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Abstract: Aggregate loss models are used by insurers to make operational decisions, set insurance
premiums, optimize reinsurance and manage risk. The aggregate loss is the summation of all random
losses that occurred in a period, and it is a function of both the loss severity and the loss frequency.
The need for a flexible model in fitting severity has been well studied in the literature. We extend
this work by introducing the Poisson-Tweedie distribution family for the frequency distribution. The
Poisson-Tweedie distribution family contains many of the commonly used distributions for modelling
loss frequency, thus making loss frequency fitting more flexible and reducing the chance of model
misspecification. Using simulation, we show that the sensitivity of percentile based risk measures
to different specifications of the frequency distribution. We then apply our proposed model to the
Transportation Security Administration (TSA) claims data to demonstrate modelling capacity of the
Poisson-Tweedie distribution.

Keywords: aggregate loss models; Poisson-Tweedie distribution; distribution simulation; percentile
estimation

1. Introduction

The aggregate loss model, which describes the distribution of the total loss (typically within a port-
folio) within a fixed period of time, is used to make operational decisions, set insurance premiums,
optimize reinsurance purchases and manage both solvency and liquidity risk. Regulators, who are
charged with ensuring that insurance companies remain solvent, require that insurance companies hold
enough capital to provide security against unexpected or extreme losses. Percentile based risk mea-
sures, such as value at risk (VaR) or expected shortfall (ES), are derived from aggregate loss models
and can be used to calculate “worst case scenarios”. For example, the aggregate loss model is adopted
by the advanced measurement approaches (AMA) for operational risk, to estimate regulatory capital
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which is the 99.9" percentile of the aggregate loss distribution: this is stipulated in the BASEL II Ac-
cord set by the Basel Committee on Banking Supervision. These measures enable financial institutions
to estimate potential losses with credibility. Furthermore, percentiles of the aggregate loss distribution
can also be used to calculate the optimal amount of stop-loss or quota-share reinsurance required (see,
for example, Lo and Remorov [1] and Tan, Weng and Zhang [2]).

Within a given period, the aggregate loss L can be expressed as a random sum as follows:

N
L= X, (1.1)
=1

where N is the total number of claims observed in a certain period, and X; is the size of loss for
the j” claim. The random variable N is the loss frequency and it is modelled using a non-negative
discrete distribution such as the Poisson, Negative Binomial, Binomial, Geometric and Panjer class
distributions (Griffiths and Mnif [4], Karam and Planchet [4], and Panjer[5]). The random variable
X;, for all j, is the loss severity. It is typically assumed that the X; are independent and identically
distributed (I. I. D.) random variables and they are often modelled using the exponential density family
with positive support (see, for example, Cummins et al. [6], Griffiths and Mnif [3], Jin, Provost and
Ren [7], and Shevchenko [8]).

Recent literature has focused on the importance of fitting flexibility and mathematical tractability
when choosing a distribution for severity (see, for example, Bae and Ko [9] and Willmot and Lin
[10]). We contend that it is also important to consider fitting flexibility and mathematical tractability
when choosing a distribution for frequency. A single distribution may not be flexible enough to fit the
observed count data well, and such misspecification will lead to poor estimation of the risk measures
of the aggregate loss.

In this paper, we use the Poisson-Tweedie distribution, a family with more flexibility on overdis-
persion and tail behaviour, to model claim frequency. The use of Poisson-Tweedie in analyzing count
data has gained increasing support recently with implementation in R package (Esnaola et al. [11]).
When employing the three-parameter parameterization introduced in El-Shaarawi, Zhu and Joe [12],
this flexible distribution family encompasses several of the commonly used loss frequency distribu-
tions including the Poisson, Negative Binomial and Poisson Inverse-Gaussian distributions. One key
element of the Poisson-Tweedie family is its property of convolution closedness with regards to its
family index parameter. This implies that whether we aggregate data on a daily, weekly, monthly,
quarterly or annual basis, the distribution family of loss frequency remains Poisson-Tweedie.

To reduce the impact from frequency model misspecification, we use the Poisson-Tweedie distri-
bution as the frequency distribution in the aggregate loss model. We then derive the estimates of the
distribution parameters for both the frequency and the severity distributions. This allows us to derive
the moments of the aggregate loss and calculate the quantiles of the aggregate losses. Next, through
extensive simulation studies, we examine the feasibility and flexibility of using Poisson-Tweedie dis-
tribution family in modelling aggregate losses. We find that, although the estimation of the mean and
variance of the aggregate loss does not differ significantly across the different specifications of the fre-
quency distribution, the accuracy of the estimates of tail quantiles of aggregate loss is impacted by the
misspecification.

Finally, to examine the practical feasibility of aggregate loss modelling using Poisson-Tweedie loss
frequency, we apply our model to the Transportation Security Administration’s (TSA’s) claims data
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(https://www.dhs.gov/tsa-claims-data). The TSA records all liability claims for bodily injury and prop-
erty damage made against the organization from 2002 to 2017 and is particularly useful to researchers
developing statistical models to analyze claim frequency and severity (Kelly and Wang [13]).

The paper is organized as follows. Section 2 describes the Poisson-Tweedie distribution family and
discusses some commonly used distributions for severity. Section 3 details the estimation and inference
of the parameters for the loss frequency and loss severity distributions and calculates the quantiles of
aggregate losses. Section 4 presents the extensive simulation studies. In section 5, the aggregate loss
model with Poisson-Tweedie frequency distribution is applied to the TSA’s claims data. We complete
the paper with conclusion and future works in section 6.

2. Modelling

The aggregate loss at time period i fori = 1,---, T is defined as

Ni
Li=) Xy

=1
where N; is the loss frequency for time period i and X;; is the loss severity of the j* claim in period i .
For the loss frequency, we assume Ny, - - - , N7 are identically and independently distributed with mass
function fy(n; @), where n is the value of N; and the support of V; is the range of non-negative integers.
For the loss severity, we assume that, given N; = n; fori = 1,---,T, Xj;,--- , X, are identically and
independently distributed with density function fx(x;8), where fx(x;B) > 0 for x > 0. Note that when
N; = 0, no claim is recorded in period i and, as such, there are no observations of loss severity.

It is commonly assumed that the loss frequency and loss severity are independent. This is a rea-
sonable assumption if there is no deductible, but once a deductible is applied to underlying losses, the
deductible will impact both claim frequency and claim severity, invalidating the independence assump-
tion.

The loss severity is often modelled using the exponential density family with positive support (see,
for example, Cummins et al. [6], Griffiths and Mnif [3], Jin, Provost and Ren [7], and Shevchenko [8]).
The density functions of loss severity are typically well defined with closed forms such that the mean
and variance are well-defined and are denoted by px and 0%, respectively. It is noted that both ux and
o% are functions of S.

In this paper, we use the Poisson-Tweedie distribution family to model the loss frequency. The
Poisson-Tweedie family, denoted by PT (a, b, ¢), is a three-parameter distribution family that envelops
several of the commonly used loss frequency distributions including the Poisson, Negative Binomial
and Poisson Inverse-Gaussian distributions. Using the parameterization of El-Shaarawi, Zhu and Joe
[12], the three-parameter Poisson—Tweedie family PT (a, b, c¢) has the following probability mass func-
tion:

k
1 .
Pr(N =k+1) = pry1 = m(bcpk + ;]”kﬂ—jpj), k=1,2,3,...,

where
j—1+a

— )crj, j= 12,3, k1,
J

ri =00 -a)c, Vi1 =(
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for
—c0o<a<l, O0<b<oo and O<c< 1.
That is, the probability mass py,; is a linear combination of probability mass py, pi,- - , px. Addition-
ally,
Pl-ca-11/a a+0
Pr(N‘O)‘pO‘{(l—c)b a=0,
and

Pr(N = 1) = p; = bepy.

Note that parameter a in the Poisson-Tweedie distribution, defined in above parameterization, is the
family index and it determines the corresponding distribution. For example, the Poisson-Tweedie
family includes Poisson (a = 1), Poisson Inverse-Gaussian (a = 0.5), Negative Binomial (a = 0), and
Polya-Aeppli (a = —1) distributions.

Parameters b and c are associated with the mean and variance of the distribution: the mean is given
by

bc
= 2.1
HN (1= ¢l (2.1)
and the variance is be(l )
) c(l —ac
= — 2.2
INT (1 Zopa 2:2)

The parameterization of El-Shaarawi, Zhu and Joe [12] is a convenient way to study the various distri-
butions covered by the Poisson-Tweedie family, since its recursive representation of probability mass
function makes the estimation of parameters possible.

3. Estimation and inference

The parameters of the distribution can be estimated using maximum likelihood estimation (MLE).
The likelihood of the aggregate loss is given by:

T n;
L@,B;ny, ...,nr, X115 ---xT,nT) = (H In(ng; 0)] (]—[ l—[ fX(xiﬁﬁ)] .
i=1

i=1 j=1

~

Therefore, the log-likelihood is
T T n
log L6, B;n,x) = > log fu(ni:0) + Y " log fy(xij: B). (3.1)
i=1 =1 j=1

Taking the partial derivatives of the log-likelihood defined in Eq (3.1) with respect to 6 and 8 and
setting these equal to zero yields:

g T
=g 2108 fu(n:0) = 0 (3.2)
i=1

log fx(x;;; B) = 0. (3.3)
1
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The solutions to Egs (3.2) and (3.3) are the maximum likelihood estimators of € and S, denoted by
6 and 3, respectively. Given the independence assumption, the joint estimation of the frequency and
severity parameters is equivalent to estimating them separately. Because the means, uy and uy, and
variances, 0',2V and Ui, of loss frequency and severity are functions of B and @, the maximum likelihood
estimators of uy, px, 03 and 0%, denoted by fiy, fix, 6% and 6%, can be obtained by substituting B and
0 with /§ and 0, respectively.

3.1. Estimation of moments of aggregate loss

Under the assumption that the loss frequency N and the loss severity X; are independent in a given
period, the mean and variance of the aggregate loss within that period can be calculated as: u; = uyux
and o7 = uyoy + oy respectively. The mean and variance of the aggregate loss depends only on the
marginal means and variances of the loss frequency and loss severity. Hence, the maximum likelihood
estimators of the expected value and variance of aggregate loss are {i;, = iyfix and 67 = Qx5 + 03

3.2. Estimation of aggregate loss percentiles

For the management of both solvency and liquidity risk, the right tail percentile of the aggregate
loss is used to calculate value at risk (VaR) and expected shortfall (ES). VaR summarizes “the worst
loss over a target horizon with a given level of confidence” (Jorion [14], p. 22). It provides a measure
of a given risk exposure at a particular point in time with a certain degree of confidence. The relation
between VaR and the aggregate loss L is

Pr(L < VaR,) = «a

where L is the aggregate loss, VaR, is the loss amount of the VaR statistic and @ € [0, 1] is the
confidence level. The time-period length of the VaR statistic is the same as the time length of the
aggregate loss. The loss amount VaR, is then equivalent to the a X 100" percentile of the aggregate
loss.

ES, also known as tail VaR, is the average of losses greater than a given percentile level and it
measures the expected loss if losses exceeds the VaR. Similar to VaR, ES is also composed of a time-
period, a confidence level @ and a loss amount. It is given by

E[LIL > VaR,].

To estimate VaR and ES, or any other quantile of the distribution, the functional form of the distribution
of the aggregate loss is required. Because the aggregate loss distribution is a combination of the
frequency and severity distribution, it often has no closed form, or a mathematically intractable form.
Commonly used methods for estimating the quantiles of the aggregate loss are simulation, Fast Fourier
Transformation (Embrechts and Frei [15]) or Panjer’s recursion (Panjer [5]). In this paper, we use
simulation to empirically estimate quantiles of the aggregate loss distribution.

4. Simulation study

In this section, we investigate the impact of the choice of the loss frequency distribution on the
estimation of percentiles, and in particular the tail quantiles, of the aggregate loss distribution. To
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examine the estimation of aggregate loss percentiles across different frequency distributions, we model
the loss frequency using the Poisson-Tweedie distribution with different values for the family index,
a. We then choose the parameters b and ¢ such that the frequency distributions have the same means
and, where possible, the same variances. The Poisson-Tweedie probability mass function algorithm is
programmed according to El-Shaarawi, Zhu and Joe [12]. We use the Log-Normal distribution for our
severity distribution in the calculation of aggregate losses. Using the simulation method, we generate
the 95™ percentile and the expected shortfall (above 95" percentile) of aggregate loss.

4.1. Design of experiment

We undertake our simulations across 27 different aggregate loss distributions. For claim severity,
we use the Log-Normal distribution with three different sets of values for the parameters p and o: The
distributions simulated are the Log-Normal (7, 0.1), Log-Normal (8, 0.2), and Log-Normal (9, 0.3).
The means and standard deviations of the severity distributions are given in Table 1.

For frequency, we use the Poisson (Poisson-Tweedie a = 1), the Negative Binomial (Poisson-
Tweedie a = 0) and the Poisson Inverse-Gaussian (Poisson-Tweedie a = 0.5) distributions. The
remaining parameters, b and c, for the Poisson-Tweedie distributions are set so that the loss frequency
distributions have means of 2, 10, and 30 claims per period and, for the Negative Binomial (NB) and
the Poisson Inverse-Gaussian (PIG) distributions, the variance is 5 times the mean.

In Table 1 we simulate each distribution 10,000 times and repeat the process 1000 times to calculate
an empirical variance. We simulate each distribution 100,000 times to obtain the tail quantiles shown.

4.2. Results

Results of the simulations are detailed in Table 1. In particular, we are interested in the last 2
columns of the table, which show the 95" percentile and the ES at the 95" percentile. Because the
restriction on the variance in the Poisson distribution, in all instances, the aggregate loss distributions
simulated using a Poisson distribution have lower 957 percentiles and associated ES values than the ag-
gregate loss distributions simulated using either the Poisson Inverse-Gaussian (PIG) (Poisson-Tweedie
a = 0.5) distribution or the Negative Binomial (NB) (Poisson-Tweedie a = 0) distribution.

For all severity distributions, when the loss frequency has a mean of 2, the aggregate loss distribu-
tions simulated using the Negative Binomial distribution have higher 95 percentile values, but lower
associated ES values than the aggregate loss distributions simulated using the Poisson Inverse-Gaussian
distribution. When the loss frequency has a mean of 10, the 95" the percentile values for aggregate loss
distributions are very similar when using either the Negative Binomial or the Poisson Inverse-Gaussian
as the underlying frequency distribution. However, the ES values for the aggregate loss distribution
are greater when the frequency is modelled using the Poisson Inverse-Gaussian distribution. Finally,
when the loss frequency has a mean of 30, the aggregate loss distribution simulated using the Pois-
son Inverse-Gaussian distribution has both greater 95" percentiles and associated ES values than the
aggregate loss distribution simulated using the Negative Binomial distribution.
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Table 1. Tail risk statistics of simulated aggregate loss distributions.

Severity Frequency 95" Percentile 95" ES
Parameter Mean SD Dist. Mean Mean SD Mean SD
PT(0,0.5,0.8) (NB) 9182.15 203.95 13497.26  275.50
PT(0.5,0.75,0.89) (PIG) ) 8585.72  199.28  13701.27  346.85
PT(1,2,1) (Poisson) 513520 108.36 6024.44 54.89
PT(0,2.5,0.8) (NB) 26002.69  281.51 32116.74 384.01
Log-Norm (7,0.1) 1102.13 110.49 PT(0.5,3.75,0.89) (PIG) 10 2602791  321.88 3344347  476.69
PT(1,10,1) (Poisson) 17080.10 9448 18841.43 106.02
PT(0,7.5,0.8) (NB) 57726.73  399.58 66199.18  522.59
PT (0.5,11.25,0.89) (PIG) 5, 5818591 44344 67971.08 611.78
PT (1,30,1) (Poisson) 43350.03 14142  46177.74 170.28
PT (0,0.5,0.8) (NB) 2549946  502.28 3734942  758.87
PT (0.5,0.75,0.89) (PIG) ) 23647.37  532.65 3789737  962.10
PT (1,2,1) (Poisson) 14147.21  133.71 16801.75 163.15
PT (0,2.5,0.8) (NB) 71887.10  767.55  88809.65 1065.32
Log-Norm (8,0.2) 3041.18 614.37 PT (0.5,3.75,0.89) (PIG) 10 71949.59 88598 9244793 132243
PT (1,10,1) (Poisson) 4744442 24573  52389.94  296.37
PT (0,7.5,0.8) (NB) 159505.57 1104.46 182957.54 1450.17
PT (0.5,11.25,0.89) (PIG) 5,  160748.00 1221.88 187822.51 1688.13
PT (1,30,1) (Poisson) 120084.17  402.03 128041.67 481.29
PT (0,0.5,0.8) (NB) 7136540 1420.97 104608.20 2125.78
PT (0.5,0.75,0.89) (PIG) ) 66203.55 1497.73 106066.50 2691.74
PT (1,2,1) (Poisson) 40168.11  380.81 47948.84  480.64
PT (0,2.5,0.8) (NB) 200977.98 2158.04 24843537 2992.20
Log-Norm (9,0.3) 8476.05 2601.12 PT (0.5,3.75,0.89) (PIG) 10 201114.26 2489.59 258465.81 3712.90
PT (1,10,1) (Poisson) 133609.13  713.47 147957.42  851.08
PT (0,7.5,0.8) (NB) 445563.92 313725 511326.01 4080.62
PT (0.5,11.25,0.89) (PIG) 5,  449001.52 3403.82 524762.05 4717.74
PT (1,30,1) (Poisson) 336930.07 1172.32 359855.59 1390.08

From a practical perspective, using the Poisson distribution to model aggregate claims process
would create solvency and liquidity concerns and would result in sub-optimal purchasing of reinsur-
ance. Finally, we note that as the level of frequency average increases, the relative difference between
the percentile estimate of aggregate loss with different loss frequency distribution decreases.

Figure 1 plots the 507, 80" and 95" percentiles for each of the 27 distributions defined in section
4.1.. The y-axis for each graph is the corresponding percentile of the aggregate loss distribution, and

the x-axis labels the three different mean loss frequencies.
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Figure 1. Aggregate loss percentiles (50%, 80%, 95%).
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The first column for each severity/frequency combination is the aggregate loss percentile using
the Poisson distribution, the second column is the Poisson Inverse-Gaussian distribution and the last
column is the Negative Binomial distribution.

Of the three frequency distributions, the Poisson Inverse-Gaussian distribution has the fattest right
tail, and the Poisson distribution the thinnest. The impact of the right tail is evident in these graphs:
The aggregate loss distributions generated using the Poisson distribution have the largest medians, but
the smallest 80" and 95" percentiles for all distribution combinations. The aggregate loss distributions
generated using the Negative Binomial distribution have the largest 80 percentile, whereas the aggre-
gate loss distributions generated using the Poisson Inverse-Gaussian distribution have the largest 95"
percentile. These graphs show the sensitivity of the aggregate loss distribution to the underlying choice
of frequency distribution, and hence the importance of having greater flexibility in fitting real data to a
frequency distribution.

5. Application

The United States government created the Transportation Security Administration (TSA) in
response to the September 11, 2001 terrorists attacks. With the mission of protecting “the
nation’s transportation system to ensure freedom of movement for people and commerce”
(https://www.tsa.gov/about/tsa-mission), TSA agents screen passengers and their luggage at ports of
entry in the United States. At airports alone, on a daily basis, TSA agents screen more than 2 million
passengers and almost 7 million pieces of luggage. It is inevitable that items could be damaged, lost,
or stolen or individuals could be injured. As such, individuals who have suffered a loss may make
a claim for losses to the TSA. The federal government reports information on every claim filed at
https://www.dhs.gov/tsa-claims-data. We apply our proposed model to this data set to illustrate the use
of Poisson-Tweedie as the loss frequency distribution.

TSA data for the years of 2002 to the end of 2015 was obtained from the Department of Homeland
Security website (https://www.dhs.gov/tsa-claims-data). A detailed analysis of the data is provided by
Kelly and Wang [13]. In total there are 286,952 observations from 2002 to 2015.

A summary of some of the data contained in the database is given in Table 2.

Table 2. TSA data variable description.

Variable Name Variable Description
Claim. Number Unique claim identification number
Date. Received The date that the claim is received by TSA

The type of damage (e.g., complaints, property damage
passenger injury or death)

The category of the damaged object (e.g., electronics, clothing,
baggage, cameras, jewelry and watches)

Claim. Amount The dollar amount requested for compensation in USD
Closed. Amount The dollar amount paid in compensation in USD

The status of claim defined as “approve in full”, ’deny”,
’settle” or if claim is still open the entry is blank.

Claim. Type

Item. Category

Disposition

Big Data and Information Analytics Volume 6, 56-73.
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Each claim is uniquely identified by a claim number, and the database provides information on the
date the claim is received, the type of loss, the items damaged, the claim amount paid by TSA, and
the current disposition of the claim. The variables of interest for this analysis are the date received,
the closed amount, and the disposition as defined in Table 2. Claims from 2002 to 2009 also contain
information on the claim status (similar to the disposition status, but with information on why a claim
was denied and reasons why a claim might still be open) and the claim amount, which is the initial
amount requested by the claimant. Our analysis focuses on claims that have been approved in full or
settled. We use the closed amount for loss severity. For claims reported between 2002 and 2009, if
the closed amount is missing, then the claim amount, if available, is used. Open claims have a blank
entry for the disposition of claims and are excluded from our analysis, as are observations with missing
numbers. After applying these filters, we have 81,065 observations.

We aggregate claims over different time periods - daily, weekly, monthly, and quarterly. Time plots
for the entire time frame display unexplained trends in frequency before 2008 and clear seasonality for
the years 2013 to 2015. Because of this, our analysis is focused on the years 2008 to 2012. Our final
data has 15,882 observations.

Figure 2 graphs the number of claims on a daily, weekly, monthly, and quarterly basis for the years
2008 to 2012. As can be seen, these 5 years provide a relatively stable period in terms of frequency,
however there is a slight dip in frequency between the end of 2009 and early 2010".
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Figure 2. Periodic TSA claim frequency scatter plot.

*Although we initially suspected the dip in loss frequency in 2009 was related to the lagged effect of the 2008 financial crisis which
negatively affected the US economy, Kelly and Wang [13] show a decline in the number of claims per 100,000 passengers over this time
period.
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The summary statistics for the number of claims, aggregated on a daily, weekly, monthly, and
quarterly basis are given in Table 3.

Table 3. Summary Statistics of TSA Claims Frequency (Number of Claims)

Min. 25th Percentile Median Mean 75th Percentile Max. SD Variance

Daily 0 0.00 8.0 8.69 14.00 48 8.11 65.70
Weekly 6 50.00 61.0 60.62 71.00 111 15.08 227.36
Monthly 74 233.25 265.5 264.70 303.75 396 55.81 3114.79
Quarterly 500 679.50 834.0 794.10 922.75 967 134.85 18,184.94

Corresponding histograms for the number of claims over the different aggregation periods are given
in Figure 3.
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Figure 3. Periodic TSA claim frequency histogram.
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Figure 4. TSA claim severity.

The scatter plot for the closed claim amount in Figure 4(a) shows that the claim severity has not
changed between 2008 and 2012. Figure 4(b) shows that the severity is positively skewed, and the
data are not truly continuous: We see sharp spikes at every 50 USD increment amounts with a very
significant spike at the 500 USD amount. The database shows that at the 500 USD amount, the losses
are from damaged or lost personal electronic devices and pieces of jewelry. At the 100 USD amount,
the common lost or damaged items are luggage, cosmetics, and clothes. We suspect these spikes are
related to the claims settlement process. Figure 4(c) shows the overwhelming number of small claims
filed against the TSA.

Next, we fit the TSA claim data to the aggregate loss model as defined in (1.1). We first fit the
frequency distribution and then severity distribution. We then generate percentiles of the aggregate
loss distribution.
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5.1. Analysis of frequency

We focus on monthly data since daily data are highly zero-inflated (a very large number of days
with no claims as shown in Figure 3(e)), weekly data have high auto-correlation at lag 4 (monthly
correlation) and quarterly data lack a sufficient number of observations. We use a Poisson-Tweedie
distribution PT (a, b, c) to model the number of claims for monthly data.

We estimate parameters using the Maximum Likelihood Estimation method. The fitting is per-
formed using R generic function optim() with the default method "Nelder-Mead” (other optional meth-
ods may be feasible). Parameters b and ¢ can be derived from the parameter a, and the fitted mean
and variance of the loss frequency. Thus, we are most interested in the family index, parameter a in
PT(a, b, ¢) and the estimated mean and variance.

The maximum likelihood estimates for frequency mean, variance and the 95% VaR for the fre-
quency are reported in Table 4. The 95% VaR for the frequency implies that 95% of the time there will
be less than 366 claims per month. Knowing the maximum number of claims that could reasonably be
expected may help management in workforce planning to process the claims.

Table 4. MLE of moments and quantile of TSA claims frequency.
MLE Mean MLE Variance 95% VaR(N)

Monthly 264.21 3426.18 366

The maximum likelihood estimate of parameter a and the 95% confidence interval for parameter a,
are given in Table 5.

Table 5. Estimation results for family index a.
a 95% C.1. for a

Estimates -1.14 (-2.26,-0.03)

Within the Poisson-Tweedie family, the family parameter ”a” for Poisson is 1, 0.5 for PIG, and 0
for Negative Binomial. Since the 95% confidence interval falls into the negative side of real values,
Poisson and PIG are clearly rejected. Although, 0 is also excluded from the 95% confidence interval,
the upper bound is quite close to 0. We conduct additional likelihood ratio (LR) test for

Hj: Negative-Binomial vs. H; : Poisson-Tweedie

The value of —2(LogLik,; — LogLik,;) = 3.146153, and the corresponding p-value = 0.0761 < 10%.
Thus, the Negative Binomial model is rejected at 10% significance level. This additional test confirms
the result of the confidence interval test which excludes the negative binomial distribution. Addition-
ally, the LR tests for PIG and Poisson are also performed. The p-values of all three LR tests are
included in Table 6.

Table 6 and Figure 5 provide further evidence of the superiority of the Poisson-Tweedie distribution
over the Poisson, Negative Binomial and Poisson Inverse-Gaussian distributions in fitting this data set.
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Table 6. Goodness-of-fit of monthly distribution fit.

Poisson-Tweedie Negative Binomial Poisson Inverse-Gaussian Poisson

Negative Log-Likelihood 328.87 330.44 334.24 595.25
AIC 663.74 664.88 672.49 1192.50
BIC 670.02 669.07 676.68 1194.59
LR Test (p-value) — 0.0761 0.0010 0

From Table 6, we find that fitting frequency data with Poisson-Tweedie distribution results in the
smallest negative log-likelihood for monthly data and the smallest Akaike Information Criterion (AIC).
When using the Bayesian Information Criterion (BIC), which has a larger penalty on the number of
parameters than the AIC, the BIC for Poisson-Tweedie is very close to the Negative Binomial distribu-
tion, which has the lowest BIC for this data. Note that the AIC and BIC are meaningful when sample
size goes to infinity. In this data set, the sample size is 60, we regard the AIC and BIC as directional
evidence for model selection. Thus, Table 6 shows that Poisson-Tweedie remains competitive against
common frequency distributions while having the benefit of model flexibility.
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Figure 5. Comparison of estimated monthly frequency with different distributions.

Figure 5 gives a graphical We observe that the histogram of the sample monthly loss frequency in
Figure 5(a) seems to be symmetric. The sample dispersion (sample variance over the sample mean) is

Big Data and Information Analytics Volume 6, 56-73.



70

11.76, indicating that Poisson distribution is not a good fit. From Figure 5(b),(c), we observe that the
fitted Negative Binomial and Poisson Inverse-Gaussian are slightly more right-skewed than Poisson-
Tweedie.

5.2. Analysis of severity

For severity, Figure 4(b) shows that the severity is positively skewed, and we fit three distributions
to the severity data. Our first distribution is the Log-Normal distribution as defined below.

felxip o) = =

( (In(x) — ,u)z)
exp|l-——————
xo \2r
for u € (—o0, +00) and o > 0.
We also consider the Lomax distribution which is a special case of the Pareto Type II distribution
with density
(l,/l(l

fx(xa, ) = Gt et

forx >0, >0and A > 0.
Additionally, we look at the Gamma distribution defined as

k=1 ,=x/6
1k, 0) = ———
Jx(x ) 6T (a)

for x > 0,and a,8 > 0.

We fit the data using maximum likelihood estimation and the estimated mean and standard deviation
of severity and the goodness-of-fit tests are shown in Table 7. Based on our goodness-of-fit tests, we
select the log-normal distribution for use in the calculation of the fitted aggregate loss distribution as it
has the lowest AIC, which implies it has the best performance in terms of the TSA data set.

Table 7. MLE estimates of severity mean and standard deviation and goodness-of-fit.

Loss Severity Distribution MLE Mean MLE STD AIC
Log-Normal (4.59,1.31) 233.83 2105.2 199579.22
Lomax (2.01,247.35) 245.64 4173.1 200517.62
Gamma (0.38,1471.65) 561.13 908.73 210687.69

5.3. Simulation of fitted aggregate loss distribution

The aggregate loss distribution of monthly data is estimated using the fitted monthly distributions
of Poisson-Tweedie and Log-Normal. Using our fitted parameters from sections 5.1 and 5.2, We un-
dertake Monte-Carlo simulation to create 100,000 months. The historical aggregate loss distribution is
shown in Figure 6(a), and our simulated distribution is shown in Figure 6(b).
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Figure 6. Actual vs simulated monthly aggregate loss of TSA claims (aggregated by month).

We find that the estimated monthly aggregate loss distribution has a mean of 61,616.43 and stan-
dard error of 15,864.73 using our estimated parameters with the simulation approach. From our model
simulation, the estimated 95" percentile monthly Value at Risk (VaR) is 89,533.42 USD and the esti-
mated 95 percentile monthly Expected Shortfall (ES) is 98,570.69 USD. The fitted Kernel density in
Figure 6(a) illustrates the overall shape and skewness of the sample data; the fitted aggregate loss dis-
tribution also has similar overall shape and skewness pattern (Figure 6(b)). However, we acknowledge
that kernel estimate at tail is not stable, particularly when sample size is small in this case. This is a
well-known problem in kernel estimation (Wand and Jones [16]).

6. Conclusions

In this paper, we introduce the Poisson-Tweedie distribution as a candidate to model loss frequency.
This family of distributions is mathematically tractable and the the ability to fit the family parameter,
a, increases the fitting flexibility and reduces the possibility of misspecifying the frequency distribu-
tion. Assuming the independence of the frequency and severity distributions, the maximum likelihood
estimation of the moments of the aggregate loss distribution is straight forward.

We simulate the aggregate distribution of losses where severity is modelled using a Log-Normal
distribution and use different distributions within the Poisson-Tweedie family of distributions for the
frequency. We find that the choice of the family parameter, a, influences the fatness of the right tail
of the aggregate loss distribution and therefore affects the Value at Risk and the Expected Shortfall
measures. However as the mean frequency increases, the relative difference between these percentile
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estimates decreases. Future research should examine the impact of increasing loss frequencies on
percentile estimates of the aggregate loss.

We examine the flexibility of the Poisson-Tweedie distribution by fitting the distribution to the
number of monthly claims from the Transportation Security Administration’s (TSA’s) claims database
for 2008 to 2012. The fitted family parameter, a, is significantly different from the family parame-
ters that define the Poisson, Negative Binomial and Poisson Inverse-Gaussian distributions. We show
that Poisson-Tweedie distribution performs as well as or better than these three distributions as the
goodness-of-fit score using the Poisson-Tweedie distribution is better than or almost the same as the
scores from the other three distributions.

To build the aggregate loss model, we fit the the Log-Normal distribution to model TSA claim
severity, and then apply simulation to derive the percentiles of the fitted aggregate loss model. Thus,
we show that the aggregate loss model with the Poisson-Tweedie frequency family can be applied to
real-world data to estimate the aggregate percentile statistics of interest. The resulting aggregate loss
percentile estimates based on our proposed model are also similar to the kernel density estimates which
supports the validity of our model. In our analysis, we examined only those claims that have closed
with a payment. Further research could fit the Poisson-Tweedie distribution to the denied claims in the
TSA database since these were excluded from our analysis.

Because the Poisson-Tweedie distribution provides a better fit than commonly used frequency dis-
tributions, incorporating the Poisson-Tweedie distribution into aggregate loss modelling could assist
insurers in optimizing their reinsurance purchases and improving the metrics needed to effectively
manage both solvency and liquidity risk.
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