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Abstract. The Business Process Model and Notation (BPMN) has been widely
adopted in the recent years as one of the standard languages for visual descrip-

tion of business processes. BPMN however does not include a formal semantics,

which is required for formal verification and validation of behaviors of BPMN
models.

Towards bridging this gap using first-order logic, we in this paper present
an ontological/formal account of flow-control components in BPMN, using Sit-

uation Calculus and Petri nets. More precisely, we use SCOPE (Situation

Calculus Ontology of PEtri nets), developed from our previous work, to for-
mally describe flow-control related basic components (i.e., events, tasks, and

gateways) in BPMN as SCOPE-based procedures. These components are first

mapped from BPMN onto Petri nets.
Our approach differs from other major approaches for assigning seman-

tics to BPMN (e.g., the ones applying communicating sequential processes,

or abstract state machines) in the following aspects. Firstly, the approach
supports direct application of automated theorem proving for checking theory

consistency or verifying dynamical properties of systems. Secondly, it defines

concepts through aggregation of more basic concepts in a hierarchical way thus
the adoptability and extensibility of the models are presumably high. Thirdly,

Petri-net-based implementation is completely encapsulated such that interfaces
between the system and its users are defined completely within a BPMN con-

text. Finally, the approach can easily further adopt the concept of time.

1. Introduction. The Business Process Model and Notation (BPMN) [15] has
been widely adopted in recent years as one of the standard languages for visual
description of business processes. In particular BPMN has been extensively used
in facilitating effective communication among technical experts, business users and
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other stakeholders within a work group, for business process design and implemen-
tation, or problem solving in business domains.

BPMN however does not contain a formal semantics. Consequently, rigorously
specifying dynamical behaviors of objects in a BPMN specified business process
model can be challenging and error-prone. For critical systems (e.g., a medical
process specified in BPMN), the existence of semantic ambiguities in these systems
is costly from every perspective and thus should be eliminated as much as possible.
For these reasons, in recent years, several efforts have been made to assign BPMN
with formal semantics. Among them, [3] and [4] in particular proposed to map a
BPMN model into a Petri net, which is a mathematical modeling language (although
a Petri net can be graphical too) that has precise execution semantics. In addition,
decades of research in Petri nets offers well-established theories to support analysis
of dynamic properties in Petri-net specified systems. In [3] and [4], a given BPMN
model is first dissected into several BPMN elements. For each type of the element,
a mapping from the element to a Petri net module is proposed. After the dissection
step and mapping step, these Petri nets modules are eventually integrated together
to construct a single Petri net.

In our previous work ([17], [18], [19]) meanwhile we presented a straightforward
first-order-logic (FOL) based framework for Petri nets. More specifically, we have
shown that: a) we can represent Petri nets and their variants as Situation-Calculus1

based action theories, and the theories for basic Petri nets are called in short as
SCOPE, standing for Situation Calculus Ontology for PEtri nets ([17], [18]); b)
given an instance of SCOPE theory, we could further build up Golog procedures2,
where sequential, iterative, or nondeterministic composite sequences of transition
firings in Petri nets and their variants can be further axiomatized through defin-
ing macros; these macros are built on top of more primitive procedures and the
only basic action in the domain transition firing [19]; c) executability testing of
Golog procedures via theorem-proving can be implemented through efficient logic
programming in Prolog ([18], [19]).

In this paper, we show that the mapping method as proposed in ([3] and [4])
can be naturally extended into SCOPE context. That is, using SCOPE, we can
easily define a Petri net module, resulted from performing mapping on a BPMN
object, as a Golog complex procedure. These Golog procedures act as interfaces
encapsulating Petri net from being directly accessed by end users. Consequently,
stakeholders can still work at BPMN level, while the model is enriched with a
Petri-net specified formal semantics. Additionally, with these procedures, users
can write more complicated user-defined BPMN procedures in a hierarchical way.
Since a BPMN procedure can be further translated into Prolog programs [19], our
approach support automated verification of important system dynamic properties,
such as the executability of these procedures.

The remainder of this paper is organized as follows. Section 2 provides intro-
ductory reviews to the key technologies employed in this paper. Enriched with
an example, Section 3 is the core section that explains our approach. Conclusive
remarks are presented in Section 4.

1The Situation Calculus ([10, 16]) is a particular formal language for describing changes upon
actions in dynamical domains.

2In the Situation Calculus, a Golog procedure defines a complex action that is composed of
basic actions.
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2. Preliminaries. In this section, we give a brief introduction to BPMN and Petri
Nets. The method of mapping from BPMN onto Petri Nets as stated in Section
3 of [4] is then briefly reviewed. We also introduce here Situation Calculus/Golog
and SCOPE.

2.1. Petri nets & BPMN. Business Process Model and Notation (BPMN) is a
notational system for graphical specification of processes in business models. BPMN
was developed and has been maintained by the Object Management Group (OMG)
[15]. Control-flow related elements in BPMN are the focus of this paper and they
include objects of events, tasks and gateways.

An event denotes happening of something in a model and is represented as a
circle. In particular, a start/end event signals the start/finish of a process. An
activity denotes work to be done in a model and is represented as a rounded-
corner rectangle. A task is an atomic activity. Gateways are diamond-shaped
quadrilaterals and they denote different routing constructs. Among them, a fork
gateway (AND-split) creates concurrent flows and a join gateway synchronises these
flows. A decision gateway (XOR-split) selects exactly one flow from a set of them
based on certain criteria (data or event) and a merge gateway (XOR-join) merges
the alternative flows in the set into one flow. When the choice is non-unique, the
pair of gateways OR-split and OR-join is applied instead. Graphically these BPMN
objects are connected to each other by arrows. Figure 2 is an example BPMN-
denoted business process (adapted from Fig. 13 (a) in [4]).

A Petri net (PN) [14] is a pair (N,M0), where N is a triple (P, T, F ) such that P
is a finite set of node elements called places, T is a finite set of node elements called
transitions, F ⊆ (P × T ) ∪ (T × P ) consists of ordered pairs, and M0 the initial
marking, is a mapping in the form M : P → N , indicating the initial assignment of
a non-negative integer k to each place p in P . (In this case, we say that the place
p is marked with k tokens.) A marking M for N in Petri net PN is defined as a
vector (M(p1), . . . ,M(pm)), where p1, . . . , pm is an enumeration of P and M(pi)
tokens are assigned to node pi, for all i such that 1 ≤ i ≤ m. The same process,
depicted in Figure 2 as a BPMN model, is presented as a Petri net in Figure 3.

The method of mapping a BPMN process into a Petri net introduced in [4]
assumes that the BPMN process is in the first place “well-formed”. A well-formed
BPMN should satisfy several conditions (e.g., a start event has one outgoing flow
and no incoming flow.). It is shown that a given BPMN process can always be
transformed into a well-formed one ([1, 9, 25, 26]). The mapping process by itself
is straightforward and are summarized in Figure 1 (Several issues are identified
and addressed accordingly in [4]; however they are not discussed here). In the
figure, note that places in the Petri net modules/components are dashed, meaning
that these places would act as connectors to link multiple components into a Petri
net through mapping. As an example, the Petri net in Figure 3 is resulted from
performing mapping on the BPMN model in Figure 2.

2.2. Situation Calculus & SCOPE. The Situation Calculus is a logical language
for representing actions and changes in a dynamical domain. It is first proposed
by McCarthy and Hayes in 1969 [10]. The language L of Situation Calculus as
stated by [16] is a second-order many-sorted language with equality. Any Situation
Calculus-based action theory include: Fluent conditions, whose actual values can
be updated from applications of relevant actions; Actions, applications of which will
bring effects in term of changes of values of certain fluent conditions in a system. The
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Figure 1. Mapping tasks, events, and gateways onto Petri-net
components (Fig. 3. in [4] is copied here).

initial situation is called S 0. Starting from S 0, the system evolves on a sequence
of actions into its future situations. Golog is a logic programming language for de-
scription and execution of complex actions using domain-specific Situation Calculus
primitive actions. It provides imperative programming constructs, including (1) a, a
primitive action; (2) α;β, action α is followed by action β; (3) p?, test action on the
condition p; (4) if p then α else β, conditionals; (5) α|β, nondeterministic choice
of action α or action β; (6) (πx)α(x), nondeterministic choice of arguments; (7) α?,
nondeterministic iteration; and (8) Procedures. The semantics of Golog programs

is defined on the abbreviation Do(δ, s1, do(
→
a , s1)), which denotes that execution of

Golog program δ in the situation s1 leads to do(
→
a , s1)), an abbreviation to for the

situation of performing a sequence of actions
→
a= [α1, . . . , αn−1, αn] starting from

s1, i.e., do(αn, do(αn−1, . . . , do(α1, s1) . . .)). The structure of δ is defined inductively
through macro-expansions on the above eight constructs.

The theory Dscope for Situation Calculus Ontology of PEtri nets (SCOPE) is
first proposed in [17] and [18]. In Dscope, the only action is fire and the only fluent
is Tkns.

Primitive Action fire(t): the transition t fires.
Fluent Tkns(p, s): the number of tokens at place p at situation s.

Situation-Independent relations pre and post are introduced to specify the topology
of a given Petri net.

• pre(m,n). Node m enters node n.
• post(m,n). Node n enters node m.
• pre(m,n) ≡ post(n,m).

The Foundational Axioms Df (not listed here) characterize a generic situation tree
for any Basic Action Theory (BAT) written in the Situation Calculus. Based on
Df , the Primitive Action Precondition Axiom for primitive actions in Dscope

(∀s, p, t) (Poss(fire(t), s) ≡ (pre(p, t) ⊃ Tkns(p, s) ≥ 1))

defines the condition for a transition node t to fire legally. That is, the transition
t is enabled to fire at situation s iff each place that enters the transition node t
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contains at least one token.The Successor State Axiom in Dscope defines the effects
firing of a transition node would bring to the system.

(∀s, p, a, n) (Tkns(p, do(a, s)) = n ≡ γf (p, n, a, s)∨

(Tkns(p, s) = n ∧ ¬∃n′ γf (p, n′, a, s))),

where γf (p, n, a, s)
def
= γfe(p, n, a, s)∨γfl(p, n, a, s), referring to the two sets of firing

actions that cause the number of tokens at place p on situation do(a, s) to be equal
to n:

• γfe(p, n, a, s)
def
= (∃t)(pre(t, p)∧¬post(t, p)∧n = Tkns(p, s)+1∧a = fire(t))

(the number of tokens at place p at situation s is (n− 1), and a is an action
of firing transition t, which enters p);

• γfl(p, n, a, s)
def
= (∃ t)(pre(p, t)∧¬post(p, t)∧n = Tkns(p, s)−1∧a = fire(t))

(the number of tokens at place p at situation s is (n+ 1), and a is an action
of firing transition t, which leaves p);

The above Successor State Axiom summarizes all conditions where the number of
tokens at place p is n at situation do(a, s): n could be achieved by action a from
situation s, or at situation s the number of tokens at p is already n and the action
a that occurs in s will not change it to some other values. Note in particular that,
aside from the accommodation of time, this axiom is the same as the one in Dscope,
since introducing of inhibitor arc only changes the preconditions where a transition
node is enabled to fire.

As an example, we define Petri net in Figure 3 as a SCOPE theory. The ax-
iomatic part of SCOPE, including Foundational Axioms, Precondition Axioms, and
Successor State Axioms remain unchanged. We only need to specify the initial
marking and the situation-independent, topological structure of the Petri-net in
Figure 3. That is, the number of tokens at place P1 is 0. For any other place node,
the number is zero: tkns(P1) = 1, and tkns(Pi) = 0 for 2 ≤ i ≤ 12. Place node P1

enters transition node T1, and T1 enters P2, etc.

pre(P1, T1), pre(T1, P2), . . . , pre(T11, P12).

3. An ontological account of BPMN flow-control components. This sec-
tion includes two parts. We first specify formally the restrictions for well-formed
BPMN processes, this would facilitate implementation of automated tools for eval-
uating formally whether a BPMN process is well-formed (using a FOL theorem
prover for example). We then demonstrate how Petri nets modules for their cor-
responding BPMN objects can be formally described through carrying out further
axiomatization on top of SCOPE.

3.1. Well-formed BPMN process. From Section 3 of [4], a well-formed BPMN
process has to satisfy the following five criteria:

1. a start event or an exception event has just one outgoing (sequence) flow but
no incoming flow;

2. an end event has just one incoming flow but no outgoing flow;
3. activities and intermediate events have exactly one incoming flow and one

outgoing flow;
4. fork or decision gateways have one incoming flow and more than one outgoing

flows; and
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5. join or merge gateways have one outgoing flow and more than one incoming
flows.

In this section, first-order axiomatization of these criteria are presented (assuming
that objects in the domain are sorted in logical sense).

• startM(x) Message x starts.
• endM(x) Message x ends.
• (∀ x, y)(pre(x, y) ≡ post(y, x)).
• (∀ x)startE(x) ≡ start(x) ∨ startM(x).
• (∀ x)(interE(x) ≡ message(x) ∨ timer(x) ∨ error(x)).
• (∀ x)endE(x) ≡ (end(x) ∨ endM(x)).

• A start/exception event has one outgoing flow and does not have incoming
flow

(∀ x, y)
(
¬
(
pre(x, start(y)) ∧ ¬

(
pre(x, exception(y)

))
,

(∀ y)
(

(start(y) ∨ exception(y)) ⊃
(
(∃ x)pre(y, x)∧

¬(∃ x1, x2)(pre(y, x1) ∧ pre(y, x2) ∧ x1 6= x2)
))
.

• An end event has one incoming flow and does not have outgoing flow

(∀ x, y) ¬(pre(end(y), x)).

(∀ y)
(
end(y) ⊃

(
(∃ x)pre(x, y)∧

¬(∃ x1, x2)(pre(x1, y) ∧ pre(x2, y) ∧ x1 6= x2)
))
.

• An activity/intermediate-event has one and only one incoming flow and out-
going flow

(∀ y)
(

(activity(y) ∨ interE(y)) ⊃(
(∃ x)pre(y, x) ∧ ¬(∃ x1, x2)(pre(y, x1) ∧ pre(y, x2) ∧ x1 6= x2)

)
(
(∃ z)pre(z, y) ∧ ¬(∃ z1, z2)(pre(z1, y) ∧ pre(z2, y) ∧ z1 6= z2)

))
.

• An gateway fork or decision has one incoming flow and more than one out-
going flows

(∀ y)
(

(fork(y) ∨ decision(y)) ⊃
(
(∃ x)pre(x, y)∧

¬(∃ x1, x2)(pre(x1, y) ∧ pre(x2, y) ∧ x1 6= x2)
)
∧

(∃ x1, x2)(pre(y, x1) ∧ pre(y, x2) ∧ x1 6= x2)
))
.

• An gateway join or merge has one outcoming flow and more than one ingoing
flows

(∀ y)
(

(join(y) ∨merge(y)) ⊃
(
(∃ x)pre(y, x)∧

¬(∃ x1, x2)(pre(y, x1) ∧ pre(y, x2) ∧ x1 6= x2)
)
∧

(∃ x1, x2)(pre(x1, y) ∧ pre(x2, y) ∧ x1 6= x2)
))
.
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3.2. A theory of BPMN using SCOPE. It is known from our previous work
that, given a SCOPE theory, we can write SCOPE procedures through defining
macros, where these macros are built on top of more primitive, existing procedures
and the only basic action in the domain – transition node fire. With respect to
the Petri net in Figure 3, we can define a set of simple SCOPE procedures. For
example,

proc checkCreditCardF irst
fire(T1); fire(T2); fire(T4); fire(T6)

endProc
proc prepareAndShipProducts
fire(T3); fire(T5); fire(T8)

endProc

The procedure checkCreditCardF irst sequentially fires the transition nodes T1,
T2, T4 (the activity of checking credit card), T6. The procedure is executable from
initial setting, as there is a token in P1, thus T1 is initially enabled to fire. However,
firing of T4 has non-deterministic effects, the number of tokens in P6 is increased
by one, which non-deterministically enables either T6 or T7 (but not both) to fire,
reflecting the non-deterministic fact that the credit card can either be accepted or
rejected.

The procedure prepareAndShipProducts sequentially fires the transition nodes
T3 (the activity of preparing products), T5 and T8 (the activity of shipping prod-
ucts). Note that, if procedure prepareAndShipProducts is executable, then each of
these three transition nodes including T5 is executable. Nevertheless this means that
the credit card must be accepted, otherwise T7, not T5, would be enabled to fire, so
P7 would never receive a token and T5 can not be enabled to fire consequently.

With two procedures: checkCreditCardF irst, and prepareAndShipProducts,
we define below a new procedure called exampleExectutionOfAnOrder. The pro-
cedure first checks the validity of the credit card, if it is accepted; then the process
starts to prepare and to ship products.

proc exampleExectutionOfAnOrder
checkCreditCardF irst;
(πn)(tkns(P7, n) ∧ n = 0) | prepareAndShipProduct

endProc

To this end, it is quite clear how methodologically we are able to axiomatize
these BPMN flow-control components: we can simply define those Petri-net mod-
ules transformed from those BPMN objects, as illustrated in Figure 1, as SCOPE
procedures.

We start from axiomatizing a Petri-net module for the start object N in BPMN.
Suppose in the module, place P1 enters transition T , which in turn enters P2.
Accordingly we define a SCOPE procedure

proc startEvent(N)
[pre(P1, T ) ∧ pre(T, P2)]? ; fire(T )

endProc

That is, as long as the topological relationship is verified, T is suggested to fire
in this procedure. In almost the same way, we can define procedures endEvent and
task (definitions are skipped here).
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The definition of a procedure corresponding to a fork gate in BPMN involves one
place node that enters (and multiple place nodes that leave) the transition node to
be fired. Suppose that P1 enters T , and T in turn enters P2, . . . , Pn, we have

proc forkGate(N)
[pre(P1, T ) ∧ pre(T, P2) ∧ . . . ∧ pre(T, Pn)]? ; fire(T )

endProc

The definition of a procedure corresponding to a join gate in BPMN involves one
place node that leaves (and multiple place nodes that enter) the transition node to
be fired. Suppose P1 leaves T and P2, . . ., Pn enter T , we have

proc joinGate(N)
[pre(P2, T ) ∧ . . . ∧ pre(Pn, T5) ∧ pre(T, P1)]? ; fire(T5)

endProc

The definition of a procedure corresponding to a decision gate in BPMN involves
one place node that enters at least one transition node, where each transition node
in turn enters a place node. Suppose that P0 enters T1, . . ., Tn, in turn, T1 enters
P1, T2 enters P2, . . . Tn enters Pn, we have

proc decisionGate(N)
[pre(P, T1) ∧ . . . ∧ pre(P, Tn) ∧ pre(T1, P1) ∧ . . . ∧ pre(Tn, Pn)]?
; [fire(T1) | . . . |fire(Tn)]

endProc

The definition of a procedure corresponding to a merge gate in BPMN involves
one place node that multiple transition nodes enter, where for each transition node
there is a place node that enters the node. Suppose that T1, . . ., Tn enters P , in
addition, P1 enters T1, P2 enters T2, . . . Pn enters Tn, we have

proc mergeGate(N)
[pre(T1, P ) ∧ . . . ∧ pre(Tn, P ) ∧ pre(P1, T1) ∧ . . . ∧ pre(Pn, Tn)]?
; [fire(T1) | . . . |fire(Tn)]

endProc

3.3. The order process example. This section includes an example of an order
process (adapted from Fig. 13(a) in [4]). When an order request arrives from a
customer, both tasks “CheckCreditCard” and “Prepare Products” are initialized.
If the credit card is OK, the packed products would be shipped (the task “ShiProd-
ucts” is executed) and the process finishes. Alternatively, if the credit card fails, the
process finishes directly. BPMN representation of the process is depicted in Fig. 2.

The following sentences capture the topology of the Order Process Diagram.

start(N1), pre(N1, N2), fork(N2), pre(N2, N3), pre(N2, N4),
activity(N3), pre(N2, N3), pre(N3, N5), activity(N4),
pre(N2, N4), pre(N4, N6), decision(N5), pre(N5, N8),
pre(N5, N6), join(N6), pre(N6, N7), activity(N7),
pre(N7, N8), merge(N8), pre(N8, N9), end(N9).

The nine BPMN objects in Figure 2 are defined as the following SCOPE proce-
dures.

proc startEvent(N1)
[pre(P1, T1) ∧ pre(T1, P2)]? ; fire(T1)

endProc
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Figure 2. An Order Process in BPMN

proc forkGate(N2)
[pre(P2, T2) ∧ pre(T2, P3) ∧ pre(T2, P4)]? ; fire(T2)

endProc

proc task(N3)
[pre(P3, T3) ∧ pre(T3, P5)]? ; fire(T3)

endProc

proc task(N4)
[pre(P4, T4) ∧ pre(T4, P6)]? ; fire(T4)

endProc

proc decisionGate(N5)
[pre(P6, T6) ∧ pre(P6, T7) ∧ pre(T6, P7) ∧ pre(T7, P9)]?
;
fire(T6) | fire(T7)

endProc

proc joinGate(N6)
[pre(P5, T5) ∧ pre(P7, T5) ∧ pre(T5, P8)]? ; fire(T5)

endProc

proc task(N7)
[pre(P8, T8) ∧ pre(T8, P10)]? ; fire(T8)

endProc
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Figure 3. A Petri Net for the Order Process (Transformed from BPMN)

proc mergeGate(N8)
[pre(P9, T9) ∧ pre(P10, T10) ∧ pre(T10, P11) ∧ pre(T9, P11)]?
;
fire(T9) | fire(T10)

endProc

proc endEvent(N9)
[pre(P11, T11) ∧ pre(T11, P12)]? ; fire(T11)
endProc

It is handy to create further user-defined new procedures through macro-actions,
i.e., through hierarchically constructing more complex procedures from existing
ones. For example, the following procedure presumably specifies all possible execu-
tions of the BPMN process as specified in Figure 2.

proc orderProcess
startEvent(N1); forkGate(N2);
[task(N3); task(N4)]|[task(N4); task(N3)];
decisionGate(N5);
[joinGate(N6); task(N7); |; ] ; mergeGate(N8);endEvent(N9)

endProc
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Feasibility/executability of procedure orderProcess could be evaluated via query-
ing the theory with

?−Do(orderProcess, S0, S),

any instantiation of the situation variable S would correspond an execution from
the initial situation S0. We can also work directly on the Petri-net resulted form
mapping (Figure 3). We can run queries to test the resulted Petri-net markings
from a given execution instance of orderProcess. It can be verified that for some
situation Si, number of tokens in P5 is one, indicating that the order process might
complete improperly: since the credit card is rejected, the order process is discarded.
The products are already prepared to be shipped, though shipping will never happen
in this case.

4. Conclusive remarks. This paper proposes to axiomatize the Petri nets mod-
ules, resulted from transforming BPMN objects, as SCOPE-based procedures. In
fact, the impressive feature of high adaptability and extensibility is shared by all
Situation-Calculus-based Basic Action Theories including SCOPE. In a similar way,
we recently used SCOPE to aggregate event patterns in Supply Chain Management
[21], and to mitigate adverse interaction analysis for concurrent application of clini-
cal practise guidelines for comorbid patients [11, 20]. Ongoing approaches using di-
rectly first-order logic for integrating medical treatments to manage multimorbidity
include [11, 27, 12, 13, 22]. Formal process knowledge representation and reasoning
might also find its applicability in combining probabilistic graphical models to build
up frameworks and systems in areas for example information retrieval [23, 24].

Our previous research ([18] and [19]) indicates that we can easily implement
software tools using logic programming language Prolog [2]. Further, we might
consider adopting tractable variant to Situation Calculus (for example, a sequence
of research on the topic proposed in [6, 7, 5] is quite interesting and relevant) so an
actual implementation became practically feasible. Given the rapid development of
first-order theorem proving technologies in the recent years, theorem provers have
recently been used to support reasoning in ontologies [8]. As part of our initiative,
we plan to adapt theorem proving technologies for process ontologies like SCOPE
theories.

Finally, we remark that our approach is able to incorporate processes specified
with temporal constraints, since in our previous research reported in [19], a variant
to SCOPE which axiomatize Time Petri-nets are presented.
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