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Abstract: This paper focuses on a class of fourth-order parabolic systems involving logarithmic and
Rellich nonlinearities arising from modeling epitaxial thin film growth: ut + ∆2u = |v|p|u|p−2u ln |uv| − µ u

|x|4
,

vt + ∆2v = |u|p|v|p−2v ln |uv| − γ v
|x|4
.

By using some new techniques to deal with the Rellich nonlinearities µ u
|x|4

and γ v
|x|4

, as well as the
coupled logarithmic nonlinearities |v|p|u|p−2u ln |uv| and |u|p|v|p−2v ln |uv|, we prove the global existence
and finite time blow-up of weak solutions. Furthermore, we not only obtain a new algebraic decay
estimate and study the behavior of global weak solutions, but we also derive a new upper bound estimate
for the blow-up time in case of the occurrence of blow-up.
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1. Introduction
In this paper, we consider the following initial-boundary value problem for a class of coupled

fourth-order parabolic systems arising from modeling epitaxial thin film growth
ut + ∆2u = |v|p|u|p−2u ln |uv| − µ u

|x|4 , x ∈ Ω, t > 0,
vt + ∆2v = |u|p|v|p−2v ln |uv| − γ v

|x|4 , x ∈ Ω, t > 0,
u = ∂u

∂ν
= 0, v = ∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0, v(x, 0) = v0, x ∈ Ω,

(1.1)
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where Ω ⊂ RN (N ≥ 5) is a bounded smooth domain, ν denotes the unit outward normal, |v|p|u|p−2u ln |uv|
and |u|p|v|p−2v ln |uv| are the coupled logarithmic nonlinearities, µ u

|x|4
and γ v

|x|4
are the Rellich nonlinear-

ities, the constants p > 1, 0 ≤ µ < N2(N−4)2

16 , and 0 ≤ γ < N2(N−4)2

16 , where N2(N−4)2

16 is the best constant
of Rellich inequality (see Rellich [1], Rellich and Berkowitz [2], Davies and Hinz [3], Caldiroli and
Musina [4]).

In recent years, the epitaxial growth of nanoscale thin film has received increasing attention in
materials science. The growth of crystal thin films from molecular or atomic beams is commonly
referred to as molecular beam epitaxy, which is a technology used to manufacture computer chips
and other semiconductor devices. To qualitatively and quantitatively understand the growth process
of thin films in order to formulate better control laws for the film growth process, one can optimize
the flatness, electrical conductivity, and other characteristics of the film. This is highly practical and
meaningful for the manufacture of computer chips and other semiconductor devices. Consequently,
mathematical models arising from epitaxial growth of nanoscale thin film have attracted a lot of attention,
such as the evolution of epitaxial growth of nanoscale thin film (Zangwill [5]), a phenomenological
continuum model of film growth based on a series expansion of the deposition flux in powers of the
profile gradient, consideration of the energetics of the film-substrate interface, and the enforcement
of Onsager’s reciprocity relations (Ortiz, Repetto, and Si [6]), a geometric model for coarsening
during spiral-mode growth of thin film (Schulze and Kohn [7]), and a minimal deposition equation for
amorphous thin film growth (Raible, Linz, and Hanggi [8], see also [9, 10]). These can be described by
a kind of fourth-order parabolic equations in the following form:

ut + ∆2u − div ( f (∇u)) = g (x, t, u) , (1.2)

where u represents the height from the surface of the thin film, ∆2u denotes the capillarity-driven
surface diffusion, div ( f (∇u)) denotes the upward hopping of atoms effects, and g (x, t) denotes the
source term. Stein and Winkler [11] considered a fourth-order nonlinear parabolic equation (1.2) in the
one-dimensional case

ut + uxxxx + uxx = −(|ux|
α)xx, α > 1,

which arises in the modeling of epitaxial growth of thin film of certain metallic glasses. Solutions from
two different regularity classes are proved based on the value range of α: (i) The unique mild solutions
exist locally in time for any α > 1 and initial data u0 ∈ W1,q (Ω) (q > α), and they exist globally if α ≤ 5

3
without nonlinear source term, i.e., g (x, t, u) = 0; (ii) The global weak solutions are constructed by a
semidiscrete approximation scheme for α ≤ 10

3 , and by transforms of such solutions, the existence of
a bounded absorbing set in L1 (Ω) for α ≤

[
2, 10

3

)
. Furthermore, some numerical examples are given

in order to illustrate these results about absorbing sets. For the equation ut = −uxxxx +
(
ux

2
)

xx
, the

uniqueness and smoothness of global solutions were verified rigorously based on numerical data and a
posteriori analysis in [12]. Additionally, the conservation of energy for weak solutions of this equation
was studied in [13].

Blomker and Gugg [14] (see also [15]) addressed the existence of solutions and statistical quantities
for a class of stochastic PDEs arising in amorphous thin film growth,

ut + A1∆u + ∆2u + ∆|∇u|2 = η, x ∈ Ω, t > 0.
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Kohn and Yan [16] obtained an upper bound on the coarsening rate for an epitaxial growth model

ut + ∆2u + div
(
2
(
1 − |∇u|2

)
∇u

)
= 0, x ∈ Ω, t > 0,

where Ω ⊂ R2 is a square domain. King, Stein, and Winkler [17] studied the continuum model

ut + ∆2u + div
(
|∇u|p−2

∇u − ∇u
)

= g, x ∈ Ω, t > 0,

and they demonstrated the existence, uniqueness, and regularity of solutions in an appropriate function
space under certain assumptions on g. Furthermore, they characterized the existence of nontrivial
equilibria in terms of the size of the underlying domain. A fourth-order parabolic equation modeling the
evolution of a thin surface when exposed to molecular beam epitaxy is given by

ut = −∆2u − µ∆u − λ∆|∇u|2 + f (x) , x ∈ Ω, t > 0,

and was studied by Winkler [18]. He obtained global solutions in higher dimensions by utilizing a
Rothe-type approximation scheme under certain appropriate structural conditions.

Liu [19] (see also [20]) studied a fourth-order parabolic equation

ut + div
(
m (u) k∇∆u − |∇u|p−2

∇u
)

= 0, k > 0, p > 2

with a nonlinear principal part modeling epitaxial thin film growth in one-dimensional space and
two-dimensional space, respectively. He proved the global existence of classical solutions based on
Schauder-type estimates and Campanato spaces, provided that m (u) satisfied appropriate structural
conditions. Li and Melcher [21] studied the well-posedness and stability of a system

ut + ∆2u = div ( f (∇u)) ,

under the condition that f (∇u) satisfies

| f ′ (ξ1) − f ′ (ξ2)| ≤ C
(
|ξ1|

α−1 + |ξ2|
α−1

)
|ξ1 − ξ2| ,∀ξ1, ξ2 ∈ R

N , α > 1.

Zhao, Guo, and Wang [22] dealt with the global existence and blow-up of weak solutions when
f (∇u) = |∇u|p−2

∇u. Additionally, the existence and blow-up of weak solutions under the case 1 < p < 2
can be found in [23].

Agelas [24] considered the following general equation of surface growth models arising in the
context of epitaxial thin film in the presence of the coarsening process, density variations, and the
Ehrlich-Schwoebel effects:

ut + A1∆u + A2∆
2u − A3div

(
|∇u|2∇u

)
+ A4∆|∇u|2 = A5|∇u|2, x ∈ Ω, t > 0;

showed the existence and uniqueness of global strong solutions for any initial data u0 ∈ H s
(
Rd

)
, where

d ∈ {1, 2} , s ≥ 3.
Xu, Chen, Liu, and Ding [25] studied a class of fourth-order semilinear parabolic equations

ut − q∆u + ∆2u = g (u) , x ∈ Ω, t > 0,
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which includes the extended Fisher-Kolmogorov equation that arises in the study of bistable systems
(Dee and Van Saarloos [26]). They obtained a global attractor in Hk (Ω) by using the iteration technique
for regularity estimates and derived global existence and nonexistence of solutions with initial data
in the potential well when g (u) satisfied appropriate structural conditions. Moreover, Liu and Li [27]
added a p-Laplace diffusion term −div

(
|∇u|p−2

∇u
)

the side of the above equation and extended these
results from [25].

Zhou [28] considered a thin film equation with a p-Laplace term and nonlocal source term

ut + ∆2u − div
(
|∇u|p−2

∇u
)

= |u|q−2u −
1
|Ω|

∫
Ω

|u|q−2udx, x ∈ Ω, t > 0,

and the global asymptotic behavior and some new blow-up conditions of solutions were obtained by
exploiting the boundary condition and the variational structure of the equation. These results generalized
the former results in [29].

In recent years, logarithmic nonlinearities have been widely used in partial differential equations
describing physical phenomena [30, 31] and biological phenomena [32–34] due to their particular
structures. In mathematics, the logarithmic nonlinearity has more profound effects on the properties
of solutions than polynomial nonlinearity. For the semilinear heat equation ut − ∆u = g (u), the results
of [35] and [36, 37] indicated, respectively, that the polynomial nonlinearity g (u) = |u|p−1u caused
solutions to blow up in finite time, whereas the logarithmic nonlinearity g (u) = u ln |u| caused solutions
to blow up in infinite time at high energy levels. It is difficult to study the fourth-order parabolic equation
with logarithmic nonlinearity |u|p−1u ln |u|; because the logarithmic nonlinearity |u|p−1u ln |u| satisfies
neither the monotonicity condition nor the Ambrosetti-Rabinowitz condition, which does not ensure
the boundedness of the Palais-Smale sequence of the Euler-Lagrange functional associated with the
equation. Hence, it brings some difficulties to the application of the potential well method. Recently,
many scholars [38–44] have shown that these difficulties can be overcome by a modified logarithmic
Sobolev inequality that deals with the logarithmic nonlinearity |u|p−1u ln |u|, and have obtained the
existence, asymptotic behavior, and finite time blow-up of weak solutions.

Han, Gao, and Shi [38] studied an initial-boundary value problem for a thin film equation with
logarithmic nonlinearity, 

ut + ∆2u = u ln |u| , x ∈ Ω, t > 0,
u = ∂u

∂ν
= 0, x ∈ ∂Ω, t > 0,

u (x, 0) = u0, x ∈ Ω.

(1.3)

Since the presence of the logarithmic nonlinear term u ln |u| brings some difficulties to the application of
the potential well method, in order to deal with this logarithmic nonlinear term in problem (1.3), they
established a modified logarithmic Sobolev inequality. Then, they obtained the existence and decay
estimates of global solutions by using the Galerkin method in conjunction with the modified logarithmic
Sobolev inequality, the Gronwall inequality, and the potential well method. Furthermore, the blow-up
of solutions at infinite time under some suitable conditions was also derived.

Liao and Li [40] studied the initial-boundary value problem to a fourth-order parabolic equation with
logarithmic nonlinearity

ut + ∆2u − div
(
|∇u|p−2

∇u
)

= |u|p−2u ln |u| , x ∈ Ω, t > 0,
u = ∂u

∂ν
= 0, x ∈ ∂Ω, t > 0,

u (x, 0) = u0, x ∈ Ω,
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and they gave some sufficient conditions for the global existence and blow-up of weak solutions for the
supercritical initial energy by using the modified potential well method and the logarithmic Sobolev
inequality. These results extend and improve upon many of the findings presented in Zhou [41] for a
fourth-order nonlinear parabolic equation with logarithmic nonlinearity

ut + ∆2u + c∆u = u ln |u| , x ∈ Ω, t > 0,
u = ∂u

∂ν
= 0, x ∈ ∂Ω, t > 0,

u (x, 0) = u0 ∈ H2
0 (Ω) , x ∈ Ω.

Liu, Ma, and Tang [42] considered a fourth-order equation modeling epitaxial thin film growth with
logarithmic nonlinearity

ut + ∆2u = −div
(
|∇u|q−2

∇u ln |∇u|
)
, x ∈ Ω, t > 0,

u (x, t) = ∆u (x, t) = 0, x ∈ ∂Ω, t > 0,
u (x, 0) = u0, x ∈ Ω,

and they obtained a blow-up result. Furthermore, the lower bound of the blow-up time and the blow-up
rate were derived.

Xu, Lian, and Niu [45] considered a coupled parabolic systems
ut − ∆u =

(
|u|2p + |v|p+1

|u|p−1
)

u, x ∈ Ω, t > 0,
vt − ∆v =

(
|v|2p + |u|p+1

|v|p−1
)

v, x ∈ Ω, t > 0,
u (x, t) = v (x, t) = 0, x ∈ ∂Ω, t > 0,
u (x, 0) = u0 (x) , v (x, 0) = v0 (x) , x ∈ Ω.

They studied the global existence, finite-time blow-up, and long-time decay of the solutions through
considerations of low initial energy scenarios, critical initial energy scenarios, and high initial energy
scenarios. Some sufficient initial conditions for finite-time blow-up and global existence were obtained.

Motivated and inspired by the above research work, in this paper; we consider a class of coupled
fourth-order parabolic systems arising from modeling epitaxial thin film growth. The results of this
paper are established in the framework of potential well theory, which was proposed by Payne and
Sattinger in [46, 47] to study well-posedness of the solution to the equations without positive definite
energy. This method has gradually developed into an important tool for investigating the classification
of the initial data to various evolution equations involving hyperbolic equations [48–51] and parabolic
equations [52,53]. On account of the singularity of Rellich nonlinearities µ u

|x|4
and γ v

|x|4
; and the coupled

logarithmic nonlinearities |v|p|u|p−2u ln |uv| and |u|p|v|p−2v ln |uv|, which satisfy neither the monotonicity
condition nor the Ambrosetti-Rabinowitz condition, this poses some difficulties in applying potential
well theory. Moreover, compared to the general logarithmic nonlinearity |u|p−2u ln |u|, the coupled
logarithmic nonlinearities |v|p|u|p−2u ln |uv| and |u|p|v|p−2v ln |uv| are more complex and informative.
Noting that the classical logarithmic Sobolev inequality (see Gross [54], Lieb and Loss [55], Pino and
Dolbeault [56])

p
∫

Ω

|u|p ln
|u|

‖u‖Lp(Ω)
dx +

n
p

ln
(

pµe
nlp

) ∫
Ω

|u|pdx ≤ µ
∫

Ω

|∇u|pdx

is no longer applicable with the coupled logarithmic nonlinearities |v|p|u|p−2u ln |uv| and |u|p|v|p−2v ln |uv|,
brings some difficulties for ensuring the compactness of the Euler-Lagrange functional associated with
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problem (1.1). By using some new techniques to deal with the Rellich nonlinearities and the coupled
logarithmic nonlinearities, we prove the global existence and finite time blow-up of weak solutions.
Furthermore, we not only obtain a new algebraic decay estimate and study the large time behavior of
global weak solutions, but also derive a new upper bound estimate for the blow-up time in the case of
blow-up occurrence.

The organization of this paper is as follows. In Section 2, we present some preliminaries. In
Section 3, we prove the global existence of a weak solution to problem (1.1) using the Galerkin method.
Additionally, we provide a new algebraic decay estimate for this solution and discuss its behavior.
In Section 4, we demonstrate the blow-up of a weak solution to problem (1.1) in finite time using a
contradiction argument. Furthermore, we obtain a new upper bound estimate for the blow-up time by
solving a minimization problem.

2. Preliminaries

Throughout this paper, ‖·‖p denotes the norm of Lp (Ω), and (·, ·)2 denotes the inner product in

L2 (Ω). We are equipped with the norm ‖u‖H2
0 (Ω) =

(
‖u‖22 + ‖∇u‖22 + ‖∆u‖22

) 1
2 , which is equivalent to

‖u‖H2
0 (Ω) = ‖∆u‖2 due to the Poincaré inequality, Cauchy inequality with ε, and Green’s formulas under

the Dirichlet boundary condition u = ∂u
∂ν

= 0 on ∂Ω.
Both the logarithmic inequality introduced in Lemma 2.1 and the Rellich inequality presented in

Lemma 2.2 are crucial to the development of this paper.

Lemma 2.1 ( [57], logarithmic inequality). Assume that σ is a suitable small positive constant. Then,
for the continuous function Ψ, we have

Ψp ln Ψ ≤
1

eσ
Ψp+σ,Ψ ≥ 1,

and
|Ψp ln Ψ| ≤ (ep)−1, 0 < Ψ < 1.

Lemma 2.2 ( [3], Rellich Inequality). Assume that Φ ∈ C∞c
(
RN\{0}

)
. Then,

N2(N − 4)2

16

∫
RN

Φ2

|x|4
dx ≤

∫
RN
|∆Φ|2 dx,

where N2(N−4)2

16 is the best constant, and the dimension N ≥ 5. For Φ ∈ H2
0(Ω), we can define Φ = 0 for

x ∈ RN\Ω, hence
N2(N − 4)2

16

∫
Ω

Φ2

|x|4
dx ≤

∫
Ω

|∆Φ|2 dx.

Since the stationary problem of (1.1) is given by
∆2u = |v|p|u|p−2u ln |uv| − µ u

|x|4
, x ∈ Ω,

∆2v = |u|p|v|p−2v ln |uv| − γ v
|x|4
, x ∈ Ω,

u = ∂u
∂ν

= 0, v = ∂v
∂ν

= 0, x ∈ ∂Ω.
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Hence, we can define the energy functional

J (u, v) =
1
2
‖∆u‖22 +

1
2
‖∆v‖22 +

1
p2 ‖uv‖p

p −
1
p

∫
Ω

|uv|p ln |uv| dx

+
µ

2

∫
Ω

u2

|x|4
dx +

γ

2

∫
Ω

v2

|x|4
dx

(2.1)

and the Nehari functional

I (u, v) = ‖∆u‖22 + ‖∆v‖22 − 2
∫

Ω

|uv|p ln |uv| dx + µ

∫
Ω

u2

|x|4
dx + γ

∫
Ω

v2

|x|4
dx. (2.2)

From (2.1) and (2.2), we obtain

J (u, v) =
1

2p
I (u, v) +

p − 1
2p

(
‖∆u‖22 + ‖∆v‖22

)
+

1
p2 ‖uv‖p

p

+
µ (p − 1)

2p

∫
Ω

u2

|x|4
dx +

γ (p − 1)
2p

∫
Ω

v2

|x|4
dx. (2.3)

By virtue of the Nehari functional (2.2), we can define a Nehari manifold

N :=
{
(u, v) ∈ H2

0 (Ω) × H2
0 (Ω) \ {0, 0}

∣∣∣ I (u, v) = 0
}
.

Furthermore, the potential well W and its corresponding set V are by

W :=
{
(u, v) ∈ H2

0 (Ω) × H2
0 (Ω)

∣∣∣ 0 < J (u, v) < d, I (u, v) > 0
}
∪ {0, 0} ,

V :=
{
(u, v) ∈ H2

0 (Ω) × H2
0 (Ω)

∣∣∣ 0 < J (u, v) < d, I (u, v) < 0
}
,

where
d = inf

(u,v)∈H2
0 (Ω)×H2

0 (Ω)\{0,0}
sup
λ>0

J (λu, λv) = inf
(u,v)∈N

J (u, v)

is the depth of the potential well W.
Lemmas 2.3 and 2.4 show, respectively, that the Nehari manifold N is not empty, that the depth d of

potential well W on N can be attained, and that d is positive.

Lemma 2.3. For any (u, v) ∈ H2
0 (Ω) × H2

0 (Ω) \ {0, 0}, define g (λ) = J (λu, λv) for λ > 0. Then,

I (λu, λv) = λg′ (λ)


> 0, 0 < λ < λ∗,
= 0, λ = λ∗,

< 0, λ > λ∗,

(2.4)

where

λ∗ = exp

‖uv‖p
p + (p − 1)

∫
Ω
|uv|p ln |uv| dx

−2 (p − 1) ‖uv‖p
p

 . (2.5)
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Proof. Inspired by Drabek and Pohozaev [58], who first introduced the concept of fibering maps, we
consider a fibering map

g : λ 7→ J (λu, λv) , λ > 0,

defined by

g (λ) = J (λu, λv)

=
λ2

2

(
‖∆u‖22 + ‖∆v‖22

)
+

(
λ2p

p2 −
2λ2p

p
ln λ

)
‖uv‖p

p −
λ2p

p

∫
Ω

|uv|p ln |uv| dx

+
λ2µ

2

∫
Ω

u2

|x|4
dx +

λ2γ

2

∫
Ω

v2

|x|4
dx.

By a straightforward calculation, we obtain

g′ (λ) = λ ‖∆u‖22 + λ ‖∆v‖22 − 4λ2p−1 ln λ ‖uv‖p
p − 2λ2p−1

∫
Ω

|uv|p ln |uv| dx

+ λµ

∫
Ω

u2

|x|4
dx + λγ

∫
Ω

v2

|x|4
dx

and

I (λu, λv) = λ2
(
‖∆u‖22 + ‖∆v‖22

)
− 4λ2p ln λ ‖uv‖p

p − 2λ2p
∫

Ω

|uv|p ln |uv| dx

+ λ2µ

∫
Ω

u2

|x|4
dx + λ2γ

∫
Ω

v2

|x|4
dx

= λg′ (λ) .

For any λ > 0, setting g′ (λ) = λk (λ), namely

k (λ) = λ−1g′ (λ)

= ‖∆u‖22 + ‖∆v‖22 − 4λ2p−2 ln λ ‖uv‖p
p − 2λ2p−2

∫
Ω

|uv|p ln |uv| dx

+ µ

∫
Ω

u2

|x|4
dx + γ

∫
Ω

v2

|x|4
dx,

by a straightforward calculation, we have

k′ (λ) = −4 (2p − 2) λ2p−3 ln λ ‖uv‖p
p − 4λ2p−3 ‖uv‖p

p − 2 (2p − 2) λ2p−3
∫

Ω

|uv|p ln |uv| dx,

and setting k′ (λ) = 0, there exists a λ∗ = exp
(
‖uv‖pp+(p−1)

∫
Ω
|uv|p ln|uv|dx

−2(p−1)‖uv‖pp

)
, which implies (2.4) holds. The

proof of Lemma 2.3 is complete. �

Lemma 2.4. The depth d of potential well W on N is positive.
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Proof. For any (u, v) ∈ N, we can get

‖∆u‖22 + ‖∆v‖22 + µ

∫
Ω

u2

|x|4
dx + γ

∫
Ω

v2

|x|4
dx

= 2
∫

Ω

|uv|p ln |uv| dx

= 2
∫

Ω1

|uv|p ln |uv| dx + 2
∫

Ω2

|uv|p ln |uv| dx,

(2.6)

where Ω1 = { x ∈ Ω| |uv| ≤ 1}, Ω2 = { x ∈ Ω| |uv| > 1}. By virtue of (2.6) and Lemma 2.1, it follows from
the logarithmic inequality and Young′s inequality that

2
∫

Ω1

|uv|p ln |uv| dx + 2
∫

Ω2

|uv|p ln |uv| dx

≤ 2
∫

Ω2

|uv|p ln |uv| dx

≤
2

eσ

∫
Ω2

|uv|p+σdx

≤
2

eσ
‖uv‖p+σ

p+σ

≤
1

eσ
‖u‖2(p+σ)

2(p+σ) +
1

eσ
‖v‖2(p+σ)

2(p+σ) .

If 1 < p < N
N−4 , then there exists a suitable small σ satisfying 2 (p + σ) < 2N

N−4 such that H2
0 (Ω) ↪→

L2(p+σ) (Ω), and from the above inequality we have

2
∫

Ω1

|uv|p ln |uv| dx + 2
∫

Ω2

|uv|p ln |uv| dx

≤
1

eσ
S 2(p+σ)

‖∆u‖2(p+σ)
2 +

1
eσ

S 2(p+σ)
‖∆v‖2(p+σ)

2 ,

(2.7)

where S is the best constant for the embedding H2
0 (Ω) ↪→ L2(p+σ) (Ω). We can deduce from (2.6) and

(2.7) that

‖∆u‖22 + ‖∆v‖22 ≥
( eσ
S 2(p+σ)

) 1
p+σ−1

> 0. (2.8)

Since (u, v) ∈ N, 0 ≤ µ < N2(N−4)2

16 and 0 ≤ γ < N2(N−4)2

16 , it follows from (2.3) and (2.8) that

J (u, v) ≥
p − 1
2p

( eσ
S 2(p+σ)

) 1
p+σ−1

,

which implies d = inf
(u,v)∈N

J (u, v) > 0. The proof of Lemma 2.4 is complete. �

Lemma 2.5 and Remark 2.1 show that I (u, v) < 0 and I (u, v) > 0 determine the range of λ∗,
respectively.

Lemma 2.5. Assume that (u, v) ∈ H2
0 (Ω) × H2

0 (Ω) \ {0, 0}, satisfying I (u, v) < 0. Then,

I (u, v) < 2p (J (u, v) − d) . (2.9)
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Proof. According to I (u, v) < 0, it follows from (2.2) that

0 < ‖∆u‖22 + ‖∆v‖22 + µ

∫
Ω

u2

|x|4
dx + γ

∫
Ω

v2

|x|4
dx < 2

∫
Ω

|uv|p ln |uv| dx,

in Ω2 = { x ∈ Ω| |uv| > 1}, such that
‖uv‖pp+(p−1)

∫
Ω
|uv|p ln|uv|dx

−2(p−1)‖uv‖pp
< 0. Combining this with (2.5) in Lemma 2.3,

there exists a constant λ∗ ∈ (0, 1) such that I (λ∗u, λ∗v) = 0. Setting

h (λ) = 2pJ (λu, λv) − I (λu, λv) ,

then by a direct computation, we obtain

h (λ) = λ2 (p − 1)
(
‖∆u‖22 + ‖∆v‖22

)
+

2λ2p

p
‖uv‖p

p

+ λ2µ (p − 1)
∫

Ω

u2

|x|4
dx + λ2γ (p − 1)

∫
Ω

v2

|x|4
dx

and

h′ (λ) = 2λ (p − 1)
(
‖∆u‖22 + ‖∆v‖22

)
+ 4λ2p−1 ‖uv‖p

p

+ 2λµ (p − 1)
∫

Ω

u2

|x|4
dx + 2λγ (p − 1)

∫
Ω

v2

|x|4
dx

> 0.

So, h (λ) is strictly increasing for λ > 0. Hence, by 0 < λ∗ < 1, we can derive h (1) > h (λ∗), which
translates to

2pJ (u, v) − I (u, v) > 2pJ (λ∗u, λ∗v) − I (λ∗u, λ∗v) ≥ 2pd > 0.

This implies I (u, v) < 2p (J (u, v) − d) when I (u, v) < 0. The proof of Lemma 2.5 is complete. �

Remark 2.1. For the case where I (u, v) > 0, similar to Lemma 2.5, if the integral
∫

Ω
|uv|p ln |uv| dx is

small enough (i.e.,
∫

Ω
|uv|p ln |uv| dx < 0) in Ω1 = { x ∈ Ω| |uv| < 1}, then

‖uv‖p
p + (p − 1)

∫
Ω
|uv|p ln |uv| dx

−2 (p − 1) ‖uv‖p
p

> 0.

Combining with (2.5) in Lemma 2.3, there exists a λ∗ > 1 such that I (λ∗u, λ∗v) = 0.

In the following, we will introduce several definitions that are essential for the purposes of this paper.

Definition 2.1. A function (u (x, t) , v (x, t)) is called a weak solution to problem (1.1) if

(u, v) ∈ L∞
(
0,T ; H2

0 (Ω)
)
× L∞

(
0,T ; H2

0 (Ω)
)

with
(ut, vt) ∈ L2

(
0,T ; L2 (Ω)

)
× L2

(
0,T ; L2 (Ω)

)
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and satisfies

(ut, φ)2 + (∆u,∆φ)2 =
(
|v|p|u|p−2u ln |uv| , φ

)
2
−

(
µ

u
|x|4

, φ

)
2

,

(vt, ϕ)2 + (∆v,∆ϕ)2 =
(
|u|p|v|p−2v ln |uv| , ϕ

)
2
−

(
γ

v
|x|4

, ϕ

)
2

,

for a.e. t ∈ [0,T ] and any (φ, ϕ) ∈ H2
0 (Ω) × H2

0 (Ω), and u (x, 0) = u0, v (x, 0) = v0. Moreover,∫ t

0

(
‖uτ‖22 + ‖vτ‖22

)
dτ + J (u, v) ≤ J (u0, v0) , t ∈ [0,T ] .

Definition 2.2. Let T be the maximal existence time of a weak solution (u (x, t) , v (x, t)) to the problem
(1.1) as follows:
(i) if (u (x, t) , v (x, t)) exists for all 0 ≤ t < +∞, then T = +∞, and the weak solution exists globally;
(ii) if there is a t0 ∈ (0,+∞) such that (u (x, t) , v (x, t)) exists for 0 ≤ t < t0, but does not exist at t = t0,
then T = t0, and the weak solution exists locally and blows up in finite time.

Definition 2.3. A weak solution (u (x, t) , v (x, t)) to problem (1.1) blows up in finite time if the maximal
existence time T is finite and

lim
t→T−

∫ t

0

(
‖u‖22 + ‖v‖22

)
dτ = +∞.

Definition 2.4. A weak solution (u (x, t) , v (x, t)) to the problem (1.1) blows up in infinite time if the
maximal existence time T = +∞ and

lim
t→+∞

∫ t

0

(
‖u‖22 + ‖v‖22

)
dτ = +∞.

3. Global existence and decay estimates

In this section, we obtain the global existence of a weak solution to the problem (1.1) using the
Galerkin method, and then derive a new algebraic decay estimate for this global weak solution using the
Gronwall inequality. Furthermore, the behavior of this global weak solution is also presented in the
following theorem.

Theorem 3.1. Let (u0, v0) ∈ H2
0 (Ω) × H2

0 (Ω). Assume that 1 < p < p2

p−1 < N
N−4 . If 0 < J (u0, v0) <

d, I (u0, v0) > 0, then problem (1.1) has a weak solution (u (x, t) , v (x, t)) that exists globally and satisfies
the energy inequality ∫ t

0

(
‖uτ‖22 + ‖vτ‖22

)
dτ + J (u, v) ≤ J (u0, v0) , t ∈ [0,+∞) . (3.1)

Furthermore, a weak solution (u (x, t) , v (x, t)) exhibits algebraic decay, namely

‖u‖22 + ‖v‖22 ≤
(
‖u0‖

2
2 + ‖v0‖

2
2

)
e
−2

1−( J(u0 ,v0)
d

) 2p−2
2p

 1
S 2

1
t
, t ∈ [0,+∞) , (3.2)

where S 1 is the best constant for the embedding H2
0 (Ω) ↪→ L2 (Ω). Furthermore, the behavior is given

by
lim
t→∞

(
‖u (·, t)‖22 + ‖v (·, t)‖22

)
= 0.
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Proof. First, we prove the global existence of a weak solution to problem (1.1) by the Galerkin method.
The proof will be divided into 5 steps.

Step 1. Approximation problem
In the Sobolev space H2

0 (Ω), we choose a basis
{
w j

}m

j=1
and define the finite-dimensional space

Vm = span {w1,w2, · · · ,wm} .

For a positive integer m, we look for the approximate solutions (um (x, t) , vm (x, t)) to problem (1.1),
um (x, t) =

m∑
j=1

gm j (t) w j (x),

vm (x, t) =
m∑

j=1
hm j (t) w j (x),

satisfying (
umt,w j

)
2

+
(
∆um,∆w j

)
2

=
(
|vm|

p
|um|

p−2um ln |umvm| ,w j

)
2
−

(
µ

um

|x|4
,w j

)
2

, (3.3)

(
vmt,w j

)
2

+
(
∆vm,∆w j

)
2

=
(
|um|

p
|vm|

p−2vm ln |umvm| ,w j

)
2
−

(
γ

vm

|x|4
,w j

)
2

, (3.4)

and

um (x, 0) = u0m =

m∑
j=1

gm jw j (x)→ u0,m→ +∞, (3.5)

vm (x, 0) = v0m =

m∑
j=1

hm jw j (x)→ v0 ,m→ +∞, (3.6)

where gm j = gm j (0) , hm j = hm j (0), u0m, v0m ∈ Vm.
By the Picard iteration method of ordinary differential equations, there exists a positive T such that(

gm j, hm j

)
∈ C1 ([0,T ]) ×C1 ([0,T ]) ,

and thus
(um (x, t) , vm (x, t)) ∈ C1

(
[0,T ] ,H2

0 (Ω)
)
×C1

(
[0,T ] ,H2

0 (Ω)
)
.

From this, we obtain a local solution to problem (1.1).
Next, we prove that this solution exists globally.
Step 2. Priori estimates
Multipling (3.3) and (3.4) by d

dt gm j (t) and d
dt hm j (t), respectively, summing for j from 1 to m, and

integrating with respect to time variable on [0, t], we arrive at∫ t

0

(
‖umτ‖

2
2 + ‖vmτ‖

2
2

)
dτ + J (um, vm) = J (u0m, v0m) , t ∈ [0,T ] , (3.7)

and it follows from (3.5) and (3.6) that J (u0m, v0m) → J (u0, v0). Since J (u0, v0) < d, we obtain from
(3.7) that ∫ t

0

(
‖umτ‖

2
2 + ‖vmτ‖

2
2

)
dτ + J (um, vm) < d, t ∈ [0,T ] , (3.8)
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for sufficiently large m.
From (3.5), (3.6), and (u0, v0) ∈ W, it follows that (u0m, v0m) for sufficiently large m. We can conclude

(um, vm) ∈ W by contradiction, and t ∈ [0,T ]. If it does not hold, assume that there is a t0 ∈ (0,T ) such
that (um (t0) , vm (t0)) ∈ ∂W; I (um (t0) , vm (t0)) = 0 and (um (t0) , vm (t0)) , (0, 0) or J (um (t0) , vm (t0)) = d.
Nevertheless, noting that J (um (t0) , vm (t0)) = d does not occur by (3.8), by virtue of the definition of d,
we have J (um (t0) , vm (t0)) ≥ d, which is also contradiction with (3.8). So, (um, vm) ∈ W for sufficiently
large m.

From (2.3), we have

J (um, vm) =
1

2p
I (um, vm) +

p − 1
2p

(
‖∆um‖

2
2 + ‖∆vm‖

2
2

)
+

1
p2 ‖umvm‖

p
p

+
µ (p − 1)

2p

∫
Ω

um
2

|x|4
dx +

γ (p − 1)
2p

∫
Ω

vm
2

|x|4
dx.

(3.9)

Since (um, vm) ∈ W for sufficiently large m, when combined with (3.8) and (3.9), it follows that∫ t

0

(
‖umτ‖

2
2 + ‖vmτ‖

2
2

)
dτ +

p − 1
2p

(
‖∆um‖

2
2 + ‖∆vm‖

2
2

)
+

1
p2 ‖umvm‖

p
p

+
µ (p − 1)

2p

∫
Ω

um
2

|x|4
dx +

γ (p − 1)
2p

∫
Ω

vm
2

|x|4
dx

< d,

(3.10)

which implies
p − 1
2p

(
‖∆um‖

2
2 + ‖∆vm‖

2
2

)
< d, (3.11)

µ (p − 1)
2p

∫
Ω

um
2

|x|4
dx +

γ (p − 1)
2p

∫
Ω

vm
2

|x|4
dx < d, (3.12)

∫ t

0

(
‖umτ‖

2
2 + ‖vmτ‖

2
2

)
dτ < d. (3.13)

From (3.13), we know that it implies T = +∞. On the other hand, through a direct calculation, we
deduce from Lemma 2.1 that∫

Ω

(
|vm|

p
|um|

p−2um ln |umvm|
) p

p−1 dx

=

∫
Ω1

(
|vm|

p
|um|

p−2um ln |umvm|
) p

p−1 dx +

∫
Ω2

(
|vm|

p
|um|

p−2um ln |umvm|
) p

p−1 dx

≤

∫
Ω1

(
1

e (p − 1)
|vm|

) p
p−1

dx +

(
1

eσ

) p
p−1

∫
Ω2

(
|um|

p−1+σ
|vm|

p+σ
) p

p−1 dx

≤

(
1

e (p − 1)

) p
p−1

‖vm‖
p

p−1
p

p−1
+

(
1

eσ

) p
p−1

‖um‖
p(p−1+σ)

p−1
2p(p−1+σ)

p−1

‖vm‖
p(p+σ)

p−1
2p(p+σ)

p−1

≤

(
1

e (p − 1)

) p
p−1

‖vm‖
p

p−1
p

p−1
+

1
2

(
1

eσ

) p
p−1

‖um‖
2p(p−1+σ)

p−1
2p(p−1+σ)

p−1

+
1
2

(
1

eσ

) p
p−1

‖vm‖
2p(p+σ)

p−1
2p(p+σ)

p−1

,
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where Ω1 = { x ∈ Ω| |uv| ≤ 1}, Ω2 = { x ∈ Ω| |uv| > 1}. When 1 < p < p2

p−1 < N
N−4 , by the Rellich-

Kondrachov compact embedding theorem, there exists a suitable small positive constant σ such that
H2

0 (Ω) ↪→ L
2p(p+σ)

p−1 (Ω) and H2
0 (Ω) ↪→ L

2p(p−1+σ)
p−1 (Ω). From (3.11), we have∫

Ω

(
|vm|

p
|um|

p−2um ln |umvm|
) p

p−1 dx

≤

(
1

e (p − 1)

) p
p−1

S
p

p−1

2 ‖∆vm‖
p

p−1

2 +
S

2p(p−1+σ)
p−1

3

2

(
1

eσ

) p
p−1

‖∆um‖
2p(p−1+σ)

p−1

2

+
S

2p(p+σ)
p−1

4

2

(
1

eσ

) p
p−1

‖∆vm‖
2p(p+σ)

p−1

2

≤ c,

(3.14)

where S 2 is the best constant for the embedding H2
0 (Ω) ↪→ L

p
p−1 (Ω), S 3 is the best constant for the

embedding H2
0 (Ω) ↪→ L

2p(p−1+σ)
p−1 (Ω), and S 4 is the best constant for the embedding H2

0 (Ω) ↪→ L
2p(p+σ)

p−1 (Ω);
Similar to the proof of (3.14), we have∫

Ω

(
|um|

p
|vm|

p−2vm ln |umvm|
) p

p−1 dx < c. (3.15)

Step 3. Pass to the limit
By virtue of Banach-Alaoglu-Bourbaki theorem due to [47], and according to the energy estimates

(3.11)-(3.15), we know that there exists a (u, v) and a subsequence of
(
{um}

∞
m=1 , {vm}

∞
m=1

)
(still denoted

by
(
{um}

∞
m=1 , {vm}

∞
m=1

)
for clarity) such that as m→ ∞,

um → u weakly star in L∞
(
0,+∞; H2

0 (Ω)
)
,

vm → v weakly star in L∞
(
0,+∞; H2

0 (Ω)
)
,

um

|x|2
→

u
|x|2

weakly star in L∞
(
0,+∞; L2 (Ω)

)
,

vm

|x|2
→

v
|x|2

weakly star in L∞
(
0,+∞; L2 (Ω)

)
,∫

Ω

|vm|
p
|um|

p−2um ln |umvm| dx→
∫

Ω

|v|p|u|p−2u ln |uv| dx weakly star in L∞
(
0,+∞; L

p
p−1 (Ω)

)
,∫

Ω

|um|
p
|vm|

p−2vm ln |umvm| dx→
∫

Ω

|u|p|v|p−2v ln |uv| dx weakly star in L∞
(
0,+∞; L

p
p−1 (Ω)

)
,

umt → ut weakly in L2
(
0,+∞; L2 (Ω)

)
,

vmt → vt weakly in L2
(
0,+∞; L2 (Ω)

)
.

By virtue of Aubin-Lions compactness theorem due to [59], it follows that there exists a subsequence of
the given sequence that converges strongly in the desired space,

um → u in C
(
[0,+∞) ; L2 (Ω)

)
,
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vm → v in C
(
[0,+∞) ; L2 (Ω)

)
.

Clearly, this implies that
um → u a.e. in Ω × [0,+∞) ,

vm → v a.e. in Ω × [0,+∞) .

Moreover, we can pass to the limit in (3.3) and (3.4) to obtain(
ut,w j

)
2

+
(
∆u,∆w j

)
2

=
(
|v|p|u|p−2u ln |uv| ,w j

)
2
−

(
µ

u
|x|4

,w j

)
2

, (3.16)

(
vt,w j

)
2

+
(
∆v,∆w j

)
2

=
(
|u|p|v|p−2v ln |uv| ,w j

)
2
−

(
γ

v
|x|4

,w j

)
2

. (3.17)

Next, we show that the limit function (u (x, t) , v (x, t)) obtained in (3.16) and (3.17) is a weak solution
of problem (1.1). Now, we can fix a positive integer k, such that m ≥ k and choose

φ (x, t) =
k∑

j=1
g j (t) w j (x),

ϕ (x, t) =
k∑

j=1
h j (t) w j (x).

Multiplying (3.16) and (3.17) by g j (t) and h j (t), respectively, and summing for j from 1 to k, we obtain

(ut, φ)2 + (∆u,∆φ)2 =
(
|v|p|u|p−2u ln |uv| , φ

)
2
−

(
µ

u
|x|4

, φ

)
2

,

(vt, ϕ)2 + (∆v,∆ϕ)2 =
(
|u|p|v|p−2v ln |uv| , ϕ

)
2
−

(
γ

v
|x|4

, ϕ

)
2

,

for a.e. t ∈ [0,+∞) and any (φ, ϕ) ∈ H2
0 (Ω) × H2

0 (Ω), and u (x, 0) = u0, v (x, 0) = v0.
Step 4. Energy inequality
Next, we will prove that a global weak solution (u (x, t) , v (x, t)) of problem (1.1) satisfies energy

inequality (3.1). To achieve this goal, we introduce a nonnegative function θ (t) ∈ C1 ([0,+∞)). By
(3.7), we have ∫ +∞

0
θdt

∫ t

0

(
‖umτ‖

2
2 + ‖vmτ‖

2
2

)
dτ +

∫ +∞

0
J (um, vm) θdt

=

∫ +∞

0
J (u0m, v0m) θdt.

(3.18)

It follows from (3.5) and (3.6) that J (u0m, v0m) → J (u0, v0) as m → +∞, and therefore the integral∫ +∞

0
J (u0m, v0m) θdt (which is the right-hand side of (3.18)) converges to

∫ +∞

0
J (u0, v0) θdt. Since∫ +∞

0
J (um, vm) θdt is lower semi-continuous with respect to the weak topology of L2

(
0,+∞; H2

0 (Ω)
)
×

L2
(
0,+∞; H2

0 (Ω)
)
, we have∫ +∞

0
J (u, v) θdt ≤ lim

m→+∞
inf

∫ +∞

0
J (um, vm) θdt. (3.19)
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Combining (3.18) and (3.19), we have∫ +∞

0
θdt

∫ t

0

(
‖uτ‖22 + ‖vτ‖22

)
dτ +

∫ +∞

0
J (u, v) θdt ≤

∫ +∞

0
J (u0, v0) θdt. (3.20)

Since the nonnegative function θ is arbitrary, we deduce from (3.20) that energy inequality (3.1) holds.
Step 5. Algebraic decay
Finally, we will prove an algebraic decay of a global weak solution (u (x, t) , v (x, t)) of problem (1.1).

Combining (2.3), (3.1), and (u (x, t) , v (x, t)) ∈W, we have

p − 1
2p

(
‖∆u‖22 + ‖∆v‖22

)
+

1
p2 ‖uv‖p

p +
µ (p − 1)

2p

∫
Ω

u2

|x|4
dx +

γ (p − 1)
2p

∫
Ω

v2

|x|4
dx

≤ J (u, v) ≤ J (u0, v0) .
(3.21)

From Remark 2.1, since I (u, v) > 0, there exists a λ∗ > 1 such that I (λ∗u, λ∗v) = 0, and

λ∗
2p

(
p − 1
2p

(
‖∆u‖22 + ‖∆v‖22

)
+

1
p2 ‖uv‖p

p +
µ (p − 1)

2p

∫
Ω

u2

|x|4
dx +

γ (p − 1)
2p

∫
Ω

v2

|x|4
dx

)
≥ J (λ∗u, λ∗v) ≥ d.

(3.22)

It follows from (3.21) and (3.22) that

λ∗ ≥

(
d

J (u0, v0)

) 1
2p

> 1. (3.23)

Because of

I (λ∗u, λ∗v) = λ∗
2
(
‖∆u‖22 + ‖∆v‖22

)
− 4λ∗2p ln λ∗ ‖uv‖p

p − 2λ∗2p
∫

Ω

|uv|p ln |uv| dx

+ λ∗
2µ

∫
Ω

u2

|x|4
dx + λ∗

2γ

∫
Ω

v2

|x|4
dx

=
(
λ∗

2 − λ∗
2p
) (
‖∆u‖22 + ‖∆v‖22

)
− 4λ∗2p ln λ∗ ‖uv‖p

p

+
(
λ∗

2 − λ∗
2p
)
µ

∫
Ω

u2

|x|4
dx +

(
λ∗

2 − λ∗
2p
)
γ

∫
Ω

v2

|x|4
dx + λ∗

2pI (u, v)

= 0,

(3.24)

it follows from (3.24) that

4λ∗2p ln λ∗ ‖uv‖p
p =

(
λ∗

2 − λ∗
2p
) (
‖∆u‖22 + ‖∆v‖22

)
+

(
λ∗

2 − λ∗
2p
)
µ

∫
Ω

u2

|x|4
dx

+
(
λ∗

2 − λ∗
2p
)
γ

∫
Ω

v2

|x|4
dx + λ∗

2pI (u, v)

> 0,

which implies
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I (u, v) >
(
1 −

1
λ∗

2p−2

) (
‖∆u‖22 + ‖∆v‖22

)
. (3.25)

Combining (3.23) and (3.25), we get

I (u, v) >

1 − (
J (u0, v0)

d

) 2p−2
2p

 (‖∆u‖22 + ‖∆v‖22
)
. (3.26)

By virtue of the embedding H2
0 (Ω) ↪→ L2 (Ω) , we have from (3.26) that

I (u, v) >

1 − (
J (u0, v0)

d

) 2p−2
2p

 1
S 2

1

(
‖u‖22 + ‖v‖22

)
. (3.27)

On the other hand, we get from (3.27) that

d
dt

(
‖u‖22 + ‖v‖22

)
= −2I (u, v)

< −2

1 − (
J (u0, v0)

d

) 2p−2
2p

 1
S 2

1

(
‖u‖22 + ‖v‖22

)
.

(3.28)

From (3.28) and Gronwall′s inequality, we obtain (3.2) in Theorem 3.1, which describes the algebraic
decay of a global weak solution of problem (1.1). By the conditions 0 < J (u0, v0) < d, 1 < p < p2

p−1 <
N

N−4 , and S 1 > 0, we have

lim
t→∞

e
−2

1−( J(u0 ,v0)
d

) 2p−2
2p

 1
S 2

1
t
= 0.

Therefore, we can deduce the behavior from (3.2), specifically

lim
t→∞

(
‖u (·, t)‖22 + ‖v (·, t)‖22

)
= 0.

The proof of Theorem 3.1 is complete. �

4. Blow-up and upper bound estimates of blow-up time

In this section, we prove the blow-up of a weak solution of problem (1.1) in finite time by con-
tradiction. Furthermore, a new upper bound estimate for the blow-up time is obtained by solving a
minimization problem.

Theorem 4.1. Let (u0, v0) ∈ H2
0 (Ω)×H2

0 (Ω). If 0 < J (u0, v0) < d, and I (u0, v0) < 0, problem (1.1) has
a weak solution (u (x, t) , v (x, t)) that blows up in finite time, namely, there exists a T > 0 such that

lim
t→T

∫ t

0

(
‖u‖22 + ‖v‖22

)
dτ = +∞, (4.1)

and an upper bound estimate of the blow-up time T is obtained by

T ≤
(2p − 1)

(
‖u0‖

2
2 + ‖v0‖

2
2

)
2p(p − 1)2 (d − J (u0, v0))

. (4.2)
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Proof. We first demonstrate, through a proof by contradiction, that a weak solution (u (x, t) , v (x, t)) of
problem (1.1) experiences blow-up in finite time. Subsequently, we derive an upper bound estimate for
the blow-up time T.

Step 1. Blow-up in finite time
Assume that a weak solution (u (x, t) , v (x, t)) of problem (1.1) exists globally: T = +∞. Setting

G (t) =

∫ t

0

(
‖u‖22 + ‖v‖22

)
dτ, (4.3)

then by (4.3), we have
G′ (t) = ‖u‖22 + ‖v‖22 , (4.4)

G′′ (t) =
d
dt

(
‖u‖22 + ‖v‖22

)
= 2 (ut, u) + 2 (vt, v) = −2I (u, v) . (4.5)

By the energy inequality∫ t

0

(
‖uτ‖22 + ‖vτ‖22

)
dτ + J (u, v) ≤ J (u0, v0) , t ∈ [0,T ] ,

and combining it with (2.3), (4.4), and (4.5), we get

G′′ (t) = −2I (u, v)

= −4pJ (u, v) + 2 (p − 1)
(
‖∆u‖22 + ‖∆v‖22

)
+

4
p
‖uv‖p

p

+ 2µ (p − 1)
∫

Ω

u2

|x|4
dx + 2γ (p − 1)

∫
Ω

v2

|x|4
dx

≥ 4p
∫ t

0

(
‖uτ‖22 + ‖vτ‖22

)
dτ − 4pJ (u0, v0) + 2 (p − 1)

(
‖∆u‖22 + ‖∆v‖22

)
≥ 4p

∫ t

0

(
‖uτ‖22 + ‖vτ‖22

)
dτ − 4pJ (u0, v0) +

2 (p − 1)
S 2

1

(
‖u‖22 + ‖v‖22

)
= 4p

∫ t

0

(
‖uτ‖22 + ‖vτ‖22

)
dτ − 4pJ (u0, v0) +

2 (p − 1)
S 2

1

G′ (t) .

(4.6)

It is worth noting that(∫ t

0
((uτ, u) + (vτ, v)) dτ

)2

=

(∫ t

0

1
2

d
dτ

(
‖u‖22 + ‖v‖22

)
dτ

)2

=

(
1
2

(
‖u‖22 + ‖v‖22 − ‖u0‖

2
2 − ‖v0‖

2
2

))2

=
1
4

((
‖u‖22 + ‖v‖22

)2
+

(
‖u0‖

2
2 + ‖v0‖

2
2

)2
− 2

(
‖u‖22 + ‖v‖22

) (
‖u0‖

2
2 + ‖v0‖

2
2

))
=

1
4

((
G′ (t)

)2
+

(
‖u0‖

2
2 + ‖v0‖

2
2

)2
− 2G′ (t)

(
‖u0‖

2
2 + ‖v0‖

2
2

))
,
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which implies

(
G′ (t)

)2
= 4

(∫ t

0
((uτ, u) + (vτ, v)) dτ

)2

+ 2G′ (t)
(
‖u0‖

2
2 + ‖v0‖

2
2

)
−

(
‖u0‖

2
2 + ‖v0‖

2
2

)2
. (4.7)

Combining (4.6) and (4.7), we get

G (t) G′′ (t) − p
(
G′ (t)

)2
≥ 4p

∫ t

0

(
‖uτ‖22 + ‖vτ‖22

)
dτ

∫ t

0

(
‖u‖22 + ‖v‖22

)
dτ

− 4p
(∫ t

0
((uτ, u) + (vτ, v)) dτ

)2

+
2 (p − 1)

S 2
1

G′ (t) G (t) − 4pJ (u0, v0) G (t)

− 2pG′ (t)
(
‖u0‖

2
2 + ‖v0‖

2
2

)
+ p

(
‖u0‖

2
2 + ‖v0‖

2
2

)2
.

(4.8)

By virtue of Schwarz′s inequality, we have∫ t

0

(
‖uτ‖22 + ‖vτ‖22

)
dτ

∫ t

0

(
‖u‖22 + ‖v‖22

)
dτ −

(∫ t

0
((uτ, u) + (vτ, v)) dτ

)2

≥

∫ t

0

(
‖uτ‖22 + ‖vτ‖22

)
dτ

∫ t

0

(
‖u‖22 + ‖v‖22

)
dτ

−

(∫ t

0

(
‖uτ‖2 ‖u‖2 + ‖vτ‖2 ‖v‖2

)
dτ

)2

≥

∫ t

0

(
‖uτ‖22 + ‖vτ‖22

)
dτ

∫ t

0

(
‖u‖22 + ‖v‖22

)
dτ

−

(∫ t

0

√
‖uτ‖22 + ‖vτ‖22

√
‖u‖22 + ‖v‖22dτ

)2

≥ 0.

(4.9)

Substituting (4.9) into (4.8), and combining with the fact that
(
‖u0‖

2
2 + ‖v0‖

2
2

)2
≥ 0, it holds that

G (t) G′′ (t) − p
(
G′ (t)

)2

≥
2 (p − 1)

S 2
1

G′ (t) G (t) − 4pJ (u0, v0) G (t) − 2pG′ (t)
(
‖u0‖

2
2 + ‖v0‖

2
2

)
+ p

(
‖u0‖

2
2 + ‖v0‖

2
2

)2

≥
2 (p − 1)

S 2
1

G′ (t) G (t) − 4pJ (u0, v0) G (t) − 2pG′ (t)
(
‖u0‖

2
2 + ‖v0‖

2
2

)
.

(4.10)

We can rewrite (4.10) as

G (t) G′′ (t) − p
(
G′ (t)

)2
≥

(
p − 1
S 2

1

G (t) − 2p
(
‖u0‖

2
2 + ‖v0‖

2
2

))
G′ (t)

+

(
p − 1
S 2

1

G′ (t) − 4pJ (u0, v0)
)

G (t) .
(4.11)
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From J (u0, v0) < d, I (u0, v0) < 0, it follows that (u0, v0) ∈ V . We can prove (u, v) ∈ V , provided
(u0, v0) ∈ V , by contradiction. Indeed, by contradiction, if it not hold, we assume that (u, v) leaves
V at time t0; there exists a sequence {tn} such that I (u (tn) , v (tn)) ≤ 0 when tn → t0. By the lower
semicontinuity of H2

0 (Ω), we obtain

I (u (t0) , v (t0)) ≤ lim
n→∞

inf I (u (tn) , v (tn)) ≤ 0.

Since (u (t0) , v (t0)) < V , we have I (u (t0) , v (t0)) = 0. By a similar method, we have J (u (t0) , v (t0)) = d.
However, if I (u (t0) , v (t0)) = 0, then by the definition of d, we know that

d = inf
(u,v)∈N

J (u (t) , v (t)) ≤ J (u (t0) , v (t0)) ,

which contradicts with 3.1. And, if J (u (t0) , v (t0)) = d, it also contradicts with 3.1. So, (u, v) ∈ V
provided (u0, v0) ∈ V , that the following energy inequality holds:∫ t

0

(
‖uτ‖22 + ‖vτ‖22

)
dτ + J (u, v) ≤ J (u0, v0) , t ∈ [0,T ] .

Then, from (4.5) and (2.9) in Lemma 2.5, we have

G′′ (t) = −2I (u, v) > 4p (d − J (u, v)) ≥ 4p (d − J (u0, v0)) > 0. (4.12)

It follows from (4.12) that, for any t ≥ 0,

G′ (t) ≥ 4p (d − J (u0, v0)) t + G′ (0) ≥ 4p (d − J (u0, v0)) t, (4.13)

G (t) ≥ 2p (d − J (u0, v0)) t2 + G (0) = 2p (d − J (u0, v0)) t2. (4.14)

Combining (4.13) and (4.14), for sufficiently large t, there holds

p − 1
S 2

1

G (t) − 2p
(
‖u0‖

2
2 + ‖v0‖

2
2

)
> 0, (4.15)

p − 1
S 2

1

G′ (t) − 4pJ (u0, v0) > 0. (4.16)

It follows from (4.11)-(4.16), for sufficiently large t, that

G (t) G′′ (t) − p
(
G′ (t)

)2 > 0.

Since (
1

Gp−1 (t)

)′′
=
− (p − 1)

(
G′′ (t) G (t) − p(G′ (t))2

)
Gp+1 (t)

< 0,

then there exists a finite time T > 0 such that

lim
t→T

1
Gp−1 (t)

= lim
t→T

1(∫ t

0

(
‖u‖22 + ‖v‖22

)
dτ

)p−1 = 0,
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namely lim
t→T

(∫ t

0

(
‖u‖22 + ‖v‖22

)
dτ

)p−1
= +∞, which implies that (4.1) holds. This contradicts the fact that

(u (x, t) , v (x, t)) is a global weak solution of problem (1.1), hence it blows up in finite time.
Step 2. Upper bound estimate of the blow-up time
We next give an upper bound estimate for the blow-up time T .
For any T ∗ ∈ (0,T ), we can define a positive auxiliary functional

M : [0,T ∗]→ R,

which is defined by

M (t) =

∫ t

0

(
‖u‖22 + ‖v‖22

)
dτ + (T ∗ − t)

(
‖u0‖

2
2 + ‖v0‖

2
2

)
+ β(t + α)2, (4.17)

where t ∈ [0,T ∗], β > 0, and α > 0 are specified later. Through a direct calculation, we have

M′ (t) = ‖u‖22 + ‖v‖22 −
(
‖u0‖

2
2 + ‖v0‖

2
2

)
+ 2β (t + α)

=

∫ t

0

d
dτ

(
‖u‖22 + ‖v‖22

)
dτ + 2β (t + α)

= 2
∫ t

0
((uτ, u) + (vτ, v)) dτ + 2β (t + α) ,

(4.18)

M′′ (t) = 2 (ut, u) + 2 (vt, v) + 2β = −2I (u, v) + 2β. (4.19)

By virtue of (4.19), (3.1), and (2.9), we have

M′′ (t) ≥ 4p (d − J (u, v)) + 2β

≥ 4p (d − J (u0, v0)) + 4p
∫ t

0

(
‖uτ‖22 + ‖vτ‖22

)
dτ + 2β.

(4.20)

It follows from (4.18) by Schwarz′s inequality and Hölder′s inequality that

(
M′ (t)

)2
= 4

(∫ t

0
((uτ, u) + (vτ, v)) dτ + β (t + α)

)2

≤ 4
(∫ t

0

(
‖uτ‖2 ‖u‖2 + ‖vτ‖2 ‖v‖2

)
dτ + β (t + α)

)2

≤ 4
(∫ t

0

√
‖uτ‖22 + ‖vτ‖22

√
‖u‖22 + ‖v‖22dτ + β (t + α)

)2

≤ 4

(∫ t

0

(
‖uτ‖22 + ‖vτ‖22

)
dτ

) 1
2
(∫ t

0

(
‖u‖22 + ‖v‖22

)
dτ

) 1
2

+ β (t + α)


2

≤ 4
(∫ t

0

(
‖uτ‖22 + ‖vτ‖22

)
dτ + β

) (∫ t

0

(
‖u‖22 + ‖v‖22

)
dτ + β(t + α)2

)
≤ 4M (t)

(∫ t

0

(
‖uτ‖22 + ‖vτ‖22

)
dτ + β

)
.

(4.21)
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Combining (4.17), (4.20), and (4.21), there holds

M (t) M′′ (t) − p
(
M′ (t)

)2
≥ (4p (d − J (u0, v0)) − 2 (2p − 1) β) M (t) . (4.22)

Satisfying 0 < β ≤ 2p(d−J(u0,v0))
2p−1 , from (4.22), we can conclude that

M (t) M′′ (t) − p
(
M′ (t)

)2
≥ 0

for any t ∈ [0,T ∗]. We define y (t) = 1
Mp−1(t) for any t ∈ [0,T ∗]. By virtue of M (t) > 0,M′ (t) > 0, we

obtain
y′ (t) = −

(p − 1) M′ (t)
Mp (t)

< 0,

y′′ (t) = −
(p − 1)

(
M′′ (t) M (t) − p(M′ (t))2

)
Mp+1 (t)

< 0.

Through a direct calculation from y′′ (t) < 0, we have

y (T ∗) − y (0) = y′ (ξ) T ∗ < y′ (0) T ∗, ξ ∈ (0,T ∗) ,

which implies

T ∗ ≤
y (T ∗)
y′ (0)

−
y (0)
y′ (0)

< −
y (0)
y′ (0)

=
T ∗

(
‖u0‖

2
2 + ‖v0‖

2
2

)
+ βα2

2βα (p − 1)
, (4.23)

where y (0) > 0, y (T ∗) > 0, and y′ (0) < 0. Hence, from (4.23), we can deduce that

T ∗ ≤
βα2

2βα (p − 1) −
(
‖u0‖

2
2 + ‖v0‖

2
2

) , (4.24)

where α > ‖u0‖
2
2+‖v0‖

2
2

2β(p−1) . In order to obtain an upper bound estimate of the blow-up time, we consider a
minimizing problem

T ∗ ≤ min
(β,α)∈Φ

f (β, α) , (4.25)

where

f (β, α) =
βα2

2βα (p − 1) −
(
‖u0‖

2
2 + ‖v0‖

2
2

) ,
Φ =

{
(β, α)| 0 < β ≤

2p (d − J (u0, v0))
2p − 1

,
‖u0‖

2
2 + ‖v0‖

2
2

2β (p − 1)
< α < +∞

}
.

Due to the partial derivative

fβ (β, α) = −
α2

(
‖u0‖

2
2 + ‖v0‖

2
2

)
(
2βα (p − 1) −

(
‖u0‖

2
2 + ‖v0‖

2
2

))2 < 0,

so f (β, α) is decreasing with respect to β, we can obtain

min
(β,α)∈Φ

f (β, α) = f
(
2p (d − J (u0, v0))

2p − 1
, α

)
= g (α) , (4.26)
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where

g (α) =
2α2 p (d − J (u0, v0))

4αp (p − 1) (d − J (u0, v0)) − (2p − 1)
(
‖u0‖

2
2 + ‖v0‖

2
2

) . (4.27)

Since g (α) > 0 when (2p−1)(‖u0‖
2
2+‖v0‖

2
2)

4p(p−1)(d−J(u0,v0)) < α < +∞, then it follows from (4.27) that g (α) achieves its

minimum at α1 =
(2p−1)(‖u0‖

2
2+‖v0‖

2
2)

2p(p−1)(d−J(u0,v0)) , and

g (α1) =
(2p − 1)

(
‖u0‖

2
2 + ‖v0‖

2
2

)
2p(p − 1)2 (d − J (u0, v0))

. (4.28)

Combining (4.25), (4.26), and (4.28), we arrive at

T ∗ ≤
(2p − 1)

(
‖u0‖

2
2 + ‖v0‖

2
2

)
2p(p − 1)2 (d − J (u0, v0))

, (4.29)

hence we can deduce that (4.2) holds from (4.29) by virtue of the arbitrariness of T ∗ → T . The proof of
Theorem 4.1 is complete. �

Author contributions

Tingfu Feng, Yan Dong, Kelei Zhang and Yan Zhu: Methodology; Tingfu Feng and Yan Dong:
Writing-original draft; Yan Dong, Kelei Zhang: Writing-review and editing; Yan Zhu: Writing-review.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The authors are grateful to the referees for their valuable comments, which greatly improved the
exposition of our paper. This work is sponsored by the National Natural Science Foundation of
China (Grant No.12261053), the Special Basic Cooperative Research Programs of Yunnan Provincial
Undergraduate Universities Association (Grant No.202301BA070001-002, 202101BA070001-132),
and the Scientific Research Fund of Education Department of Yunnan Province (Grant No.2024Y775,
2024Y776, 2025Y1076).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. F. Rellich, Halbbeschränkte Differentialoperatoren Höherer Ordnung, Proceedings of the
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