand, note the following fact:

1

—kia; (ykiaiq qi 9
”ﬁ‘i”LPi(')(wf'() =27 ’(2 i ’||f)(k ||L17()( p[())) i
ki

1
—kja; Jiaiqi qz 9
S 2 t ( Z 2 ! ||ﬁle Lp()( pl()))

Ji=—00

ki
— 2k,'(/l;—a[){2—k;/l,'( Z 2j,-a,'q,~||leJl qi ))ql}

LPiO(w ”t()
Ji=—

< 25 £l (4.9)

"l i (wl’t( ))
Remark that a; < A; + nd,. By applying (4.7), (4.8), and (4.9), we have

7_{ —
[H52(F ol o
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2 L k

1
[ ] —LA; i+(ki— ; qiy o;
< sup 2 L { Z ( Z phai+(ki—kndn)| fkflluf(')(w‘?i”)) ,},,,
i=1 Lez e S—— i
- qi
s | I ||MKa, ) sup2 LA, Z 2k/1,q, Z A=k a,+n<5,z)) }
i=1 == K
2
< ||f||MKa, @) sup 2~ “’ Z 2“1‘1'
j= LeZ
i=1 _
2
< ||ﬁ”MKZf:ﬁf(.)(wf"('))'

i=1
This finishes the proof of Theorem 4.1.
Theorem 4.2  Let p,(:) e PR NC2 R =1,2,--- ,m,m € Z*), p(-)is defined as follows:

Z’”‘JL_L B
Sipx) px

1 1
LetO <ﬂ < ma)r(ngo)*’ 0< q; < 00, /l,' > O, P = 2;11 P —g, A= Z?il /L', a = Z:il o, W E Ap(.), w; € Api(')’
1<i<m

w =[] wi,a >4+ % — nd;;, where 9;; € (0, 1) are the constants in (2.17) for exponents p;(-) and
weights w? ‘©) then

m
« —
74 ’m(f)||MK(qy,’13(->(“’p(')) =¢ ll:[ llﬁ"MKZ;,:,l-(-)(‘”ipl())

Proof = We prove the homogeneous case, since the nonhomogeneous case is similar. Without loss of
generality, we only consider the case m = 2. Actually, a similar procedure works for all m € Z*(m > 1).
When m = 2, then we have

Hu () = f ff®) 4 g

izl Jilsi 1 )PP

a;,A;

For arbitrary f; € MKq p()(wf[('))(i = 1,2), let fi, := fi - x, = fi - xc,,» then

fio= Y f@ 0@ = ) filo.

ki=—o0 kj=—o0

Note that |;1|"—§|;2|"—§ < |(t1,t2)** (see [37] p.11). By virtue of the definition of 7{5,2 and
generalized Holder inequality, we have

| /1) f2(22)]

it ikt (11, 1) P+
|f1(t) fo(22)]
VITOJ22 )L 41 dts - xe(x)
fcj; (P

Z 2ki+ka)( _")f |f1(f1)|df1)(f |f2(l2)|df2)')(k(x)

Ciy Ciy

IWEZ(f () - (0] < ————dndn - xx(x)

I/\

N
1 MS ||
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o0 (o]
k1 +k:
< ZZ 24D ol el )
ki=k ka=k

. ||)(k1 ||(Lp1(')(w11’1(')))/ ”szll(Lpz(')(wlz’Z(')))/ »/k('x) (4 10)

Remark that k; > k, k, > k. By applying (2.14), (2.17), and (4.4), we have

ki +ha)(5~
PARRCS n)“Xkl“(Lm(-)(wfl(')))’”sz”(U’z(')(wgz(‘)))’”Xk”Lp(')(wp('))

ky+ka)(5— k2
< 2( 1+k2)(3 n)HXkI”(Lpl(')(wll’l(')))'H/Ykz”(l‘pz(')(wgz(.)))’z e IB)HX ”

Il

ki+ko)(5- —k
< pki+k)( ”)H/\/kl||(Lm(‘>(wp”'>))'”/\/k2||(L1’2<')(wp2(')))'2 ﬁ“Xk||Lm<'>(w”‘(') |[)(k||U,2(.>(wp2(-))

ki +ko)(E—n) qnk - k
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”Xk”Lpl (-)(wfl(‘)) ”/\/k”Lpz()(ng('))

@Oy M O @)y

-k
19w P20y ﬁ“/\/k” p1<)(w1’1<) “Xk”Lpz()(sz())

= oki+k=2)5

Iiall o0y il om0,

< 2(k1+k2—2k)§2(k—k1)n511 2(k—k2)n521

— pki=k)(G=n811)9ki~k)(5-néx)
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Thus, by taking the L"")(w”"”))—norm for (4.10), and by virtue of (4.11), we have

« (7 (ki +ka)(5 n)

1H5,(f) - xellowroy < Z Z 2 2 oo Uiall o0,
ki=k k=k
esall progumony el Lp2(~)(w§2(‘)))/)“Xk”LP(‘)(wP(‘))
ki—k)(E-nos ka—k)(B—no
Z ki =k)(5—n “)”ﬁ‘lIlel(‘)(wT(')))(Z 9 (ka=k)(5-n 21)||ﬁ{2||Lp2(.)(w§2(.>))
ki=k ko=k
2 00 5
(ki—k)(5—ndi1)

< [T 250 il ) (4.12)

=1 ki=k

|—

Let % = qu + qiz, then é == g; therefore, ¢ > v. By applying (4.7), (4.12), and Holder inequality
in sequential form, we have

L

H
52l oy = sup 27| Z 29 ol |

Lez
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& 1
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:—00 l:l ,_
L 2 00 1
< sup2 Z l_[ Z okai+(ki k)(g—nén)”ﬁ(l””l()(wp() ) }q
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k=—oc0 i=1 k;

Communications in Analysis and Mechanics Volume 17, Issue 1, 290-316.



311

LeZ

L 2 00
-LA ket +(ki—k)(E —ns; v
< sup 27| Z 1—[(22 OGN i) )
k=—co i=1  ki=k '
2

L [}
< [Tsup2 s 37 (D2t o)) (4.13)

i=1 LeZ k=—co ki=k

Remark that a; > A; + g — nd;;. By applying (4.7), (4.9), and (4.13), we have

-
*
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This finishes the proof of Theorem 4.2.
Theorem 4.3  Let p,(:) € PR NCe R (i = 1,2,--- ,m,m € Z"), p(-) is defined as follows:

$
pi(x)  p(x)

i=1

Let0 < q; < 00, A; >0, Ll] = ?il %, A= 2:11 A, w € Ap(.), w; € Ap[.(.), w = H:il w;, 0;1,0p € (0, 1) are
the constants in Lemma 2.7 for exponents p;(-) and weights w! ‘©)_ then
(i) When a; < A; + nd;», we have

m
—_
Iy, oy < € ]‘1[ Wfillgert, upoy

(i) When «; > A; — nd;;, we have
- m
*
”‘Hm(f)”MKZf}J{(»(“’” o <€ 1—1[ “fillMK::,‘:&»)(wfi(A))'
1=

Proof (i) We prove the homogeneous case, since the nonhomogeneous case is similar. Since the
proof method is similar to the Theorem 4.1, we only give the proof idea here and omit the detailed
proof. Without loss of generality, we only consider the case m = 2. Actually, a similar procedure
works for all m € Z*(m > 1). When m = 2, similar to the estimation of (4.1), by virtue of the definition
of H, and generalized Holder inequality, we have

k k

—2 ~2k
()0 - a0l s 272 S (VA eN /8 ey

ki=—0c0 ky=
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: |LY/€1 ||(Lp1(‘)(wfl’l<‘)))/ “/Ykz||(LP2(‘)(w’2’2(')))/)Xk(x)' (4' 14)

By taking the LP"(w”")—norm for (4.14) and applying (2.18) and (4.4), we have
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Next, the required results are obtained in a way similar to the proof of Theorem 4.1.

(if) We prove the homogeneous case, since the nonhomogeneous case is similar. Since the proof
method is similar to the Theorem 4.2, we only give the proof idea here and omit the detailed proof.
Without loss of generality, we only consider the case m = 2. Actually, a similar procedure works
for all m € Z*(m > 1). When m = 2, similar to the estimation of (4.10), by virtue of the definition

of H; and generalized Holder inequality, we have

N (o) (o)
* —n)(ky+k
HCH i@l € D D 27 (el sl o0,

ki=k ky=k
' “Xkl ”(Lpl(-)(w‘i’l(’)))/ “sz ||(Lp2(-)(w12’2(')))/))(k(x)‘ (4 16)

By taking the LP")(w”"))—norm for (4.16), applying (2.14), (2.15), (2.17), and (4.4), we have
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Similar to the estimation of (4.13). By applying (4.7), (4.17), and Holder inequality in sequential
form, we have

2 L o0

Dt o < | [sup2 7 T (D2 tebmng, (wfi<.>))qf}%, (4.18)

i=1 L€Z k=—co  ki=k

Remark that @; > A; — nd;;. By applying (4.7), (4.9), and (4.18), we have
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This finishes the proof idea of Theorem 4.3.

Remark 4.4 Because of MKZ:g(,)(w) = Kgf)(w), let A = 0 from Theorem 4.1 and Theorem 4.2.
Then we can obtain the boundedness of the m—order multilinear fractional Hardy operator Hj,, and its
adjoint operator W;,m from the weighted variable-exponent Herz product space

dl qi ¢, .p1() @2,92 ¢, Pp2(°) Umsgm ¢, Pm()
Kol @) X K0 (@5 ) X X K (wp™)

to the homogeneous weighted variable-exponent Herz space K“ q(wl’( )). Obviously, from Theorem 4.3,
the m—order multilinear Hardy operator H and its adjoint operator H* have similar results.

5. Conclusions
This paper first considered the boundedness of higher-order commutators 1, generated by the
fractional integral operator with BMO functions on weighted variable-exponent Herz-Morrey

spaces MKZ”;(,)((U) and grand weighted variable-exponent Herz-Morrey spaces MKZ”;)(’f(w), and
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generalized Theorem 4 of Izuki [18] as well as Theorem 2 of Sultan [32]. Then, we considered the
boundedness of the m—order multilinear fractional Hardy operator Hj,, and its adjoint operator ?{;’m

on weighted variable-exponent Herz-Morrey spaces MKZ:;(,)(w), and generalized some relevant
results of Wu [12].
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