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1. Introduction

Since Kováčik and Rákosnı́k established the theory of variable-exponent function spaces in [1], the
subject has attracted extensive attention by many scholars. The theory of the variable-exponent
Lebesgue spaces Lp(·)(Rn) has been extensively investigated, see [2–5]. Izuki first introduced the
variable-exponent Herz spaces K̇α,qp(·)(R

n) [6] and considered the boundedness of commutators of
fractional integrals in these spaces; for more research about the boundedness of operators in the above
spaces, see [7, 8]. Subsequently, Izuki generalized the Herz-Morrey spaces MK̇α,λq,p(Rn) in [9] into the
variable-exponent Herz-Morrey spaces MK̇α,λq,p(·)(R

n) [10], for more research about MK̇α,λq,p(·)(R
n),

see [11–13]. On the other hand, the Muckenhoupt weight theory is a powerful tool in harmonic
analysis, [14–17]. By using the basics on Banach function spaces and the variable-exponent
Muckenhoupt theory, Izuki and Noi developed the theory of weighted variable-exponent Herz spaces
K̇α,qp(·)(ω) [18–20]. After that, the research for the boundedness of some operators, such as the
commutator of bilinear Hardy operators, commutators of fractional integral operators, and fractional
Hardy operators achieved good results on weighted variable Herz-Morrey spaces MK̇α,λq,p(·)(ω); for

https://www.aimspress.com/journal/cam
http://dx.doi.org/10.3934/cam.2025012


291

more details, see [21–26]. Consequently, many scholars have contributed to the study of function
spaces and related differential equations, [27, 28].

Motivated by the mentioned works, the main goal of this paper is to establish the boundedness
of higher-order commutators Im

β,b generated by the fractional integral operator with BMO functions

on grand weighted variable-exponent Herz-Morrey spaces MK̇α,r),θ
λ,p(·)(ω) and to establish boundedness

of the m−order multilinear fractional Hardy operator Hβ,m and its adjoint operator H∗β,m on weighted

variable-exponent Herz-Morrey spaces MK̇α,λq,p(·)(ω). The paper is organized as follows: In Section 2,
we collect some preliminary definitions and lemmas. Our main results and their proof will be given in
Section 3 and Section 4.

Now, let us recall some notations that will be used in this paper.
In [29], Hardy defined the classical Hardy operator as follows:

P( f )(x) :=
1
x

∫ x

0
f (t)dt, x > 0. (1.1)

In [30], Christ and Grafakos defined the n−dimensional Hardy operator as follows:

H( f )(x) :=
1
|x|n

∫
|t|<|x|

f (t)dt, x ∈ Rn \ {0}, (1.2)

and established the boundedness ofH( f )(x) in Lp(Rn), obtaining the best constants.

In [31], under the condition of 0 ≤ β < n and |x| =
√∑n

i=1 x2
i , Fu et al. defined the n−dimensional

fractional Hardy operator and its adjoint operator as follows:

H
β
f (x) :=

1
|x|n−β

∫
|t|<|x|

f (t)dt, H∗β f (x) :=
∫
|t|≥|x|

f (t)
|t|n−β

dt, x ∈ Rn \ {0}, (1.3)

and established the boundedness of their commutators in Lebesgue spaces and homogeneous Herz
spaces.

Let m and n be positive integers with m ≥ 1, n ≥ 2, and 0 ≤ β < mn, and let L1
loc(R

n) be the
collection of all locally integrable functions on Rn. Wu and Zhang in [12] defined the m−order
multilinear fractional Hardy operator and its adjoint operator as follows:

Hβ,m(
−→
f )(x) :=

1
|x|mn−β

∫
|t1 |<|x|

∫
|t2 |<|x|
· · ·

∫
|tm |<|x|

f1(t1) f2(t2) · · · fm(tm)dt1dt2 · · · dtm, (1.4)

H∗β,m(
−→
f )(x) :=

∫
|t1 |≥|x|

∫
|t2 |≥|x|
· · ·

∫
|tm |≥|x|

f1(t1) f2(t2) · · · fm(tm)
|(t1, t2, · · · , tm)|mn−β dt1dt2 · · · dtm, (1.5)

where x ∈ Rn\{0}, |(t1, t2, · · · tm)| =
√

t2
1 + t2

2 + · · · + t2
m.
−→
f = ( f1, f2, · · · , fm) is a vector-valued function,

where fi(i = 1, 2, · · · ,m) ∈ L1
loc(R

n).
Obviously, when m = 1, Hβ,m = Hβ

, H∗β,m = H
∗
β . When β = 0, Hm indicates a multilinear

operator H0,m corresponding to the Hardy operator H , and H∗m indicates a multilinear operator H∗0,m
corresponding to the adjoint operatorH∗ := H∗0 .
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Let L1
loc(R

n) be the collection of all locally integrable functions on Rn, and given a function b ∈
L1

loc(R
n), the bounded mean oscillation (BMO) space and the BMO norm are defined, respectively, as

follows:

BMO(Rn) := {b ∈ L1
loc(R

n) : ∥b∥BMO(Rn) < ∞}, (1.6)

∥b∥BMO(Rn) := sup
B:ball

1
|B|

∫
B
|b(x) − bB|dx. (1.7)

where the supremum is taken over all the balls B ∈ Rn and bB = |B|−1
∫

B
b(y)dy.

Let b ∈ BMO(Rn), 0 < β < n, and the fractional integral operator Iβ and the commutator of
fractional integral operator [b, Iβ] f (x) are defined, respectively, as follows:

Iβ( f )(x) :=
∫
Rn

f (y)
|x − y|n−β

dy, x ∈ Rn. (1.8)

[b, Iβ] f (x) := b(x)Iβ( f )(x) − Iβ(b f )(x), x ∈ Rn. (1.9)

Let b ∈ BMO(Rn), 0 < β < n, and m ∈ N. The higher-order commutator of fractional integrals
operator Im

β,b is defined as follows:

Im
β,b f (x) :=

∫
Rn

[b(x) − b(y)]m

|x − y|n−β
f (y)dy, x ∈ Rn. (1.10)

Obviously, when m = 1, I1
β,b( f )(x) = [b, Iβ] f (x); and when m = 0, I0

β,b( f )(x) = Iβ( f )(x).
For 0 ≤ β < n and f ∈ L1

loc(R
n), the fractional maximal operator Mβ is defined as follows:

Mβ f (x) := sup
x∈B

1

|B|1−
β
n

∫
B
| f (y)|dy, x ∈ Rn. (1.11)

Where the supremum is taken over all balls B ⊂ Rn containing x. When β = 0, we simply
write M instead of M0, which is exactly the Hardy-Littlewood maximal function.

Throughout this paper, we use the following symbols and notations:
1. For a constant R > 0 and a point x ∈ Rn, we write B(x,R) := {y ∈ Rn : |x − y| < R}.
2. For any measurable set E ⊂ Rn, |E| denotes the Lebesgue measure and χE means the characteristic

function.
3. Given k ∈ Z, we write Bk := B(0, 2k) = {x ∈ Rn : |x| ≤ 2k}.
4. We define a family {Ck}

∞
k=−∞ by Ck := Bk \ Bk−1 = {x ∈ Rn : 2k−1 < |x| ≤ 2k}. Moreover χk denotes

the characteristic function of Ck, namely, χk := χCk .
5. For any index 1 < p(x) < ∞, p′(x) is denoted by its conjugate index, namely, 1

p(x) +
1

p′(x) = 1.
6. If there exists a positive constant C independent of the main parameters such that A ≤ CB, then

we write A ≲ B. Additionally A ≈ B means that both A ≲ B and B ≲ A hold.
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2. Preliminaries

In this section, we first recall some definitions related to the variable Lebesgue space and variable
Muckenhoupt weight theory. On this basis, we review some definitions of weighted variable-exponent
Lebesgue spaces, weighted variable-exponent Herz-Morrey spaces, and grand weighted
variable-exponent Herz-Morrey spaces. In addition, we recall some definitions of Banach function
space and weighted Banach function space. Then, we present several relevant lemmas that will aid in
the proof of our main boundedness result.

2.1. Some definitions that will be used in this paper

Definition 2.1 (see [2]) Let p(·) : Rn → [1,∞) be a real-valued measurable function.
(i) The Lebesgue space with variable-exponent Lp(·)(Rn) is defined by

Lp(·)(Rn) :=
{
f is a measurable function :

∫
Rn

( | f (x)|
λ

)p(x)
dx < ∞ for some constant λ > 0

}
(ii) The spaces with variable-exponent Lp(·)

loc (E) are defined by

Lp(·)
loc (Rn) := { f is a measurable function : f ∈ Lp(·)(K) for all compact subsets K ⊂ Rn}

The variable-exponent Lebesgue space Lp(·)(Rn) is a Banach space with the norm defined by

∥ f ∥Lp(·)(Rn) := inf
{
λ > 0 :

∫
Rn

( | f (x)|
λ

)p(x)
dx ≤ 1

}
.

Definition 2.2 (see [2]) (i) The set P0(Rn) consists of all measurable
functions p(·) : Rn → (0,∞) satisfying

0 < p− ≤ p(x) ≤ p+ < ∞, (2.1)

where

p− := essinf{p(x) : x ∈ Rn} > 0, p+ := esssup{p(x) : x ∈ Rn} < ∞. (2.2)

(ii) The set P(Rn) consists of all measurable functions p(·) : Rn → [1,∞) satisfying

1 < p− ≤ p(x) ≤ p+ < ∞, (2.3)

where

p− := essinf{p(x) : x ∈ Rn} > 1, p+ := esssup{p(x) : x ∈ Rn} < ∞. (2.4)

(iii) The set B(Rn) consists of all measurable functions p(·) ∈ P(Rn) satisfying that the Hardy-
Littlewood maximal operator M is bounded on Lp(·)(Rn).

Definition 2.3 (see [2]) Suppose that p(·) is a real-valued function on Rn. We say that
(i) Clog

loc(Rn) is the set of all local log-Hölder continuous functions p(·) satisfying

|p(x) − p(y)| ≤ −
C

log(|x − y|)
, |x − y| <

1
2
, x, y ∈ Rn. (2.5)
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(ii) Clog
0 (Rn) is the set of all local log-Hölder continuous functions p(·) satisfying at origin

|p(x) − p0| ≤
C

log(e + 1
|x| )
, x ∈ Rn. (2.6)

(iii) Clog
∞ (Rn) is the set of all local log-Hölder continuous functions satisfying at infinity

|p(x) − p∞| ≤
C

log(e + |x|)
, x ∈ Rn. (2.7)

(iv) Clog(Rn) = Clog
∞ (Rn)∩Clog

loc(Rn) denotes the set of all global log-Hölder continuous functions p(·).
In [2], the author proved that if p(·) ∈ Clog(Rn), then p′(·) ∈ Clog(Rn), and also proved that if p(·) ∈

P(Rn) ∩ Clog(Rn), then the Hardy-Littlewood maximal operator M is bounded on Lp(·)(Rn).
Definition 2.4 (see [17]) (i) Given a non-negative, measure function ω, for 1 < p < ∞, ω ∈ Ap if

[ω]Ap := sup
B

( 1
|B|

∫
B
ω(x)dx

)( 1
|B|

∫
B
ω(x)1−p′dx

)p−1
< ∞, (2.8)

where the supremum is taken over all balls B ⊂ Rn.
(ii) A weight ω is called a Muckenhoupt weight A1 if

[ω]A1 := sup
B

1
|B|

∫
B
ω(x)dx

essinf{ω(x) : x ∈ B}
< ∞. (2.9)

(iii) A weight ω is called a Muckenhoupt weight A∞ if

A∞ :=
⋃

1<r<∞

Ar. (2.10)

Note that these weights characterize the weighted norm inequalities for the Hardy-Littlewood maximal
operator, that is, ω ∈ Ap, 1 < p < ∞, if and only if M : Lp(ω)→ Lp(ω).

Definition 2.5 (see [18]) Suppose that p(·) ∈ P(Rn), a weight ω is in the class Ap(·) if

sup
B:ball
|B|−1∥ω

1
p(·)χB∥Lp(·)∥ω−

1
p(·)χB∥Lp′(·) < ∞. (2.11)

Obviously, if p(·) = p, 1 < p < ∞, then the above definition reduces to the classical
Muckenhoupt Ap class. In [18], suppose p(·), q(·) ∈ P(Rn) and p(·) ≤ q(·), then A1 ⊂ Ap(·) ⊂ Aq(·).

Definition 2.6 (see [18]) Let 0 < β < n and p1(·), p2(·) ∈ P(Rn) such that 1
p2(x) =

1
p1(x) −

β

n . A
weighted ω is said to be an A(p1(·), p2(·)) weight, then for all balls B ⊂ Rn satisfying

∥ωχB∥Lp2(·)∥ω−1χB∥Lp′1 (·)
≤ C|B|1−

β
n . (2.12)

In [14], suppose p1(·), p2(·) ∈ P(Rn) and β ∈ (0, n) such that 1
p2(x) = 1

p1(x) −
β

n .
Then ω ∈ A(p1(·), p2(·)) if and only if ωp2(·) ∈ A1+ p2(·)

p′1(·)
.

Definition 2.7 (see [25]) Let p(·) ∈ P(Rn) and ω ∈ Ap(·), the weighted variable-exponent Lebesgue
space Lp(·)(ω) denotes the set of all complex-valued measurable functions f satisfying

Lp(·)(ω) = { f : fω
1

p(·) ∈ Lp(·)(Rn)}.
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This is a Banach space equipped with the norm:

∥ f ∥Lp(·)(ω) = ∥ fω
1

p(·) ∥Lp(·)(Rn).

Definition 2.8 (see [25]) Let α ∈ R, 0 < q < ∞, p(·) ∈ P(Rn) and 0 ≤ λ < ∞. The homogeneous
weighted variable-exponent Herz-Morrey spaces MK̇α,λq,p(·)(ω) are defined by

MK̇α,λq,p(·)(ω) = { f ∈ Lp(·)
loc (Rn\{0}, ω) : ∥ f ∥MK̇α,λq,p(·)(ω) < ∞},

where

∥ f ∥MK̇α,λq,p(·)(ω) = sup
L∈Z

2−Lλ
{ L∑

k=−∞

2kαq∥ fχk∥
q
Lp(·)(ω)

} 1
q
.

Nonhomogeneous weighted variable-exponent Herz-Morrey spaces can be defined in a similar way.
For more details, see [25]. When λ = 0, the weighted variable-exponent Herz-Morrey spaces become
weighted variable-exponent Herz spaces, see [18].

Definition 2.9 (see [32]) Let p(·) ∈ P(Rn), α ∈ R, θ > 0, 0 < r < ∞, 0 ≤ λ < ∞. The homogeneous
grand weighted variable-exponent Herz-Morrey spaces MK̇α,r),θ

λ,p(·)(ω) are the collection of Lp(·)
loc (Rn \

{0}, ω) such that
MK̇α,r),θ

λ,p(·)(ω) = { f ∈ Lp(·)
loc (Rn\{0}, ω) : ∥ f ∥MK̇α,r),θ

λ,p(·)(ω) < ∞},

where

∥ f ∥MK̇α,r),θ
λ,p(·)(ω) = sup

δ>0
sup
L∈Z

2−Lλ
{
δθ
∑
k∈Z

2kαr(1+δ)∥ fχk∥
r(1+δ)
Lp(·)(ω)

} 1
r(1+δ)
.

Nonhomogeneous grand weighted variable-exponent Herz-Morrey spaces can be defined in a
similar way. For more details, see [32]. When λ = 0, the grand weighted variable-exponent
Herz-Morrey spaces become grand weighted variable-exponent Herz spaces, see [33].

Definition 2.10 (see [18]) Let M be the set of all complex-valued measurable functions defined
on Rn, and X a linear subspace ofM.

1. The space X is said to be a Banach function space if there exists a function
∥ · ∥X :M→ [0,∞] satisfying the following properties: Let f , g, f j ∈ M( j = 1, 2, . . .), then

(a) f ∈ X holds if and only if ∥ f ∥X < ∞.
(b) Norm property:

i. Positivity: ∥ f ∥X ≥ 0.
ii. Strict positivity: ∥ f ∥X = 0 holds if and only if f (x) = 0 for almost every x ∈ Rn.
iii. Homogeneity: ∥λ f ∥X = |λ| · ∥ f ∥X holds for all λ ∈ C.
iv. Triangle inequality: ∥ f + g∥X ≤ ∥ f ∥X + ∥g∥X.

(c) Symmetry: ∥ f ∥X = ∥| f |∥X.
(d) Lattice property: If 0 ≤ g(x) ≤ f (x) for almost every x ∈ Rn, then ∥g∥X ≤ ∥ f ∥X.
(e) Fatou property: If 0 ≤ f j(x) ≤ f j+1(x) for all j and f j(x) → f (x) as j → ∞ for almost every

x ∈ Rn, then lim
j→∞
∥ f j∥X = ∥ f ∥X.

(f) For every measurable set F ⊂ Rn such that |F| < ∞, ∥χF∥X is finite. Additionally, there exists a
constant CF > 0 depending only on F so that

∫
F
|h(x)|dx ≤ CF∥h∥X holds for all h ∈ X.

Communications in Analysis and Mechanics Volume 17, Issue 1, 290–316.



296

2. Suppose that X is a Banach function space equipped with a norm ∥ · ∥X. The associated space X′

is defined by
X′ = { f ∈ M : ∥ f ∥X′ < ∞},

where
∥ f ∥X′ = sup

g

{∣∣∣∣ ∫
Rn

f (x)g(x)dx
∣∣∣∣ : ∥g∥X ≤ 1

}
.

Definition 2.11 Let(see [18]) Let X be a Banach function spaces. The set Xloc(Rn) consists of all
measurable functions f such that fχE ∈ X for any compact set E with |E| < ∞. Given a functionW
such that 0 <W(x) < ∞ for almost every x ∈ (Rn),W ∈ Xloc(Rn) andW−1 ∈ (X′)loc(Rn), the weighted
Banach function space is defined by

X(Rn,W) := { f ∈ M : fW ∈ X}.

2.2. Some lemmas that will be used in this paper

Lemma 2.1 (see [34]) Let X be a Banach function space, then we have
(i) The associated space X′ is also a Banach function spaces.
(ii) ∥ · ∥(X′)′ and ∥ · ∥X are equivalent.
(iii) If g ∈ X and f ∈ X′, then ∫

Rn
| f (x)g(x)|dx ≤ ∥ f ∥X∥g∥X′ , (2.13)

is the generalized Hölder inequality.
Lemma 2.2 (see [34]) If X is a Banach function space, then we have, for all balls B,

1 ≤ |B|−1∥χB∥X∥χB∥X′ . (2.14)

Lemma 2.3 (see [16]) Let X be a Banach function space. Suppose that the Hardy-Littlewood
maximal operator M is weakly bounded on X, that is,

∥χ{M f>λ}∥X ≲ λ
−1∥ f ∥X

is true for all f ∈ X and all λ > 0. Then, we have

sup
B:ball

1
|B|
∥χB∥X∥χB∥X′ < ∞. (2.15)

Lemma 2.4 (see [18]) (i) The weighted Banach function space X(Rn,W) is a Banach function space
equipped by the norm

∥ f ∥X(Rn,W) := ∥ fW∥X.

(ii) The associate space of X(Rn,W) is a Banach function space and equals X′(Rn,W−1).
Remark 2.5 (see [21]) Let p(·) ∈ P(Rn) and by comparing the Lp(·)(ωp(·)) and Lp′(·)(ω−p′(·)) with the

definition of X(Rn,W), we have
1. If we takeW = ω and X = Lp(·)(Rn), then we get Lp(·)(Rn, ω) = Lp(·)(ωp(·)).
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2. If we considerW = ω−1 and X = Lp′(·)(Rn), then we get Lp′(·)(Rn, ω−1) = Lp′(·)(ω−p′(·)). By virtue
of Lemma 2.4, we get

(Lp(·)(Rn, ω))′ = (Lp(·)(ωp(·)))′ = Lp′(·)(ω−p′(·)) = Lp′(·)(Rn, ω−1).

Lemma 2.6 (see [18]) Let X be a Banach function space. Suppose that M is bounded on the
associate space X′. Then there exists a constant 0 < δ < 1 such that for all balls B ⊂ Rn and all
measurable sets E ⊂ B,

∥χE∥X

∥χB∥X
≲
( |E|
|B|

)δ
. (2.16)

The paper [1] shows that Lp(·)(Rn) is a Banach function space and the associated space Lp′(·)(Rn) has
equivalent norm.

Lemma 2.7 (see [20]) Let p(·) ∈ P(Rn) ∩ Clog(Rn) and ω ∈ Ap(·), then there are constants δ1, δ2 ∈

(0, 1) and C > 0 such that for all k, l ∈ Z with k ≤ l,

∥χk∥Lp(·)(ωp(·))

∥χl∥Lp(·)(ωp(·))
=
∥χk∥(Lp′(·)(ω−p′(·)))′

∥χl∥(Lp′(·)(ω−p′(·)))′
≤ C
( |Ck|

|Cl|

)δ1
, (2.17)

and

∥χk∥(Lp(·)(ωp(·)))′

∥χl∥(Lp(·)(ωp(·)))′
≤ C
( |Ck|

|Cl|

)δ2
. (2.18)

Lemma 2.8 (see [35] Theorem 3.12) Let p1(·) ∈ P(Rn) ∩ LH(Rn) and 0 < β < n
p+1

.

Define p2(·) by 1
p1(·) −

1
p2(·) =

β

n . If ω ∈ A(p1(·), p2(·)), then Iβ is bounded from Lp1(·)(ωp1(·)) to
Lp2(·)(ωp2(·)).

Lemma 2.9 (see [35] Theorem 3.14) Suppose that b ∈ BMO(Rn) and m ∈ N. Let p1(·)
∈ P(Rn) ∩ Clog(Rn) and 0 < β < n

p+1
. Define p2(·) by 1

p1(·) −
1

p2(·) =
β

n . If ω ∈ A(p1(·), p2(·)), then

∥Im
β,b( f )∥Lp2(·)(ωp2(·)) ≲ ∥b∥

m
BMO(Rn)∥ f ∥Lp1(·)(ωp1(·)).

Lemma 2.10 (see [36] Theorem 2.3) Let p(·), p1(·), p2(·) ∈ P0(Rn) such that 1
p(x) =

1
p1(x)+

1
p2(x) for x ∈

Rn. Then, there exists a constant Cp,p1 independent of functions f and g such that

∥ f g∥Lp(·) ≤ Cp,p1∥ f ∥Lp1(·)∥g∥Lp2(·) , (2.19)

holds for every f ∈ Lp1(·)(Rn) and g ∈ Lp2(·)(Rn).
Lemma 2.11 (see [23] Corollary 3.11) Let b ∈ BMO(Rn),m ∈ N, and k, j ∈ Z with k > j. Then we

have

C−1∥b∥mBMO(Rn) ≤ sup
B

1
∥χB∥Lp(·)(ω)

∥(b − bB)mχB∥Lp(·)(ω) ≤ C∥b∥mBMO(Rn), (2.20)

and

∥(b − bB j)
mχBk∥Lp(·)(ω) ≤ C(k − j)m∥b∥mBMO(Rn)∥χBk∥Lp(·)(ω). (2.21)
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3. Higher-order commutators of fractional integrals operator

In this section, under certain hypothetical conditions, we first establish the boundedness of higher-
order commutators Im

β,b generated by the fractional integrals operator with BMO functions on weighted

variable-exponent Herz-Morrey spaces MK̇α,λq,p(·)(ω). Then, we establish the boundedness of Im
β,b on

grand weighted variable-exponent Herz-Morrey spaces MK̇α,r),θ
λ,p(·)(ω).

Theorem 3.1 Suppose that b ∈ BMO(Rn) and m ∈ N. Let 0 < λ < ∞, 0 < q1 ≤ q2 < ∞, p2(·) ∈
P(Rn)∩Clog(Rn),ωp2(·) ∈ A1, δ1, δ2 ∈ (0, 1) are the constants appearing in (2.17) and (2.18) respectively.
α and β are such that

(i) −nδ1 + λ < α < nδ2 − β + λ

(ii) 0 < β < n(δ1 + δ2).
Define p1(·) by 1

p2(·) =
1

p1(·) −
β

n , then Im
β,b are bounded from MK̇α,λq2,p2(·)(ω

p2(·)) to MK̇α,λq1,p1(·)(ω
p1(·)).

Proof We prove the homogeneous case while the nonhomogeneous case is similar. For all f ∈
MK̇α,λq2,p2(·)(ω

p2(·))(Rn) and ∀b ∈ BMO(Rn), if we denote f j := fχ j = fχC j for each j ∈ Z, then f =∑∞
j=−∞ f j. So we can write

f (x) =
∞∑

j=−∞

f (x)χ j(x) =
∞∑

j=−∞

f j(x).

Because of 0 < q1
q2
≤ 1, then the Jensen inequality follows that

( ∞∑
j=−∞

|a j|
) q1

q2 ≤

∞∑
j=−∞

|a j|
q1
q2 , (3.1)

By virtue of (3.1), we obtain

∥Im
β,b( f )∥q1

MK̇α,λq2 ,p2(·)(ω
p2(·))
= sup

L∈Z
2−Lλq1

( L∑
k=−∞

2kαq2∥Im
β,b( f )χk∥

q2

Lp2(·)(ωp2(·))

) q1
q2

≲ sup
L∈Z

2−Lλq1

L∑
k=−∞

2kαq1∥Im
β,b( f )χk∥

q1

Lp2(·)(ωp2(·))

≲ sup
L∈Z

2−Lλq1
{ L∑

k=−∞

2kαq1
( k−2∑

j=−∞

∥Im
β,b( f j)χk∥Lp2(·)(ωp2(·))

)q1}
+ sup

L∈Z
2−Lλq1

{ L∑
k=−∞

2kαq1
( k+1∑

j=k−1

∥Im
β,b( f j)χk∥Lp2(·)(ωp2(·))

)q1}
+ sup

L∈Z
2−Lλq1

{ L∑
k=−∞

2kαq1
( ∞∑

j=k+2

∥Im
β,b( f j)χk∥Lp2(·)(ωp2(·))

)q1}
=: (J1 +J2 +J3).

First we estimate J1. Note that if x ∈ Ck, y ∈ C j, and j ≤ k − 2, then |x − y| ≈ |x| ≈ 2k. By Cp

inequality and generalized Hölder inequality, for every j, k ∈ Z, we get

|Im
β,b( f j)(x)χk| ≤ C

∫
C j

|b(x) − b(y)|m

|x − y|n−β
| f j(y)|dyχk(x)
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≲ 2k(β−n)
∫

C j

| f j(y)||b(x) − b(y)|mdyχk(x)

≲ 2k(β−n)
{
|b(x) − bC j |

m
∫

C j

| f j(y)|dy +
∫

C j

| f j(y)||b(y) − bC j |
mdy
}
χk(x)

≲ 2k(β−n)∥ f j∥Lp1(·)(ωp1(·))

{
|b(x) − bC j |

m∥χ j∥(Lp1(·)(ωp1(·)))′

+ ∥|b(y) − bC j |
mχ j∥(Lp1(·)(ωp1(·)))′

}
χk(x). (3.2)

By taking the Lp2(·)(ωp2(·))−norm for (3.2), by Lemma 2.11, we have

∥Im
β,b( f j)(x)χk∥Lp2(·)(ωp2(·))

≲ 2k(β−n)∥ f j∥Lp1(·)(ωp1(·))

{
∥|b(x) − bC j |

mχk∥Lp2(·)(ωp2(·))∥χ j∥(Lp1(·)(ωp1(·)))′

+ ∥|b(y) − bC j |
mχ j∥(Lp1(·)(ωp1(·)))′∥χk∥Lp2(·)(ωp2(·))

}
≲ 2k(β−n)∥ f j∥Lp1(·)(ωp1(·))

{
(k − j)m∥b∥mBMO(Rn)∥χk∥Lp2(·)(ωp2(·))∥χ j∥(Lp1(·)(ωp1(·)))′

+ ∥b∥mBMO(Rn)∥χ j∥(Lp1(·)(ωp1(·)))′∥χk∥Lp2(·)(ωp2(·))

}
≲ 2k(β−n)(k − j)m∥b∥mBMO(Rn)∥ f j∥Lp1(·)(ωp1(·))∥χ j∥(Lp1(·)(ωp1(·)))′∥χk∥Lp2(·)(ωp2(·)). (3.3)

By virtue of Lemma 2.6, we have

∥χ j∥X

∥χB j∥X
≤ C
( |Ck|

|Bk|

)δ
= C =⇒ ∥χ j∥X ≤ C∥χB j∥X. (3.4)

Note that χB j(x) ≲ 2− jβIβ(χB j) (see [11] p.350), by applying (2.15), (3.4), and Lemma 2.8, we obtain

∥χ j∥Lp2(·)(ωp2(·)) ≤ ∥χB j∥Lp2(·)(ωp2(·))

≲ 2− jβ∥Iβ(χB j)∥Lp2(·)(ωp2(·))

≲ 2− jβ∥χB j∥Lp1(·)(ωp1(·))

≲ 2 j(n−β)∥χB j∥
−1
(Lp1(·)(ωp1(·)))′

≲ 2 j(n−β)∥χ j∥
−1
(Lp1(·)(ωp1(·)))′ . (3.5)

By virtue of (2.14) and (2.15), combining (2.18) and (3.5), we have

2k(β−n)∥χ j∥(Lp1(·)(ωp1(·)))′∥χk∥Lp2(·)(ωp2(·))

= 2kβ∥χ j∥(Lp1(·)(ωp1(·)))′2
−kn∥χk∥Lp2(·)(ωp2(·))

≲ 2kβ∥χ j∥(Lp1(·)(ωp1(·)))′∥χk∥
−1
(Lp2(·)(ωp2(·)))′

= 2kβ∥χ j∥(Lp1(·)(ωp1(·)))′∥χ j∥
−1
(Lp2(·)(ωp2(·)))′

∥χ j∥(Lp2(·)(ωp2(·)))′

∥χk∥(Lp2(·)(ωp2(·)))′

≲ 2kβ2nδ2( j−k)∥χ j∥(Lp1(·)(ωp1(·)))′∥χ j∥
−1
(Lp2(·)(ωp2(·)))′

≲ 2kβ2nδ2( j−k)2 j(n−β)∥χ j∥
−1
Lp2(·)(ωp2(·))∥χ j∥

−1
(Lp2(·)(ωp2(·)))′

= 2kβ2nδ2( j−k)2− jβ
(
2− jn∥χ j∥Lp2(·)(ωp2(·))∥χ j∥(Lp2(·)(ωp2(·)))′

)−1
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≲ 2(β−nδ2)(k− j). (3.6)

Hence by virtue of (3.3) and (3.6), we have

∥Im
β,b( f j)(x)χk∥Lp2(·)(ωp2(·)) ≲ 2(β−nδ2)(k− j)(k − j)m∥b∥mBMO(Rn)∥ f j∥Lp1(·)(ωp1(·)). (3.7)

On the other hand, note the following fact:

∥ f j∥Lp1(·)(ωp1(·)) = 2− jα
(
2 jαq1∥ fχ j∥

q1

Lp1(·)(ωp1(·))

) 1
q1

≤ 2− jα
( j∑

i=−∞

2iαq1∥ fχi∥
q1

Lp1(·)(ωp1(·))

) 1
q1

= 2 j(λ−α)
{
2− jλ
( j∑

i=−∞

2iαq1∥ fχi∥
q1

Lp1(·)(ωp1(·))

) 1
q1
}

≲ 2 j(λ−α)∥ f ∥MK̇α,λq1 ,p1(·)(ω
p1(·)). (3.8)

Thus, by virtue of (3.7) and (3.8), remark that α < nδ2 − β + λ,

J1 = sup
L∈Z

2−Lλq1
{ L∑

k=−∞

2kαq1
( k−2∑

j=−∞

∥Im
β,b( f j)χk∥Lp2(·)(ωp2(·))

)q1}
≲ sup

L∈Z
2−Lλq1

{ L∑
k=−∞

2kαq1
( k−2∑

j=−∞

(k − j)m∥b∥mBMO(Rn)∥ f j∥Lp1(·)(ωp1(·))2
(β−nδ2)(k− j)

)q1}
≲ ∥b∥mq1

BMO(Rn)∥ f ∥
q1

MK̇α,λq1 ,p1(·)(ω
p1(·))

sup
L∈Z

2−Lλq1
{ L∑

k=−∞

2kλq1
( k−2∑

j=−∞

(k − j)m2(k− j)(α+β−nδ2−λ)
)q1}

≲ ∥b∥mq1
BMO(Rn)∥ f ∥

q1

MK̇α,λq1 ,p1(·)(ω
p1(·))

sup
L∈Z

2−Lλq1
( L∑

k=−∞

2kλq1
)

≲ ∥b∥mq1
BMO(Rn)∥ f ∥

q1

MK̇α,λq1 ,p1(·)(ω
p1(·))
.

Next, we estimate J2. Using Lemma 2.9, we get

J2 = sup
L∈Z

2−Lλq1
{ L∑

k=−∞

2kαq1
( k+1∑

j=k−1

∥Im
β,b( f j)χk∥Lp2(·)(ωp2(·))

)q1}
≲ ∥b∥mq1

BMO(Rn) sup
L∈Z

2−Lλq1
{ L∑

k=−∞

2kαq1
( k+1∑

j=k−1

∥ f jχk∥Lp1(·)(ωp1(·))

)q1}
≲ ∥b∥mq1

BMO(Rn) sup
L∈Z

2−Lλq1
{ L∑

k=−∞

2kαq1∥ f jχk∥
q1

Lp1(·)(ωp1(·))

}
= ∥b∥mq1

BMO(Rn)∥ f ∥
q1

MK̇α,λq1 ,p1(·)(ω
p1(·))
.
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Finally, we estimate J3. Note that if x ∈ Ck, y ∈ C j, and j ≥ k + 2, then |x− y| ≈ |x| ≈ 2 j. By the Cp

inequality and generalized Hölder inequality, for every j, k ∈ Z, we get

|Im
β,b( f j)(x)χk| ≤ C

∫
C j

|b(x) − b(y)|m

|x − y|n−β
| f j(y)|dyχk(x)

≲ 2 j(β−n)
∫

C j

| f j(y)||b(x) − b(y)|mdyχk(x)

≲ 2 j(β−n)
{
|b(x) − bC j |

m
∫

C j

| f j(y)|dy +
∫

C j

| f j(y)||b(y) − bC j |
mdy
}
χk(x)

≲ 2 j(β−n)∥ f j∥Lp1(·)(ωp1(·))

{
|b(x) − bC j |

m∥χ j∥(Lp1(·)(ωp1(·)))′

+ ∥|b(y) − bC j |
mχ j∥(Lp1(·)(ωp1(·)))′

}
χk(x). (3.9)

Thus, by taking the Lp2(·)(ωp2(·))−norm for (3.9), by virtue of Lemma 2.11, we have

∥Im
β,b( f j)(x)χk∥Lp2(·)(ωp2(·))

≲ 2 j(β−n)∥ f j∥Lp1(·)(ωp1(·))

{
∥|b(x) − bC j |

mχk∥Lp2(·)(ωp2(·))∥χ j∥(Lp1(·)(ωp1(·)))′

+ ∥|b(y) − bC j |
mχ j∥(Lp1(·)(ωp1(·)))′∥χk∥Lp2(·)(ωp2(·))

}
≲ 2 j(β−n)∥ f j∥Lp1(·)(ωp1(·))

{
( j − k)m∥b∥mBMO(Rn)∥χk∥Lp2(·)(ωp2(·))∥χ j∥(Lp1(·)(ωp1(·)))′

+ ∥b∥mBMO(Rn)∥χ j∥(Lp1(·)(ωp1(·)))′∥χk∥Lp2(·)(ωp2(·))

}
≲ 2 j(β−n)( j − k)m∥b∥mBMO(Rn)∥ f j∥Lp1(·)(ωp1(·))∥χk∥Lp2(·)(ωp2(·))∥χ j∥(Lp1(·)(ωp1(·)))′ . (3.10)

On the other hand, by (2.14) and (2.15), combining (2.17) and (3.5), we have

2 j(β−n)∥χk∥Lp2(·)(ωp2(·))∥χ j∥(Lp1(·)(ωp1(·)))′

= 2 jβ∥χk∥Lp2(·)(ωp2(·))2
− jn∥χ j∥(Lp1(·)(ωp1(·)))′

≲ 2 jβ∥χk∥Lp2(·)(ωp2(·))∥χ j∥
−1
Lp1(·)(ωp1(·))

= 2 jβ∥χ j∥
−1
Lp1(·)(ωp1(·))∥χ j∥Lp2(·)(ωp2(·))

∥χk∥Lp2(·)(ωp2(·))

∥χ j∥Lp2(·)(ωp2(·))

≲ 2 jβ2nδ1(k− j)∥χ j∥
−1
Lp1(·)(ωp1(·))∥χ j∥Lp2(·)(ωp2(·))

≲ 2 jβ2nδ1(k− j)2 j(n−β)∥χ j∥
−1
Lp1(·)(ωp1(·))∥χ j∥

−1
(Lp1(·)(ωp1(·)))′

= 2 jβ2nδ1(k− j)2− jβ
(
2− jn∥χ j∥Lp1(·)(ωp1(·))∥χ j∥(Lp1(·)(ωp1(·)))′

)−1

≲ 2nδ1(k− j). (3.11)

Hence, combining (3.10) and (3.11), we obtain

∥Im
β,b( f j)χk∥Lp2(·)(ωp2(·)) ≲ 2nδ1(k− j)( j − k)m∥b∥mBMO(Rn)∥ f j∥Lp1(·)(ωp1(·)). (3.12)

Thus, by virtue of (3.9) and (3.12), remark that λ − nδ1 < α, and we conclude that

J3 = sup
L∈Z

2−Lλq1
{ L∑

k=−∞

2kαq1
( ∞∑

j=k+2

∥Im
β,b( f j)χk∥Lp2(·)(ωp2(·))

)q1}
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≲ sup
L∈Z

2−Lλq1
{ L∑

k=−∞

2kαq1
( ∞∑

j=k+2

( j − k)m∥b∥mBMO(Rn)∥ f j∥Lp1(·)(ωp1(·))2
nδ1(k− j)

)q1}
≲ ∥b∥mq1

BMO(Rn)∥ f ∥
q1

MK̇α,λq1 ,p1(·)(ω
p1(·))

sup
L∈Z

2−Lλq1
{ L∑

k=−∞

2kλq1
( ∞∑

j=k+2

( j − k)m2( j−k)(λ−nδ1−α)
)q1}

≲ ∥b∥mq1
BMO(Rn)∥ f ∥

q1

MK̇α,λq1 ,p1(·)(ω
p1(·))

sup
L∈Z

2−Lλq1
( L∑

k=−∞

2kλq1
)

≲ ∥b∥mq1
BMO(Rn)∥ f ∥

q1

MK̇α,λq1 ,p1(·)(ω
p1(·))
.

Combining the estimates of J1,J2,J3, we complete the proof of Theorem 3.1.
Theorem 3.2 Suppose

that b ∈ BMO(Rn) and m ∈ N. Let 0 ≤ λ < ∞, 1 < r < ∞, p2(·) ∈ P(Rn) ∩ Clog(Rn),
ωp2(·) ∈ A1, δ1, δ2 ∈ (0, 1) be the constants appearing in (2.17) and (2.18) respectively. α and β are
such that

(i) −nδ1 < α < nδ2 − β

(ii) 0 < β < n(δ1 + δ2).
Define p1(·) by 1

p2(·) =
1

p1(·) −
β

n , then Im
β,b is bounded from MK̇α,r),θ

λ,p2(·)(ω
p2(·)) to MK̇α,r),θ

λ,p1(·)(ω
p1(·)).

Proof We prove the homogeneous case, as the nonhomogeneous case is similar. For all f ∈
MK̇α,r),θ

λ,p2(·)(ω
p2(·)) and ∀b ∈ BMO(Rn), if we denote f j := fχ j = fχC j for each j ∈ Z, then f =

∑∞
j=−∞ f j.

So we can write

f (x) =
∞∑

j=−∞

f (x)χ j(x) =
∞∑

j=−∞

f j(x).

Then we have

∥Im
β,b( f )∥MK̇α,r),θ

λ,p2(·)(ω
p2(·))

= sup
δ>0

sup
L∈Z

2−Lλ
(
δθ
∑
k∈Z

2kαr(1+δ)∥Im
β,b( f )χk∥

r(1+δ)
Lp2(·)(ωp2(·))

) 1
r(1+δ)

= sup
δ>0

sup
L∈Z

2−Lλ
(
δθ
∑
k∈Z

2kαr(1+δ)
∞∑

j=−∞

∥Im
β,b( f j)χk∥

r(1+δ)
Lp2(·)(ωp2(·))

) 1
r(1+δ)

≤ sup
δ>0

sup
L∈Z

2−Lλ
(
δθ
∑
k∈Z

2kαr(1+δ)
∑
j≤k−2

∥Im
β,b( f j)χk∥

r(1+δ)
Lp2(·)(ωp2(·))

) 1
r(1+δ)

+ sup
δ>0

sup
L∈Z

2−Lλ
(
δθ
∑
k∈Z

2kαr(1+δ)
k+1∑

j=k−1

∥Im
β,b( f j)χk∥

r(1+δ)
Lp2(·)(ωp2(·))

) 1
r(1+δ)

+ sup
δ>0

sup
L∈Z

2−Lλ
(
δθ
∑
k∈Z

2kαr(1+δ)
∑
j≥k+2

∥Im
β,b( f j)χk∥

r(1+δ)
Lp2(·)(ωp2(·))

) 1
r(1+δ)

=: (J1 +J2 +J3).

First, we estimate J1. Remark that α < nδ2 − β, thus we consider two cases: 1 < r(1 + δ) <
∞ and 0 < r(1 + δ) ≤ 1. For the case 1 < r(1 + δ) < ∞, by applying (3.7) and Hölder inequality, we

Communications in Analysis and Mechanics Volume 17, Issue 1, 290–316.



303

have

J1 = sup
δ>0

sup
L∈Z

2−Lλ
(
δθ

∞∑
k=−∞

2kαr(1+δ)
k−2∑

j=−∞

∥Im
β,b( f j)χk∥

r(1+δ)
Lp2(·)(ωp2(·))

) 1
r(1+δ)

≤ sup
δ>0

sup
L∈Z

2−Lλ
{
δθ

∞∑
k=−∞

2kαr(1+δ)
( k−2∑

j=−∞

∥Im
β,b( f j)χk∥Lp2(·)(ωp2(·))

)r(1+δ)} 1
r(1+δ)

≲ sup
δ>0

sup
L∈Z

2−Lλ
{
δθ

∞∑
k=−∞

2kαr(1+δ)
( k−2∑

j=−∞

∥b∥mBMO(Rn)∥ f j∥Lp1(·)(ωp1(·))

× (k − j)m2(β−nδ2)(k− j)
)r(1+δ)} 1

r(1+δ)

≤ ∥b∥mBMO(Rn)

× sup
δ>0

sup
L∈Z

2−Lλ
{
δθ

∞∑
k=−∞

( k−2∑
j=−∞

2α j∥ f j∥Lp1(·)(ωp1(·))(k − j)m2(β−nδ2+α)(k− j)
)r(1+δ)} 1

r(1+δ)

≤ ∥b∥mBMO(Rn)

× sup
δ>0

sup
L∈Z

2−Lλ
{
δθ

∞∑
k=−∞

( k−2∑
j=−∞

2α jr(1+δ)∥ f j∥
r(1+δ)
Lp1(·)(ωp1(·))

(k − j)mr(1+δ)2(β−nδ2+α)(k− j) r(1+δ)
2
)

×
( k−2∑

j=−∞

2(β−nδ2+α)(k− j) (r(1+δ))′
2
) r(1+δ)

(r(1+δ))′
} 1

r(1+δ)

≤ ∥b∥mBMO(Rn)

× sup
δ>0

sup
L∈Z

2−Lλ
{
δθ

∞∑
k=−∞

k−2∑
j=−∞

2α jr(1+δ)∥ f j∥
r(1+δ)
Lp1(·)(ωp1(·))

(k − j)mr(1+δ)2(β−nδ2+α)(k− j) r(1+δ)
2
} 1

r(1+δ)

≤ ∥b∥mBMO(Rn)

× sup
δ>0

sup
L∈Z

2−Lλ
{
δθ

∞∑
j=−∞

2α jr(1+δ)∥ f j∥
r(1+δ)
Lp1(·)(ωp1(·))

∑
k≥ j+2

(k − j)mr(1+δ)2(β−nδ2+α)(k− j) r(1+δ)
2
} 1

r(1+δ)

≤ ∥b∥mBMO(Rn) sup
δ>0

sup
L∈Z

2−Lλ
{
δθ

∞∑
j=−∞

2α jr(1+δ)∥ f j∥
r(1+δ)
Lp1(·)(ωp1(·))

} 1
r(1+δ)

≤ ∥b∥mBMO(Rn)∥ f ∥MK̇α,r),θ
λ,p1(·)(ω

p1(·)).

For 0 < r(1 + δ) ≤ 1, by virtue of (3.7), we have

J1 = sup
δ>0

sup
L∈Z

2−Lλ
(
δθ

∞∑
k=−∞

2kαr(1+δ)
k−2∑

j=−∞

∥Im
β,b( f j)χk∥

r(1+δ)
Lp2(·)(ωp2(·))

) 1
r(1+δ)

≤ sup
δ>0

sup
L∈Z

2−Lλ
{
δθ

∞∑
k=−∞

2kαr(1+δ)
( k−2∑

j=−∞

∥Im
β,b( f j)χk∥Lp2(·)(ωp2(·))

)r(1+δ)} 1
r(1+δ)

≲ sup
δ>0

sup
L∈Z

2−Lλ
{
δθ

∞∑
k=−∞

2kαr(1+δ)
( k−2∑

j=−∞

∥b∥mBMO(Rn)∥ f j∥Lp1(·)(ωp1(·))

Communications in Analysis and Mechanics Volume 17, Issue 1, 290–316.



304

× (k − j)m2(β−nδ2)(k− j)
)r(1+δ)} 1

r(1+δ)

≤ ∥b∥mBMO(Rn)

× sup
δ>0

sup
L∈Z

2−Lλ
{
δθ

∞∑
k=−∞

(
2α j

k−2∑
j=−∞

∥ f j∥Lp1(·)(ωp1(·))(k − j)m2(β−nδ2+α)(k− j)
)r(1+δ)} 1

r(1+δ)

≤ ∥b∥mBMO(Rn)

× sup
δ>0

sup
L∈Z

2−Lλ
{
δθ

∞∑
k=−∞

k−2∑
j=−∞

2α jr(1+δ)∥ f j∥
r(1+δ)
Lp1(·)(ωp1(·))

(k − j)mr(1+δ)2(β−nδ2+α)(k− j)r(1+δ)
} 1

r(1+δ)

≤ ∥b∥mBMO(Rn)

× sup
δ>0

sup
L∈Z

2−Lλ
{
δθ

∞∑
j=−∞

2α jr(1+δ)∥ f j∥
r(1+δ)
Lp1(·)(ωp1(·))

∑
k≥ j+2

(k − j)mr(1+δ)2(β−nδ2+α)(k− j)r(1+δ)
} 1

r(1+δ)

≤ ∥b∥mBMO(Rn)

× sup
δ>0

sup
L∈Z

2−Lλ
{
δθ

∞∑
j=−∞

2α jr(1+δ)∥ f j∥
r(1+δ)
Lp1(·)(ωp1(·))

} 1
r(1+δ)

≤ ∥b∥mBMO(Rn)∥ f ∥MK̇α,r),θ
λ,p1(·)(ω

p1(·)).

Next, we estimate J2. Using Lemma 2.9, we get

J2 = sup
δ>0

sup
L∈Z

2−Lλ
(
δθ
∑
k∈Z

2kαr(1+δ)
k+1∑

j=k−1

∥Im
β,b( f j)χk∥

r(1+δ)
Lp2(·)(ωp2(·))

) 1
r(1+δ)

≲ ∥b∥mBMO(Rn) sup
δ>0

sup
L∈Z

2−Lλ
(
δθ
∑
k∈Z

2kαr(1+δ)
k+1∑

j=k−1

∥( fχ j)∥
r(1+δ)
Lp1(·)(ωp1(·))

) 1
r(1+δ)

≤ ∥b∥mBMO(Rn) sup
δ>0

sup
L∈Z

2−Lλ
(
δθ
∑
k∈Z

2kαr(1+δ)∥( fχk)∥
r(1+δ)
Lp1(·)(ωp1(·))

) 1
r(1+δ)

≤ ∥b∥mBMO(Rn)∥ f ∥MK̇α,r),θ
λ,p1(·)(ω

p1(·)).

Finally, we estimate J3. By virtue of (3.12), we have

J3 = sup
δ>0

sup
L∈Z

2−Lλ
(
δθ
∑
k∈Z

2kαr(1+δ)
∑
j≥k+2

∥Im
β,b( f j)χk∥

r(1+δ)
Lp2(·)(ωp2(·))

) 1
r(1+δ)

≲ ∥b∥mBMO(Rn)

× sup
δ>0

sup
L∈Z

2−Lλ
(
δθ
∑
k∈Z

2kαr(1+δ)
∑
j≥k+2

2nδ1(k− j)r(1+δ)( j − k)mr(1+δ)∥ f j∥
r(1+δ)
Lp1(·)(ωp1(·))

) 1
r(1+δ)

≤ ∥b∥mBMO(Rn)

× sup
δ>0

sup
L∈Z

2−Lλ
{
δθ
∑
k∈Z

( ∑
j≥k+2

∥ f j∥Lp1(·)(ωp1(·))( j − k)m2α j2(α+nδ1)(k− j)
)r(1+δ)} 1

r(1+δ)
.
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Remark that α + nδ1 > 0, thus we consider two cases 1 < r(1 + δ) < ∞ and 0 < r(1 + δ) ≤ 1. For
the case 1 < r(1 + δ) < ∞, by applying Hölder inequality, we have

J3 ≤ ∥b∥mBMO(Rn)

× sup
δ>0

sup
L∈Z

2−Lλ
{
δθ
∑
k∈Z

( ∑
j≥k+2

∥ f j∥Lp1(·)(ωp1(·))( j − k)m2α j2(α+nδ1)(k− j)
)r(1+δ)} 1

r(1+δ)

≤ ∥b∥mBMO(Rn)

× sup
δ>0

sup
L∈Z

2−Lλ
{
δθ

∞∑
k=−∞

( ∑
j≥k+2

2α jr(1+δ)∥ f j∥
r(1+δ)
Lp1(·)(ωp1(·))

( j − k)mr(1+δ)2(nδ1+α)(k− j) r(1+δ)
2
)

×
( ∑

j≥k+2

2(nδ1+α)(k− j) (r(1+δ))′
2
) r(1+δ)

(r(1+δ))′
} 1

r(1+δ)

≤ ∥b∥mBMO(Rn)

× sup
δ>0

sup
L∈Z

2−Lλ
{
δθ

∞∑
k=−∞

∑
j≥k+2

2α jr(1+δ)∥ f j∥
r(1+δ)
Lp1(·)(ωp1(·))

( j − k)mr(1+δ)2(nδ1+α)(k− j) r(1+δ)
2
} 1

r(1+δ)

≤ ∥b∥mBMO(Rn)

× sup
δ>0

sup
L∈Z

2−Lλ
{
δθ

∞∑
j=−∞

2α jr(1+δ)∥ f j∥
r(1+δ)
Lp1(·)(ωp1(·))

∑
k≤ j−2

( j − k)mr(1+δ)2(nδ1+α)(k− j) r(1+δ)
2
} 1

r(1+δ)

≤ ∥b∥mBMO(Rn) sup
δ>0

sup
L∈Z

2−Lλ
{
δθ

∞∑
j=−∞

2α jr(1+δ)∥ f j∥
r(1+δ)
Lp1(·)(ωp1(·))

} 1
r(1+δ)

≤ ∥b∥mBMO(Rn)∥ f ∥MK̇α,r),θ
λ,p1(·)(ω

p1(·)).

For 0 < r(1 + δ) ≤ 1, we have

J3 ≤ ∥b∥mBMO(Rn)

× sup
δ>0

sup
L∈Z

2−Lλ
{
δθ
∑
k∈Z

( ∑
j≥k+2

∥ f j∥Lp1(·)(ωp1(·))( j − k)m2α j2(α+nδ1)(k− j)
)r(1+δ)} 1

r(1+δ)

≤ ∥b∥mBMO(Rn)

× sup
δ>0

sup
L∈Z

2−Lλ
{
δθ

∞∑
k=−∞

∑
j≥k+2

2α jr(1+δ)∥ f j∥
r(1+δ)
Lp1(·)(ωp1(·))

( j − k)mr(1+δ)2(nδ1+α)(k− j)r(1+δ)
} 1

r(1+δ)

≤ ∥b∥mBMO(Rn)

× sup
δ>0

sup
L∈Z

2−Lλ
{
δθ

∞∑
j=−∞

2α jr(1+δ)∥ f j∥
r(1+δ)
Lp1(·)(ωp1(·))

∑
k≤ j−2

( j − k)mr(1+δ)2(nδ1+α)(k− j)r(1+δ)
} 1

r(1+δ)

≤ ∥b∥mBMO(Rn) sup
δ>0

sup
L∈Z

2−Lλ
{
δθ

∞∑
j=−∞

2α jr(1+δ)∥ f j∥
r(1+δ)
Lp1(·)(ωp1(·))

} 1
r(1+δ)

≤ ∥b∥mBMO(Rn)∥ f ∥MK̇α,r),θ
λ,p1(·)(ω

p1(·)).

Combining the estimates of J1,J2,J3, we complete the proof of Theorem 3.2.
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Remark 3.3 When λ = 0 and m = 0, Theorem 3.1 holds on weighted variable-exponent Herz
spaces and generalizes the result of Izuki in [18] (see Theorem 4). When 0 < λ < n and m = 1,
Theorem 3.1 has been proved by Zhao in [26] (see Theorem 2.2). When m = 0, Theorem 3.2 holds
on grand weighted variable-exponent Herz-Morrey spaces, and generalizes the result of Sultan in [32]
(see Theorem 2).

4. Multilinear fractional Hardy-type operators

In this section, under some assumed conditions, we first establish the boundedness of the m−order
multilinear fractional Hardy operator Hβ,m on weighted variable exponent Herz-Morrey spaces
MK̇α,λq,p(·)(ω). Then, we establish the boundedness of the adjoint operator of the m−order multilinear
fractional Hardy operator H∗β,m on weighted variable-exponent Herz-Morrey spaces MK̇α,λq,p(·)(ω). As a
corollary of the above two results, we also obtain the corresponding result for multilinear Hardy
operatorHm and its adjoint operatorH∗m.

Theorem 4.1 Let pi(·) ∈ P(Rn) ∩ Clog(Rn)(i = 1, 2, · · · ,m,m ∈ Z+), p(·) is defined as follows:

m∑
i=1

1
pi(x)

−
1

p(x)
=
β

n
.

Let 0 < β < mn
max
1≤i≤m

(pi)+
, 0 < qi < ∞, λi > 0, 1

q =
∑m

i=1
1
qi
−
β

n , λ =
∑m

i=1 λi, α =
∑m

i=1 αi, ω ∈ Ap(·), ωi ∈ Api(·),

ω =
∏m

i=1 ωi, αi < λi + nδi2, where δi2 ∈ (0, 1) are the constants in (2.18) for exponents pi(·) and
weights ωpi(·)

i , then

∥Hβ,m(
−→
f )∥MK̇α,λq,p(·)(ωp(·)) ≤ C

m∏
i=1

∥ fi∥MK̇αi ,λi
qi ,pi(·)

(ωpi(·)
i ).

Proof We prove the homogeneous case, since the nonhomogeneous case is similar. Without loss
of generality, we only consider the case m = 2. Actually, a similar procedure works for all m ∈ Z+(m ≥
1). When m = 2, then we have

Hβ,2(
−→
f )(x) =

1
|x|2n−β

∫
|t1 |<|x|

∫
|t2 |<|x|

f1(t1) f2(t2)dt1dt2.

For arbitrary fi ∈ MK̇αi,λi
qi,pi(·)(ω

pi(·)
i )(i = 1, 2), let fki := fi · χki = fi · χCki

, then

fi(x) =
∞∑

ki=−∞

fi(x) · χki
(x) =

∞∑
ki=−∞

fki(x).

By virtue of the definition ofHβ,2 and generalized Hölder inequality (2.13), we have

|Hβ,2(
−→
f )(x) · χk(x)| ≤

1
|x|2n−β

∫
|t1 |<|x|

∫
|t2 |<|x|
| f1(t1) f2(t2)|dt1dt2 · χk(x)

≲ 2k(β−2n)
∫

Bk

∫
Bk

| f1(t1) f2(t2)|dt1dt2 · χk(x)
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≲ 2k(β−2n)
k∑

k1=−∞

k∑
k2=−∞

∫
Ck1

∫
Ck2

| f1(t1) f2(t2)|dt1dt2 · χk(x)

≲ 2k(β−2n)
k∑

k1=−∞

k∑
k2=−∞

( ∫
Ck1

| f1(t1)|dt1

)( ∫
Ck2

| f2(t2)|dt2

)
· χk(x)

≲ 2k(β−2n)
k∑

k1=−∞

k∑
k2=−∞

(
∥ fk1∥Lp1(·)(ωp1(·)

1 )∥ fk2∥Lp2(·)(ωp2(·)
2 )

· ∥χk1∥(Lp1(·)(ωp1(·)
1 ))′∥χk2∥(Lp2(·)(ωp2(·)

2 ))′

)
χk(x). (4.1)

Note that if u(·), p1(·), p2(·) ∈ P(Rn) such that 1
u(x) =

1
p1(x) +

1
p2(x) for x ∈ Rn, and ω ∈ Au(·) with ωi ∈

Api(·), ω =
∏2

i=1 ωi, by (2.19) of Lemma 2.10, we have

∥ f g∥Lu(·)(ωu(·)) = ∥ f gω∥Lu(·)(Rn) = ∥ fω1gω2∥Lp(·)(Rn)

≲ ∥ fω1∥Lp1(·)(Rn)∥gω2∥Lp2(·)(Rn) = ∥ f ∥Lp1(·)(ωp1(·)
1 )∥g∥Lp2(·)(ωp2(·)

2 ). (4.2)

By virtue of (2.16) of Lemma 2.6, we have

∥χk∥X

∥χBk∥X
≤
( |Ck|

|Bk|

)δ
= C =⇒ ∥χk∥X ≤ C∥χBk∥X. (4.3)

Let 1
u(x) =

1
p1(x) +

1
p2(x) , then by the condition of Theorem 4.1, it implies that βn =

1
u(x) −

1
p(x) . Note

that χBk ≤ C2−kβIβ(χBk)(x) (see [11] p.350), by virtue of (2.15), (4.2), (4.3), and Lemma 2.8, we have

∥χk∥Lp(·)(ωp(·)) ≤ ∥χBk∥Lp(·)(ωp(·))

≲ 2−kβ∥Iβ(χBk)∥Lp(·)(ωp(·))

≲ 2−kβ∥χBk∥Lu(·)(ωu(·))

≲ 2−kβ∥χBk∥Lp1(·)(ωp1(·)
1 )∥χBk∥Lp2(·)(ωp2(·)

2 )

≲ 2k(2n−β)∥χBk∥
−1
(Lp1(·)(ωp1(·)

1 ))′
∥χBk∥

−1
(Lp2(·)(ωp2(·)

2 ))′

≲ 2k(2n−β)∥χk∥
−1
(Lp1(·)(ωp1(·)

1 ))′
∥χk∥

−1
(Lp2(·)(ωp2(·)

2 ))′
(4.4)

Remark that k1 ≤ k, k2 ≤ k. By applying (2.18) and (4.4), we have

2k(β−2n)∥χk1∥(Lp1(·)(ωp1(·)
1 ))′∥χk2∥(Lp2(·)(ωp2(·)

2 ))′∥χk∥Lp(·)(ωp(·))

≲
∥χk1∥(Lp1(·)(ωp1(·)

1 ))′

∥χk∥(Lp1(·)(ωp1(·)
1 ))′

∥χk2∥(Lp2(·)(ωp2(·)
2 ))′

∥χk∥(Lp2(·)(ωp2(·)
2 ))′

≲ 2(k1−k)nδ122(k2−k)nδ22 . (4.5)

Thus, by taking the Lp(·)(ωp(·))−norm for (4.1), and by virtue of (4.5), we have

∥Hβ,2(
−→
f ) · χk∥Lp(·)(ωp(·)) ≲ 2k(β−2n)

k∑
k1=−∞

k∑
k2=−∞

(
∥ fk1∥Lp1(·)(ωp1(·)

1 )∥ fk2∥Lp2(·)(ωp2(·)
2 )
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· ∥χk1∥(Lp1(·)(ωp1(·)
1 ))′∥χk2∥(Lp2(·)(ωp2(·)

2 ))′

)
∥χk∥Lp(·)(ωp(·))

≲
( k∑

k1=−∞

2(k1−k)nδ12∥ fk1∥Lp1(·)(ωp1(·)
1 )

)( k∑
k2=−∞

2(k2−k)nδ22∥ fk2∥Lp2(·)(ωp2(·)
2 )

)
≲

2∏
i=1

( k∑
ki=−∞

2(ki−k)nδi2∥ fki∥Lpi(·)(ωpi(·)
i )

)
. (4.6)

Let 0 < γ ≤ 1, then by the Jensen inequality it follows that

( ∞∑
j=−∞

|a j|
)γ
≤

∞∑
j=−∞

|a j|
γ, (4.7)

Let 1
v =

1
q1
+ 1

q2
, then 1

q =
1
v −

β

n , therefore q > v. By applying (4.6), (4.7), and Hölder inequality in
sequential form, we have

∥Hβ,2(
−→
f )∥MK̇α,λq,p(·)(ωp(·)) = sup

L∈Z
2−Lλ
{ L∑

k=−∞

2kαq∥Hβ,2(
−→
f )χk∥

q
Lp(·)(ωp(·))

} 1
q

≲ sup
L∈Z

2−Lλ
{ L∑

k=−∞

2kαq
2∏

i=1

( k∑
ki=−∞

2(ki−k)nδi2∥ fki∥Lpi(·)(ωpi(·)
i )

)q} 1
q

≲ sup
L∈Z

2−Lλ
{ L∑

k=−∞

2∏
i=1

( k∑
ki=−∞

2kαi+(ki−k)nδi2∥ fki∥Lpi(·)(ωpi(·)
i )

)q} 1
q

≲ sup
L∈Z

2−Lλ
{ L∑

k=−∞

2∏
i=1

( k∑
ki=−∞

2kαi+(ki−k)nδi2∥ fki∥Lpi(·)(ωpi(·)
i )

)v} 1
v

≲
2∏

i=1

sup
L∈Z

2−Lλi
{ L∑

k=−∞

( k∑
ki=−∞

2kαi+(ki−k)nδi2∥ fki∥Lpi(·)(ωpi(·)
i )

)qi} 1
qi . (4.8)

on the other hand, note the following fact:

∥ fki∥Lpi(·)(ωpi(·)
i ) = 2−kiαi

(
2kiαiqi∥ fiχki∥

qi

Lpi(·)(ωpi(·)
i )

) 1
qi

≤ 2−kiαi
( ki∑

ji=−∞

2 jiαiqi∥ fiχ ji∥
qi

Lpi(·)(ωpi(·)
i )

) 1
qi

= 2ki(λi−αi)
{
2−kiλi
( ki∑

ji=−∞

2 jiαiqi∥ fiχ ji∥
qi

Lpi(·)(ωpi(·)
i )

) 1
qi
}

≲ 2ki(λi−αi)∥ fi∥MK̇αi ,λi
qi ,pi(·)

(ωpi(·)
i ). (4.9)

Remark that αi < λi + nδi2. By applying (4.7), (4.8), and (4.9), we have

∥Hβ,2(
−→
f )∥MK̇α,λq,p(·)(ωp(·))
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≲
2∏

i=1

sup
L∈Z

2−Lλi
{ L∑

k=−∞

( k∑
ki=−∞

2kαi+(ki−k)nδi2∥ fki∥Lpi(·)(ωpi(·)
i )

)qi} 1
qi

≲
2∏

i=1

∥ fi∥MK̇αi ,λi
qi ,pi(·)

(ωpi(·)
i ) sup

L∈Z
2−Lλi
{ L∑

k=−∞

2kλiqi
( k∑

ki=−∞

2(ki−k)(λi−αi+nδi2)
)qi} 1

qi

≲
2∏

i=1

∥ fi∥MK̇αi ,λi
qi ,pi(·)

(ωpi(·)
i ) sup

L∈Z
2−Lλi
( L∑

k=−∞

2kλiqi
) 1

qi

≲
2∏

i=1

∥ fi∥MK̇αi ,λi
qi ,pi(·)

(ωpi(·)
i ).

This finishes the proof of Theorem 4.1.
Theorem 4.2 Let pi(·) ∈ P(Rn) ∩ Clog(Rn)(i = 1, 2, · · · ,m,m ∈ Z+), p(·) is defined as follows:

m∑
i=1

1
pi(x)

−
1

p(x)
=
β

n
.

Let 0 < β < mn
max
1≤i≤m

(pi)+
, 0 < qi < ∞, λi > 0, 1

q =
∑m

i=1
1
qi
−
β

n , λ =
∑m

i=1 λi, α =
∑m

i=1 αi, ω ∈ Ap(·), ωi ∈ Api(·),

ω =
∏m

i=1 ωi, αi > λi +
β

m − nδi1, where δi1 ∈ (0, 1) are the constants in (2.17) for exponents pi(·) and
weights ωpi(·)

i , then

∥H∗β,m(
−→
f )∥MK̇α,λq,p(·)(ωp(·)) ≤ C

m∏
i=1

∥ fi∥MK̇αi ,λi
qi ,pi(·)

(ωpi(·)
i ).

Proof We prove the homogeneous case, since the nonhomogeneous case is similar. Without loss of
generality, we only consider the case m = 2. Actually, a similar procedure works for all m ∈ Z+(m ≥ 1).
When m = 2, then we have

H∗β,2(
−→
f )(x) =

∫
|t1 |≥|x|

∫
|t2 |≥|x|

f1(t1) f2(t2)
|(t1, t2)|2n−βdt1dt2.

For arbitrary fi ∈ MK̇αi,λi
qi,pi(·)(ω

pi(·)
i )(i = 1, 2), let fki := fi · χki = fi · χCki

, then

fi(x) =
∞∑

ki=−∞

fi(x) · χki
(x) =

∞∑
ki=−∞

fki(x).

Note that |t1|
n− β2 |t2|

n− β2 < |(t1, t2)|2n−β (see [37] p.11). By virtue of the definition of H∗β,2 and
generalized Hölder inequality, we have

|H∗β,2(
−→
f )(x) · χk(x)| ≤

∫
|t1 |≥|x|

∫
|t2 |≥|x|

| f1(t1) f2(t2)|
|(t1, t2)|2n−β dt1dt2 · χk(x)

≤

∞∑
k1=k

∞∑
k2=k

∫
Ck1

∫
Ck2

| f1(t1) f2(t2)|
|(t1, t2)|2n−β dt1dt2 · χk(x)

≲
∞∑

k1=k

∞∑
k2=k

2(k1+k2)( β2−n)
( ∫

Ck1

| f1(t1)|dt1

)( ∫
Ck2

| f2(t2)|dt2

)
· χk(x)
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≲
∞∑

k1=k

∞∑
k2=k

2(k1+k2)( β2−n)
(
∥ fk1∥Lp1(·)(ωp1(·)

1 )∥ fk2∥Lp2(·)(ωp2(·)
2 )

· ∥χk1∥(Lp1(·)(ωp1(·)
1 ))′∥χk2∥(Lp2(·)(ωp2(·)

2 ))′

)
χk(x). (4.10)

Remark that k1 ≥ k, k2 ≥ k. By applying (2.14), (2.17), and (4.4), we have

2(k1+k2)( β2−n)∥χk1∥(Lp1(·)(ωp1(·)
1 ))′∥χk2∥(Lp2(·)(ωp2(·)

2 ))′∥χk∥Lp(·)(ωp(·))

≲ 2(k1+k2)( β2−n)∥χk1∥(Lp1(·)(ωp1(·)
1 ))′∥χk2∥(Lp2(·)(ωp2(·)

2 ))′2
k(2n−β)∥χk∥

−1
(Lp1(·)(ωp1(·)

1 ))′
∥χk∥

−1
(Lp2(·)(ωp2(·)

2 ))′

≲ 2(k1+k2)( β2−n)∥χk1∥(Lp1(·)(ωp1(·)
1 ))′∥χk2∥(Lp2(·)(ωp2(·)

2 ))′2
−kβ∥χk∥Lp1(·)(ωp1(·)

1 )∥χk∥Lp2(·)(ωp2(·)
2 )

≲ 2(k1+k2)( β2−n)2nk1∥χk1∥
−1
Lp1(·)(ωp1(·)

1 )
2nk2∥χk2∥

−1
Lp2(·)(ωp2(·)

2 )
2−kβ∥χk∥Lp1(·)(ωp1(·)

1 )∥χk∥Lp2(·)(ωp2(·)
2 )

= 2(k1+k2−2k) β2 ∥χk1∥
−1
Lp1(·)(ωp1(·)

1 )
∥χk2∥

−1
Lp2(·)(ωp2(·)

2 )
∥χk∥Lp1(·)(ωp1(·)

1 )∥χk∥Lp2(·)(ωp2(·)
2 )

= 2(k1+k2−2k) β2
∥χk∥Lp1(·)(ωp1(·)

1 )

∥χk1∥Lp1(·)(ωp1(·)
1 )

∥χk∥Lp2(·)(ωp2(·)
2 )

∥χk2∥Lp2(·)(ωp2(·)
2 )

≲ 2(k1+k2−2k) β2 2(k−k1)nδ112(k−k2)nδ21

= 2(k1−k)( β2−nδ11)2(k1−k)( β2−nδ21). (4.11)

Thus, by taking the Lp(·)(ωp(·))−norm for (4.10), and by virtue of (4.11), we have

∥H∗β,2(
−→
f ) · χk∥Lp(·)(ωp(·)) ≲

∞∑
k1=k

∞∑
k2=k

2(k1+k2)( β2−n)
(
∥ fk1∥Lp1(·)(ωp1(·)

1 )∥ fk2∥Lp2(·)(ωp2(·)
2 )

· ∥χk1∥(Lp1(·)(ωp1(·)
1 ))′∥χk2∥(Lp2(·)(ωp2(·)

2 ))′

)
∥χk∥Lp(·)(ωp(·))

≲
( ∞∑

k1=k

2(k1−k)( β2−nδ11)∥ fk1∥Lp1(·)(ωp1(·)
1 )

)( ∞∑
k2=k

2(k2−k)( β2−nδ21)∥ fk2∥Lp2(·)(ωp2(·)
2 )

)
≲

2∏
i=1

( ∞∑
ki=k

2(ki−k)( β2−nδi1)∥ fki∥Lpi(·)(ωpi(·)
i )

)
. (4.12)

Let 1
v =

1
q1
+ 1

q2
, then 1

q =
1
v −

β

n ; therefore, q > v. By applying (4.7), (4.12), and Hölder inequality
in sequential form, we have

∥H∗β,2(
−→
f )∥MK̇α,λq,p(·)(ωp(·)) = sup

L∈Z
2−Lλ
{ L∑

k=−∞

2kαq∥H∗β,2(
−→
f )χk∥

q
Lp(·)(ωp(·))

} 1
q

≲ sup
L∈Z

2−Lλ
{ L∑

k=−∞

2kαq
2∏

i=1

( ∞∑
ki=k

2(ki−k)( β2−nδi1)∥ fki∥Lpi(·)(ωpi(·)
i )

)q} 1
q

≲ sup
L∈Z

2−Lλ
{ L∑

k=−∞

2∏
i=1

( ∞∑
ki=k

2kαi+(ki−k)( β2−nδi1)∥ fki∥Lpi(·)(ωpi(·)
i )

)q} 1
q
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≲ sup
L∈Z

2−Lλ
{ L∑

k=−∞

2∏
i=1

( ∞∑
ki=k

2kαi+(ki−k)( β2−nδi1)∥ fki∥Lpi(·)(ωpi(·)
i )

)v} 1
v

≲
2∏

i=1

sup
L∈Z

2−Lλi
{ L∑

k=−∞

( ∞∑
ki=k

2kαi+(ki−k)( β2−nδi1)∥ fki∥Lpi(·)(ωpi(·)
i )

)qi} 1
qi . (4.13)

Remark that αi > λi +
β

2 − nδi1. By applying (4.7), (4.9), and (4.13), we have

∥H∗β,2(
−→
f )∥MK̇α,λq,p(·)(ωp(·))

≲
2∏

i=1

sup
L∈Z

2−Lλi
{ L∑

k=−∞

( ∞∑
ki=k

2kαi+(ki−k)( β2−nδi1)∥ fki∥Lpi(·)(ωpi(·)
i )

)qi} 1
qi

≲
2∏

i=1

∥ fi∥MK̇αi ,λi
qi ,pi(·)

(ωpi(·)
i ) sup

L∈Z
2−Lλi
{ L∑

k=−∞

2kλiqi
( ∞∑

ki=k

2(ki−k)(λi+
β
2−αi−nδi1)

)qi} 1
qi

≲
2∏

i=1

∥ fi∥MK̇αi ,λi
qi ,pi(·)

(ωpi(·)
i ) sup

L∈Z
2−Lλi
( L∑

k=−∞

2kλiqi
) 1

qi

≲
2∏

i=1

∥ fi∥MK̇αi ,λi
qi ,pi(·)

(ωpi(·)
i ).

This finishes the proof of Theorem 4.2.
Theorem 4.3 Let pi(·) ∈ P(Rn) ∩ Clog(Rn)(i = 1, 2, · · · ,m,m ∈ Z+), p(·) is defined as follows:

m∑
i=1

1
pi(x)

=
1

p(x)
.

Let 0 < qi < ∞, λi > 0, 1
q =
∑m

i=1
1
qi

, λ =
∑m

i=1 λi, ω ∈ Ap(·), ωi ∈ Api(·), ω =
∏m

i=1 ωi, δi1, δi2 ∈ (0, 1) are
the constants in Lemma 2.7 for exponents pi(·) and weights ωpi(·)

i , then
(i) When αi < λi + nδi2, we have

∥Hm(
−→
f )∥MK̇α,λq,p(·)(ωp(·)) ≤ C

m∏
i=1

∥ fi∥MK̇αi ,λi
qi ,pi(·)

(ωpi(·)
i ).

(ii) When αi > λi − nδi1, we have

∥H∗m(
−→
f )∥MK̇α,λq,p(·)(ωp(·)) ≤ C

m∏
i=1

∥ fi∥MK̇αi ,λi
qi ,pi(·)

(ωpi(·)
i ).

Proof (i) We prove the homogeneous case, since the nonhomogeneous case is similar. Since the
proof method is similar to the Theorem 4.1, we only give the proof idea here and omit the detailed
proof. Without loss of generality, we only consider the case m = 2. Actually, a similar procedure
works for all m ∈ Z+(m ≥ 1). When m = 2, similar to the estimation of (4.1), by virtue of the definition
ofH2 and generalized Hölder inequality, we have

|H2(
−→
f )(x) · χk(x)| ≲ 2−2kn

k∑
k1=−∞

k∑
k2=−∞

(
∥ fk1∥Lp1(·)(ωp1(·)

1 )∥ fk2∥Lp2(·)(ωp2(·)
2 )
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· ∥χk1∥(Lp1(·)(ωp1(·)
1 ))′∥χk2∥(Lp2(·)(ωp2(·)

2 ))′

)
χk(x). (4.14)

By taking the Lp(·)(ωp(·))−norm for (4.14) and applying (2.18) and (4.4), we have

∥H2(
−→
f ) · χk∥Lp(·)(ωp(·)) ≲ 2−2kn

k∑
k1=−∞

k∑
k2=−∞

{
∥ fk1∥Lp1(·)(ωp1(·)

1 )∥ fk2∥Lp2(·)(ωp2(·)
2 )

· ∥χk1∥(Lp1(·)(ωp1(·)
1 ))′∥χk2∥(Lp2(·)(ωp2(·)

2 ))′

}
∥χk∥Lp(·)(ωp(·))

≲ 2−2kn
k∑

k1=−∞

k∑
k2=−∞

{
∥ fk1∥Lp1(·)(ωp1(·)

1 )∥ fk2∥Lp2(·)(ωp2(·)
2 )

· ∥χk1∥(Lp1(·)(ωp1(·)
1 ))′∥χk2∥(Lp2(·)(ωp2(·)

2 ))′

}
2k(2n−β)∥χk∥

−1
(Lp1(·)(ωp1(·)

1 ))′
∥χk∥

−1
(Lp2(·)(ωp2(·)

2 ))′

≲
2∏

i=1

{ k∑
ki=−∞

∥ fki∥Lpi(·)(ωpi(·)
i )∥χki∥(Lpi(·)(ωpi(·)

i ))′∥χk∥
−1
(Lpi(·)(ωpi(·)

i ))′

}
=

2∏
i=1

{ k∑
ki=−∞

∥ fki∥Lpi(·)(ωpi(·)
i )

∥χki∥(Lpi(·)(ωpi(·)
i ))′

∥χk∥(Lpi(·)(ωpi(·)))′

}
≲

2∏
i=1

{ k∑
ki=−∞

2(ki−k)nδi2∥ fki∥Lpi(·)(ωpi(·)
i )

}
. (4.15)

Next, the required results are obtained in a way similar to the proof of Theorem 4.1.
(ii) We prove the homogeneous case, since the nonhomogeneous case is similar. Since the proof

method is similar to the Theorem 4.2, we only give the proof idea here and omit the detailed proof.
Without loss of generality, we only consider the case m = 2. Actually, a similar procedure works
for all m ∈ Z+(m ≥ 1). When m = 2, similar to the estimation of (4.10), by virtue of the definition
ofH∗2 and generalized Hölder inequality, we have

|H∗2 (
−→
f )(x) · χk(x)| ≲

∞∑
k1=k

∞∑
k2=k

2(−n)(k1+k2)
(
∥ fk1∥Lp1(·)(ωp1(·)

1 )∥ fk2∥Lp2(·)(ωp2(·)
2 )

· ∥χk1∥(Lp1(·)(ωp1(·)
1 ))′∥χk2∥(Lp2(·)(ωp2(·)

2 ))′

)
χk(x). (4.16)

By taking the Lp(·)(ωp(·))−norm for (4.16), applying (2.14), (2.15), (2.17), and (4.4), we have

∥H∗2 (
−→
f ) · χk∥Lp(·)(ωp(·)) ≲ 2(−n)(k1+k2)

∞∑
k1=k

∞∑
k2=k

{
∥ fk1∥Lp1(·)(ωp1(·)

1 )∥ fk2∥Lp2(·)(ωp2(·)
2 )

· ∥χk1∥(Lp1(·)(ωp1(·)
1 ))′∥χk2∥(Lp2(·)(ωp2(·)

2 ))′

}
2k(2n−β)∥χk∥

−1
(Lp1(·)(ωp1(·)

1 ))′
∥χk∥

−1
(Lp2(·)(ωp2(·)

2 ))′

≲
∞∑

k1=k

∞∑
k2=k

{
∥ fk1∥Lp1(·)(ωp1(·)

1 )∥ fk2∥Lp2(·)(ωp2(·)
2 )

· 2−nk1∥χk1∥(Lp1(·)(ωp1(·)
1 ))′2

−nk2∥χk2∥(Lp2(·)(ωp2(·)
2 ))′

}
∥χk∥Lp1(·)(ωp1(·)

1 )∥χk∥Lp2(·)(ωp2(·)
2 )
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≲
2∏

i=1

{ ∞∑
ki=k

∥ fki∥Lpi(·)(ωpi(·)
i )∥χki∥

−1
Lpi(·)(ωpi(·)

i )
∥χk∥Lpi(·)(ωpi(·)

i )

}
=

2∏
i=1

{ ∞∑
ki=k

∥ fki∥Lpi(·)(ωpi(·)
i )

∥χk∥Lpi(·)(ωpi(·)
i )

∥χki∥Lpi(·)(ωpi(·))

}
≲

2∏
i=1

{ ∞∑
ki=k

2(k−ki)nδi1∥ fki∥Lpi(·)(ωpi(·)
i )

}
. (4.17)

Similar to the estimation of (4.13). By applying (4.7), (4.17), and Hölder inequality in sequential
form, we have

∥H∗2 (
−→
f )∥MK̇α,λq,p(·)(ωp(·)) ≲

2∏
i=1

sup
L∈Z

2−Lλi
{ L∑

k=−∞

( ∞∑
ki=k

2kαi+(k−ki)nδi1∥ fki∥Lpi(·)(ωpi(·)
i )

)qi} 1
qi . (4.18)

Remark that αi > λi − nδi1. By applying (4.7), (4.9), and (4.18), we have

∥H∗2 (
−→
f )∥MK̇α,λq,p(·)(ωp(·))

≲
2∏

i=1

sup
L∈Z

2−Lλi
{ L∑

k=−∞

( ∞∑
ki=k

2kαi+(k−ki)nδi1∥ fki∥Lpi(·)(ωpi(·)
i )

)qi} 1
qi

≲
2∏

i=1

∥ fi∥MK̇αi ,λi
qi ,pi(·)

(ωpi(·)
i ) sup

L∈Z
2−Lλi
{ L∑

k=−∞

2kλiqi
( ∞∑

ki=k

2(k−ki)(αi+nδi1−λi)
)qi} 1

qi

≲
2∏

i=1

∥ fi∥MK̇αi ,λi
qi ,pi(·)

(ωpi(·)
i ) sup

L∈Z
2−Lλi
( L∑

k=−∞

2kλiqi
) 1

qi

≲
2∏

i=1

∥ fi∥MK̇αi ,λi
qi ,pi(·)

(ωpi(·)
i ).

This finishes the proof idea of Theorem 4.3.
Remark 4.4 Because of MK̇α,0q,p(·)(ω) = K̇α,qp(·)(ω), let λ = 0 from Theorem 4.1 and Theorem 4.2.

Then we can obtain the boundedness of the m−order multilinear fractional Hardy operatorHβ,m and its
adjoint operatorH∗β,m from the weighted variable-exponent Herz product space

Kα1,q1
p1(·) (ωp1(·)

1 ) × Kα2,q2
p2(·) (ωp2(·)

2 ) × · · · × Kαm,qm
pm(·) (ωpm(·)

m )

to the homogeneous weighted variable-exponent Herz space Kα,qp(·)(ω
p(·)). Obviously, from Theorem 4.3,

the m−order multilinear Hardy operatorH and its adjoint operatorH∗ have similar results.

5. Conclusions

This paper first considered the boundedness of higher-order commutators Im
β,b generated by the

fractional integral operator with BMO functions on weighted variable-exponent Herz-Morrey
spaces MK̇α,λq,p(·)(ω) and grand weighted variable-exponent Herz-Morrey spaces MK̇α,r),θ

λ,p(·)(ω), and
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generalized Theorem 4 of Izuki [18] as well as Theorem 2 of Sultan [32]. Then, we considered the
boundedness of the m−order multilinear fractional Hardy operator Hβ,m and its adjoint operator H∗β,m
on weighted variable-exponent Herz-Morrey spaces MK̇α,λq,p(·)(ω), and generalized some relevant
results of Wu [12].
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