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Abstract: In this article we revisit the global existence result of the wave-Klein-Gordon model of the
system of the self-gravitating massive field. Our new observation is that, by applying the conformal
energy estimates on hyperboloids, we obtain mildly increasing energy estimate up to the top order for the
Klein-Gordon component, which clarify the question on the hierarchy of the energy bounds of the Klein-
Gordon component in our previous work. Furthermore, a uniform-in-time energy estimate is established
for the wave component up to the top order, as well as a scattering result. These improvements indicate
that the partial conformal symmetry of the Einstein-massive scalar system will play an important role in
the global analysis.
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1. Introduction

In this article we revisit the global existence of the following wave-Klein-Gordon model of the
Einstein-massive scalar field system:

− □u = Pαβ∂αv∂βv + Rv2,

− □v + c2v = Hαβu∂α∂βv
(1.1)

with initial data
u|H2 = u0, ∂tu|H2 = u1, v|H2 = v0, ∂tv|H2 = v1. (1.2)
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The coefficients Pαβ,Hαβ, c are constants and c > 0. In the present article, we restrict our discussion
to the compactly supported case, i.e. we suppose that uℓ, vℓ, ℓ = 0, 1 are compactly supported in
H∗2 = H2 ∩ K withH2 = {(t, x)/t =

√
s2 + |x|2},K = {r < t − 1} andH∗2 = H2 ∩ K .

The system (1.1) was introduced in [20, 29] in order to illustrate the main feature of the Einstein-
massive scalar field system written in wave coordinates, which is a key step in solving the nonlinear
stability problem of the Minkowski space-time with the presence of a real self-gravitating massive scalar
field.

Here we give a brief history on the research of nonlinear stability of Minkowski space-time in general
relativity. In the vacuum case, the first result belongs to Christodoulou and Klainerman [7] who applied
a gauge-invariant method via the Bianchi system satisfied by the Riemann curvature. Later on, Lindblad
and Rodnianski gave an alternative approach in [23] with formulation in wave coordinates, which was
applied by Y. Choquet-Bruhat in [6] for the first local existence result for Einstein equation. See also
Bieri-Zipser [3], Bieri [2], Hintz-Vasy [14] etc. In the case of massless matter fields, there are works of
Zipser [31], Loizelet [25], Taylor [27], Bigorgne et. al. [4], Kauffman-Lindblad [18], Chen [5] etc. for
various matter fields.

Compared with the previous two cases, the case with massive matter fields possesses a quite different
nature. The most important is the linearzied conformal scaling invariance, that is, the linearized Einstein
equation or Einstein-massless matter field systems enjoy the conformal scaling invariance, while the
linearized Einstein-massive matter field systems do not. This symmetry brings lots of properties among
which the conformal energy estimate is one of the most important. To be more precise, let us consider
the linearization of (1.1). Let

uλ(t, x) = u(λt, λx), λ ∈ R.

It is clear that for the free-linear wave equation,

□u(t, x) = 0 ⇒ □uλ(t, x) = λ2□u(λt, λx) = 0,

that is, a solution to the free-linear wave equation still solves the same equation after the scaling
transform. However, for the free-linear Klein-Gordon equation (which represents the evolution equation
of a massive real scalar field, see in detail later on):

−□v(t, x) + c2v(t, x) = 0 ⇒ −□vλ(t, x) + λ2c2vλ(t, x) = 0, (1.3)

that is, vλ does not solve the original Klein-Gordon equation in general case.
In [21], the authors relied on the hyperboloidal foliation in the interior of the light-cone K := {r <

t − 1} and established the nonlinear stability result of Minkowski space-time with the presence of a
real massive scalar field. This was based on a detailed analysis on the model system (1.1) in [20].
See also [29]. This result was later generalized by Ionescu-Pausader in [15, 16] with Fourier-analytic
method on non-restricted initial data sets. For other important contributions on various massive matter
fields, we refer to [10, 11, 24]. Apart from the above work with Minkowski background which model
the astrophysical events and its gravitational wave, we also refer to [1, 12, 28] for the global nonlinear
stability results of the Milne space-time with the presence of a massive scalar field in a cosmological
context.
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Now we give a more detailed explanation on the formulation of (1.1). Recall the Einstein-massive
scalar field system written in wave coordinates:

gµν∂µ∂νgαβ = Fαβ(g, g; ∂g, ∂g) − 16π(∂αϕ∂βϕ + (c2/2)ϕ2gαβ),
gµν∂µ∂νϕ − c2ϕ = 0,
Γ
γ
αβg
αβ = 0,

(1.4)

where g is the unknown metric and ϕ the massive scalar field. F is a quartic form, quadratic on g and
quadratic on ∂g. When ϕ ≡ 0, the above system reduces to the vacuum Einstein equation:

gµν∂µ∂νgαβ = Fαβ(g, g; ∂g, ∂g),
Γ
γ
αβg
αβ = 0,

(1.5)

which is the Einstein-vacuum equations Rαβ = 0 written in the wave coordinates. Since the term
Fαβ(g, g; ∂g, ∂g) is already treated with the aid of the wave gauge condition in [23], one focus on the
the scalar-metric interaction term 16π(∂αϕ∂βϕ + (c2/2)ϕ2gαβ) and the metric-scalar interaction term
hµν∂µ∂νϕ, where hµν = gµν − ηµν. Then we simplify (1.4) by dropping all terms contained in (1.5), and
regard hµν ≃ −hµν as a scalar. We thus obtain (1.1) who keeps all analytic difficulties arising from
the coupling with a massive scalar field. In [20], we have established the global existence result for
small initial data with compact support. The proof relies on the hyperbolidal foliation combined with a
hierarchy energy estimate on the Klein-Gordon component. More precisely, in [20] we have obtained

EN
c (s, v)1/2 ≲ s1/2+δ, EN−4

c (s, v)1/2 ≲ sδ, (1.6)

where Ep
c (s, v) refers to the p−order energy of the Klein-Gordon component v defined in (2.27), (2.28),

and N describes the regularity of the initial data. The higher-order energies of v have a s1/2+δ increasing
rate (with δ ≪ 1/2), while its lower-order energies only have a mild increasing rate, say, sδ. This
technique also leads to a hierarchy of energy bounds for Klein-Gordon component when we regard the
complete Einstein-Klein-Gordon system in [21].

To our opinion, this hierarchy is physically counter-intuitive. As we believe that the Klein-Gordon
component describes a massive field, thus its propagation speed (the group speed) should be strictly
slower than that of massless fields, i.e. the wave component. This demands that when near the light-cone
{r = t}, the Klein-Gordon component should enjoy a strictly faster pointwise decay rate than that of
the wave component, because if not so, it happens that an observer detects the fronts of both massive
and massless waves from the same source simultaneously, which should not be the case. However
if the higher-order energies do have essential increasing rates as, say, s1/2+δ, this indicates that the
sufficient-high order derivatives of the Klein-Gordon component may have a decay rate as t−1 (see
the Klainerman-Sobolev inequality (2.31)), which is exactly the same to that of the wave component.
Despite all this, at that moment we did not know whether this hierarchy is a physical phenomenon, or it
is only due to our mathematical technical weakness.

The main new contribution in the present article is to answer the above question. We managed to
prove that, at least when the initial data enjoy sufficient decay rates at spatial infinity, for example when
they are compactly supported, this hierarchy of energy bounds is only due to the technical weakness. In
fact we will show that

EN
c (s, v)1/2 ≲ sδ. (1.7)
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In this new proof, instead of making estimates on the standard energies, we rely on the conformal
energy estimate on the wave component. As we will see, this ingredient not only greatly simplifies the
original proof, but also brings a uniform bound on the standard energy. Then a scattering property on
the wave component is also established up to the top order. On the other hand, the hierarchy on the
energy bounds of the Klein-Gordon component is greatly improved. All energy bounds enjoy a mildly
increasing rate up to the top order.

From another perspective, applying conformal energy estimate means that we attempt to make use
of the conformal invariance of the system (1.1). Although (1.1) does not enjoy conformal scaling
invariance (even in the linearized sens, see (1.3)), the application of conformal energy estimate still
brings strictly finer estimates, and permits us to obtain better energy bounds. This can be considered as
an application of the “partial” conformal scaling invariance of (1.1), which reveals that even a property
of symmetry is disturbed, we can still obtain decay from the related (quasi-)conserved quantities. These
new observations will have their follow-up influence in the analysis of the full Einstein-massive scalar
field system in our coming work.

Now we state the main result of this article.

Theorem 1.1. Consider the Cauchy problem (1.1)–(1.2). For any positive integer N ≥ 7, there exists
ε0 > 0 such that for any ε ≤ ε0 and

∥(u0, v0)∥HN+1(R3) + ∥(u1, v1)∥HN (R3) < ε, (1.8)

the corresponding local solution extends to time infinity. Furthermore, this global solution satisfies the
following properties:
1. Uniform energy bound on the wave component up to the top order:

3∑
α=0

∥∂α∂
Iu(t, ·)∥L2(R3) ≤ Cε, |I| ≤ N. (1.9)

2. Linear scattering property for the wave component up to the top order:

lim
t→+∞

3∑
α=0

∥∂α(∂Iu(t, ·) − ∂Iu⋆(t, ·))∥L2(R3) = 0, |I| ≤ N, (1.10)

where u⋆ is a solution to a free-linear wave equation.
3. Non-hierarchy of the Klein-Gordon energy bounds:

EN
c (s, v)1/2 ≤ Cεsδ. (1.11)

Here EN
c (s, v) represents the top order standard hyperboloidal energy defined later on in (2.28), and δ a

small constant much smaller than 1/2.

Remark 1.2. The restriction on the support of the initial data is not essential. In fact one can generalize
the technique applied later on to the non-compactly supported regime via the Euclidean-hyperboloidal
foliation (see for example [22]), together with the conformal energy estimate on Euclidean-hyperboloidal
hypersurface (see [9, Section 11]).
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The structure of this article is as follows. In Sections 2 and 3, we recall the technical ingredients in
the hyperboloidal framework. Sections 4–6 are devoted to the proof of Theorem 1.1, which is composed
by three steps. In the first step we rely on the Klainerman-Sobolev inequalities (2.32), (2.33) and the
bootstrap assumption (4.2), and obtain a series of L2 and L∞ estimations. In the second step we rely
on the linear estimates Propositions 3.1, 3.2 and obtain the sharp decay bounds. Finally, we apply
energy estimate Proposition 2.1 and obtain (4.3). The last Section is devoted to the proof of the global
properties.

2. Basic facts of the hyperboloidal foliation

2.1. Geometry of the hyperboloidal foliation

We are working in the (1+3)-dimensional Minkowski space-time with signature (−,+,+,+) and in
the Cartesian coordinates we write (t, x) = (x0, x1, x2, x3). Let r2 B

∑3
i=1(xi)2 and ∂0 = ∂t. Throughout,

Greek indices describe 0, 1, 2, 3 and Latin indices describe 1, 2, 3, and we use the standard convention
of implicit summation over repeated indices, as well as raising and lowering indices with respect to the
Minkowski metric ηαβ and its inverse denoted by ηαβ.

In this article we focus on the interior of a light-cone

K B {(t, x)/r < t − 1}.

In the interior of this cone we recall the hyperboloidal foliation

K =

∞⋃
s>1

H∗s

where
Hs B {(t, x)/ t2 − r2 = s2, t > 0}, H∗s B Hs ∩ K .

We also denote by K[s0,s1] B {(t, x)/ s2
0 ≤ t2 − r2 ≤ s2

1, r < t − 1} the subdomain of K limited by Hs0

andHs1 .
Within the Euclidean metric of R4 � R1+3, the normal vector and the volume form ofHs is written

as:
n⃗ =

1
√

t2 + r2
(t,−xa), dσ =

√
1 + (r/t)2dx,

which leads to
n⃗dx = (1,−xa/t). (2.1)

2.2. The semi-hyperboloidal frame

We recall the semi-hyperboloidal frame:

∂0 B ∂t, ∂a B (xa/t)∂t + ∂a. (2.2)

Notice that the vector fields ∂a generates the tangent space of the hyperboloid, therefore the normal
vector of hyperboloids with respect to the Minkowski metric can be written as ∂

⊥
B (t/s)∂t + (xa/s)∂a.
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The relation between the semi-hyperboloidal frame and the natural Cartesian frame can be represented
as below: ∂

α
= Φβα∂β, where

Φβα =


1 0 0 0

x1/t 1 0 0
x2/t 0 1 0
x3/t 0 0 1

 (2.3)

and its inverse

Ψβα =


1 0 0 0
−x1/t 1 0 0
−x2/t 0 1 0
−x3/t 0 0 1

 . (2.4)

Let T = Tαβ∂α ⊗ ∂β be a two-tensor. We denote by Tαβ its components within the semi-hyperboloidal
frame, i.e., Tαβ∂α ⊗ ∂β = Tαβ∂

α
⊗ ∂

β
. Then one has

Tαβ = Ψαα′Ψ
β
β′T
α′β′ , Tαβ = Φαα′Φ

β
β′T
α′β′ .

The corresponding semi-hyperboloidal co-frame can be represented as:

θ0 B dt − (xa/t)dxa, θa B dxa. (2.5)

In the semi-hyperboloidal frame, the Minkowski metric is written as:

η
αβ
=


−1 −x1/t −x1/t −x3/t
−x1/t 1 − (x1/t)2 −x1x2/t2 −x1x3/t2

−x2/t −x2x1/t2 1 − (x2/t)2 −x2x3/t2

−x3/t −x3x1/t2 −x3x2/t2 1 − (x3/t)2

 , (2.6)

ηαβ =


−(s/t)2 −x1/t −x1/t −x3/t
−x1/t 1 0 0
−x2/t 0 1 0
−x3/t 0 0 1

 . (2.7)

2.3. The energy estimates on hyperboloids

In this paper, for any functions u defined in R1+3 or it’s subset, we define their integral on the
hyperboloids as:

∥u∥L1
f (Hs) B

∫
Hs

udx =
∫
R3

u
(√

s2 + r2, x
)
dx. (2.8)

We recall the following standard energy:

Ec(s, u) =
∫
Hs

(
|∂tu|2 +

∑
a

|∂au|2 + 2(xa/t)∂tu∂au + c2u2
)
dx, (2.9)

and the following standard energy in a curved space-time (gαβ = ηαβ + hαβ):

Eg,c(s, u) B Ec(s, u) −
∫
Hs

(
2hαβ∂tu∂βuXα − hαβ∂αu∂βu

)
dx (2.10)
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where
X0 = 1, Xa = −xa/t.

The hyperboloidal conformal energy is defined as

Econ(s, u) B
∫
Hs

(
(Ku + 2u)2 +

∑
a

(s∂̄au)2
)
dx (2.11)

where,
Ku = (s∂s + 2xa∂̄a)u.

They satisfied the following energy estimate(cf. [26, Proposition 2.2], see also [30]).

Proposition 2.1. 1. For any function u defined in K[s0,s1] and vanishes near ∂K , for all s ∈ [s0, s1],

Ec(s, u)1/2 ≤ Ec(2, u)1/2 +C
∫ s

s0

∥□u∥L2
f (Hs̄)ds̄, (2.12)

Econ(s, u)1/2 ≤ Econ(s0, u)1/2 +C
∫ s

s0

s̄∥□u∥L2
f (Hs̄)ds̄, (2.13)

where □u = ηαβ∂α∂βu.
2. Let gαβ be a C1 metric and v be a C2 function. Both are defined in K[s0,s1]. Let

−gαβ∂α∂βv + c2v = f . (2.14)

Suppose hαβ := gαβ − ηαβ satisfies the following two conditions:

κ−2Eg,c(s, v) ≤ Ec(s, v) ≤ κ2Eg,c(s, v), (2.15a)∫
Hs

(s/t)
(
2∂αhαβ∂βv∂tv − ∂thαβ∂αv∂βv

)
dx ≤ M(s)Ec(s, v)1/2, (2.15b)

then
Ec(s, v)1/2 ≤ κ2Ec(2, v)1/2 + κ2

∫ s

2

(
∥ f ∥L2

f (Hs̄) + M(s)
)

ds̄. (2.16)

For the conformal energy, we have the following estimate:

Lemma 2.2. Let u be a function defined in K[s0,s1] and vanishes near the conical boundary ∂K = {r =
t − 1}. Then

∥s(s/t)2∂αu∥L2
f (Hs) + ∥(s/t)u∥L2

f (Hs) ≤ CEcon(s, u)1/2. (2.17)

Proof. We denote by us(x) := u(
√

s2 + |x|2, x). Remark that ∂aus = ∂au. Then we apply the classical
Hardy’s inequality:

∥(s/t)u∥L2
f (Hs) ≤ s∥r−1u∥L2

f (Hs) ≤ Cs∥∂au∥L2
f (Hs) ≤ CEcon(s, u)1/2.

Once ∥(s/t)u∥L2
f (Hs) is bounded, we see that ∥(s/t)Ku∥L2

f (Hs) is bounded. Then s(s/t)2∂tu is bounded.
Then by recalling ∂a = (xa/t)∂t + ∂a, we obtain the bounds on ∂au. □
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For the convenience of discussion, we introduce the following energy densities:

ec[u] :=
3∑
α=1

(s/t)|∂αu|2 +
3∑

a=1

|∂au|2 + c2u2, (2.18)

econ[u] :=
3∑
α=0

|s(s/t)2∂αu|2 +
3∑

a=1

|s∂au|2 + |(s/t)u|2. (2.19)

From Lemma 2.2, it is clear that ∫
Hs

econ[u]dx ≤ CEcon(s, u).

2.4. High-order operators and Sobolev decay estimates

For a = 1, 2, 3 we recall the Lorentz boosts:

La B xa∂t + t∂a = xa∂0 − x0∂a. (2.20)

For a multi-index I = (in, in−1, · · · , i1), we note ∂I B ∂in∂in−1 · · · ∂i1 . Similarly, we have LJ =

Lin Lin−1 , · · · Li1 .
Let Z be a high-order derivative composed by ∂α, La. We denote by ord(Z) the order of the operator,

and rank(Z) the number of boosts contained in Z. Given two integers k ≤ p, it is convenient to introduce
the notations:

|u|p,k := max
ord(Z)≤p
rank(Z)≤k

|Zu|, |u|p := max
0≤k≤p

|u|p,k,

|∂u|p,k := max
α=0,1,2

|∂αu|p,k, |∂u|p := max
0≤k≤p

|∂u|p,k,

|∂mu|p,k := max
|I|=m
|∂Iu|p,k, |∂mu|p := max

0≤k≤p
|∂Iu|p,k,

|∂u|p,k := max
a
{|∂au|p,k}, |∂u|p := max

0≤k≤p
|∂u|p,k,

|∂∂u|p,k := max
a,α
{|∂a∂αu|p,k, |∂α∂au|p,k}, |∂∂u|p := max

0≤k≤p
|∂∂u|p,k.

(2.21)

We recall the following estimates established in [26], which can be easily checked by induction:

|u|p,k ≤C
∑
|I|=p−k
|J|≤k

|∂ILJu|,

|∂u|p,k ≤C
∑
|I|+|J|≤p
|J|≤k,α

|∂α∂
ILJu|,

|(s/t)∂u|p,k ≤C(s/t)
∑
|I|+|J|≤p
|J|≤k,α

|∂α∂
ILJu|,

(2.22)

|∂u|p,k ≤ C
∑
|I|≤p−k,a
|J|≤k

|∂a∂
ILJu| +Ct−1

∑
|J|≤k,α

0≤|I|≤p−k−1

|∂α∂
ILJu| ≤ Ct−1|u|p+1,k+1, (2.23)

|∂∂u|p,k ≤ Ct−1|∂u|p+1,k+1. (2.24)
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On the other hand, one also introduce the high-order energy densities:

ep,k
c [u] :=

∑
|I|+|J|≤p
|J|≤k

ec[∂ILJu], ep,k
con[u] :=

∑
|I|+|J|≤p
|J|≤k

econ[∂ILJu], (2.25)

ep
c [u] :=

∑
k≤p

ep,k
c [u], ep

con[u] :=
∑
k≤p

ep,k
con[u], (2.26)

as well as the high-order energies:

Ep,k
c (s, u) :=

∑
|I|+|J|≤p
|J|≤k

Ec(s, ∂ILJu), Ep,k
con(s, u) :=

∑
|I|+|J|≤p
|J|≤k

Econ(s, ∂ILJu), (2.27)

Ep
c (s, u) :=

∑
k≤p

Ep,k
c (s, u), Ep

con(s, u) :=
∑
k≤p

Ep,k
con(s, u). (2.28)

Combined with (2.18) and (2.19), one obtains

|(s/t)∂u|2p,k + |∂u|
2
p,k + c|u|2p,k ≤ Cep,k

c [u], (2.29)

|s(s/t)2∂u|2p,k + |s∂u|
2
p,k + |(s/t)u|2p,k ≤ Cep,k

con[u]. (2.30)

On the other hand, we recall the following Klainerman-Sobolev type estimates established in [13,
Chapter VII].

Proposition 2.3. Let u be a function defined in K[s0,s1] and vanishes near ∂K = {r = t − 1}. Then

sup
Hs

{t3/2|u|} ≤ C
∑
|I|+|J|≤2

∥∂ILJu∥L2
f (Hs). (2.31)

Combine this result together with (2.29) and (2.30), we obtain the pointwise estimates onHs:

t3/2(s/t)|∂u|p,k + t3/2|∂u|p,k + ct3/2|u|p,k ≤ C
√

Ep+2,k+2
c (s, u), (2.32)

t3/2s(s/t)2|∂u|p,k + t3/2s|∂u|p,k + t3/2(s/t)|u|p,k ≤ C
√

Ep+2,k+2
con (s, u). (2.33)

3. The L∞ estimation of wave equation and Klein-Gordon equation

3.1. Estimates on wave equation

Due to the complexity of the system (1.1), the Klainerman-Sobolev inequalities can not supply
sufficient decay. We need more precise estimates which regard the linear structure of the wave and/or
Klein-Gordon equations. These are estimates which permit us to obtain the linear decay rate when the
energies are not uniformly bounded.

Proposition 3.1 (cf. [20]). Let u be a solution to the following Cauchy Problem:

−□u = f , u|t=2 = 0, ∂tu|t=2 = 0, (3.1)
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where the source f vanishes outside of K , and there exists a global constant C f depending on f such
that:

| f | ≤ C f t−2−ν(t − r)−1+µ, 0 < µ, |ν| ≤ 1/2.

Then u satisfies the following estimate:

|u(t, x)| ≲ C f

 1
νµ

(t − r)µ−νt−1, 0 < ν ≤ 1/2,
1
|ν|µ

(t − r)µt−1−ν, −1/2 ≤ ν < 0.
(3.2)

3.2. Estimations on Klein-Gordon equation

This estimate was established in [19]. The above version is a special case of Proposition 3.2 of [22].
Let v be a sufficiently regular solution to the following Cauchy problem:

− gαβ∂α∂βv + c2v = f ,

v|Hs0
= v0, ∂tv|Hs0

= v1,
(3.3)

where the initial values v0, v1 are prescribed onHs0 , and compactly supported inH∗s0
= Hs0 ∩ K . The

metric g is sufficiently regular and gαβ = ηαβ + hαβ, where hαβ vanishes near ∂K . For (t, x) ∈ K , we
denote by

H̄t,x = (t/s)2h00
|(λt/s,λx/s).

Then we state the following result:

Proposition 3.2. Suppose that for all (t, x) ∈ K[s0,s1] and for all λ0 ≤ λ ≤ s1, one has

|H̄t,x| ≤ 1/3,
∫ s1

λ0

|H̄′t,x(λ)|dλ ≤ C (3.4)

with C a universal constant. Then for any η ∈ R, the following estimate holds:

(s/t)ηs3/2 (|v(t, x)| + (s/t)|∂v(t, x)|
)
≤η,s0 (s/t)ηs1/2|v|1(t, x) + sup

Hs0

(
|v| + |∂v|

)
+ (s/t)η

∫ s

λ0

λ3/2| f + Rg[v]|(λt/s,λx/s)dλ,
(3.5)

in which

λ0 =

s0, 0 ≤ r/t ≤ s2
0−1

s2
0+1 ,√

t+r
t−r ,

s2
0−1

s2
0+1 ≤ r/t < 1

(3.6)

and
|Rg[v]| ≲ s−2|v|2 + (t/s)2|h00

|(s−2|v|2 + t−1|∂v|1) + t−1|h||∂v|1. (3.7)

Here “≤η,s0” means smaller or equal to up to a constant determined by (η, s0).
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4. Global existence: direct estimates

4.1. The bootstrap argument

From this section we are going to prove Theorem 1.1. Our proof relies on the standard bootstrap
argument which is based on the following two observations:
1. The local solution to (1.1) can not approaches its maximal time of existence s∗ with bounded energy
(of sufficiently high-order). Because if not so, one may apply local existence theory and construct a local
solution to (1.1) form (s∗ − ε) with initial data equal to the restriction of the local solution at the time
(s∗ − ε). This construction permits us to extend the local solution to s∗ − ε + δ where δ is determined
by the system itself and the high-order energy bounds (which is independent of ε). When ε < δ, one
eventually extends the local solution out of s∗ which contradicts the fact that s∗ being the maximal time
of existence.
2. The high-order energies are continuous with respect to the time variable, whenever the local solution
exists. This is also a direct result of local existence theory.

Based on the above observations, and suppose that the local solution (u, v) to (1.1) satisfies a set of
high-order energy bounds on an arbitrary time interval [s0, s1] (contained in the maximal interval of
existence). If we can show that the same set of energies satisfies strictly stronger bounds on the same
interval, then one concludes that this local solution extends to time infinity. To see this, suppose that

EN
con(2, u)1/2 ≤ C0ε, EN

c (2, v)1/2 ≤ C0ε. (4.1)

Let [2, s1] be the maximal time interval in which the following energy estimate holds:

EN
con(s, u)1/2 ≤ C1εs1/2+δ,

EN
c (s, v)1/2 ≤ C1εsδ

(4.2)

where C1 > C0 is sufficiently large, and δ > 0 will be determined later. Then by continuity, when s = s1,
at least one of (4.2) becomes equality. However, if we can show that (based on (4.2))

EN
con(s, u)1/2 ≤ (1/2)C1εs1/2+δ,

EN
c (s, v)1/2 ≤ (1/2)C1εsδ.

(4.3)

Then we conclude that (4.2) holds on [2, s∗) where s∗ is maximal time of existence. However this is
impossible when s∗ < ∞ due to the first observation. We thus obtain the desired global-in-time existence.
Therefore we need to establish the following result:

Proposition 4.1. Let N ≥ 7 and 0 < δ < 1/10. Suppose that (4.2) holds on [2, s1]. Then for C1 > 2C0

and ε sufficiently small, (4.3) holds on the same time interval.

The rest of this article is mainly devoted to the proof of the above Proposition. In the following
discussion, we apply the expression A ≲ B for a inequality A ≤ CB with C a constant determined by
δ,N and the system (1.1).

4.2. Direct L2 and pointwise estimates

Based on (2.29) and (2.30) together with (4.2), we have the following L2 estimates:

∥(s/t)|u|N∥L2
f (Hs) + ∥s|∂u|N∥L2

f (Hs) + ∥s(s/t)2|∂u|N∥L2
f (Hs) ≲ C1εs1/2+δ, (4.4)
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∥c|v|N∥L2
f (Hs) + ∥(s/t)|∂v|N∥L2

f (Hs) + ∥|∂u|N∥L2
f (Hs) ≲ C1εsδ. (4.5)

Recalling (2.32), (2.33) and (4.2), one has

(s/t)|u|N−2 + s|∂u|N−2 + s(s/t)2|∂u|N−2 ≲ C1εt−3/2s1/2+δ, (4.6)

c|v|N−2 + (s/t)|∂v|N−2 + |∂v|N−2 ≲ C1εt−3/2sδ. (4.7)

4.3. The uniform standard energy estimations on the wave component

We recall Proposition 2.1. For the wave equation, we apply (2.12) with c = 0:

EN(s, u)1/2 ≤ EN(2, u)1/2 +C
∫ s

2
∥|□u|N∥L2

f (Hs)ds. (4.8)

Then we remark that, provided that N ≥ 5,

∥|∂αv∂βv|N∥L2
f (Hs) ≲ C1εsδ∥t−3/2|∂v|N∥L2

f (Hs) ≲ (C1ε)2s−3/2+2δ,

∥|v2|N∥L2
f (Hs) ≲ C1εsδ∥t−3/2|v|N∥L2

f (Hs) ≲ (C1ε)2s−3/2+2δ.

Substitute these bounds into (4.8), we obtain, provided that C0 ≤ C1/2 and C1ε sufficiently small,

EN(s, u)1/2 ≤ C0ε +C(C1ε)2 ≲ C1ε. (4.9)

This uniform energy bound, combined with (2.32), leads us to the following pointwise estimates:

(s/t)|∂u|N−2 + |∂u|N−2 ≲ C1εt−3/2. (4.10)

On the other hand, we remark that for ord(Z) ≤ N − 3,

|∂r(Z∂au)| =|∂rZ(t−1Lau)| ≲ t−1
∑

ord(Z′)≤N−2

|∂Z′u|

≲C1εt−2(t − r)−1/2.

Here the first inequality is due to the homogeneity of ∂α and La, and can be checked by induction.
Integrate the above bound from ∂K = {r = t − 1} to a point (t, x) along the radial direction on a times
constant hyperplane, one obtains

|∂u|N−3 ≲ C1εt−2(t − r)1/2 ≲ C1εt−5/2s. (4.11)

In the same manner, we can integrate the estimate

|∂rZu| ≲ C1εt−1(t − r)−1/2

for ord(Z) ≤ N − 2 and obtain

|u|N−2 ≲ C1εt−1(t − r)1/2 ≲ C1εt−3/2s. (4.12)
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5. The sharp decay estimates

5.1. Linear estimates on wave and Klein-Gordon equations

For the convenience of discussion, we introduce the following notations:

Ak(s) := sup
K[2,s]

{(s/t)−2s3/2(|v|N−4,k + (s/t)|v|N−4,k)},

Bk(s) := sup
K[2,s]

{t|u|k}.
(5.1)

We will apply Proposition 3.2 on the Klein-Gordon equation. We firstly remark that, following the
notations therein and apply (4.10), (4.11) and (4.12):

|H̄t,x| ≲(s/t)−2|u| ≲ C1ε(t/s)1/2s−1/2 ≲ C1ε,

|H̄′t,x| ≲(s/t)−2((s/t)|∂u| + (t/s)|∂u|
)
≲ C1ε(s/t)−1/2s−3/2,

which guarantees (3.4). Here we have applied the fact that t ≤ s2 in K and the fact that (t/s) ≲ λ0 for all
(t, x) ∈ K .

On the other hand, we remark that for ord(Z) ≤ N − 4, thanks to (4.7) and (4.10), (4.11), (4.12)

Rg[Zv] ≲ C1ε(s/t)2s−3+δ.

Finally, we establish the following estimate on commutator.

Lemma 5.1. Let ord(Z) = p ≤ N − 4 and rank(Z) = k, then

∣∣∣[Z,Hαβu∂α∂β]v∣∣∣ ≲(s/t)3s−5/2
(
B0(s)Ak−1(s) +

k∑
k1=1

Bk1(s)Ak−k1(s)
)

+ (C1ε)2(s/t)2s−3+δ.

(5.2)

Especially when k = 0, the first term does not exist.

Proof. Form (B.2) of [26], Z can be written as a finite linear combination of ∂ILJ with constant
coefficients. Here |I| = p − k and |J| ≤ k. This can be checked by the following commutation relation:

[∂I , LJ] =
∑
|I′ |=|I|
|J′ |<|J|

ΓIJ
I′J′∂

I′LJ′ (5.3)

where ΓIJ
I′J′ are constants determined by I, J. Then we only need to focus on [∂ILJ, u∂α∂β]v. For this

term, we remark that∣∣∣[∂ILJ, u∂α∂β]v
∣∣∣ ≲ ∑

|I1 |+|I2 |=|I|,|I1 |≥1
|J1 |+|J2 |=|J|

|∂I1 LJ1u||∂I2 LJ2∂α∂βv|

+
∑

|J1 |+|J2 |=|J|
|J1 |≥1

|LJ1u||∂ILJ2∂α∂βv| + |u|
∣∣∣[∂ILJ, ∂α∂β]v

∣∣∣. (5.4)
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Here we remark that the last two terms do not exist when k = 0. For the first term, we remark that,
thanks to (4.10) and (4.7),

|∂I1 LJ1u||∂I2 LJ2∂α∂βv| ≲(C1ε)(s/t)1/2s−3/2 (C1ε)t−3/2sδ

≲(C1ε)2(s/t)2s−3+δ.

For the second term, we remark that in this case |J2| = |J| − |J1|. Thus

|LJ1u||∂ILJ2∂α∂βv| ≲ (s/t)3s−5/2
k∑

k1=1

Bk1(s)Ak−k1(s).

For the last term, we remark that ∣∣∣[∂ILJ, ∂α∂β]v
∣∣∣ ≲ |∂v|p,k−1,

which can be obtained from (5.3). Then

|u|
∣∣∣[∂ILJ, ∂α∂β]v

∣∣∣ ≲ (s/t)3s−5/2B0(s)Ak−1(s).

□

Now we are ready to establish the estimate on A and B. We apply Proposition 3.2 on

−gαβ∂α∂βZv + c2Zv = [Z, hαβ∂α∂β]v

where gαβ = ηαβ + hαβ = ηαβ + Hαβu and ord(Z) ≤ N − 4. Then by (3.5) and take η = −2,

(s/t)−2s3/2(|Zv|(t, x) + (s/t)|∂Zv|(t, x)
)

≲(s/t)−2s1/2|Zv|1 + sup
H2

(
|Zv| + |∂Zv|

)
+ (s/t)−2

∫ s

λ0

λ3/2|Rg[Zv] + [Z, hαβ∂α∂β]v|(λt/s,λx/s)dλ

≲C1ε + (s/t)
∫ s

λ0

λ−1B0(λ)Ak−1(λ)dλ + (s/t)
k∑

k1=1

∫ s

λ0

λ−1Bk1(λ)Ak−k1(λ)dλ.

When k = 0, the last two terms do not exist. Recall the definition of | · |p,k and Ak(s), we obtain

Ak(s) ≲ C1ε +

∫ s

2
λ−1B0(λ)Ak−1(λ)dλ +

k∑
k=1

∫ s

2
λ−1Bk1(λ)Ak−k1(λ)dλ (5.5)

where the last two terms do not exist when k = 0.
Then we turn to the wave equation:

−□Zu = Z(Pαβ∂αv∂βv + Rv2) (5.6)

for ord(Z) ≤ N − 4. We remark that Zu|H2 and ∂tZu|H2 are compactly supported inH∗2 . Then Zu can be
decomposed as Zu = wi + ws with

−□ws = Z(Pαβ∂αv∂βv + Rv2), ws|H2 = ∂tws|H2 = 0,
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−□wi = 0, wi|H2 = Zu|H2 , ∂twi = ∂tZu|H2 .

For wi we know that it is the solution to the above free linear wave equation with compactly supported
initial data. Thus

|wi| ≲ C1εt−1. (5.7)

For ws, we apply Proposition 3.1. For this purpose we need to bound the right-hand-side of (5.6). Recall
the definition of A, one has, for k ≤ N − 4

|∂αv∂βv|k + |v2|k ≲ t−2−1/2(t − r)−1+1/2
k∑

k1=0

Ak1(s)Ak−k1(s), in K[2,s]. (5.8)

Then by Proposition 3.1 with µ = ν = 1/2, we obtain

|ws| ≲ t−1
k∑

k1=0

Ak1(s)Ak−k1(s), in K[2,s].

We thus obtain

Bk(s) ≲ C1ε +

k∑
k1=0

Ak1(s)Ak−k1(s). (5.9)

For the case k = 0, we recall (5.5) together with (5.9), and obtain

A0(s) + B0(s) ≲ C1ε. (5.10)

5.2. Conclusion by induction

Substituting (5.10) into (5.5) and (5.9) we obtain the following system of integral inequalities:

Ak(s) ≤CC1ε +CC1ε

∫ s

2
λ−1Ak−1(λ)dλ +CC1ε

∫ s

2
λ−1Bk(λ)dλ

+C
k−1∑
k=1

∫ s

2
λ−1Bk1(λ)Ak−k1(λ)dλ,

Bk(s) ≤CC1ε +CC1εAk(s) +C
k−1∑
k1=1

Ak1(s)Ak−k1(s)

(5.11)

where C is a constant determined by N, δ. Then by induction, one obtains

Ak(s) + Bk(s) ≤ CC1εsCC1ε, k = 1, 2 · · · ,N − 4. (5.12)

We thus conclude

|u|k ≲

C1εt−1, k = 0,
C1εt−1sCC1ε, 1 ≤ k ≤ N − 4,

(5.13)

|v|N−4,k + (s/t)|∂v|N−4,k ≲

C1ε(s/t)2s−3/2, k = 0,
C1ε(s/t)2s−3/2+CC1ε, 1 ≤ k ≤ N − 4.

(5.14)
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6. Improved energy estimate and conclusion

In this section we apply the energy estimates Proposition 2.1. For the wave component, we need to
establish the following result:

∥|∂αv∂βv|N,k∥L2
f (Hs) + ∥|v

2|N,k∥L2
f (Hs)

≲C1εs−3/2EN,k
c (s, v)1/2 +C1εs−3/2+CC1εEN,k−1

c (s, v)1/2.
(6.1)

This can be checked directly. We only need to remark that

|∂αv∂βv|N,k ≲ |∂v||∂v|N,k +
k−1∑
k1=1

|∂v|N,k1 |∂v|N,k−k1

and then apply (5.14) (under the condition N ≥ 7). The estimate of v2 is even easier and we omit the
detail. Substitute (6.1) into (2.14), and obtain

EN,k
con(s, u)1/2 ≤C0ε +CC1ε

∫ s

2
τ−1/2EN,k

c (τ, v)1/2dτ

+CC1ε

∫ s

2
τ−1/2+CC1εEN,k−1

c (τ, v)1/2dτ.
(6.2)

For the Klein-Gordon equation, we need to apply Proposition 2.1 (case 2) on

−gαβZ∂α∂βv + c2Zv = [Z,Hαβu∂α∂β]v. (6.3)

In order to check (2.15a), recall (2.10) and (5.13) (case k = 0) and remark that t−1 ≲ (s/t)2 in K . Then
when C1ε sufficiently small, (2.15a) is checked. For (2.15b), we apply directly (4.10) and obtain

M(s) ≲ C1εt1/2s−2Ec(s,Zv)1/2 ≲ C1εs−1Ep,k
c (s, v)1/2. (6.4)

Finally we need to bound the commutator [Z,Hαβu∂α∂β]v. For this purpose, we recall (5.4). The first
term in right-hand side of (5.4) is bounded as, thanks to (4.10) and (4.7),

|∂I1 LJ1u||∂I2 LJ2∂α∂βv| ≲

CC1ε(s/t)1/2s−3/2|∂v|p,k, |I1| + |J1| ≤ N − 1,
CC1εt−3/2sδ|∂u|N−1, |I2| + |J2| + 2 ≤ N − 2,

(6.5)

provided that N ≥ 5. For the second term, we recall (5.13) and (5.14) and suppose that N ≥ 7,

|LJ1u||∂ILJ2v| ≲


C1εs−1+CC1ε(s/t)|∂v|p,k−1, |J1| ≤ N − 4,
C1εs−3/2(s/t)|u|k, |J1| = k, |I| ≤ N − 4,
C1εs−3/2+CC1ε(s/t)|u|k−1, |J1| < k, |I| + |J2| ≤ N − 4.

(6.6)

The last term is easier:
|u|
∣∣∣[∂ILJ, ∂α∂β]v

∣∣∣ ≲ C1εs−1(s/t)|∂v|p,k−1. (6.7)
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Now we sum up (6.5) – (6.7), and obtain∥∥∥[Z,Hαβu∂α∂β]v∥∥∥L2
f (Hs)
≲(C1ε)2s−3/2+2δ

+C1εs−1Ep,k
c (s, v)1/2 + (C1ε)s−3/2Ep,k

con(s, u)1/2

+C1εs−1+CC1εEp,k−1
c (s, v)1/2

+C1εs−3/2+CC1εEp,k−1
con (s, u)1/2.

(6.8)

Now we substitute (6.8) and (6.4) into (2.16), and obtain (fix p = N)

EN,k
c (s, v) ≤C0ε +C(C1ε)2 +CC1ε

∫ s

2
τ−1EN,k

c (τ, v)1/2dτ

+CC1ε

∫ s

2
τ−3/2EN,k

con(τ, u)1/2dτ

+CC1ε

∫ s

2
τ−1+CC1εEN,k−1

c (τ, v)1/2dτ

+CC1ε

∫ s

2
τ−3/2+CC1εEN,k−1

con (τ, u)1/2dτ.

(6.9)

The integral inequalities (6.2) together with (6.9) forms a system. By Cornwall’s inequality and
induction, we obtain

s−1/2EN,k
con(s, u)2/3 + EN,k

c (s, v)1/2 ≤ C0ε +C(C1ε)3/2sC(C1ε)1/2
(6.10)

provided that C1 > C0. Now if we take

C(C1ε)1/2 ≤ δ, C1 > 2C0, ε <
(C1 − 2C0)2

C2C3
1

, (6.11)

then (6.10) leads to (4.3). Then Proposition 4.1 is established.

7. The uniform energy bounds on hyperplanes and scattering result

In this section we discuss the asymptotic properties of the wave component. We denote by

Ds = {(t, x)/s ≤ t ≤
√

s2 + r2}.

We will make energy estimates of the wave equation in this domain, which permit us to control the
standard energies on hyperplanes by the energies on hyperboloids. More precisely,

Proposition 7.1. Let u be a C2 function defined in K[2,s1]. Then for any 5/2 ≤ s ≤ s1

∥u(s, ·)∥E ≤ E(s, u) +
∫
Ds

|∂tu□u|dxdt, (7.1)

where

∥u(t, ·)∥E :=
∫
R3
|∂tu(t, x)|2 +

3∑
a=1

|∂au(t, x)|2dx

is the standard energy on a hyperplane.
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Proof. We only need to integrate the identity

−2∂tu□u = ∂t

(
|∂tu|2 +

3∑
a=1

|∂au|2
)
− 2

3∑
a=1

∂a
(
∂tu∂au

)
inDs. □

Then we remark that for ord(Z) ≤ N,∫
Ds

|∂tZu□Zu|dxdt ≤
∫
K[
√

2s−1,s]
|∂tZu□Zu|dxdt

=

∫ s

√
2s−1

∫
Hτ

|(s/t)∂tZu| |□Zu|dxdτ

≲

∫ s

√
2s−1

EN(τ, u)1/2∥|□u|N∥L2
f (Hτ)dτ.

Recalling (6.1) and (4.2) (which is now valid on [2,∞), following the bootstrap argument), one has∫
Ds

|∂tZu□Zu|dxdt ≲ (C1ε)2, (7.2)

provided that CC1ε ≤ δ, δ ≤ 1/10. We then obtain the following uniform energy bound:

∥u(t, ·)∥E ≲ (C1ε)2. (7.3)

At the end, we establish the scattering property of the wave component. For this purpose we recall
the following result established in [17, Lemma 6.12].

Lemma 7.2. Let u be a solution to

−□u(t, x) = F(t, x), u(2, x) = u0(x), ∂tu(2, x) = u1(x) (7.4)

where F ∈ C([0,∞); L2(R3)), u0 ∈ Ḣ1(R3), u1 ∈ L2(R3). If∫ ∞

2
∥F(τ, ·)∥L2(Rn)dτ < ∞, (7.5)

then there exists (u⋆0 , u
⋆
1 ) with u⋆0 ∈ Ḣ1(R3), u⋆1 ∈ L2(R3) such that

lim
t→∞

3∑
α=0

∥∂αu(t, ·) − ∂αu⋆(t, ·)∥L2(R3) = 0, (7.6)

where u⋆ is the solution to the Cauchy problem

−□u⋆ = 0, u⋆(2, x) = u⋆0 (x), ∂tu⋆(2, x) = u⋆1 (x). (7.7)

Moreover,

∥u⋆0 − u0∥Ḣ1(R3) + ∥u
⋆
1 − u1∥L2(R3) ≤ C

∫ ∞

2
∥F(τ, ·)∥L2(R3)dτ. (7.8)
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Proposition 7.3. There exists an initial datum (u⋆0 , u
⋆
1 ) ∈ ḢN+1(R3) × HN(R3), such that the wave

component of the global solution constructed in Theorem 1.1 satisfies:

lim
t→+∞

3∑
α=0

∥∂α∂
ILJu⋆(t, ·) − ∂α∂ILJu(t, ·)∥L2(R3) = 0 (7.9)

where |I| + |J| ≤ N.

Proof. We apply Lemma 7.2 on

−□∂ILJu = ∂ILJ(Pαβ∂αv∂βv + Rv2).
Recalling (4.7) which is now valid in K[2,∞),

∥|∂αv∂βv|N∥L2(R3) ≲ C1ε∥t−3/2sδ|∂v|N∥L2(R3) ≲ C1εt−3/2+2δ

which is integrable in time. The same estimate holds for v2. Then by Lemma 7.2 we obtain the desired
result. □

8. Conclusion

We first emphasize that the system (1.1) simplified from the Einstein-massive scalar field system
with small amplitude regular initial data model the gravitational wave stimulated by an astrophysical
event. The background is taken to be the Minkowski space-time. In this context, due to the fact that
the Klein-Gordon component always enjoys a mildly increasing energy, the massive wave enjoys a
strictly faster decay rate up to the top order, say, ∼ t−3/2sδ compared with ∼ t−1 of massless wave
(recalling (4.7)). As a consequence, it seems that the extra massive field would not be easily detected
directly. If one wants to make tests on the scalar-tensor theory, it is better to concentrate on the wave
component, i.e. the metric wave. However, the linear scattering result indicates that in this weak field
case, the metric wave looks “very like” (in the sense of L2 norm) a linear wave by a distant observer,
even if a massive scalar field is coupled. If this property still holds for the complete Einstein-massive
scalar system (especially with positive ADM mass initial data), it seems to be difficult to distinguish
a scalar-tensor gravitational wave from a relativistic one. The same situation holds for many other
modified gravity theories such as the f (R) theory and the Brans-Dicke theory. Both of them possess a
similar wave-Klein-Gordon structure demonstrated by (1.1).

We should emphasize again that the above discussion is only valid in the astrophysical context with
Minkowski space-time background. In the cosmological context where the background space-time
is more complicated (for example, the Milne model), it may happen that the massive scalar enjoys a
directly detectable feature.
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