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Abstract: In the present manuscript, we focus on a novel tri-nonlocal Kirchhoff problem, which
involves the p(x)-fractional Laplacian equations of variable order. The problem is stated as follows:

M
(
σp(x,y)(u)

)
(−∆)s(·)

p(·)u(x) = λ|u|q(x)−2u
(∫

Ω

1
q(x)
|u|q(x)dx

)k1

+ β|u|r(x)−2u
(∫

Ω

1
r(x)
|u|r(x)dx

)k2

in Ω,

u = 0 on ∂Ω,

where the nonlocal term is defined as

σp(x,y)(u) =

∫
Ω×Ω

1
p(x, y)

|u(x) − u(y)|p(x,y)

|x − y|N+s(x,y)p(x,y) dx dy.

Here, Ω ⊂ RN represents a bounded smooth domain with at least N ≥ 2. The function M(s) is given
by M(s) = a − bsγ, where a ≥ 0, b > 0, and γ > 0. The parameters k1, k2, λ and β are real parameters,
while the variables p(x), s(·), q(x), and r(x) are continuous and can change with respect to x. To
tackle this problem, we employ some new methods and variational approaches along with two specific
methods, namely the Fountain theorem and the symmetric Mountain Pass theorem. By utilizing these
techniques, we establish the existence and multiplicity of solutions for this problem separately in two
distinct cases: when a > 0 and when a = 0. To the best of our knowledge, these results are the first
contributions to research on the variable-order p(x)-fractional Laplacian operator.
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1. Statement of the Problem and the Main Results

Given that N ≥ 2 and Ω ⊂ RN is a smooth bounded domain. The goal of this paper is to investigate
the existence and multiplicity of solutions for variable order p(x)-Kirchhoff tri-nonlocal fractional
equations.

M
(
σp(x,y)(u)

)
(−∆)s(·)

p(·)u(x) = λ|u|q(x)−2u
(∫

Ω

1
q(x)
|u|q(x)dx

)k1

+ β|u|r(x)−2u
(∫

Ω

1
r(x)
|u|r(x)dx

)k2

in Ω,

u = 0 on ∂Ω,

(1.1)

where

σp(x,y)(u) =

∫
Ω×Ω

1
p(x, y)

|u(x) − u(y)|p(x,y)

|x − y|N+s(x,y)p(x,y) dx dy,

where N > s(x, y)p(x, y) for all (x, y) ∈ Ω×Ω, λ, β are two real parameters, k1, k2 > 0, M(x) = a− bxγ,
a ≥ 0, b, γ > 0 and q, r are continuous real functions on Ω̄.
The operator defined as (−∆)s(·)

p(·) is referred to as the p(x)-fractional Laplacian with variable order, and
it is defined as follows:

(−∆)s(·)
p(·)u(x) := P.V.

∫
Ω

1
p(x, y)

|u(x) − u(y)|p(x,y)−2(u(x) − u(y))
|x − y|N+s(x,y)p(x,y) dy;

for any u ∈ C∞0 (RN), where the notation P.V. means the Cauchy principal value.
As the problem (1.1) involves integrals over the domain Ω, it deviates from being a pointwise

identity. Consequently, it is commonly referred to as a tri-nonlocal problem due to the presence of the
following integrals.

σp(x,y)(u) and
∫

Ω

1
s(x)
|u|s(x)dx, for s = {q, r}.

In recent years, the wide class of problems involving nonlocal operators have been an increasing atten-
tion and have acquired relevance due to their occurrence in pure and applied mathematical point view,
for instance, finance, the thin obstacle problem, biology, probability, optimization and others.

In the current work, our attention will be focused on a very interesting nonlocal operator known as
the fractional p(x)-Laplacian with variable order. This type of operator represents an extension and
a combination of many other operators. Indeed, the nonlocal fractional p-Laplacian, which has been
extensively studied in the literature, is defined as

(−∆)s
pu(x) = 2 lim

ε→0+

∫
RN\Bε(0)

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+sp dy, x ∈ RN .
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During this time, problems involving variable exponents have attracted many researchers [1–3]. These
types of problems primarily arise from the p(x)-Laplace operator div(|∇u|p(x)−2∇u), which serves as
a natural extension of the classical p-Laplace operator div(|∇u|p−2∇u) when p is a positive constant.
However, these operators possess a more intricate structure due to their lack of homogeneity. Hence,
problems involving p(x)-Laplacian become more tricky. Moreover, concerning the nonlocal problem
involving the p(x)-Laplacian, we can refer to [4–13] and the references therein. For instance, in [9], the
authors focused their study on a specific fourth-order bi-nonlocal elliptic equation of Kirchhoff type
with Navier boundary conditions, which is expressed as:


M

( ∫
Ω

1
p(x)|∆u|p(x)dx

)
∆2

p(x)u(x) = λ|u|q(x)−2u
(∫

Ω

1
q(x)
|u|q(x)dx

)r

in Ω,

∆u = u = 0 on ∂Ω,

By using a variational method and critical point theory, the authors obtained a nontrivial weak solution.
Consequently, the idea to replace the fractional p-Laplacian by its variable version was initiated. For
this purpose, Kaufmann et al. [14] introduced the fractional p(x)-Laplacian (−∆)s

p(·) as follows:

(−∆)s
pu(x) = lim

ε→0+

∫
RN\Bε(0)

|u(x) − u(y)|p(x,y)−2(u(x) − u(y))
|x − y|N+sp(x,y) dy, x ∈ RN .

To address such problems, the authors considered the fractional Sobolev space with variable exponents,
variational methods, existence. Simultaneously, many works involving the variable-order fractional
Laplacian (see [15]) have emerged, defined as follows:

(−∆)s(·)u(x) = lim
ε→0+

∫
RN\Bε(0)

|u(x) − u(y)|
|x − y|N+2s(x,y) dy, x ∈ RN .

Furthermore, the combination of these operators leads to the emergence of the so-called fractional
p(x)-Laplacian with variable order. This class of operators has captured the attention of numerous
researchers [15–20], who have investigated various aspects, including the existence, multiplicity, and
qualitative properties of the solutions. Additionally, there are several works focusing on the nonlo-
cal fractional p(x)-Laplacian with variable order [15–17, 19, 21, 22] and their references therein. For
instance, in [19], the authors studied the existence and multiplicity of solutions for the following frac-
tional p(·)-Kirchhoff type problem with a variable order s(·): M

("
R2N

1
p(x, y)

|v(x) − v(y)|p(x,y)

|x − y|N+p(x,y)s(x,y) dxdy
)

(−∆)s(·)
p(·)v(x) + |v(x)|p(x)−2v(x) = µg(x, v) in RN ,

v ∈ W s(·),p(·)(RN),
(1.2)

where (x, y) ∈ RN × RN satisfies the condition N > p(x, y)s(x, y), s(·) : R2N → (0, 1) and p(·) :
R2N → (1,∞), and p(x) = p(x, x) for x ∈ RN , M is a continuous Kirchhoff-type function, g(x, v) is a
Carathéodory function and µ > 0 is a parameter. The authors obtained at least two distinct solutions
for the above problem by applying the generalized abstract critical point theorem. In addition, under
weaker conditions, they also proved the existence of one solution and infinitely many solutions using
the mountain pass lemma and fountain theorem, respectively.
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Motivated by the aforementioned works, the present work aims to study the problem (1.1) men-
tioned above. The main difficulties and innovations lie in the form of the new Kirchhoff functions
M(s) = a − bsγ, derived from the negative Young’s modulus when the atoms are spread apart rather
than compressed together, resulting in negative deformation. In the case a = 0, to overcome this chal-
lenge, inspired by [23], our main approach is based on the notion of the first eigenvalue associated with
our operator.

The specificity of this tool is that, in the literature, we only find the recent paper [23], in which
the authors introduce the s(·, ·)-fractional Musielak-Sobolev spaces W s(x,y)Lϕ(x,y)(Ω). By employing
Ekeland’s variational principle, the authors establish the existence of a positive value λ∗∗ > 0 such that
for any λ within the interval (0, λ∗∗), it serves as an eigenvalue for the following problem:

(Pa)
{

(−∆)s(x,.)
a(x,.)

u = λ|u|q(x)−2u in Ω,

u = 0 in RN \Ω,

where Ω is a bounded open subset of RN with a C0,1-regularity and a bounded boundary conditions. It is
noteworthy that this operator represents a generalization of (−∆)s(·)

p(·) (whenever we take a(x,.) = tp(x,.)−2).
Thus, this characterization is applicable in our case.

Throughout this work, the functions s(·) and p(·) satisfy the following conditions:

(H1): s(x, y) is a symmetric function, i.e., s(x, y) = s(y, x), and we have

0 < s− := inf
(x,y)∈Ω×Ω

s(x, y) ≤ s+ := sup
(x,y)∈Ω×Ω

s(x, y) < 1.

(H2): p(x, y) is a symmetric function, i.e., p(x, y) = p(y, x), and we have

1 < p− := inf
(x,y)∈Ω×Ω

p(x, y) ≤ p+ := sup
(x,y)∈Ω×Ω

p(x, y) < ∞.

For any x ∈ Ω, we denote
p(x) := p(x, x), s(x) := s(x, x).

Moreover, it is also assumed that the function p(·) satisfies the following condition:

min
{
p−(γ + 1), q−(k1 + 1), r−(k2 + 1)

}
> p+. (1.3)

Now, we are ready to state our main results.

Theorem 1.1. Let a > 0. Assume that (H1)–(H2) and (1.3) are satisfied. Then, for all λ > 0 and β > 0,
the problem (1.1) possesses a nontrivial weak solution in X.

Theorem 1.2. Let a > 0. Assume that (H1)–(H2) and (1.3) are satisfied. Then, for all λ > 0 and β > 0,
the problem (1.1) admits an unbounded sequence of solutions in X.

Moreover, we also obtain the following existence results for problem (1.1) in the case a = 0.
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Theorem 1.3. Let a = 0, λ1 be the first eigenvalue associated with our operator (For more compre-
hensive details and references, we recommend referring to [23]), and

λ∗ = −
βλ1(x)(q−)k1+1(k1 + 1)

4C(r+)k2+1(k2 + 1)ρq−(k1+1)−r+(k2+1) , if λ > 0, β < 0,

β∗ = −
λλ1(x)(r−)k2+1(k2 + 1)

4C(q+)k1+1(k1 + 1)ρr−(k2+1)−q+(k1+1) , if λ < 0, β > 0.

If the following conditions are satisfied:

λ < 0, β ∈ (0, β∗) and r+(k2 + 1) < min
{
(γ + 1)p−, q−(k1 + 1)

}
,

λ ∈ (0, λ∗), β < 0 and q+(k1 + 1) < min
{
(γ + 1)p−, r−(k2 + 1)

}
, (1.4)

λ < 0, β < 0 and r+(k2 + 1) < q−(k1 + 1) < (γ + 1)p−,

then problem (1.1) has infinitely many solutions in X.

However, as far as our knowledge extends, there are no existing results regarding the existence and
multiplicity of solutions for problem (1.1) involving the new tri-nonlocal Kirchhoff function and the
p(x)-fractional Laplacian operator with variable order.

The structure of this paper is as follows: In the second section, an abstract framework is presented,
where we provide a review of some preliminary results that will be utilized throughout the subsequent
sections. The third section is specifically focused on presenting the Palais-Smale condition separately
for the cases of a > 0 and a = 0. The subsequent sections are dedicated to proving the main results of
this study.

2. Abstract framework

2.1. Generalized Lebesgue and Sobolev spaces

In this section, we provide a brief review of the definition and key results concerning Lebesgue
spaces with variable exponents and generalized Sobolev spaces. For a more comprehensive under-
standing, interested readers are referred to [1, 2, 24] and the references therein.

For this purpose, let us define

C+(Ω) := {h : h ∈ C(Ω) and h(x) > 1 for all x ∈ Ω}.

For p(·) ∈ C+(Ω), the variable exponent Lebesgue space Lp(·)(Ω) is defined by

Lp(·)(Ω) := {u : Ω→ R measurable and
∫

Ω

|u(x)|p(x)dx < ∞}.

This space is endowed with the so-called Luxemburg norm given by

‖u‖Lp(x)(Ω) = |u|p(·) := inf{δ > 0 :
∫

Ω

|
u(x)
δ
|p(x)dx ≤ 1}

and (Lp(·)(Ω), |u|p(·)) becomes a Banach space, and we call it a variable exponent Lebesgue space.
Now, in order to claim the (PS ) condition cited in Section 3, we state the following lemma for the

variable exponent Lebesgue spaces (see [3, Lemma A.1])
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Lemma 2.1. Assume that h1 ∈ L∞(Ω) such that h1 ≥ 0 and h1 . 0 a.e. in Ω. Let h2 : Ω → R be a
measurable function such that h1h2 ≥ 1 a.e. in Ω. Then for any u ∈ Lh1(·)h2(·)(Ω),

‖|u|h1(·)‖h2(·) ≤ ‖u‖
h−1
h1(·)h2(·) + ‖u‖h

+
1

h1(·)h2(·).

The generalized Sobolev space, denoted by Wk,p(·)(Ω), is defined as follows

Wk,p(·)(Ω) = {u ∈ Lp(·)(Ω)| Dαu ∈ Lp(·)(Ω), |α| ≤ k}

where

Dαu =
∂|α|

∂xα1
1 · · · ∂xαN

N

u

with α = (α1, . . . , αN) is a multi-index and |α| =
N∑

i=1

αi. The space Wk,p(·)(Ω), equipped with the norm

‖u‖k,p(·) :=
∑
|α|≤k

|Dαu|p(·),

is a uniformly convex, separable, and reflexive Banach space.

2.2. Fractional Sobolev spaces with variable exponents

In the present part, we recall some properties of the fractional Sobolev spaces with variable expo-
nents which will be useful in the rest of the paper. For more details, we can refer to [14,21,22,25,26].

In the present part, we give the variational setting of problem (1.1) and state important results to
be used later. We set Q := R2N \ (CΩ

RN × CΩ
RN ) and define the fractional Sobolev space with variable

exponent as

X = W s(x,y),p(x),p(x,y)(Ω)

:=
{
u : RN → R : u|Ω ∈ Lp(x)(Ω),∫
Q

|u(x) − u(y)|p(x,y)

ηp(x,y)|x − y|N+s(x,y)p(x,y) dx dy < ∞, for some η > 0
}
.

The space X is equipped with the norm

‖u‖X := ‖u‖Lp(x)(Ω) + [u]X;

where [u]X is the seminorm defined as follows

[u]X = inf
{
η > 0 :

∫
Q

|u(x) − u(y)|p(x,y)

ηp(x,y)|x − y|N+s(x,y)p(x,y) dx dy < 1
}
.

Then (X, ‖ · ‖X) is a separable reflexive Banach space.
Now, define the subspace X0 of X as

X0 =:= {u ∈ X : u = 0 a.e. in Ωc}.

We define the norm on X0 as follows

‖u‖X0 := inf
{
η > 0 :

∫
Q

|u(x) − u(y)|p(x,y)

ηp(x,y)|x − y|N+s(x,y)p(x,y) dx dy < 1
}
.
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Remark 2.1. For u ∈ X0, we obtain∫
Q

|u(x) − u(y)|p(x,y)

ηp(x,y)|x − y|N+s(x,y)p(x,y) dx dy =

∫
RN×RN

|u(x) − u(y)|p(x,y)

ηp(x,y)|x − y|N+s(x,y)p(x,y) dx dy.

Thus, we have

‖u‖X0 := inf
{
η > 0 :

∫
RN×RN

|u(x) − u(y)|p(x,y)

ηp(x,y)|x − y|N+s(x,y)p(x,y) dx dy < 1
}
.

Now we state the following continuous and compact embedding result for the space X0. The proof
follows from [27, Theorem 2.2, Remark 2.2].

Theorem 2.1. Let Ω be a smooth bounded domain in RN , s(·, ·) ∈ (0, 1) and p(·, ·) satisfy (H1) and (H2)
with s+ p+ < N. Then, for any r ∈ C+(Ω) such that 1 < r(x) < p∗s(x) for all x ∈ Ω, there exits a constant
C = C(N, s, p, r,Ω) > 0 such that for every u ∈ X0,

‖u‖Lr(x)(Ω) ≤ C‖u‖X0 .

Moreover, this embedding is compact.

Definition 2.1. For u ∈ X0, we define the modular ρX0 : X0 → R as

ρX0(u) :=
∫
RN×RN

|u(x) − u(y)|p(x,y)

|x − y|N+s(x,y)p(x,y) dx dy. (2.1)

The interplay between the norm in X0 and the modular function ρX0 can be studied in the following
lemma.

Lemma 2.2. Let u ∈ X0 and ρX0 be defined as in (2.1). Then we have the following results:

(i) ‖u‖X0 < 1 (= 1;> 1) if and only if ρX0(u) < 1(= 1;> 1).

(ii) If ‖u‖X0 > 1, then ‖u‖p−

X0
≤ ρX0(u) ≤ ‖u‖p+

X0
.

(iii) If ‖u‖X0 < 1, then ‖u‖p+

X0
≤ ρX0(u) ≤ ‖u‖p−

X0
.

The next lemma can easily be obtained using the properties of the modular function ρX0 from Lemma
2.2.

Proposition 2.1 ( [19, 28]). Let u, um ∈ X0, m ∈ N. Then the following two statements are equivalent:

(i) lim
m→∞
‖um − u‖X0 = 0,

(ii) lim
m→∞

ρX0(um − u) = 0.

Lemma 2.3 ( [27, Lemma 2.3]). (X0, ‖ · ‖X0) is a separable, reflexive and uniformly convex Banach
space.
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3. Checking of the (PS )c condition:

In this part, we will use as the space of work, the space X0, and by simplicity we will denote this as
X instead of X0 in the rest of this paper.
Considering the variational structure of (1.1), we look for critical points of the corresponding Euler-
Lagrange functional Iλ,β : X → R, which is defined as follows:

Iλ,β(u) = aσp(x,y)(u) −
b

γ + 1

(
σp(x,y)(u)

)γ+1
−

λ

k1 + 1

(∫
Ω

1
q(x)
|u|q(x)dx

)k1+1

−
β

k2 + 1

(∫
Ω

1
r(x)
|u|r(x)dx

)k2+1

,(3.1)

for all u ∈ X. It is important to note that Iλ,β is a C1(X,R) functional, and its derivative can be computed
as follows:

〈I′λ,β(u), φ〉 =
[
a − b

(
σp(x,y)(u)

)γ] ∫
Ω×Ω

|u(x) − u(y)|p(x,y)−2(u(x) − u(y))(φ(x) − φ(y))
|x − y|N+p(x,y)s(x,y) dxdy

− λ

(∫
Ω

1
q(x)
|u|q(x)dx

)k1 ∫
Ω

|u|q(x)−2uφdx − β
(∫

Ω

1
r(x)
|u|r(x)dx

)k2 ∫
Ω

|u|r(x)−2uφdx,

(3.2)

for any v ∈ X. Consequently, critical points of Iλ,β correspond to weak solutions of (1.1).

3.1. The (PS )c condition for a > 0

Lemma 3.1. Assuming that (1.3) is valid, then the functional Iλ,β satisfies the Palais-Smale condition

at level c, where c ∈

0, a
γ+1
γ

b
1
γ + b

1
γ

γ

.
Proof. Let un be a (PS )c sequence of Iλ, β with c ∈

0, a
γ+1
γ

b
1
γ + b

1
γ

γ

. This implies that the following

conditions hold:

Iλ,β(un)→ c, I′λ,β(un)→ 0 in X∗, n→ ∞, (3.3)

where X∗ denotes the dual space of X.
Step 1. We aim to prove that the sequence un is bounded in X. By assuming the contrary, i.e., supposing
that un is unbounded in X, so up to a subsequence, we may assume that ‖un‖X → ∞ as n → ∞. we
have

p+c + 1 + ‖un‖X ≥ p+Iλ,β(un) − 〈I′λ,β(un), un〉

= p+
(
aσp(x,y)(un) −

b
γ + 1

(
σp(x,y)(un)

)γ+1
−

λ

k1 + 1

(∫
Ω

1
q(x)
|un|

q(x)dx
)k1+1

−
β

k2 + 1

(∫
Ω

1
r(x)
|un|

r(x)dx
)k2+1 )
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−

( [
a − b

(
σp(x,y)(un)

)γ] ∫
Ω×Ω

|un(x) − un(y)|p(x,y)

|x − y|N+p(x,y)s(x,y) dxdy − λ
(∫

Ω

1
q(x)
|un|

q(x)dx
)k1 ∫

Ω

|un|
q(x)dx

− β

(∫
Ω

1
r(x)
|un|

r(x)dx
)k2 ∫

Ω

|un|
r(x)dx

)
≥

b
(p+)γ

(
1 −

p+

(γ + 1)(p−)

) (∫
Ω×Ω

|un(x) − un(y)|p(x,y)

|x − y|N+p(x,y)s(x,y) dxdy
)γ+1

+
λ

(q+)k1

(
1 −

p+

(k1 + 1)(q−)

) (∫
Ω

|un|
q(x)dx

)k1+1

+
β

(r+)k2

(
1 −

p+

(k2 + 1)(r−)

) (∫
Ω

|un|
r(x)dx

)k2+1

.(3.4)

From (1.3) and the fact that γ > 0 and ki > 0 for i = 1, 2, it follows that

1 −
p+

(γ + 1)(p−)
> 0,

1 −
p+

(k1 + 1)(q−)
> 0,

1 −
p+

(k2 + 1)(r−)
> 0.

(3.5)

We deduce from (3.4) and (3.5), that

p+c + 1 + ‖un‖X ≥
b

(p+)γ

(
1 −

p+

(γ + 1)(p−)

) (∫
Ω×Ω

|un(x) − un(y)|p(x,y)

|x − y|N+p(x,y)s(x,y) dxdy
)γ+1

.

If the sequence (un) is unbounded in X, we can assume, by passing to a subsequence if necessary, that
‖un‖X > 1. Considering the previous inequalities, we have the following:

p+c + 1 + ‖un‖X ≥
b

(p+)γ

(
1 −

p+

(γ + 1)(p−)

)
‖un‖

(γ+1)p−

X ,

which is absurd since (γ+ 1)p− > 1. Thus, {un} must be bounded in X, and the first assertion is proven.
Step 2. Now, we aim to demonstrate that the sequence {un} has a convergent subsequence in X. Ac-
cording to Theorem 2.1, the embedding X ↪→ Lτ(x)(Ω) is compact, where 1 ≤ τ(x) < p∗s(x). Since X is
a reflexive Banach space, passing, if necessary, to a subsequence, there exists u ∈ X satisfying:

un ⇀ u in X, un → u in Lτ(x)(Ω), un(x)→ u(x), a.e. in Ω. (3.6)

From (3.2), we find that

〈I′λ,β(u), un − u〉

=
[
a − b

(
σp(x,y)(un)

)γ] ∫
Ω×Ω

|un(x) − un(y)|p(x,y)−2(un(x) − un(y))((un(x) − u(x)) − (un(y) − u(y)))
|x − y|N+p(x,y)s(x,y) dxdy

− λ

(∫
Ω

1
q(x)
|un|

q(x)dx
)k1 ∫

Ω

|un|
q(x)−2un(un − u)dx − β

(∫
Ω

1
r(x)
|un|

r(x)dx
)k2 ∫

Ω

|un|
r(x)−2un(un − u)dx.

(3.7)
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Furthermore, utilizing Hölder’s inequality and (3.6), we can estimate:∣∣∣∣∣∫
Ω

|un|
q(x)−2un(un − u)dx

∣∣∣∣∣ ≤ ∫
Ω

|un|
q(x)−1|un − u|dx

≤ C
∣∣∣∣|un|

q(x)−1
∣∣∣∣ q(x)

q(x)−1

|un − u|q(x)

≤ C max
{
‖un‖

q+−1
X , ‖un‖

q−−1
X

}
|un − u|q(x). (3.8)

Therefore, thanks to the convergence result (3.6), we can deduce that

|un − u|q(x) → 0 as n→ ∞. (3.9)

By combining the boundedness of {un} in X with the estimates (3.8) and (3.9), we can conclude that

lim
n→∞

∫
Ω

|un|
q(x)−2un(un − u)dx = 0.

As {un} is bounded in X, there exist positive constants c1 and c2 such that

c1 ≤

∫
Ω

1
q(x)
|un|

q(x)dx ≤ c2. (3.10)

So, we have (∫
Ω

1
q(x)
|un|

q(x)dx
)k1 ∫

Ω

|un|
q(x)−2un(un − u)dx→ 0. (3.11)

Similarly, we obtain

lim
n→∞

(∫
Ω

1
r(x)
|un|

r(x)dx
)k2 ∫

Ω

|un|
r(x)−2un(un − u)dx = 0. (3.12)

By (3.3), we have
〈I′λ,β(u), un − u〉 → 0.

Which means, based on equations (3.11) and (3.12), that[
a − b

(
σp(x,y)(un)

)γ] ∫
Ω×Ω

|un(x) − un(y)|p(x,y)−2(un(x) − un(y))((un(x) − u(x)) − (un(y) − u(y)))
|x − y|N+p(x,y)s(x,y) dxdy→ 0.

(3.13)
Since {un} is bounded in X, passing to a subsequence, if necessary, we may assume that when n→ ∞

σp(x,y)(un) =

∫
Ω×Ω

1
p(x, y)

|un(x) − un(y)|p(x,y)

|x − y|N+s(x,y)p(x,y) dxdy→ t0 ≥ 0.

Considering two cases: t0 = 0 and t0 > 0. Now, proceed with a case analysis. First, if t0 = 0, then the
sequence {un} converges strongly to u = 0 in X, and the proof is concluded. However, if t0 > 0, we will
further examine the two sub-cases below:

Subcase 1. If t0 ,
(a
b

) 1
γ

then a− b
(∫

Ω×Ω

1
p(x, y)

|un(x) − un(y)|p(x,y)

|x − y|N+s(x,y)p(x,y) dxdy
)γ
→ 0 is false, and there is no

subsequence of
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a − b

(∫
Ω×Ω

1
p(x, y)

|un(x) − un(y)|p(x,y)

|x − y|N+s(x,y)p(x,y) dxdy
)γ
→ 0

}
that converges to zero. Thus, we can find a posi-

tive value δ > 0 such that∣∣∣∣∣∣a − b
(∫

Ω×Ω

1
p(x, y)

|un(x) − un(y)|p(x,y)

|x − y|N+s(x,y)p(x,y) dxdy
)γ∣∣∣∣∣∣ > δ > 0,

for sufficiently large n. As a result, we can conclude that the set{
a − b

(∫
Ω×Ω

1
p(x, y)

|un(x) − un(y)|p(x,y)

|x − y|N+s(x,y)p(x,y) dxdy
)γ
→ 0

}
is bounded. (3.14)

Subcase 2. If t0 =

(a
b

) 1
γ

, then

a − b
(∫

Ω×Ω

1
p(x, y)

|un(x) − un(y)|p(x,y)

|x − y|N+s(x,y)p(x,y) dxdy
)γ
→ 0.

We define

ϕ(u) =
λ

k1 + 1

(∫
Ω

1
q(x)
|u|q(x)dx

)k1+1

+
β

k2 + 1

(∫
Ω

1
r(x)
|u|r(x)dx

)k2+1

, for all u ∈ X.

Then

〈ϕ′(u), v〉 = λ

(∫
Ω

1
q(x)
|u|q(x)dx

)k1 ∫
Ω

|u|q(x)−2uvdx + β

(∫
Ω

1
r(x)
|u|r(x)dx

)k2 ∫
Ω

|u|r(x)−2uvdx, for all v ∈ X.

It follows that

〈ϕ′(un) − ϕ′(u), v〉 = λ

(∫
Ω

1
q(x)
|un|

q(x)dx
)k1 ∫

Ω

|un|
q(x)−2unvdx −

(∫
Ω

1
q(x)
|u|q(x)dx

)k1 ∫
Ω

|u|q(x)−2uvdx


+ β

(∫
Ω

1
r(x)
|un|

r(x)dx
)k2 ∫

Ω

|un|
r(x)−2unvdx −

(∫
Ω

1
r(x)
|u|r(x)dx

)k2 ∫
Ω

|u|r(x)−2uvdx
 .

To complete our proof we require the following lemma.

Lemma 3.2. Suppose we have sequences un and u belonging to X such that (3.6) is satisfied. Then,
passing to a subsequence, if necessary, the following properties hold:

(i) lim
n→∞

(∫
Ω

1
q(x)
|un|

q(x)dx
)k1 ∫

Ω

|un|
q(x)−2unvdx −

(∫
Ω

1
q(x)
|u|q(x)dx

)k1 ∫
Ω

|u|q(x)−2uvdx
 = 0;

(ii) lim
n→∞

(∫
Ω

1
r(x)
|un|

r(x)dx
)k2 ∫

Ω

|un|
r(x)−2unvdx −

(∫
Ω

1
r(x)
|u|r(x)dx

)k2 ∫
Ω

|u|r(x)−2uvdx
 = 0;

(iii) 〈ϕ′(un) − ϕ′(u), v〉 → 0, v ∈ X.
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Proof. By (3.6), we have un → u in Lp(x)(Ω) which implies that

|un|
p(x)−2un → |u|p(x)−2u in L

p(x)
p(x)−1 (Ω). (3.15)

From (3.10) we deduce that

ck1
1 ≤

(∫
Ω

1
q(x)
|un|

q(x)dx
)k1

,

(∫
Ω

1
q(x)
|u|q(x)dx

)k1

≤ ck1
2 . (3.16)

Due to Hölder’s inequality, we have∣∣∣∣∣∣∣
(∫

Ω

1
q(x)
|un|

q(x)dx
)k1 ∫

Ω

|un|
q(x)−2unvdx −

(∫
Ω

1
q(x)
|u|q(x)dx

)k1 ∫
Ω

|u|q(x)−2uvdx

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
(∫

Ω

1
q(x)
|un|

q(x)dx
)k1 ∫

Ω

|un|
q(x)−2unvdx +

(∫
Ω

1
q(x)
|u|q(x)dx

)k1 ∫
Ω

|u|q(x)−2u(−v)dx

∣∣∣∣∣∣∣
≤ ck1

2

∣∣∣∣∣∫
Ω

(|un|
q(x)−2un − |u|q(x)−2u)vdx

∣∣∣∣∣
≤ ck1

2

∣∣∣∣|un|
q(x)−2un − |u|q(x)−2u

∣∣∣∣ q(x)
q(x)−1

|v|q(x)

≤ Cck1
2

∣∣∣∣|un|
q(x)−2un − |u|q(x)−2u

∣∣∣∣ q(x)
q(x)−1

‖v‖X → 0.

By making a minor adjustment to the aforementioned proof, we can also establish assertion (ii), but
we will omit the specific details. As a result, by combining parts (i) and (ii), we can conclude assertion
(iii).
Consequently, ‖ϕ′(un) − ϕ′(u)‖X∗ → 0 and ϕ′(un)→ ϕ′(u).

We are now able to conclude the proof of Subcase 2. Utilizing Lemma 3.2 and taking into account

the fact that 〈I′λ,β(u), v〉 =
[
a − b

(
σp(x,y)(u)

)γ] ∫
Ω×Ω

|u(x) − u(y)|p(x,y)−2(u(x) − u(y))(v(x) − v(y))
|x − y|N+p(x,y)s(x,y) dxdy −

〈ϕ′(u), v〉,

〈I′λ,β((un), v〉 → 0 and a − b
(∫

Ω×Ω

1
p(x, y)

|un(x) − un(y)|p(x,y)

|x − y|N+s(x,y)p(x,y) dxdy
)γ
→ 0, then we can infer that

ϕ′(un)→ 0 (n→ ∞), i.e.,

〈ϕ′(u), v〉 = λ

(∫
Ω

1
q(x)
|u|q(x)dx

)k1 ∫
Ω

|u|q(x)−2uvdx + β

(∫
Ω

1
r(x)
|u|r(x)dx

)k2 ∫
Ω

|u|r(x)−2uvdx, for all v ∈ X,

and therefore

λ

(∫
Ω

1
q(x)
|u|q(x)dx

)k1

|u(x)|q(x)−2u(x) + β

(∫
Ω

1
r(x)
|u|r(x)dx

)k2

|u(x)|r(x)−2u(x) = 0 for a.e. x ∈ Ω.

By invoking the fundamental lemma of the variational method (see [29]), we can conclude that u = 0.
Hence,

ϕ(un) =
λ

k1 + 1

(∫
Ω

1
q(x)
|un|

q(x)dx
)k1+1

+
β

k2 + 1

(∫
Ω

1
r(x)
|un|

r(x)dx
)k2+1
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→
λ

k1 + 1

(∫
Ω

1
q(x)
|u|q(x)dx

)k1+1

+
β

k2 + 1

(∫
Ω

1
r(x)
|u|r(x)dx

)k2+1

= 0.

Hence, we can deduce that

Iλ,β(un) = a
∫

Ω×Ω

1
p(x, y)

|un(x) − un(y)|p(x,y)

|x − y|N+s(x,y)p(x,y) dx dy −
b

γ + 1

(∫
Ω×Ω

1
p(x, y)

|un(x) − un(y)|p(x,y)

|x − y|N+s(x,y)p(x,y) dx dy
)γ+1

−
λ

k1 + 1

(∫
Ω

1
q(x)
|u|q(x)dx

)k1+1

−
β

k2 + 1

(∫
Ω

1
r(x)
|u|r(x)dx

)k2+1

→
γa

γ+1
γ

(γ + 1)b
1
γ

.

Therefore, we have reached a contradiction since Iλ,β(un)→ c ∈

0, a
γ+1
γ

b
1
γ + b

1
γ

γ

.
Then a − b

(∫
Ω×Ω

1
p(x, y)

|un(x) − un(y)|p(x,y)

|x − y|N+s(x,y)p(x,y) dx dy
)γ
→ 0 is not true. Similarly to Subcase 1, we can

argue as follows: {
a − b

(∫
Ω×Ω

1
p(x, y)

|un(x) − un(y)|p(x,y)

|x − y|N+s(x,y)p(x,y) dx dy
)γ
→ 0

}
is bounded.

So, combining the two cases discussed above, we can conclude that:∫
Ω×Ω

|un(x) − un(y)|p(x,y)−2(un(x) − un(y))((un(x) − u(x)) − (un(y) − u(y)))
|x − y|N+p(x,y)s(x,y) dxdy→ 0.

Therefore, by invoking the (S +) condition and Proposition 2.1, we conclude that ‖un‖X → ‖u‖X as
n→ ∞, which implies that Iλ,β satisfies the (PS )c condition. Hence, the proof is now complete.

3.2. The (PS )c condition for a = 0

Lemma 3.3. Assuming that (1.4) is valid, the functional Iλ,β satisfies the Palais-Smale condition at all
levels c ∈ R.

Proof. Let {un} be a (PS )c sequence of Iλ,β, that is

Iλ,β(un)→ c, I′λ,β(un)→ 0 in X∗, n→ ∞, (3.17)

where X∗ is the dual space of X.
Step 1. We will prove that {un} is bounded in X. Let us assume by contradiction that {un} is unbounded
in X. Without loss of generality, we can assume that ‖un‖X > 1 for all n. Take

θ < min
{

(γ + 1)(p−)γ+1

(p+)γ
,

(k1 + 1)(q−)k1+1

(q+)k1
,

(k2 + 1)(r−)k2+1

(r+)k2

}
,
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then, we have

c + 1 + ‖un‖X ≥ Iλ,β(un) −
1
θ
〈I′λ,β(un), un〉

=

− b
γ + 1

(
σp(x,y)(un)

)γ+1
−

λ

k1 + 1

(∫
Ω

1
q(x)
|un|

q(x)dx
)k1+1

−
β

k2 + 1

(∫
Ω

1
r(x)
|un|

r(x)dx
)k2+1

−
1
θ

( [
−b

(
σp(x,y)(un)

)γ] ∫
Ω×Ω

|un(x) − un(y)|p(x,y)

|x − y|N+p(x,y)s(x,y) dxdy − λ
(∫

Ω

1
q(x)
|un|

q(x)dx
)k1 ∫

Ω

|un|
q(x)dx

− β

(∫
Ω

1
r(x)
|un|

r(x)dx
)k2 ∫

Ω

|un|
r(x)dx

)
≥ b

(
1

θ(p+)γ
−

1
(γ + 1)(p−)γ+1

) (∫
Ω×Ω

|un(x) − un(y)|p(x,y)

|x − y|N+p(x,y)s(x,y) dxdy
)γ+1

+ λ

(
1

θ(q+)k1
−

1
(k1 + 1)(q−)k1+1

) (∫
Ω

|un|
q(x)dx

)k1+1

+ β

(
1

θ(r+)k2
−

1
(k2 + 1)(r−)k2+1

) (∫
Ω

|un|
r(x)dx

)k2+1

≥ b
(

1
θ(p+)γ

−
1

(γ + 1)(p−)γ+1

)
‖un‖

(γ+1)p−

X + λ

(
1

θ(q+)k1
−

1
(k1 + 1)(q−)k1+1

) (∫
Ω

|un|
q(x)dx

)k1+1

+ β

(
1

θ(r+)k2
−

1
(k2 + 1)(r−)k2+1

) (∫
Ω

|un|
r(x)dx

)k2+1

. (3.18)

For simplicity, denote

A1 = b
(

1
θ(p+)γ

−
1

(γ + 1)(p−)γ+1

)
,

A2 = λ

(
1

θ(q+)k1
−

1
(k1 + 1)(q−)k1+1

)
,

A3 = β

(
1

θ(r+)k2
−

1
(k2 + 1)(r−)k2+1

)
. (3.19)

Using (3.18) and (3.19), we can write

A1‖un‖
(γ+1)p−

X ≤



c + 1 + ‖un‖X − A3

(∫
Ω

|un|
r(x)dx

)k2+1

, if λ > 0, β < 0.

c + 1 + ‖un‖X − A2

(∫
Ω

|un|
q(x)dx

)k1+1

, if λ < 0, β > 0.

c + 1 + ‖un‖X, if λ < 0, β < 0.
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≤



c + 1 + ‖un‖X − A3‖un‖
r+(k2+1)
X , if λ > 0, β < 0.

c + 1 + ‖un‖X − A2‖un‖
q+(k1+1)
X , if λ < 0, β > 0.

c + 1 + ‖un‖X, if λ < 0, β < 0.

(3.20)

It follows from (1.4) and (3.20) that {un} is bounded in X.
Step 2. We will now demonstrate that the sequence {un} possesses a convergent subsequence in the
space X. According to Theorem 2.1, the embedding X ↪→ Lτ(x)(Ω) is compact where 1 ≤ τ(x) < p∗s(x).
Since X is a reflexive Banach space, passing, if necessary, to a subsequence, there exists u ∈ X such
that

un ⇀ u in X, un → u in Lτ(x)(Ω), un(x)→ u(x), a.e. in Ω. (3.21)

From (3.2), we find that

〈I′λ,β(u), un − u〉

= −b
(
σp(x,y)(un)

)γ ∫
Ω×Ω

|un(x) − un(y)|p(x,y)−2(un(x) − un(y))((un(x) − u(x)) − (un(y) − u(y)))
|x − y|N+p(x,y)s(x,y) dxdy

− λ

(∫
Ω

1
q(x)
|un|

q(x)dx
)k1 ∫

Ω

|un|
q(x)−2un(un − u)dx − β

(∫
Ω

1
r(x)
|un|

r(x)dx
)k2 ∫

Ω

|un|
r(x)−2un(un − u)dx

(3.22)

So, we have (∫
Ω

1
q(x)
|un|

q(x)dx
)k1 ∫

Ω

|un|
q(x)−2un(un − u)dx→ 0. (3.23)

Similarly, we obtain

lim
n→∞

(∫
Ω

1
r(x)
|un|

r(x)dx
)k2 ∫

Ω

|un|
r(x)−2un(un − u)dx = 0. (3.24)

By (3.17), we have
〈I′λ,β(u), un − u〉 → 0.

So, based on the expressions (3.23) and (3.24), we can conclude that (3.22) leads to the following
implications:

− b
(
σp(x,y)(un)

)γ ∫
Ω×Ω

|un(x) − un(y)|p(x,y)−2(un(x) − un(y))((un(x) − u(x)) − (un(y) − u(y)))
|x − y|N+p(x,y)s(x,y) dxdy→ 0.

(3.25)
Since {un} is bounded in X and b > 0, we have{

−b
(∫

Ω×Ω

1
p(x, y)

|un(x) − un(y)|p(x,y)

|x − y|N+s(x,y)p(x,y) dx dy
)γ
→ 0

}
is bounded.

Therefore, we can conclude from the two aforementioned cases that∫
Ω×Ω

|un(x) − un(y)|p(x,y)−2(un(x) − un(y))((un(x) − u(x)) − (un(y) − u(y)))
|x − y|N+p(x,y)s(x,y) dxdy→ 0.

Therefore, by utilizing the (S +) condition and Proposition 2.1, we can deduce that ‖un‖X → ‖u‖X as
n→ ∞, indicating that Iλ,β satisfies the (PS )c condition. This concludes the proof.
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4. Proof of Theorem 1.1

In this part, we will prove Theorem 1.1 by applying the mountain pass theorem, see [29].

Lemma 4.1. Assume that (1.3) holds. Then there exist ρ > 0 and α > 0 such that Iλ,β(u) ≥ α > 0, for
any u ∈ X with ‖u‖X = ρ.

Proof. Let u ∈ X with ‖u‖X < 1. From (3.3), Lemma 2.2 and Sobolev immersions, we get

Iλ,β(u) = aσp(x,y)(u) −
b

γ + 1

(
σp(x,y)(u)

)γ+1
−

λ

k1 + 1

(∫
Ω

1
q(x)
|u|q(x)dx

)k1+1

−
β

k2 + 1

(∫
Ω

1
r(x)
|u|r(x)dx

)k2+1

≥
a
p+
‖u‖p+

X −
b

(p−)γ+1(γ + 1)
‖u‖p−(γ+1)

X −
λ

k1 + 1
1

(q−)k1+1

(∫
Ω

|u|q(x)dx
)k1+1

−
β

k2 + 1
1

(r−)k2+1

(∫
Ω

|u|r(x)dx
)k2+1

≥
a
p+
‖u‖p+

X −
b

(p−)γ+1(γ + 1)
‖u‖p−(γ+1)

X −
λ

k1 + 1
Cq−(k1+1)

1

(q−)k1+1 ‖u‖
q−(k1+1)
X −

β

k2 + 1
Cr−(k2+1)

2

(r−)k2+1 ‖u‖
r−(k2+1)
X

≥ ‖u‖p+

X

( a
p+
−

b
(p−)γ+1(γ + 1)

‖u‖p−(γ+1)−p+

X −
λ

k1 + 1
Cq−(k1+1)

1

(q−)k1+1 ‖u‖
q−(k1+1)−p+

X

−
β

k2 + 1
Cr−(k2+1)

2

(r−)k2+1 ‖u‖
r−(k2+1)−p+

X

)
.

Hence, based the fact that ‖u‖X < 1 and p satisfies condition (1.3), we infer the result.

Lemma 4.2. Assume that the conditions (H1),(H2), (1.3) hold. Then there exists e ∈ X with ‖e‖X > ρ

(where ρ is given by Lemma 4.1) such that Iλ,β(e) < 0.

Proof. Let φ0 ∈ C∞0 (Ω). According the condition (1.3), for t > 1 large enough, we have

Iλ,β(tφ0) ≤
atp+

p−
‖φ0‖

p+

X −
btp−(γ+1)

(γ + 1)(p+)γ+1 ‖φ0‖
p−(γ+1)
X −

λtq−(k1+1)

(k1 + 1)(q+)k1+1

(∫
Ω

|φ0|
q(x)dx

)k1+1

−
βtr−(k2+1)

(k2 + 1)(r+)k2+1

(∫
Ω

|φ0|
r(x)dx

)k2+1

.

If condition (1.3) holds, then Iλ,β(tφ0)→ −∞ as t → ∞. So, for some t0 > 1 large enough, we deduce
that ‖t0φ0‖X > ρ and Iλ,β(t0φ0) < 0. Choosing e = t0φ0, the proof of Lemma 4.2 is completed.

Proof of Theorem 1.1.

It follows from Lemmas 3.3, 4.1, 4.2 and the fact that Iλ,β(0) = 0, Iλ,β satisfies all conditions of the
mountain pass theorem [29]. Thus, problem (1.1) admits a nontrivial weak solution.

5. Proof of Theorem 1.2

Since X is a reflexive and separable Banach space, there exist ei ∈ X and e∗i ∈ X∗ such that 〈ei, e∗j〉 =

δi j where δ means the Kronecker symbol.
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We denote
Xi = span{ei, i = 1, 2, · · · }, X∗i = span{e∗i , i = 1, 2, · · · }.

Now, we consider Xi = {ei} and denote

X = ⊕∞i=1Xi, Yk = ⊕k
i=1Xi, Zk = ⊕∞i=kXi.

Theorem 5.1 (Fountain Theorem, see [29]). Let X0 be a Banach space with the norm ‖ · ‖X0 and let Xi

be a sequence of subspace X0 with dimXi < ∞ for each i ∈ N. In addition, set

X0 = ⊕∞i=1Xi, Yk = ⊕k
i=1Xi, Zk = ⊕∞i=kXi

For each even functional J ∈ C1(X0,R) and for each k ∈ N, we suppose that there exists ρk > γk > 0
such that

(1) ak := max
u∈Yk ,‖u‖X0 =ρk

J(u) ≤ 0,

(2) bk := inf
u∈Zk ,‖u‖X0 =γk

J(u)→ +∞, k → +∞,

(3) The functional J satisfies the (PS)c condition for every c > 0.

Then J admits an unbounded sequence of critical values.

To prove our result, we will use the Fountain theorem 5.1. So, this proof is divided in several
lemmas given as follows

Lemma 5.1. (see [26]) If q(x), r(x) ∈ C+(Ω) satisfying 1 ≤ q(x), r(x) < p∗s(x),∀x ∈ Ω and let denote
by

ξk = sup{|u|q(x), ‖u‖X = 1, u ∈ Zk}, ξ′k = sup{|u|r(x), ‖u‖X = 1, u ∈ Zk}.

Then
lim
k→∞

ξk = 0, lim
k→∞

ξ′k = 0.

Lemma 5.2. The functional Iλ,β verifies the following property ak := max
u∈Yk ,‖u‖=ρk

Iλ,β(u) ≤ 0, where the

space Yk is given in Theorem 5.1.

Proof. Let λ, β > 0. Since Yk = ⊕k
i=1Xi, then dimYk < ∞ or all norms are equivalent in the finite

dimensional space. With u ∈ Yk such that ‖u‖X > 1, we have

Iλ,β(u) = aσp(x,y)(u) −
b

γ + 1

(
σp(x,y)(u)

)γ+1
−

λ

k1 + 1

(∫
Ω

1
q(x)
|u|q(x)dx

)k1+1

−
β

k2 + 1

(∫
Ω

1
r(x)
|u|r(x)dx

)k2+1

≤
a
p−
‖u‖p+

X −
b

(p+)γ+1(γ + 1)
‖u‖p−(γ+1)

X −
λ

k1 + 1

(∫
Ω

1
q(x)
|u|q(x)dx

)k1+1

−
β

k2 + 1

(∫
Ω

1
r(x)
|u|r(x)dx

)k2+1

≤
a
p−
‖u‖p+

X −
b

(p+)γ+1(γ + 1)
‖u‖p−(γ+1)

X −
λ

(k1 + 1)(q+)k1+1

(∫
Ω

|u|q(x)dx
)k1+1

−
β

(k2 + 1)(r+)k2+1

(∫
Ω

|u|r(x)dx
)k2+1

Hence, using the embeddings Lq(x) ↪→ X and Lr(x) ↪→ X (see Theorem 2.1) and based the inequality
(1.3), we infer that ak := max

u∈Yk ,‖u‖=ρk
Iλ,β(u) ≤ 0
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Lemma 5.3. The functional Iλ,β verifies the following property bk := inf
u∈Zk ,‖u‖=γk

J(u) → +∞, k → +∞,

where the space Zk is given in Theorem 5.1.

Proof. Let u ∈ Zk with ‖u‖X < 1. So, we have

Iλ,β(u) = aσp(x,y)(u) −
b

γ + 1

(
σp(x,y)(u)

)γ+1
−

λ

k1 + 1

(∫
Ω

1
q(x)
|u|q(x)dx

)k1+1

−
β

k2 + 1

(∫
Ω

1
r(x)
|u|r(x)dx

)k2+1

≥
a
p+
‖u‖p+

X −
b

(p−)γ+1(γ + 1)
‖u‖p−(γ+1)

X −
λ

k1 + 1
1

(q−)k1+1

(∫
Ω

|u|q(x)dx
)k1+1

−
β

k2 + 1
1

(r−)k2+1

(∫
Ω

|u|r(x)dx
)k2+1

So, we obtain

Iλ,β(u) ≥



a
p+
‖u‖p+

X −
b

(p−)γ+1(γ + 1)
‖u‖p−(γ+1)

X − λCq − βCr, if |u|q(x) < 1, and |u|r(x) < 1,

a
p+
‖u‖p+

X −
b

(p−)γ+1(γ + 1)
‖u‖p−(γ+1)

X − λC′q[ξk‖u‖X]q−(k1+1) − βCr, if|u|q(x) > 1 and |u|r(x) < 1,

a
p+
‖u‖p+

X −
b

(p−)γ+1(γ + 1)
‖u‖p−(γ+1)

X − λCq − βC′r[ξ
′
k‖u‖X]r−(k2+1), if|u|q(x) < 1 and |u|r(x) > 1

a
p+
‖u‖p+

X −
b

(p−)γ+1(γ + 1)
‖u‖p−(γ+1)

X − λC′q[ξk‖u‖X]q−(k1+1) − βC′r[ξ
′
k‖u‖X]r−(k2+1), if |u|q(x), |u|r(x) > 1,

where,

Cq =
1

k1 + 1
1

(q−)k1+1 Cq−(k1+1), C′q =
1

k1 + 1
1

(q−)k1+1 Cq+(k1+1)

and
Cr =

1
k2 + 1

1
(r−)k2+1 Cr−(k2+1), C′r =

1
k2 + 1

1
(r−)k2+1 Cr+(k2+1).

Hence, we have

Iλ,β(u) ≥
a
p−
‖u‖p+

X −
b

(p+)γ+1(γ + 1)
‖u‖p−(γ+1)

X − λC′′q [ξk‖u‖X]q−(k1+1) − βC′′r [ξ′k‖u‖X]r−(k2+1) −Cλ,β.

So, based the fact that lim
k→∞

ξk = 0 and lim
k→∞

ξ′k = 0, we can deduce that for k sufficiently large, we

have ξk < 1 and ξ′k < 1. Thus, we have bk := inf
u∈Zk ,‖u‖=γk

J(u) → +∞, k → +∞ since we have taken

‖u‖X < 1.
Proof of Theorem 1.2 We have that Iλ,β(u) belongs to C1(X,R), even functional and verifies the

Palais-smale condition. Moreover, we have

ak := max
u∈Yk ,‖u‖=ρk

Iλ,β(u) ≤ 0

and
bk := inf

u∈Zk ,‖u‖=γk
J(u)→ +∞,

for k → +∞. Then, by using the Fountain theorem, we deduce that Iλ,β(u) admits an unbounded
sequence of critical points.
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5.1. Proof of Theorem 1.3.

To prove Theorem 1.3, we shall use the following symmetric mountain pass theorem in [30]:

Theorem 5.2. ( [30]). Let E be a real infinite dimensional Banach space and I ∈ C1(E) satisfying
the Palais-Smale condition. Suppose E = E− ⊕ E+, where E− is finite dimensional, and assume the
following conditions:

1. I is even and I(0) = 0;

2. there exist α > 0 and ρ > 0 such that I(u) ≥ α for any u ∈ E+ with ‖u‖ = ρ;

3. for any finite dimensional subspace W ⊂ E there is R = R(W) such that I(u) ≤ 0 for u ∈ W,
‖u‖ ≥ R;

then, I possesses an unbounded sequence of critical values.

Lemma 5.4. Assume that (1.4) holds. Then there exist ρ > 0 and α > 0 such that Iλ,β(u) ≥ α > 0, for
any u ∈ X with ‖u‖X = ρ.

Proof. Let u ∈ X with ‖u‖X = ρ ∈ (0, 1). Following, let denote by λ1(x) the eigenvalue related to
our operator. By using the Sobolev immersions, we get

Iλ,β(u) = −
b

γ + 1

(
σp(x,y)(u)

)γ+1
−

λ

k1 + 1

(∫
Ω

1
q(x)
|u|q(x)dx

)k1+1

−
β

k2 + 1

(∫
Ω

1
r(x)
|u|r(x)dx

)k2+1

≥



−
β

k2 + 1

(∫
Ω

1
r(x)
|u|r(x)dx

)k2+1

−
b

(p−)γ+1(γ + 1)
‖u‖p−(γ+1)

X −
λ

k1 + 1

(∫
Ω

1
q(x)
|u|q(x)dx

)k1+1

,

if λ > 0, β < 0.

−
λ

k1 + 1

(∫
Ω

1
q(x)
|u|q(x)dx

)k1+1

−
b

(p−)γ+1(γ + 1)
‖u‖p−(γ+1)

X −
β

k2 + 1

(∫
Ω

1
r(x)
|u|r(x)dx

)k2+1

,

if λ < 0, β > 0.

−
λ

k1 + 1

(∫
Ω

1
q(x)
|u|q(x)dx

)k1+1

−
β

k2 + 1

(∫
Ω

1
r(x)
|u|r(x)dx

)k2+1

−
b

(p−)γ+1(γ + 1)
‖u‖p−(γ+1)

X ,

if λ < 0, β < 0.

≥



−
βλ1(x)

(r+)k2+1(k2 + 1)
‖u‖r

+(k2+1) −
b

(p−)γ+1(γ + 1)
‖u‖p−(γ+1)

X −
Cλ

(q−)k1+1(k1 + 1)
‖u‖q

−(k1+1)
X ,

if λ > 0, β < 0.

−
λλ1(x)

(q+)k1+1(k1 + 1)
‖u‖q

+(k1+1) −
b

(p−)γ+1(γ + 1)
‖u‖p−(γ+1)

X −
Cβ

(r−)k2+1(k2 + 1)
‖u‖r

−(k2+1),

if λ < 0, β > 0.

−
λλ1(x)

(q+)k1+1(k1 + 1)
‖u‖q

+(k1+1) −
βλ1(x)

(r+)k2+1(k2 + 1)
‖u‖r

+(k2+1) −
b

(p−)γ+1(γ + 1)
‖u‖p−(γ+1)

X ,

if λ < 0, β < 0.
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Thus,

Iλ,β(u) ≥



ρr+(k2+1)
(
−

βλ1(x)
(r+)k2+1(k2 + 1)

−
b

(p−)γ+1(γ + 1)
ρp−(γ+1)−r+(k2+1)

)
−

Cλ
(q−)k1+1(k1 + 1)

ρq−(k1+1),

if λ > 0, β < 0.

ρq+(k1+1)
(
−

λλ1(x)
(q+)k1+1(k1 + 1)

−
b

(p−)γ+1(γ + 1)
ρp−(γ+1)−q+(k1+1)

)
−

Cβ
(r−)k2+1(k2 + 1)

ρr−(k2+1),

if λ < 0, β > 0.

ρr+(k2+1)
(
−

βλ1(x)
(r+)k2+1(k2 + 1)

−
b

(p−)γ+1(γ + 1)
ρp−(γ+1)−r+(k2+1)

)
,

if λ < 0, β < 0.

Choosing

ρ ∈



0,min

1, [− (p−)γ+1(γ + 1)βλ1(x)
2b(r+)k2+1(k2 + 1)

]p−(γ+1)−r+(k2+1) , if λ > 0, β < 0 and λ < 0, β < 0,

0,min

1, [− (p−)γ+1(γ + 1)λλ1(x)
2b(q+)k1+1(k1 + 1)

]p−(γ+1)−q+(k1+1) , if λ < 0, β > 0,

we deduce, for any u ∈ X with ‖u‖X = ρ, that

Iλ,β(u) ≥



−
βλ1(x)

2(r+)k2+1(k2 + 1)
ρr+(k2+1) −

Cλ
(q−)k1+1(k1 + 1)

ρq−(k1+1), if λ > 0, β < 0.

−
λλ1(x)

2(q+)k1+1(k1 + 1)
ρq+(k1+1) −

Cβ
(r−)k2+1(k2 + 1)

ρr−(k2+1), if λ < 0, β > 0.

−
βλ1(x)

2(r+)k2+1(k2 + 1)
ρr+(k2+1), if λ < 0, β < 0.

Now, we put


λ∗ = −

βλ1(x)(q−)k1+1(k1 + 1)
4C(r+)k2+1(k2 + 1)ρq−(k1+1)−r+(k2+1) , if λ > 0, β < 0.

β∗ = −
λλ1(x)(r−)k2+1(k2 + 1)

4C(q+)k1+1(k1 + 1)ρr−(k2+1)−q+(k1+1) , if λ < 0, β > 0.

We can conclude that for any λ ∈ (0, λ∗) (respectively β ∈ (0, β∗)) , there exists α > 0 such that for any
u ∈ X with ‖u‖X = ρ
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Iλ,β(u) ≥



−
βλ1(x)

4(r+)k2+1(k2 + 1)
ρr+(k2+1) := α > 0, if λ ∈ (0, λ∗), β < 0.

−
λλ1(x)

4(q+)k1+1(k1 + 1)
ρq+(k1+1) := α > 0, if λ < 0, β ∈ (0, β∗).

−
βλ1(x)

2(r+)k2+1(k2 + 1)
ρr+(k2+1) := α > 0, if λ < 0, β < 0.

We have completed the proof of Lemma 5.4.

Lemma 5.5. Assume that (1.4) holds. Then for every finite dimensional subspace W ⊂ X, there exists
R = R(W) > 0 such that Iλ,β(u) ≤ 0, for all u ∈ W, with ‖u‖ > R.

Proof. Let R = R(W) > 1, for all u ∈ W, with ‖u‖ > R, then, we have

Iλ,β(u) = −
b

γ + 1

(
σp(x,y)(u)

)γ+1
−

λ

k1 + 1

(∫
Ω

1
q(x)
|u|q(x)dx

)k1+1

−
β

k2 + 1

(∫
Ω

1
r(x)
|u|r(x)dx

)k2+1

Iλ,β(u) ≤



−
b

γ + 1

(
σp(x,y)(u)

)γ+1
−

λ

k1 + 1
1

(q+)k1+1

(∫
Ω

|u|q(x)dx
)k1+1

−
β

k2 + 1
1

(r−)k2+1

(∫
Ω

|u|r(x)dx
)k2+1

,

if λ > 0, β < 0.

−
b

γ + 1

(
σp(x,y)(u)

)γ+1
−

λ

k1 + 1
1

(q−)k1+1

(∫
Ω

|u|q(x)dx
)k1+1

−
β

k2 + 1
1

(r+)k2+1

(∫
Ω

|u|r(x)dx
)k2+1

,

if λ < 0, β > 0.

−
b

γ + 1

(
σp(x,y)(u)

)γ+1
−

λ

k1 + 1
1

(q−)k1+1

(∫
Ω

|u|q(x)dx
)k1+1

−
β

k2 + 1
1

(r−)k2+1

(∫
Ω

|u|r(x)dx
)k2+1

,

if λ < 0, β < 0.

Therefore, as a consequence, all norms on the finite-dimensional space W are equivalent, implying the
existence of a positive constant CW such that

(∫
Ω

|u|q(x)dx
)k1+1

≥ CW‖u‖
q−(k1+1)
X and

(∫
Ω

|u|r(x)dx
)k2+1

≥ CW‖u‖
r−(k2+1)
X .
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Therefore, we obtain

Iλ,β(u) ≤



−
b

(p+)γ+1(γ + 1)
‖u‖p−(γ+1)

X −
λ

k1 + 1
CW

(q+)k1+1 ‖u‖
q−(k1+1)
X −

β

k2 + 1
C

(r−)k2+1 ‖u‖
r+(k2+1)
X ,

if λ > 0, β < 0.

−
b

(p+)γ+1(γ + 1)
‖u‖p−(γ+1)

X −
λ

k1 + 1
C

(q−)k1+1 ‖u‖
q+(k1+1)
X −

β

k2 + 1
CW

(r+)k2+1 ‖u‖
r−(k2+1)
X ,

if λ < 0, β > 0.

−
b

(p+)γ+1(γ + 1)
‖u‖p−(γ+1)

X −
λ

k1 + 1
C

(q−)k1+1 ‖u‖
q+(k1+1)
X −

β

k2 + 1
C

(r−)k2+1 ‖u‖
r+(k2+1)
X ,

if λ < 0, β < 0.

Then, it is deduced from (1.4) that Iλ,β(u) < 0. Hence, the proof of Lemma 5.5 is complete.
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24. D. Repovš, Stationary waves of Schrödinger-type equations with variable exponent, Anal. Appl.,
13 (2015), 645–661. https://doi.org/10.1142/S0219530514500420
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