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Abstract. A volatile trading pattern on a given day in a financial market
presents an opportunity for traders to maximize the difference between their

buying and selling prices. In order to formulate trading strategies it may be

advantageous to study typical trading patterns. This paper first describes how
clustering can be used to profile typical volatile trading patterns. Fuzzy c-

means provides a better description of individual trading patterns, since they

can display certain aspects of different trading profiles. While daily volatility
profile is a useful indicator for trading a stock, the volatility history is also an

important part of the decision making process. This paper further proposes

a fuzzy temporal meta-clustering algorithm that not only captures the daily
volatility but also puts it in a historical perspective by including the volatility

of previous two weeks in the meta-profile.

1. Introduction. A financial trader finds a daily price pattern interesting when
it is volatile. The higher the fluctuations in prices, the more volatile the pattern.
In order to manage a large number of patterns, it will be necessary to group these
patterns based on the extent of volatility. We can segment daily patterns based
on values of the Black Scholes index. This segmentation is essentially a cluster-
ing of one dimensional representation (Black Scholes index) of the daily pattern.
Black Scholes index is a single concise index to identify volatility in a daily pattern.
However, a complete distribution of prices during the day can provide more elab-
orate information on the volatility during the day. While a distribution consisting
of the frequency of different prices is not a concise description for a single day, it
can be a very useful representation of daily patterns for clustering based on volatil-
ity. Clustering is one of the frequently used unsupervised data mining techniques
for grouping similar objects. In conventional crisp clustering schemes, an object is
assigned to one and only one cluster. There is no room for ambiguity in such a clus-
tering. Fuzzy c-means [1,5,20], a variation of the popular crisp clustering algorithm
k-means, is based on fuzzy set theory and provides a more flexible alternative to
crisp clustering. Instead of assigning an object to one and only one cluster, the fuzzy
c-means algorithm assigns a fuzzy membership to different clusters. That means an
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object belongs to different clusters to a varying degree and that the cluster bound-
aries overlap. This paper uses daily patterns of a set of 223 financial instruments
(stocks/bonds/commodities) tracked over a period of 121 days to demonstrate how
clustering profiles based on daily price distribution can be more meaningful than a
single number such as Black Scholes index. The fuzzy c-means algorithm is shown
to provide further flexibility to the profiling process.

Finally, the paper proposes a fuzzy extension of a novel recursive approach to
temporal clustering in a granular environment. In a granular temporal environment
a daily pattern is connected to historical and future daily patterns. Traditionally,
clustering of granules is done in isolation without any information on the cluster-
ing of the connected granules. Such a clustering will only allow us to create the
profile of a stock based on daily volatility. However, a trader will typically want
to know how long the stock has been volatile to figure out where the stock is in
terms of its volatility cycle. The proposed fuzzy extension of a recursive tempo-
ral meta-clustering algorithm enhances the representation of a daily pattern with
the clustering information of the daily patterns of the same stock from recent his-
tory. The clustering of such an enhanced representation is iterative. Each iteration
uses the results of previous clustering of historical temporal patterns until a stable
clustering of all the patterns is achieved. These repeated applications of clustering
are called meta-clustering because we use clustering information from previous it-
erations to modify the representation of the granules. The resulting meta-profiles
augment the daily volatility profile with historical volatility for the same financial
instrument.

2. Representation of volatility in financial trading. Volatility of Financial
Data Series is an important indicator used by traders. The fluctuation in prices
create trading opportunities. Volatility is a measure for variation of price of a
financial instrument over time. Black Scholes index of volatility can be a good way
to measure this. The equation of volatility index is an extension from the Nobel
prize winning Black Scholes model which estimates the price of an option over time.
This model is widely used by options market participants. The key idea behind the
model is to hedge the option by buying and selling the underlying asset in just the
right way and, as a consequence, to eliminate risk. The instantaneous log returns
of the stock price considered in this formula is an infinitesimal random walk with
drift, or more precisely is a geometric Brownian motion. The equation to estimate
volatility using this model is:

V olatility =
√
LogPriceRelativeV ariance× (Observations− 1), (1)

where LogPriceRelativeV ariance =
∑

(LogPriceRelative−Mean)2 [2]. While
the Black Scholes index is a concise measure, distribution of prices during the day
can provide a more elaborate description of price fluctuations. We propose the
use of five percentile values; 10%, 25%, 50%, 75% and 90% to represent the price
distribution, where 10% of the prices are below the 10th percentile value, 25% of
the prices are below the 25th percentile value and so on.

Our data set contains average prices at 10 minute intervals of 223 instruments
transacted on 121 days comprising a total of 27,012 records. Each daily pattern
has 39 intervals. This data set is used to create two representations of the daily
patterns. The first representation is a five dimensional pattern, which represents
10, 25, 50, 75 and 90 percentile values of the prices. The prices are normalized by
the opening price so that a commodity selling for $100 has the same pattern as
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Table 1. Calculation of Percentiles for a Sample Record

Percentile 10% 25% 50% 75% 90%
Percentile
of avgp 0.9841346 0.9873798 0.9927885 0.9951923 0.9966346
(avgpPerc)

the one that is selling for $10. The five percentiles values for a sample pattern are
shown in Table 1. The second representation is the one dimensional Black Scholes
volatility for the day.

3. Review of crisp and fuzzy clustering. This section reviews conventional
clustering with the popular algorithm k-means [18]. Let X = {~x1, . . . , ~xn} be a fi-
nite set of objects, and we assume that the objects are represented by m-dimensional
vectors. A clustering scheme groups n objects into k clusters C = {~c1, . . . ,~ck}.
Here, C is the set of clusters. And each of the clusters ~ci is represented by an
m-dimensional vector, which is the centroid or mean vector for that cluster. Each
cluster centroid ~ci is also associated with a set of objects assigned to the ith clus-
ter. We will use ~ci for both the centroid vector or set representation of ith cluster
depending on the context.

3.1. Crisp clustering using k-means. k-means clustering is one of the most
popular statistical clustering techniques [10, 18]. The objective of the algorithm is
to assign n objects to k clusters. The process begins by randomly choosing k objects
as the centroids of the k clusters. The objects are assigned to one of the k clusters
based on the minimum value of the distance d(~xl,~ci) between the object vector
~xl and the cluster vector ~ci. The distance d(~xl,~ci) can be the standard Euclidean
distance.

After the assignment of all the objects to various clusters, the new centroid
vectors of the clusters are calculated as:

~ci =

∑
~xl∈~ci ~xl

| ~ci |
, where 1 ≤ i ≤ k.

Here | ~ci | is cardinality of cluster ~ci. The process stops when the centroids of all
clusters stabilize, i.e. the centroid vectors from the previous iteration are identical
to those generated in the current iteration.

The quality of clustering is an important issue in the application of clustering
techniques to real world data. A good measure of cluster quality will help in deciding
the various parameters used in clustering algorithms. One potential parameter that
is common to most clustering algorithms is the number of clusters. Several cluster
validity indices have been proposed to evaluate cluster quality obtained by different
clustering algorithms. An excellent summary of various validity measures can be
found in Halkidi, et al. [9]. Many of the cluster validity measures are functions of
the sum of within-cluster scatter to between-cluster separation. The scatter within
the ith cluster, denoted by Si, and the distance between cluster ~ci and ~cj , denoted
by dij , are defined as follows:

Si =
1

| ~ci |
∑
~x∈~ci

distance(~x,~ci) (2)

dij = distance(~ci,~cj) (3)
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where ~ci is the center of the ith cluster. |~ci| is the number of objects in ~ci.
distance(~x, ~y) is the distance between two vectors. Depending upon the appli-
cation, we can choose any distance function. Two popular distance functions are
Euclidean distance and inverse of cosine similarity function. This study uses Eu-
clidean distance. However, it will also be interesting to experiment with other
distance measures including the Mahalanobis distance that is particularly useful
when we are working with a dataset that represents only a sample of the universe.

We can sum up the scatter within cluster for all the clusters in a clustering
scheme C as:

S(C) =

k∑
i=1

Si (4)

Similarly, between-cluster distance for a clustering scheme for a clustering scheme
can be summed as:

D(C) =

k∑
i=1

k∑
j=1

dij (5)

It is advisable to plot both of these measures for the datasets under study. Usu-
ally, the scatter within clusters starts rising rapidly, while distance between clusters
starts falling rapidly when the number of clusters falls below a certain value. The
knee of the curves can be used as the range for determining an appropriate number
of clusters. We will demonstrate this process for all the datasets used in this study.

3.2. Fuzzy c-means clustering. Conventional clustering assigns various objects
to precisely one cluster. A fuzzy generalization of the clustering uses a fuzzy mem-
bership function to describe the degree of membership (ranging from 0 to 1) of an
object to a given cluster. There is a stipulation that the sum of the fuzzy member-
ships of an object to all the clusters must be equal to 1.

The algorithm was first proposed by Dunn in 1973 [5]. Subsequently, a modifica-
tion was proposed by Bezdek in 1981 [1]. Fuzzy c-means (FCM) algorithm is based
on minimization of the following objective function:

n∑
i=1

k∑
j=1

umij d(~xi, ~cj) , 1 < m <∞ (6)

where n is the number of objects and each object is a d dimensional vector. A
parameter m is any real number greater than 1, uij is the degree of membership of
the ith object (~xi) in the cluster j, and d(~xi, ~cj) is the Euclidean distance between
the object and a cluster center cj .

The degree of membership given by a matrix ~u for objects on the edge of a cluster
may have a lesser degree than objects in the center of a cluster. However, the sum
of these coefficients for any given object xi is defined to be 1.

k∑
j=1

uij = 1 ∀i (7)

The centroid of a fuzzy cluster is the weighted average of all objects, where the
weights of each object is its degree of membership to a cluster:

~cj =

∑n
i=1 umij ~xi∑n

i=1 u
m
ij

(8)
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FCM is an iterative algorithm that terminates if

max
(∣∣ut+1

ij − u
t
ij

∣∣) < δ (9)

where δ is a termination criterion between 0 and 1, and t is the iteration step.

4. Application of crisp and fuzzy clustering to daily trading patterns.
This section describes the experiments that group daily patterns based on the Black
Scholes index and percentile value representation of daily trading patterns using
crisp and fuzzy clustering.

4.1. Determination of the appropriate number of clusters. Since identifying
the optimal clustering scheme is an NP hard problem, we use clustering algorithms
such as k-means that find an approximate solution to the problem. The k-means
algorithm is susceptible to the original choice of centroids, as such, it can be stuck
in a locally optimal solution. Therefore, both the representations were clustered 10
times using the k-means algorithm.

Optimal number of clusters is another significant measure in determining an ap-
propriate clustering scheme. We used a two stage process that included first plotting
the scatter within clusters. Our aim is to create as few clusters as possible without
grouping heterogeneous/dissimilar objects. The scatter within clusters increases as
we reduce the number of clusters. In our case, the increase is modest until the
number of clusters reaches nine. The rate of increase before the number of clusters
reaches nine is plotted in Fig. 1. One can clearly see the knee of a curve between two
to nine clusters. The second stage involves the use of Davies-Bouldin (DB) index
that minimizes the scatter within clusters and maximizes separation between clus-
ters to the knee of the curve, i.e number of clusters between two to seven. The plot
of Davies-Bouldin (DB) index is shown in Fig. 2. The goal is to select the number
of clusters corresponding to the lowest DB index within the knee of the curve of the
cluster scatter. Based on these two criteria, we chose five as a reasonable number
of clusters.

4.2. Individual ordered crisp clustering using two knowledge representa-
tions. In many cases, the groups generated by a clustering process have an implicit
ordering. For example, clusters of customers in a retail store could be ordered based
on their average spending and loyalty (their propensity to visit). Or products could
be ordered based on their revenues, profits, and popularity (how many customers
buy it). Similarly, the clusters of financial instruments (such as stocks) could be
ordered based on their volatility. The volatility is an important indicator. A volatile
daily pattern in a stock makes it more interesting to an aggressive trader and less
interesting to a conservative trader.

Once we have obtained our clusters using the two representations, we can study
the patterns and number the clusters based on their increasing volatility as shown
in Fig. 4. Let cpr = {cpr1, cpr2, cpr3, cpr4, cpr5} be the clustering scheme based
on percentile values and cdvr = {cdvr1, cdvr2, cdvr3, cdvr4, cdvr5} be the clustering
scheme based on the Black Scholes volatility. We can define volatility ranking of
an object by the function cpr : X → {1, 2, 3, 4, 5} for percentile values and cdvr :
X → {1, 2, 3, 4, 5} for Black Scholes volatility. If an object x ∈ cpri, cpr(x) = i.
Similarly, if an object x ∈ cdvri, cdvr(x) = i.

Fig. 4 shows that both the Black Scholes index and percentile value separate
the clusters in a more or less similar fashion. For example, the difference between
volatility increases as the ranks increase. The difference between ranks 1 and 2
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Table 2. Crisp Cluster Cardinalities

Cluster number 1 2 3 4 5
Percentile values 14125 8676 3349 817 45

Black Scholes 14182 8990 3061 684 95

Table 3. Cluster Intersections

cdvr1 cdvr2 cdvr3 cdvr4 cdvr5
cpr1 10430 3104 519 67 5
cpr2 3411 4047 1089 123 6
cpr3 339 1727 1047 223 13
cpr4 2 112 404 258 41
cpr5 0 0 2 13 30

(a) Percentile (b) Black Scholes Volatility

Figure 1. Cluster Scatter

is much smaller than that between ranks 4 and 5. While Black Scholes index is
concise, the clustering based on percentile values show the volatility in a little more
descriptive fashion without overloading the reader with too much information. The
lower volatility ranks seem to have linear curve, while the higher volatility ranks
seem to be parabolic or quadratic. This detailed distribution suggests that the
90th percentile prices in the most volatile cluster may be approximately 3 times the
lowest prices on that day. Such information can be useful to the traders in order
to decide the target prices for buying and selling, which is not available with Black
and Scholes index.

While the percentile values provide a more descriptive grouping of the daily
trading patterns, they lack an important feature provided by the Black Scholes
index, i.e. quantification of degree of volatility. In the next section, we will study the
fuzzy c-means clustering that will not only capture a more meaningful description
based on percentile values, but for individual daily patterns can associate a degree
of membership to these clusters.

4.3. Individual ordered fuzzy clustering using percentile values. In the
previous section, we discussed crisp clustering of daily trading patterns as a more
descriptive way to categorize daily volatility than a single Black Scholes index. As
discussed before, the crisp clustering forces a daily pattern into exactly one level
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(a) Percentile (b) Black Scholes Volatility

Figure 2. DB Index

(a) Percentile (b) Black Scholes Volatility

Figure 3. Centroids of 5 Clusters after Ranking

of volatility. This is somewhat rigid compared to the continuous scale offered by
the Black Scholes index. In this section, we will apply the fuzzy c-means clustering
algorithm that will make it possible for us to indicate a degree of membership to
different clusters, which could be translated to the extent of volatility in a given
daily trading pattern.

Let fcpr = {fcpr1, fcpr2, fcpr3, fcpr4, fcpr5} be the clustering scheme based
on percentile values. Similar to the crisp clustering, we can define the volatility
ranking of an object by the function fcpr : X → {1, 2, 3, 4, 5} for percentile value
representation of the daily patterns. Fig. 5 shows the fuzzy centroids after the
application of the fuzzy c-means algorithm. In fuzzy clustering, we cannot identify
individual clusters, since most patterns belong to multiple clusters with different
degrees of membership. Therefore, we cannot draw the average patterns for a cluster
similar to the Fig. 4. However, we can calculate the average volatility rank for each
daily pattern xi calculated using the following formula:

avgRank(xi) =

k∑
j=1

uij × j, (10)
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(a) Percentile

(b) Black Scholes Volatility

Figure 4. Average Chronological Daily Patterns

Table 4. Fuzzy memberships for different stocks

Day:Instrument fcpr1 fcpr2 fcpr3 fcpr4 fcpr5 Avg Rank

2011-08-16:3 1 0.04 0.06 0.09 0.35 0.46 4.14

2011-08-17:3 1 0.85 0.13 0.03 0 0 1.19
:

2012-01-31:3 1 0.06 0.16 0.65 0.12 0.01 2.86
:

2011-08-16:Z 2 0.97 0.03 0.01 0 0 1.04
:

2012-01-31:Z 2 0.93 0.05 0.01 0 0 1.09

where uij is the membership of daily pattern xi to fuzzy cluster fcprj with rank j.
Instead of assigning a daily pattern to a single cluster, the fuzzy c-means algo-

rithm assigns a membership between 0 and 1 as shown in Table 4. The last column
in the table shows the average volatility rank for each daily pattern xi.

Comparison of the centroids from crisp clustering for both percentile value distri-
bution and Black Scholes index in Fig. 3 with those obtained from fuzzy clustering
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Figure 5. Fuzzy Centroids of 5 Clusters after Ranking

in Fig. 5 suggests that fuzzy clustering tends to have more evenly distributed separa-
tion of clusters. As discussed earlier, well separated clusters is an important aspect
of cluster quality measurement. The evenly distributed centroids in fuzzy cluster-
ing are possible because an object can belong to multiple clusters with different
membership instead of creating an extremely volatile cluster.

The average daily patterns for each cluster shown in Fig. 5 provide a more de-
scriptive representation of the different volatility ranks similar to the crisp clustering
percentile value patterns. On the other hand, the average volatility rank given by
Eq. 10 provide a more concise value of the volatility similar to the Black Scholes
index. Therefore, we can conclude that the average volatility rank along with the
fuzzy centroids combines the best of both worlds in terms of semantics and concise-
ness.

In this section, we compared the segmentation of Black Scholes volatility index
and two clustering alternatives of more descriptive percentile values of the daily
price distribution. The fuzzy c-means algorithm combines the best of both the
worlds by providing a more descriptive profile of the trading pattern similar to
crisp clustering, and also provides a degree of membership value that is similar to
the degree of volatility used by Black Scholes index. The volatility in trading is
rarely a single day phenomenon, it is caused by an economic or financial event and
usually lasts for a significant period of time - as much as two weeks or ten trading
days. In rare cases, the market may be in a turmoil for longer than two weeks.
Therefore, traders may want to put the volatility in a daily pattern in historical
context over the previous two weeks period. In the next section we will look at a
fuzzy extension of temporal meta-clustering that will allow the traders to look at
both the daily and historical volatility for a give stock.

5. Review of simultaneous and meta-clustering. Normally data miners con-
sider rows to be the objects and columns as the attributes of these objects. A good
example of such a dataset is a document collection or corpus. Each row in the table
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corresponds to a document. Each column corresponds to a keyword. We can say
that this is a dataset consisting of documents represented by frequency of different
keywords in the document given by the rows in the table. However, one can easily
transpose this view and say that it is a collection of keywords that shows how often
the keyword occurs in various documents in the collection given by the columns
in the table. Information retrieval practitioners use clustering to group both doc-
uments and keywords. Slonim and Tishby [23] proposed a two stage clustering
method for this application. In the first step, the keywords were grouped based on
the their frequency in various documents. The documents were then represented
using the clusters of keywords as opposed to individual keywords. El-Yaniv and
Sourojon [6] extended this two stage approach with an iterative version where the
resulting document clustering could be used to re-cluster the words and the process
would continue. More generically, double clustering can be viewed as a dimensional-
ity reduction technique that replaces the columns by groups of columns. Castellano
et al. [4] further generalized double clustering using fuzzy set theory. Caruana et
al. [3] showed that the use of meta-clustering, meaning clusters of clusters, can make
it easier for the users to see more meaningful groupings. Ramirez et al. [21] took
meta-clustering to three levels for grouping players in a game based on three differ-
ent criteria: skills, preferences while playing the game, and relationships with other
players. The generalization of meta-clustering can be found when bi-clustering, first
introduced by Mirkin [19], was extended to tri-clustering and then more generally
to n-clustering [7, 8, 11,12].

Lingras et al. [15] described how a granular hierarchy can be clustered itera-
tively with the help of static information and the dynamically changing profiles
of customers and products throughout the meta-clustering process. This approach
unified the conventional static clustering with the simultaneous meta-clustering such
as double clustering using granular computing. Similar interdependency can also
be observed in a networked environment, where objects such as phone users are
connected to other phone users within the same dataset. In such a case, the profile
of a phone user should include the profiles of other users created by the same clus-
tering process. These dependencies are applicable to any social network, Lingras
and Rathinavel [13] proposed a recursive clustering technique for such networked
environments.

Such a recursive meta-clustering can be used with any crisp or soft clustering
algorithm. The type of clustering will determine how the dynamic portion is com-
puted. For example, for crisp clustering we will use the frequency of granules in each
cluster. For fuzzy clustering, the average memberships of granules in each cluster
will make up the dynamic portion. Lingras and Triff [14] compared recursive profiles
obtained from both crisp and fuzzy meta-clustering. The flexible cluster member-
ships provided by fuzzy clustering are shown to provide more moderate and uni-
formly distributed clustering schemes. Recently, Lingras and Haider [16] proposed
a temporal extension of the meta-clustering algorithm based on crisp clustering. As
the comparison of crisp and fuzzy clustering in the previous section suggests, fuzzy
clustering of percentile value patterns may be able to provide a better profiling of
volatility in a daily trading pattern. Therefore, the remaining paper describes a
fuzzy extension of the temporal meta-clustering algorithm that will help us put the
volatility in a historical perspective.

6. Basic recursive meta-clustering. As described by [15, 17, 22, 24], objects
are represented by both static and dynamic parts. The static part contains the
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attributes representing information obtained from the database. The static part
does not change throughout the meta-clustering process. The dynamic part con-
tains clustering information about the other connected objects and is derived from
the previous clustering of all the objects, and changes with each iteration of the
meta-clustering process. At the beginning of the clustering process, we do not have
any information from a previous clustering iteration. Therefore, the dynamic part
is empty and the first clustering of objects is based only on the static part. This
clustering is used to produce the dynamic part containing the cluster membership
information of the connected objects. Next the static and dynamic parts are con-
catenated and clustered. This process of clustering with the two concatenated parts
and updating the dynamic part after each iteration continues as long as every two
consecutive dynamic portions of clusters are divergent. The overall process is shown
as a flowchart in Fig. 6.

7. Algorithm: Recursive temporal meta-clustering. The algorithm for the
proposed recursive temporal meta-clustering is represented in Fig 7. The primary
objective of the temporal meta-clustering is to recursively provide a historical per-
spective of the clustering. For example, let us consider daily patterns of a number
of stocks that are being traded in a financial market. We want to create a measure
of volatility of a daily pattern using clustering. However, profiling a stock only on
one day’s daily price pattern will not tell the trader if the stock is in an early or
late stage of an unusual interest in the market. Therefore, we want to use volatility
profiles of the recent history of a stock for creating the volatility profile of the stock
on a given day. However, these historical volatility profiles require the clustering of
the stock’s pattern for the recent days in the same clustering algorithm leading to
a recursive profiling.

The two key steps in the algorithm are creation of the static and dynamic parts.
A daily pattern of a stock is naturally connected to the daily patterns of the same
stock from previous days. It is fair to assume that sustained activity in a stock does
not last for more than two weeks (ten trading days). Based on this assumption, we
can create a graph where each daily pattern is connected to the daily patterns of the
same stock from the previous ten days. That means the representation of a daily
pattern has data from that day (obtained statically from the database). This static
part consists of five percentile values (10%, 25%, 50%, 75%, 90%) as described in
the data processing section. The historical volatility of the same stock over last ten
trading days constitutes the dynamic part of the representation of a daily pattern.
More specifically, the dynamic part will use the volatility ranking of the last ten
trading days for the same stock based on meta-clustering information. In order
to have ten days of history available in the representation of a daily pattern, our
dataset consists of patterns starting from 11th trading day onwards.

The attribute values are weighted to ensure that the small values of the static
part are not dominated by the large values of the dynamic part and vice versa.
Examples of the static parts of some of the daily patterns are shown in Table 5.

In order to create the first dynamic part, we cluster the daily patterns using these
static parts. The resulting five clusters are ranked based on their volatility. The
higher values in the 90th percentile tend to suggest higher volatility. The cluster
with the lowest volatility is ranked 1, the cluster with the next lowest valued cen-
troids is ranked 2 and so on. Ranked clusters with centroid values of the percentiles
from the static part are shown in Table 6.
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Figure 6. Flowchart of Recursive Meta-clustering

The dynamic part of a daily pattern is created by assuming that the daily pattern
is related to the last ten daily patterns for the same stock. We use the last ten
average volatility rankings for the same stock calculated using Eq. 10 to make up
the dynamic part of the representation of the daily pattern. The dynamic part
puts the volatility of a stock in historical perspective. Examples of dynamic parts
created after first clustering with static parts for some of the daily patterns is shown
in Table 7.
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Procedure: recursiveMetaCluster()
items ← Data Set
m ← Period of Dynamic Part noCls ← No of Clusters
dyn ← Empty //Dynamic Part clsOfRank ← Empty //Cluster Nos Sorted as Rank
mem ← Empty //Memberships of Objects in Clusters
prevCenters.DynCls ← Empty //Centers of Dynamic Cluster Part in Last Iteration

1. stat ← createStaticPart(m+1,items)
2. statPlusDyn ← stat + dyn
3. centers ← fuzzyCluster(statPlusDyn, mem)
4. rankedCentersStat ← rankCenters(centers.StatClsPart, rank, noCls)
5. if centers.DynClsPart == prevCenters.DynClsPart
6. Stop
7. prevCenters.DynClsPart ← centers.DynamicClsPart
8. dyn ← createDynamicPart(items,mem,rank,m, noCls)

Procedure: createStaticPart(mPlus1,items)
1. for each i = mPlus1 to (numOfRecords.items) do step 2
2. add record[i] to statProfile
3. return statProfile

Procedure: rankCenters(centers, clsOfRank, noCls)
1. for each i = 1 to noCls-1 do step 2
2. for each j = i+1 to noCls do step 3
3. if centers[i] >centers[j] do step 4 to 8
4. t = centers [i]
5. centers[i] = centers[j]
6. centers[j] = t
7. clsOfRank[i] = j
8. clsOfRank[j] =i
9. return centers

Procedure: createDynamicPart(items,mem,clsOfRank,m,noCls)
1. for each i = m+1 to (numOfRecords.item) do step 2 to 4
2. for dy = i-1 to (i-m) days do step 3
3. rank[items[dy]]=avgRank(items[dy],mem,clsOfRank,noCls)
4. add rank to dynProfile
5. return dynProfile

Procedure: avgRank(object,mem,clsOfRank,noCls)
1. Initialize weightedRank = 0
2. for k = 1 to noCls do step 3
3. weightedRank=weightedRank+(mem[object][clsOfRank[k]]*k)
4. return weightedRank

Figure 7. Fuzzy Temporal Meta-clustering Algorithm

Table 5. Static Part of Percentile Data

Day:Instrument p10 p25 p50 p75 p90

2011-08-16:3 1 0 0.28 0.56 0.67 0.78

2011-08-17:3 1 0 0 0.04 0.09 0.11
:

2012-01-31:3 1 0 0 0.15 0.29 0.46

:
2011-08-16:Z 2 0 0.027 0.045 0.05 0.05

:
2012-01-31:Z 2 0 0.01 0.019 0.03 0.11
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Table 6. Ranked Clusters for Percentile Data after first iteration

Centers

Rank Cluster p10 p25 p50 p75 p90

1 C2 0 0.02 0.03 0.06 0.08

2 C5 0 0.05 0.10 0.16 0.21
3 C4 0 0.09 0.19 0.28 0.35

4 C1 0 0.16 0.35 0.48 0.57

5 C3 0 0.30 0.66 0.88 1.00

Table 7. Dynamic Part after first iteration

Daym+1:Instrument d
m

−
9

d
m

−
8

d
m

−
7

d
m

−
6

d
m

−
5

d
m

−
4

d
m

−
3

d
m

−
2

d
m

−
1

d
m

2011-08-16:3 1 2.69 2.69 2.70 2.70 2.69 2.70 2.68 2.70 2.70 2.69

2011-08-17:3 1 2.69 2.70 2.70 2.69 2.70 2.68 2.70 2.70 2.69 4.14
:

2012-01-31:3 1 1.07 2.10 3.78 1.25 1.81 3.58 4.06 1.09 1.42 3.56
:

2011-08-16:Z 2 2.69 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.69

:
2012-01-31:Z 2 1.09 2.90 2.89 1.15 3.04 1.87 2.00 3.01 2.05 1.71

Table 8. Concatenated Static Part(SP) and Dynamic Part(DP)
after first iteration

SP DP

Day:Instrument p10 p25 p50 p75 p90 d
m

−
9

d
m

−
8

d
m

−
7

d
m

−
6

d
m

−
5

d
m

−
4

d
m

−
3

d
m

−
2

d
m

−
1

d
m

2011-08-16:3 1 0 0.28 0.56 0.67 0.78 2.69 2.69 2.70 2.70 2.69 2.70 2.68 2.70 2.70 2.70

2011-08-17:3 1 0 0 0.04 0.09 0.11 2.69 2.70 2.70 2.69 2.70 2.68 2.70 2.70 2.69 4.14
:

2012-01-31:3 1 0 0 0.15 0.29 0.46 1.07 2.10 3.78 1.25 1.81 3.58 4.06 1.09 1.42 3.56

:
2011-08-16:Z 2 0 0.03 0.045 0.05 0.05 2.69 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.69

:

2012-01-31:Z 2 0 0.01 0.02 0.03 0.11 1.09 2.90 2.89 1.15 3.04 1.87 2.00 3.01 2.05 1.71

Table 9. Cluster Centers after clustering with Concatenated Profile

SP DP

R
a
n

k

C
lu

st
er

p10 p25 p50 p75 p90 d
m

−
9

d
m

−
8

d
m

−
7

d
m

−
6

d
m

−
5

d
m

−
4

d
m

−
3

d
m

−
2

d
m

−
1

d
m

1 C5 0 0.0530 0.1123 0.1720 0.22271.9925 1.9849 1.9812 1.9698 1.9645 1.9569 1.9539 1.9481 1.9409 1.9376

2 C2 0 0.0531 0.1124 0.1721 0.22271.9933 1.9857 1.9820 1.9706 1.9653 1.9576 1.9546 1.9488 1.9415 1.9382

3 C4 0 0.0531 0.1124 0.1721 0.22281.9937 1.9861 1.9824 1.9710 1.9657 1.9581 1.9550 1.9492 1.9419 1.9386
4 C1 0 0.0531 0.1124 0.1722 0.22291.9943 1.9867 1.9830 1.9716 1.9663 1.9587 1.9556 1.9498 1.9424 1.9391

5 C3 0 0.0532 0.1124 0.1722 0.22291.9946 1.9871 1.9834 1.9720 1.9666 1.9590 1.9559 1.9501 1.9427 1.9393

Static and dynamic parts of Table 5 and Table 7 are concatenated as Table 8
for the next step of the clustering. The concatenated profile with 15 attributes
(5 percentiles and ranks of the last 10 days) are clustered. The resultant cluster
profile is shown in Table 9. After every clustering, the dynamic part is updated and
the clustering is repeated until the dynamic part converges or until the maximum
number of iterations is reached.
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Table 10. Final Ranked Centers for Percentile Data
R
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k
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er

p10 p25 p50 p75 p90 d
m
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m
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m

−
7

d
m

−
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d
m

−
5

d
m

−
4

d
m

−
3

d
m

−
2

d
m

−
1

d
m

1 C2 0 0.04 0.08 0.12 0.15 1.20 1.17 1.14 1.12 1.11 1.10 1.10 1.11 1.13 1.15

2 C4 0 0.05 0.10 0.15 0.19 2.24 2.20 2.16 2.14 2.11 2.10 2.10 2.11 2.12 2.14

3 C3 0 0.05 0.10 0.16 0.21 3.04 3.03 3.03 3.03 3.02 3.02 3.02 3.02 3.03 3.03
4 C1 0 0.05 0.11 0.17 0.22 3.82 3.86 3.89 3.92 3.94 3.95 3.97 3.98 3.99 3.99

5 C5 0 0.07 0.14 0.21 0.27 4.70 4.75 4.78 4.81 4.83 4.84 4.83 4.82 4.79 4.76

8. Results. The recursive temporal meta-clustering process was executed for a
maximum of 65 iterations. The rounded values of the dynamic parts were compared
to test the convergence. After 23 iterations the result stabilized.

Figure 8. Ranks in Final Temporal Cluster

The final cluster centroids and their ranks obtained at iteration 23 are shown
in Table 10 and Fig. 8. It is interesting to note that the average ranks in the
dynamic part match the ranks of the clusters inferred from the volatility in the
percentile values. That means the static and dynamic parts in the fuzzy centroids
are consistent with each other.

Figure 9. Ranks of day 2012-01-12 and last 10 days of Instrument Z 2
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Figure 10. Ranks of day 2011-10-03 and last 10 days of Instru-
ment 3 1

Figure 11. Ranks of day 2011-12-16 and last 10 days of Instru-
ment A 10

Figure 12. Ranks of day 2011-08-16 and last 10 days of Instru-
ment 3 1

To put the volatility in historical perspective and allow traders to look at stocks
differently leading to a more informed decision, we can also provide a graphical
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Figure 13. Ranks of day 2012-01-04 and last 10 days of Instru-
ment A 10

Figure 14. Ranks of day 2011-11-01 and last 10 days of Instru-
ment A 113

representation of a stock over previous two weeks. Figs. 9-14 show a number of dif-
ferent variations in the volatility of different stocks over a two-week trading period.
We can analyze the activity and possible trading implications as follows:

• Stock Z 2 on 2012-01-02 shown in Fig. 9 jumped to the volatility of 5 with
a steady increase in volatility from almost 2 to 5 over previous ten trading
days. This stock is of high and increasing interest by the market at this time.
A potential candidate for short term trading.

• Stock 3 1 on 2011-10-03 shown in Fig. 10 settled to the lowest volatility of 1
after slight turbulence over previous ten trading days. This stock is of little
interest at this time.

• Stock A 10 on 2011-12-06 shown in Fig. 11 settled to the volatility of 2 after
slightly higher volatility over previous ten trading days. This stock is of
modest interest and will be a relatively safe trade.

• Stock 3 1 on 2011-08-16 shown in Fig. 12 settled to the volatility of 3 after
slightly higher volatility over previous ten trading days. This stock is of a
reasonable interest and will be potentially good trade.

• Stock A 10 on 2012-01-04 shown in Fig. 13 suddenly jumped back to the
volatility of 4 after showing a decline in volatility over previous ten trading
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days. This stock had peaked interest of the market, but subsequently the
interest waned due to lack of news, and now it has become very interesting.

• Stock A 113 on 2011-11-01 shown in Fig. 14 jumped to the volatility of 5
after hovering between 4.7 and 4.8 for previous ten trading days. The interest
in this stock was percolating in anticipation of some news, and now it has
become very interesting.

The historical analysis and trading implications described above use fuzzy tem-
poral meta-clustering and would not be possible if the stocks were analyzed by
studying the daily patterns in isolation.

9. Computational requirements for the meta-clustering algorithm. The
primary objective of the proposed meta-clustering algorithm is to generate seman-
tically more meaningful profiles based on connections between granules. It is nec-
essary to strike a balance between reliable and useful profiles versus computational
efficiency. The proposed meta-clustering algorithm has inherent opportunities for
parallel processing. Therefore, while it will require significant computational re-
sources, they can be distributed among multiple processors resulting in a reason-
able chronological time requirement. In this section, we discuss the computational
requirements and describe how the algorithm can be parallelized. The implemen-
tation of parallel meta-clustering is a separate research topic in itself, and is being
investigated as part of our ongoing research.

The problem of obtaining an optimal clustering scheme is NP-hard. Let us
assume that there are n objects that need to be grouped into k clusters. Each
object can be assigned to any one of the k clusters, resulting in k × k × · · · k = nk

possible clustering schemes. The clustering scheme that provides minimum scatter
within clusters and maximum separation between clusters will then be selected
as the optimal one. Therefore, finding the optimal clustering scheme will require
O(kn) calculations of cluster quality. Calculation of cluster quality will require
O(n2) distance calculations.

It is possible that if the cluster quality measure is carefully chosen, it may be
possible to optimize it without having to consider all possible clustering schemes.
For example, the fuzzy c-means algorithm can converge towards local minimum
for cluster scatter. Running fuzzy c-means multiple times with different starting
centroids increase the chances of finding the global minimum without having to
consider kn schemes. Each iteration in fuzzy c-means requires O(k × n) distance
calculations. Therefore, fuzzy c-means time requirements are O(k×n× iter), where
iter is the number of iterations. However, the clustering scheme resulting from
fuzzy c-means depends on the initial choice of cluster centers. As mentioned before,
one needs to apply fuzzy c-means multiple times and choose a clustering scheme
that provides minimum scatter within clusters and maximum separation between
clusters. However, these multiple runs can be easily run in parallel, keeping the
same chronological time.

The proposed meta-clustering algorithm uses multiple applications of a conven-
tional clustering algorithm such as the k-means. In addition, the resulting clustering
schemes will be used to create the dynamic representations for each object. The
creation of a dynamic representation will require 9×n = O(n) computations, where
n is the number of temporal patterns and we connect them to 9 historical patterns.
Our experiments used a linear application of the clustering algorithms. The lin-
ear implementations will require significant chronological time when the values of
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n are of the order of millions. It is possible to reduce the chronological time in a
distributed environment by implementing the following:

1. Apply fuzzy c-means in parallel on multiple nodes and choose the clustering
scheme with the best quality.

2. The creation of dynamic profiles involves sorting and searching lists. There
are many parallel implementations of sorting and searching that can be used
to facilitate faster computations.

10. Summary and conclusions. This paper describes a number of alternatives
to the Black Scholes index for measuring volatility in daily trading in a financial
market. The study uses 223 financial instruments (stocks) traded over 121 days.
The daily trading patterns of these stocks are segmented based on the Black Scholes
index and crisp clustering using the frequency distribution of the prices in a day. The
crisp clustering provides more descriptive profiles of volatility, while Black Scholes
index provides a concise volatility indicator. Fuzzy c-means clustering seems to
provide two major advantages over either of the crisp approaches described above.

1. The fuzzy centroids of percentile values are better separated than the crisp
clustering - a desirable cluster quality measure.

2. While the fuzzy centroids provide semantic description of the volatility, the
average fuzzy volatility rank will be as concise an indicator of volatility as the
Black Scholes index.

The paper further extends a temporal meta-clustering algorithm based on an
average fuzzy volatility rank. It makes it possible to put the volatility rankings in
a historical perspective, which will aid a trader in making decisions based on where
the stock is in a volatility cycle.

While the data used in this study is proprietary and part of a broader study, the
proposed algorithm can be applied to publicly available historical prices from such
institutions as Yahoo Finance. The low, high, closing prices and trading volumes
can provide an alternative representation of volatility.
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