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Abstract: The aim of this paper is to use a special type of Einstein warped product manifolds recently
introduced, the so-called PNDP-manifolds, for the differential geometric study, by focusing on some
aspects related to dark field in financial market such as the concept of dark volatility. This volatility is
not fixed in any relevant economic parameter, a sort of negative dimension, a ghost field, that greatly
influences the behavior of real market. Since the PNDP-manifold has a “virtual” dimension, we want to
use it in order to show how the Global Market is influenced by dark volatility, and in this regard we
also provide an example, by considering the classical exponential models as possible solutions to our
approach. We show how dark volatility, combined with specific conditions, leads to the collapse of a
forward price.
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1. Introduction

Einstein warped product manifolds have been investigated both in mathematics and physics. Several
papers in literature are dedicated to the study of warped products as solutions of Einstein’s field
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equations, (to name a few, among others, see [1–3]. They are mathematical objects which are also
considered in current research. Here, we consider M an Einstein warped product manifold of special
kind, the so-called PNDP-manifold, introduced by A. Pigazzini et al. in [4, 5], and we try to use this
new approach to “virtual” dimensions and “emerging spaces” (see also [6]), in order to describe the
behavior of the financial market conditioned by a ghost field. To present these applications, we take as
basic knowledge what is stated in [4–6], recalling the definition of PNDP-manifold.

In recent decades, physicists have increasingly contributed to the modeling of “complex systems”
using tools and methodologies developed in statistical mechanics and theoretical physics, introducing
what today can be called Econophysics (see [7]), and geometric theories, such as the Geometric
Arbitrage Theory have also been introduced ( [8]). Recently, works have been published (see [9–11])
in which the authors introduce the concepts of Ghost Field, hidden space and extra dimensions in the
economic field, also considering spaces with negative dimensions.

In [10] we want to emphasize that the authors used an original idea in the Minkowski spacetime
embedded in Kolmogorov space in time series data with the behavior of traders, for GARCH (1, 1)
process; to learn more about the GARCH model see also [12]. The result of the work [10] is equivalent
to the dark volatility or the hidden risk fear field induced by the interaction of the behavior of the
trader in the financial market panic when the market crashes. In particular the authors induce a
dark volatility equivalent to dark matter in theoretical physics discovered by Wolfgang Pauli. They
consider gi j ∈ G be a cycle (group G) and gi j ∈ G∗ be a cocycle, a group action acting on the
fibre bundle of manifold, gi j =

√gi j
√gi j and xt is a time series in the section of the Riemannian

manifold, xt ∈ TX0 X = p−1(X). Thus there is a differential 2-form of time series arising from the
scalar production of the group transformation of the vector bundle, the so-called principal bundle of
the time series, σ2

t = ⟨xt, xt⟩ = gi j||xt||
2 with gi j = 1, where σ2

t indicates the volatility, and the authors
are interested in the case of dark volatility, i. e. σ2

t < 0, which happens when we change the Euclidean
metric to the Minkowski metric gi j = −1 which allows the negative volatility, σ2

t < 0. Because
σ2

t = ⟨xt, xt⟩ = gi j||xt||
2 = −||xt||

2; the metric used for dark volatility corresponds to the metric used for
F in [4].

Our work can also be understood as an extension of the geometric approach described in these
papers [13–16]. For instance in [13], objects are represented by open string with 2-endpoints and D2-
brane, which are continuous enhancement of 1-endpoint open string model. We can, in fact, reinterpret
strings and branes as PNDP-strings and PNDP-brane showing the geometric aspects of the “hidden”
spaces that our approach introduces, but also as an extension to more “classic” works as [17, 18].

Later, in Section 4, we have demonstrated possible empirical nature of our approach. We have tried
to show a particular case, when the forward price represented in its exponential form coincides with the
warping function. We have outlined the possible links between the solutions provided by the systems
that determine a PNDP-manifold and some classic stochastic models. We have tried to find answer how
our concept of dark volatility could be able to stabilize the market crisis.

On the other hand, it would be useful to mention that there is increasing knowledge about the
nonstationary, far-from-equilibrium dynamics. The proper understanding such dynamics, e. g., the
violation of the ergodic assumption [19], in the systems which econophysics deals, can bring a new
perspective on the investigated phenomena [20]. Regarding the performed analysis with volatilities, a
number of interesting generalizations of geometric Brownian motion (GBM) models emerged booth
in economic and physical literature on stochastic processes. In the future it would be very useful to
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look at the obtained results from the point of view of the computation with time averaged mean squared
displacement for scaled GMB [21, 22] with volatility varying as a power law in time.

The paper is organized as follows: in Sections 2 and 3 we introduce basic properties of PNDP-
manifolds with some Ricci-flat examples. In Section 4 we show the relationship between PNDP-
manifolds approach and exponential models and provide some empirical analysis on real financial data.
In Section 5 we summarize the result of presented work and discuss future ideas.

2. PNDP-manifolds

Before proceeding with the definitions, it is useful to remember the following: if A→ M and B→ M
are transversal sub-manifolds of co-dimensions a and b, respectively, then their intersection C, is a new
sub-manifold of co-dimensions a + b. By removing the requirement for transversality, derived geometry
explains how to interpret a non-transversal intersection C as a derived smooth manifold of co-dimension
a + b. Specifically, dim(C) = dim(M) − a − b, and the latter number can be negative. Therefore, we
are dealing with “virtual dimensions”, which are not linked to the usual geometrical conception of
“dimension”. In fact, in differential geometry, the transversality condition is a condition that establishes
how two submanifolds interact with each other in a larger space. More precisely, two submanifolds
are transversal if they intersect in a “non-degenerate” way, i. e., if the sum of their dimensions is equal
to the dimension of the largest manifold containing them. The removal of the transversality condition
implies that the submanifolds no longer satisfy this condition and therefore their intersection is no
longer non-degenerate. This means that their interaction can no longer be described simply as a sum of
their dimensions, but requires more advanced techniques than derived geometry, to define what is called
“virtual” dimensions.

In this paper, we apply derived geometry and the “virtual” dimension, by utilizing the concept of
Kuranishi neighborhood (Rd, E, s), where, by definition, it is the intersection of zero section of the
obstruction bundle with itself, therefore, we define the following virtual dimension: dim(Rd) − rank(E),
see [23] for more details.

Definition 1: A warped product manifold (M, ḡ) = (B, g) × f (F, g̈), with metric tensor ḡ = g + f 2g̈, is
Einstein if only if

R̄ic = λḡ⇐⇒


Ric − d

f∇
2 f = λg

R̈ic = µg̈

f∆ f + (d − 1)|∇ f |2 + λ f 2 = µ

(2.1)

where λ and µ are constants, d is the dimension of F, ∇2 f , ∆ f and ∇ f are, respectively, the Hessian, the
Laplacian and the gradient of f for g, with a smooth positive function f : (B)→ R+.
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Figure 1. Speculative view of a PNDP-maifold with a positive “virtual” dimension. From
the speculative point of view, the following projection, the PNDP-manifold appears as B2-
manifold. Then the rest of the PNDP-manifold remains hidden or invisible.

Definition 2: We call PNDP-manifold a warped product manifold (M, ḡ) = (B, g) × f (F, g̈) satisfying
(1), where the base-manifold (B, g) is a Riemannian (or pseudo-Riemannian) product-manifold B =
B1 × B2 with g = Σgi, where B2 is an Einstein manifold (i. e., Ric2 = λg2 where λ is the same for (1)
and g2 is the metric for B2), with dim(B1) = n1, dim(B2) = n2, so dim(B) = n = n1 + n2 (Figure 1).
The warping function f : B→ R+ is f (x, y) = f1(x) + f2(y) (where each is a function on its individual
manifold, i. e., f1 : B1→ R+ and f2 : B2 → R+) and can also be a constant function. The fiber-manifold
(F, g̈) is a derived Riemann-flat manifold with negative “virtual” integer dimensions m, where with
derived smooth manifold is considered a smooth Riemannian flat manifolds by adding a vector bundle
of obstructions. In particular for F we consider the space form Rd as a underlying manifold, with
orthogonal Cartesian coordinates such that gi j = −δi j, and as vector bundle of obstructions, E → Rd, a
bundle with rank(E) = 2d, i. e., twice the dimension of the space form Rd. In this way the dimension
of F will always be m = d − rank(E) = −d. In fact, in this circumstance, if we consider a Kuranishi
neighborhood (Rd, E, S ), with manifold Rd, obstruction bundle E → Rd, and section S : Rd → E, then
the dimension of the derived smooth manifold F is dim(Rd) − rank(E). Moreover in the case n − d > 0
(i.e., M with positive “virtual” dimension) we consider it as PNDP-manifold only the case n1 = d = −m
(so the “virtual” dimension of M, dim(M)V, must coincides with dim(B2)). In the specal case where
n − d > 0 in which also B1 is an Einstein-manifold, then we consider it as PNDP-manifold only the case
in which B1 := B2.

Important Note: Since F := (Rd, E, S ), and on E (obstruction bundle) the (pseudo-)Riemannian
geometry does not work, each (pseudo-)Riemannian geometry operation is performed and defined only
on the underlying Rd, but is considered performed and defined also on F (e. g., we will say that the
Ricci curvature of F is zero because the Ricci curvature of Rd is zero). The usual (pseudo-)Riemannian
geometry works for the underlying smooth manifold (because it is an ordinary manifolds). From now
on we will work with the (pseudo-)Riemannian geometry on the derived fibers-manifold F. We will
define all (pseudo-)Riemannian geometry operations not directly on F, but on Rd, and considering them
made on F, paying attention only to the dimension. Obviously for what has been said, the tangent space
and the vector fields are those of Rd. The scalar product with two arbitrary vector fields g̈⟨V,W⟩ is
define on F as: gi jviw j = −δi jviw j = −(viwi).
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The analysis does not differ from the usual Einstein sequential warped product manifold analysis,
(M1 ×h M2) ×h̄ M3, (see [24, 25]), where h = 1, M2 is an Einstein-manifold and M3 is a derived-smooth-
manifold with negative “virtual” dimensions. The Riemannian curvature tensor and the Ricci curvature
tensor of the product Riemannian manifold can be written respectively as the sum of the Riemannian
curvature tensor and the Ricci curvature tensor of each Riemannian manifold (see [26]).

Proposition: If we write the B-product as B = B1 × B2, where:

(i) Rici is the Ricci tensor of Bi referred to gi, where i = 1, 2,
(ii) f (x, y) = f1(x) + f2(y), is the smooth warping function, where fi : Bi → R+,

(iii) Hess( f ) =
∑

i τ
∗
i Hessi( fi) is the Hessian referred on its individual metric, where τ∗i are the

respective pullbacks, (and τ∗2Hess2( f2) = 0 since B2 is Einstein),
(iv) ∇ f is the gradient (then |∇ f |2 =

∑
i |∇i fi|

2), and
(v) ∆ f =

∑
i ∆i fi is the Laplacian, (from (iii) then also ∆2 f2 = 0),

then the Ricci curvature tensor will be

R̄ic(Xi, X j) = Ric1(Xi, X j) − d
f Hess1( f1)(Xi, X j)

R̄ic(Yi,Y j) = Ric2(Yi,Y j)
R̄ic(Ui,U j) = R̈ic(Ui,U j) − g̈(Ui,U j) f ∗

R̄ic(Xi,Y j) = 0
R̄ic(Xi,U j) = 0,
R̄ic(Yi,U j) = 0,

(2.2)

where f ∗ = ∆1 f1
f + (d − 1) |∇ f |2

f 2 , and Xi, X j, Yi, Y j, Ui, U j are vector fields on B1, B2 and F, respectively.
A warped product manifold with derived differential fiber-manifold F := (Rd, E, S ), and dim(F) a

negative integer, is a PNDP-manifold, as defined in Definition 2, if and only if

R̄ic = λḡ⇐⇒



Ric1 −
d
f τ
∗
1∇

2
1 f1 = λg1

τ∗2∇
2
2 f2 = 0

Ric2 = λg2

R̈ic = 0
f∆1 f1 + (d − 1)|∇ f |2 + λ f 2 = 0,

(2.3)

(since Ric is the Ricci curvature of B, then Ric = Ric1 + Ric2 = λ(g1 + g2) + d
f τ
∗
1∇

2
1 f1). Therefore the

system (2.3), for n − d = 0 and n − d < 0, become

R̄ = λn̄⇐⇒



R1 f − ∆1 f1d = n1 fλ

∆2 f2 = 0
R2 = λn2

R̈ic = 0
f∆1 f1 + (d − 1)|∇ f |2 + λ f 2 = 0.

(2.4)
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where n1, n2, R1 and R2 are the dimension and the scalar curvature of B1 and B2 respectively. While for
n − d > 0, as by Definition 2, we must set d = n1, so we have

R̄ = λn̄⇐⇒



R1 f − ∆1 f1n1 = n1 fλ

∆2 f2 = 0
R2 = λn2

R̈ic = 0
f∆1 f1 + (n1 − 1)|∇ f |2 + λ f 2 = 0.

(2.5)

Figure 2. The figure shows a PNDP-maifold with speculative projection into 6-dimensional
manifold with an obstruction bundle of rank = 4. The “virtual” dimension of a PNDP-
manifold (if positive) has to be equal to the dimension of B2-manifold (see Definition 2 and
projection (2.9)). Also the λ constant of a PNDP-manifold has to be equal to the λ constant
of B2-manifold. So the speculative projection, projects a PNDP manifold on a B2-manifold
“virtually”.

Remarks: In the particular case where d = 1 the systems (2.4) and (2.5) should be modified, in fact
for d = 1, from the system (2.3), we get

R̄ic = λḡ⇐⇒



Ric1 −
1
f τ
∗
1∇

2
1 f1 = λg1

τ∗2∇
2
2 f2 = 0

Ric2 = λg2

R̈ic = 0
f∆1 f1 + λ f 2 = 0,

(2.6)
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from which the system (2.4) becomes

R̄ = λn̄⇐⇒



R1 f − ∆1 f1 = n1 fλ

∆2 f2 = 0
R2 = λn2

R̈ic = 0
f∆1 f1 + λ f 2 = 0.

(2.7)

and the system (2.5) becomes

R̄ = λn̄⇐⇒



R1 f − ∆1 f1 = fλ

∆2 f2 = 0
R2 = λn2

R̈ic = 0
f∆1 f1 + λ f 2 = 0.

(2.8)

Finally with regard to the projections/desuspensions we remember that

• if dim(M) > 0 (i. e., system solutions (2.5)) we have the projection

π(>0) : PNDP→ B2, (2.9)

so M is “virtually” B2 (see Figure 2),

• if dim(M) = 0, (i. e., system solutions (2.4)), we have the projection

π(=0) : PNDP→ P, (2.10)

where with P we mean a point-like manifold (zero dimension), so M is “virtually” P, and

• if dim(M) < 0, (i. e., system solutions (2.4)), we have the projection

π(<0) : PNDP→ Σdim(M)<0(p), (2.11)

with Σdim(M)<0(p), we mean the (||dim(M)||)-th desuspension of point. For example, if dim(M) = −4
the projection π−4 will “virtually” project M into an object which will be given by the fourth
desuspension of a point.

Definition 3: We say that dimension of X is −1 if suspension of X, ΣX is diffeomorphic to a point.
By induction and suspension operation we can define all negative dimensions. Since if X and Y are
diffeomorphic then their suspensions ΣX and ΣY are diffeomorphic. Also a metric on X is compatible
with ΣX. It is also well-known that differentials and suspensions are compatible on manifolds. This
means that the differential on the suspension space ΣX is induced from the differential on X.
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3. PNDP-manifolds in Financial Market

The aim of this work is to interpret the “dark volatility” ghost field, using the fiber-manifold (F)
of the PNDP-manifolds. In fact, as per the speculative interpretation of negative dimensions provided
earlier, we consider dark volatility as a negative dimension that influences the market (base-manifold
(B)), making it emerge as a new manifold.

Let’s consider the global market (B) and the hidden dark volatility (F) that influences it.
In the case of the PNDP-manifolds, it is possible to combine both of them in a single Einstein-

manifold (M) in which F will have a negative ”virtual” dimension, M = B × f F, where B = B1 × B2

with Einstein-B2.
Let us proceed with the following examples to show in advance the types of scenarios that may arise.

By utilizing PNDP-manifolds, we can analyze the situation that is related to the Global Market to see
how it can possibly react differently if stimulated by a ghost field such as dark volatility, when it is
in equilibrium, i.e. when the Ricci curvature is zero, that is Ricci-flat scenario, (arbitrage opportunity
disappears and the system of the time series data contains no curvature).

Example 1: Ricci-flat with dim(M) < 0.

Let M be a PNDP-manifolds with dim(M) < 0, where B = B2 × B2 represents the global market
manifold and F the dark volatility.

In this example we show a type of Ricci-flat PNDP-manifold, i. e., with λ = 0. If we set B2 = R2, B1

a 1-dimensional manifold, and F = (R4 + E), then (2.4) becomes

∆1 f1 = 0
∆2 f2 = 0
R2 = λn2

R̈ic = 0
|∇ f |2 = 0.

(3.1)

The solution is f1 = c, where c is a constant and πdim(M)=−1 : (R2 × B1)×c (R4 + E)→ Σ−1 p, in which the
global market B = (R2×B1) under the influence of dark volatility F, changes dimension ”virtually”, from
3-dimensional manifold to ”virtual” −1-dimensional manifold, i. e., an object with negative dimension,
so even if its Ricci-curvature remains preserved, we cannot consider it as an “equilibrium” situation
because it “virtually” degenerates into something like the desuspension of a point. In this case, the
scenario points to an extremely negative effect, where the market fails to maintain stability and crashes.

Example 2: Ricci-flat with dim(M) = 0, point-like.

For this purpose, we consider fiber-manifold F = (R4 + E) (with rank(E) = 8), 2-dimensional
Ricci-flat B1-manifold and λ = 0. In this case we still have the situation of (2.4). If for example we
choose B1 = B2 = R2, then our PNDP-manifold will be M = (R2 × R2) × f (R4 + E), with the following
metric: ds2 = dr2 + dx2 + dy2 + dz2 + f 2(du2 + dv2 + dw2)(−4), where f is a constant function.

In this case, the Global Market B = (R2 × R2), under the influence of dark volatility F, “virtually”
changes dimension from 4-dimensional to “virtual” 0-dimensional manifold,
πdim(M)=0 : (R2 × R2) f (R4 + E)→ “virtual” point-like manifold (“virtual” zero-dimension), so we cannot
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consider it as an “equilibrium” situation because it “virtually” degenerates into a point-like manifold. It
is a highly unstable situation, as the market may immediately crash.

Figure 3. Representation of the Example 3a. The PNDP-manifold is the global market in
equilibrium with dark volatility. Here (B-manifold) is represented trivially as a Tesseract
of dimension 4. The influence of the dark volatility (F-manifold), acts on the Tesseract by
reducing it in dimension (R2). In this case the market manages to maintain an equilibrium as it
maintains a positive dimension and the same Riemanian structure except for the dimension.

Example 3a: Ricci-flat with dim(M) > 0.

Let M be a PNDP-manifold with dim(M) > 0, where B = B1 × B2 represents the global market
manifold and F is the dark volatility. Let B1 = B2, both Ricci-flat, i. e., R1 = R2 = 0, and both
2-dimensional, i. e., dimension n1 = n2 = 2. Then we can consider B1 and B2 to be both R2, with metric:
ds2 = (dx2 + dy2). Now let F = (R2 + E) have ”virtual” negative dimension m = −2.

In this case the system (2.5) is satisfied for f = c, where c is constant ( f1 and f2 are both constant).
Therefore the PNDP-manifold will be M =: (R2 × R2) ×c (R2 + E), with metric ds2 = dt2 + dx2 + dy2 +

dz2 − c2(du2 + dv2)(−2) and “virtual” dimension dim(M) = 2 (see Figure 3).
It follows from our projection that πdim(M)=2 : (R2 × R2) ×c (R2 + E)→ R2, which the global market

B = (R2 × R2) under the influence of dark volatility F changes from 4-dimensional flat-manifold to its
2-dimensional flat-submanifold, but in this case where the curvature remains preserved and the market
maintains a positive dimension (dim(M) > 0), we consider that the market also preserves its equilibrium
situation.

Example 3b: Ricci-flat with dim(M) > 0.

Let M be a PNDP-manifolds with dim(M) > 0, where B = B1 × B2 represents the global market
manifold and F is the dark volatility. Let B1 = B2, both Ricci-flat, i. e., R1 = R2 = 0, and both
2-dimensional, i. e., dimension n1 = n2 = 2, then we can consider B1 and B2 as S 1 × S 1, i. e. B1 and
B2 are both T 2 torus, and let F = (R2 + E) with “virtual” negative dimension m = −2. Also in this
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case the system (2.3) is satisfied for f = c, where c is constant ( f1 and f2 are both constant), so the
PNDP-manifold will be M =: (S 1 × S 1 × S 1 × S 1) ×c (R2 + E), with “virtual” dimension dim(M) = 2.

This implies that πdim(M)=2 : (S 1 × S 1 × S 1 × S 1) ×c (R2 + E)→ (S 1 × S 1), which the global market
B = (S 1 × S 1 × S 1 × S 1) under the influence of dark volatility F changes dimension, from 4-torus
Ricci-flat to its submanifold, a 2-torus Ricci-flat, but, as in the previous example, it is still in equilibrium.

Time series of financial asset returns often demonstrates volatility clustering (Figure 4). In a time
series of stock prices, for instance, it is observed that the variance of returns or log-prices is high for
extended periods and then low for extended periods.

Figure 4. The situation over time regarding the dark volatility clustering phenomenon is
shown, according to our approach. We can see a market represented by a positive dimensional
manifold (in which the dark volatility is −1 dimensional, i. e., low), over time, at the instant
t1 a shock occurs, a surge in the dark volatility. The clustering phenomenon persists up
to an instant tn, i. e., the volatility will continue to be high from t1 to tn, thus allowing the
dark volatility to be identified with a new manifold F with an increased negative dimension
compared to what it was before t1. Therefore, through our projection, the example in the figure
shows that the market, in the clustering between t1 and tn, is identified with a zero dimensional
object.

What this means in practice and in the world of investing is that as markets respond to new information
with large price movements (volatility), these high-volatility environments tend to endure for a while
after the first shock. In other words, when a market suffers a volatile shock , more volatility should be
expected.

In our scenario, we assume that the more dim F is negative, the more shocks the market (B) will
suffer.

For example, if we consider Example 2 and Example 3a, we see that the same Market B (which is
represented by R2 × R2, i. e., R4) suffers a greater shock when dark volatility (F) increases to the point
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that everything degenerates into a point-like manifold (Example 2), compared to when it settles into
R2-manifold (Example 3a).

Therefore, we should expect, in our approach, that the clustering of volatility manifests itself,
following a shock, as the tendency of a market to a certain change in dimension (sometimes also in
curvature) which can be represented by the manifold on which the shock leads it to self projection.

In summary, it is worth noticing that we are dealing with dark volatility, and not volatility, in the
sense that B already takes volatility into account, so F (dark volatility) influences B (which already
takes into account volatility) by transforming B into another “object” through our projection.

If, for example, we start from market with “virtual” dimension dim(M) > 0 and we have a trend,
therefore Dark Volatility Clustering, for example negative, then F will gradually increase its negative
dimension, so remaining in dim(M) > 0, i. e., the market is projected in manifolds with positive
dimension. However, if the trend turns negative even further, then the market will gradually change
into manifolds with ever smaller dimensions and in the end we will reach dim(M) = 0. Here there is a
transition point, i. e., beyond this, we have the Crash, identified with dim(M) < 0 (desuspensions of
point). If the trend improves then we go back to dim(M) > 0.

Maintaining these trends over a period of time, even a short one, make it possible to determine F,
and therefore obtaining a projection on an “object” that will represent the market in that period.

The situation is different if we have a large fluctuation of dark volatility (F), i. e., in every instant the
dark volatility continues uninterruptedly to go from very high to very low (Figure 5), which contributes to
creating the “Market Panic” (Figure 6). Thus, according to our approach, the big jump in dark volatility
corresponds to a change in dimension of F and this means that F continues to change in dimension
every instant without a trend takes shape over a period of time, and then the “virtual” dimension of M
(dim(M)) keeps changing instantaneously by increasing and decreasing, being able to pass from positive
to negative and vice versa instantly.

So our projection continues to vary instantly without identifying the market in a specific “object”. It
is as if the possible states overlap, until a trend takes shape, at which point our projection returns to
project the market into one specific “object”, since the dark volativity re-identifies with an F, and thus a
precise dimension, for a period of time.

4. Relationship between PNDP-manifolds approach and exponential models

In this section we want to relate the PNDP manifolds with the classical exponential models and to do
this we want to highlight a particular case in which the warping function f , defined on the base-manifold
B of a PNDP-manifold, can coincide with the forward price represented in its exponential form. The
objective of this paragraph is in fact to stipulate the possible links between the solutions provided by
the systems that determine a PNDP-manifold and some classic stochastic models, to show the possible
applicative and empirical nature of this new approach to all effects. Furthermore we demonstrate how it
is possible to apply the concept of dark volatility to the well-known classical models.

Communications in Analysis and Mechanics Volume 15, Issue 2, 91–110.



102

Figure 5. Trend of Dark Volatility. Here we show how hypothetical values of dark volatility
affects dimension of F that represents it. From t1 to t3, F has dim = −1, from t4 to t8 its
dimension is −2, from t9 to t11 dim(F) = −3. So the dark volatility follows a trend clusterings.
From t12 to t16 there is a fluctuation, every instant dim(F) changes value: t12 → dim(F) = −4,
t13 → dim(F) = −3, t14 → dim(F) = −4, t15 → dim(F) = −3, t16 → dim(F) = −1. In the
interval (t12, t16) the market states overlap. From t16 it recovers a trend.

Figure 6. The figure shows a situation of “Market Panic”, (another similar situation is also
shown in Figure 5 in the interval (t12, t16)) in which a global market B undergoes continuous
fluctuations in dark volatility F, which continues to change instantly without showing a trend.
Due to constant changes in F, the market shows itself as the result of many overlapping
projections that we consider as “Market Panic”.
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4.1. Exponential models

Let’s start by recalling that the classic Black ’76 model [27] is a generalization of the Black-
Scholes [28] model in which a log-normal trend of the underlying is assumed. It also assumes that the
forward price of an underlying has the following exponential trend

Ft(t) = F0(t)e−
σ2
2 t+σWt , (4.1)

where σ is the constant log-normal volatility, Wt is the Brownian motion and Fs(t) is the forward price
of an underlying with expiry in t and valued in s ≤ t.

The above model can be seen as a particular case of the exponential Levy models. These models
provide for the use of Levy processes (see [29]) for the description of the forward price of the underlying.
In general, the forward price is represented in its exponential form as

Ft(t) = F0(t)e ft , (4.2)

where ft is a Levy process.
It is worth noticing that (from Definition 4 in [4]) an Einstein warped product manifold is a PNDP-

manifold, if and only if, the statements in system (2.3) are satisfied.
If, for example, we consider the dim(B1) = n1 = 1 (in case with positive dimension), we have

n1 = d = 1, then system (2.5) becomes

R̄ = λn̄⇐⇒



R1 f − ∆1 f1 = fλ

∆2 f2 = 0
R2 = λn2

R̈ic = 0
f∆1 f1 + λ f 2 = 0.

(4.3)

At this point if we set n2 = 2, λ = −1, R1 = 0 and f2 = 1, the system (4.3) becomes

R̄ = λn̄⇐⇒



∆1 f1 = f

∆2 f2 = 0
R2 = −2
R̈ic = 0
f 2 = f 2.

(4.4)

Since the last equation of (4.4) is an identity, the system is reduced to find the solution of a simple
linear second order ODE: ∆1 f1 = f1 + 1, by noticing that f = f1 + f2 = f1 + 1. The solution will be:
f1 = C1et +C2e−t − 1.

As we can see, in this case the market is no longer in equilibrium. In fact we no longer have zero
scalar curvature, but we obtain that the warped function f = f1 + f2 is

f = C1et +C2e−t. (4.5)

Just to make a parallel with the Black ’76 model (4.1), we can set C1 = 0, C2 = F0 (where F0 is
the forward price, with expiry in t, and constant value in s ≤ t) and ft = −t. We can also indicate that
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our solution is considering a Brownian motion in a non-Newtonian fluid. Also our warped function
f : (B1 × B2)→ R+ is equivalent to

f = F0e−t, (4.6)

that is, the description of the forward price of the underlying using exponential type model.
This particular case analyzed here suggests that our approach can be traced back to a Levy-type

exponential model, only in a market that is not in equilibrium, and highlight that the warping function
(solution of the systems that determine the PNDPs and defined on the B-manifold with real positive
values), can be linked to exponential models. In particular, in this case, it shows us that the presence
of dark volatility is linked to a manifold (F) with only one “virtual” negative dimension and that the
forward price of an underlying, again in this particular market situation, will be destined to drop to an
asymptotic zero; in other words, it predicts an upper hand of dark volatility and therefore an exponential
collapse of the price.

This will lead to a consequent increase in dark volatility corresponding to a market crash, but
continuing with the analysis we find that the collapse of the market will continue. In effect, if we
consider the increase in dark volatility, subordinated to the collapse of the price, and therefore no longer
F with a “virtual” negative dimension, but F with three “virtual” negative dimensions, then the system
of Eqs. (4.4) becomes

R̄ = λn̄⇐⇒



∆1 f1 = ( f1 + 1)/3
∆2 f2 = 0
R2 = −2
R̈ic = 0
|∇1 f1|

2 = ( f1 + 1)2/3.

(4.7)

We obtain that the first equation has a solution: f1 = C1et/
√

3 + C2e−t/
√

3 − 1, while from the fifth

equation we get: f1 = e
√

3t+C3
3 − 1 and f1 = e

−
√

3t−C3
3 − 1. At this point, it is easy to see that, always

referring to (4.1) as in the previous case, for C1 = C3 = 0 and C2 = 1, the solutions of the first equation
will coincide with the solution of the fifth, that is, we get

f = F0e−t/
√

3, (4.8)

which confirms the ongoing crash.

4.2. Empirical analysis for traded options

To demonstrate the behavior of our approach, we performed the empirical analysis of the forward
price represented in its exponential form. Further we use the standard formula for the call and put
prices [28]

pc =S e−qtN (d1) − Ke(−rt)N (d2)

pp =Ke(−rt)N(−d2) − S e−qtN(−d1) (4.9)

where S is an underlying asset price, K is a strike price, t is time to expiration in years, r is a risk-free
interest rate (for simplification q as foreign risk-free interest rate was set to q = r) and N(x) is a
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cumulative distribution function for a Gaussian distribution with standard deviation σ. Forward price
was then set as difference of F = pc − pp.

As the practical implementation of above formulae for the calculations of Black-Scholes option
prices we used py_vollib python library [30]. For the purpose of analysis we used the online available
historical data Yahoo! Finance [31] for selected traded options, namely, Alphabet Inc. (GOOGL),
Tesla, Inc. (TSLA), SAP SE (SAP), Diageo plc (DEO), Anheuser-Busch InBev SA/NV (BUD), which
provided us with values of parameters S and K. The choosen time period was between 2021/03/24 and
2022/03/24 and the option calls were set for the day 2022/04/22 (time t one month in the future). The
risk-free interest rate r was set to 0.0235.

−75 −50 −25 0 25 50 75 100 125
Estimation error [%]

0.00

0.02

0.04

0.06

0.08

De
ns
it 

GOOGL index

A
B

1500 2000 2500 3000 3500 4000
Strike Price

0

200

400

600

800

1000

1200

Op
tio

n 
Va

lu
e

GOOGL index

Call A
Put A
Call B
Put B

0 20 40 60 80 100 120
Contract No.

2.0

2.5

3.0

3.5

4.0

4.5

Δ

GOOGL index

−25 0 25 50 75 100 125
Estimation error [%]

0.00

0.05

0.10

0.15

0.20

0.25

De
ns
ity

TSLA index

A
B

400 600 800 1000 1200 1400 1600 1800
Strike Price

0

100

200

300

400

500

600

700

Op
tio

n 
Va

lu
e

TSLA index

Call A
Put A
Call B
Put B

0 20 40 60 80 100 120
Contract No.

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Δ

TSLA index

Figure 7. The plot of the analysis results for classical Black-Scholes model [28] (A) and our
modified model based on the Eq. (4.8) with incorporated dark volatility (B). The historical
data for S and K prices in Eq. (4.9) are from one year time period 2021/03/24 – 2022/03/24.
The option calls were set one month in the future for 2022/04/22, i. e., parameter t = 1/12,
and r = 0.0235. (left column) The histograms for the estimation error of selected options,
(center column) the calculated values for call and put prices in dependence on initial strika
price, (right column) difference of calculated forward price F between both models (A) and
(B) for the contracts GOOGL (120) and TSLA (119).

The visualization of comparative difference between the classical Black-Scholes model [28], denoted
(A), and our modified model based on the Eq. (4.8) with incorporated dark volatility (B) is presented on
Figures 7–8. For both figures, the first column of plots, the histograms for the estimation error, shows
how correctly are predicted the market values of the options. In the case of the model (A), for GOOGL
options the estimation error is on average underpricing the options, for other options (SAP, DEO, BUD
and TSLA) the mean of the estimation error is near the zero. For the model (B), the mean is moving to
the positive numbers, the estimation has slightly overpricing effect. The middle column of plots shows
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the influence of the considering dark volatility on the call and put options values, which is the largest for
BUD options. The last column of plots show the difference of forward price values for different strike
expectations. The difference has increasing trend for all indexes for both models (A) and (B), but for
GOOGL and TSLA contracts is rather stable in the central region.
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Figure 8. The plot of the analysis results for classical Black-Scholes model [28] (A) and our
modified model based on the Eq. (4.8) with incorporated dark volatility (B). The historical
data for S and K prices in Eq. (4.9) are from one year time period 2021/03/24 – 2022/03/24.
The option calls were set one month in the future for 2022/04/22, i. e., parameter t = 1/12,
and r = 0.0235. (left column) The histograms for the estimation error of selected options,
(center column) the calculated values for call and put prices in dependence on initial strika
price, (right column) difference of calculated forward price F between both models (A) and
(B) for the contracts SAP (17), DEO (16) and BUD (14).
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5. Conclusions and remarks

We have shown how the interpretation and the differential geometric approach expressed by the
authors in [10], can be re-expressed and reinterpreted in the light of PNDP-manifolds.

Analyzing the above Examples, we can say that if the hidden “virtual” dimension of the dark volatility
is greater than the positive dimension of the Global Market itself, the result will be an “emergent” Global
Market with negative dimensions, something like the desuspension/s of a point, which we could interpret
as the boundary of a point and so on. This occurs regardless of which manifold represents the starting
Global Market. We consider this situation as a “Market Crash”.

When the hidden “virtual” dimension of the dark volatility is equal to the positive dimension of the
Global Market itself, will “emerge” a Global Market, which changes into a point-like object, and also in
this case, regardless of which manifold represents the starting Global Market. We see the point-like
market as a transitional state, in which it can suddenly collapse and crash.

We also want to analyze that when we are in presence of a Global Market expressed by a manifold
with zero Ricci curvature, if the hidden “virtual” dimension of the dark volatility is less than the positive
dimension of the Global Market itself, the dark volatility can intervene without changing the curvature,
but changing only the dimension. We will obtain a manifold with smaller positive dimensions, but in
this case, it could preserve its Ricci-flat curvature.

In the case of Ricci-flat scenario, i. e., market in equilibrium, or when arbitrage opportunity disappears
and physiology of the time series data contains no curvature, the interpretation with PNDP-model with
positive “virtual” dimension, shows that the dark volatility may have no influence on it. It will decrease
its dimension, but the emerging market may remain in equilibrium. So in the Examples 3a and 3b we
have shown how it would be possible to construct and interpret a type of differential geometric model of
markets, with dim(M) > 0, where dark volatility does not affect its curvature.

In Section 4, we have instead shown a possible correlation to classic exponential stochastic models,
analyzing a specific case in which for a market, not in equilibrium, the approach suggests a strong
influence of dark volatility, predicting an exponential collapse of the price. Thus highlighting the
effective negative influence that dark volatility brings also by applying it to the well-known classical
models. This could be used to describe the influence of dark volatility on the market crisis that occurred
in the United States in 1929, or in Argentina in 2001, but also on the financial crisis of 2007–2009,
created by the United States housing bubble. Numerical simulations in this regard will be the subject of
our next works.

In fact, here we have only shown a new possible interpretative geometrical approach considering
this new manifold, but the main goal of our future work is to investigate this further from the empirical
point of view, by analyzing in more detail the Black-Scholes equation. Black-Scholes is a widely
used pricing model, also with differential geometric techniques (see [32–34]). We intend to study the
Black-Scholes option pricing on Riemannian manifold influenced by dark volatility, this considering
Brownian motion on Riemannian manifold as B-market, to determine such pricing on a B-market that
changes under the influence of dark volatility F. We will compare the results as F varies, enabling us to
see how the change of manifold influences the price trend, and how the dark volatility acts. Since the
concept of “virtual” dimensions, from speculative point of view, can create a new concept of “hidden”
dimensions, the PNDP-manifolds can be considered in different types of applications, a possible one has
already been shown in [6]. Our work can also be understood as an extension of the geometric approach
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described in these papers [13–16]. For instance, objects are represented by open string with 2-endpoints
and D2-brane, which are continuous enhancement of 1-endpoint open string model ( [13]). We can, in
fact, reinterpret strings and branes as PNDP-strings and PNDP-brane showing the geometric aspects
of the “hidden” spaces that our approach introduces, but also as an extension to more “classic” works
as [17, 18].

In this paper we are using PNDP-manifolds to describe some dark field related aspects in the financial
market such as the new concept of dark volatility, in which the latter is considered as the dark matter in
the cosmological model. The study considers classical exponential models as possible solutions to our
new approach, to show how dark volatility, combined with specific conditions, leads to the collapse of a
forward price.
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